1
|
Goto A, Omori K, Yamaguchi-Tomikawa T, Kobayashi H, Shinoda-Ito Y, Hirai K, Ikeda A, Takashiba S. Interleukin-6/soluble IL-6 receptor-induced secretion of cathepsin B and L from human gingival fibroblasts is regulated by caveolin-1 and ERK1/2 pathways. FRONTIERS IN DENTAL MEDICINE 2025; 6:1547222. [PMID: 40135201 PMCID: PMC11933118 DOI: 10.3389/fdmed.2025.1547222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Aims Cathepsins are essential lysosomal enzymes that maintain organismal homeostasis by degrading extracellular substrates. The inflammatory cytokine interleukin-6 (IL-6) increases the production of cathepsins through the caveolin-1 (Cav-1) and c-Jun N-terminal kinase (JNK) signaling pathways, which have been implicated in the destruction of periodontal tissue. This study investigated the effect of the IL-6/soluble IL-6 receptor (sIL-6R) complex on the extracellular secretion of cathepsins in human gingival fibroblasts (HGFs) and examined the function of extracellularly secreted cathepsins B and L under acidic culture conditions in vitro. Methods HGFs were isolated from healthy volunteer donors. The expression of Cav-1 was suppressed via transfection with small interfering RNA (siRNA) targeting Cav-1. The expression levels of cathepsins B and L induced by extracellular IL-6/sIL-6R were measured using western blotting and enzyme-linked immunosorbent assay. Extracellular cathepsin activity following IL-6/sIL-6R stimulation was assessed using a methylcoumarylamide substrate in a fluorescence-based assay. IL-6/sIL-6R-induced expression of cathepsins B and L in HGFs was quantified under inhibitory conditions for extracellular signal-regulated kinase (ERK) 1/2 and/or JNK signaling, both of which are transduction pathways activated by IL-6/sIL-6R. This quantification was also performed in HGFs with suppressed Cav-1 expression using western blotting. Results Cathepsins B and L were secreted in their precursor forms from HGFs, with significantly elevated protein levels observed at 24, 48, and 72 h post-IL-6/sIL-6R stimulation. Under acidic culture conditions, cathepsin B activity increased at 48 and 72 h. Cav-1 suppression inhibited the secretion of cathepsin B regardless of IL-6/sIL-6R stimulation, whereas the secretion of cathepsin L was reduced only after 48 h of IL-6/sIL-6R stimulation. Inhibition of ERK1/2 and JNK pathways decreased the secretion of cathepsin B after 48 h of IL-6/sIL-6R stimulation, and JNK inhibition reduced the secretion of cathepsin L under similar conditions. Conclusion IL-6/sIL-6R stimulation increased the extracellular secretion of cathepsin B and L precursors in HGFs, and these precursors became activated under acidic conditions. Cav-1 and ERK1/2 are involved in regulating the secretion of cathepsin B precursors.
Collapse
Affiliation(s)
- Ayaka Goto
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuhiro Omori
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoko Yamaguchi-Tomikawa
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroya Kobayashi
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuki Shinoda-Ito
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kimito Hirai
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Atsushi Ikeda
- Department of Periodontics & Endodontics, Division of Dentistry, Okayama University Hospital, Okayama, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
2
|
Oduro-Kwateng E, Soliman ME. DON/DRP-104 as potent serine protease inhibitors implicated in SARS-CoV-2 infection: Comparative binding modes with human TMPRSS2 and novel therapeutic approach. J Cell Biochem 2024; 125:e30528. [PMID: 38284235 DOI: 10.1002/jcb.30528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Human transmembrane serine protease 2 (TMPRSS2) is an important member of the type 2 transmembrane serine protease (TTSP) family with significant therapeutic markings. The search for potent TMPRSS2 inhibitors against severe acute respiratory syndrome coronavirus 2 infection with favorable tissue specificity and off-site toxicity profiles remains limited. Therefore, probing the anti-TMPRSS2 potential of enhanced drug delivery systems, such as nanotechnology and prodrug systems, has become compelling. We report the first in silico study of TMPRSS2 against a prodrug, [isopropyl(S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)-propanamido)-6-diazo-5-oxo-hexanoate] also known as DRP-104 synthesized from 6-Diazo-5-oxo-l-norleucine (DON). We performed comparative studies on DON and DRP-104 against a clinically potent TMPRSS2 inhibitor, nafamostat, and a standard serine protease inhibitor, 4-(2-Aminoethyl) benzenesulfonyl fluoride (AEBSF) against TMPRSS2 and found improved TMPRSS2 inhibition through synergistic binding of the S1/S1' subdomains. Both DON and DRP-104 had better thermodynamic profiles than AEBSF and nafamostat. DON was found to confer structural stability with strong positive correlated inter-residue motions, whereas DRP-104 was found to confer kinetic stability with restricted residue displacements and reduced loop flexibility. Interestingly, the Scavenger Receptor Cysteine-Rich (SRCR) domain of TMPRSS2 may be involved in its inhibition mechanics. Two previously unidentified loops, designated X (270-275) and Y (293-296) underwent minimal and major structural transitions, respectively. In addition, residues 273-277 consistently transitioned to a turn conformation in all ligated systems, whereas unique transitions were identified for other transitioning residue groups in each TMPRSS2-inhibitor complex. Intriguingly, while both DON and DRP-104 showed similar loop transition patterns, DRP-104 preserved loop structural integrity. As evident from our systematic comparative study using experimentally/clinically validated inhibitors, DRP-104 may serve as a potent and novel TMPRSS2 inhibitor and warrants further clinical investigation.
Collapse
Affiliation(s)
- Ernest Oduro-Kwateng
- School of Health Sciences, Molecular Bio-Computation and Drug Design Research Group, Westville Campus, University of KwaZulu Natal, Durban, South Africa
| | - Mahmoud E Soliman
- School of Health Sciences, Molecular Bio-Computation and Drug Design Research Group, Westville Campus, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
3
|
Deng T, Lu X, Jia X, Du J, Wang L, Cao B, Yang M, Yin Y, Liu F. Cathepsins and cancer risk: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1428433. [PMID: 38883596 PMCID: PMC11176415 DOI: 10.3389/fendo.2024.1428433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Background Previous observational epidemiological studies reported an association between cathepsins and cancer, however, a causal relationship is uncertain. This study evaluated the causal relationship between cathepsins and cancer using Mendelian randomization (MR) analysis. Methods We used publicly available genome-wide association study (GWAS) data for bidirectional MR analysis. Inverse variance weighting (IVW) was used as the primary MR method of MR analysis. Results After correction for the False Discovery Rate (FDR), two cathepsins were found to be significantly associated with cancer risk: cathepsin H (CTSH) levels increased the risk of lung cancer (OR = 1.070, 95% CI = 1.027-1.114, P = 0.001, PFDR = 0.009), and CTSH levels decreased the risk of basal cell carcinoma (OR = 0.947, 95% CI = 0.919-0.975, P = 0.0002, P FDR = 0.002). In addition, there was no statistically significant effect of the 20 cancers on the nine cathepsins. Some unadjusted low P-value phenotypes are worth mentioning, including a positive correlation between cathepsin O (CTSO) and breast cancer (OR = 1.012, 95% CI = 1.001-1.025, P = 0.041), cathepsin S (CTSS) and pharyngeal cancer (OR = 1.017, 95% CI = 1.001-1.034, P = 0.043), and CTSS and endometrial cancer (OR = 1.055, 95% CI = 1.012-1.101, P = 0.012); and there was a negative correlation between cathepsin Z and ovarian cancer (CTSZ) (OR = 0.970, 95% CI = 0.949-0.991, P = 0.006), CTSS and prostate cancer (OR = 0.947, 95% CI = 0.902-0.944, P = 0.028), and cathepsin E (CTSE) and pancreatic cancer (OR = 0.963, 95% CI = 0.938-0.990, P = 0.006). Conclusion Our MR analyses showed a causal relationship between cathepsins and cancers and may help provide new insights for further mechanistic and clinical studies of cathepsin-mediated cancer.
Collapse
Affiliation(s)
- Tingting Deng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xixue Lu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xuemin Jia
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jinxin Du
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Baorui Cao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meina Yang
- National Health Commission (NHC) Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Ying Yin
- Department of Acupuncture, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fanjie Liu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
4
|
Zamyatnin AA, Gregory LC, Townsend PA, Soond SM. Beyond basic research: the contribution of cathepsin B to cancer development, diagnosis and therapy. Expert Opin Ther Targets 2022; 26:963-977. [PMID: 36562407 DOI: 10.1080/14728222.2022.2161888] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION In view of other candidate proteins from the cathepsin family of proteases holding great potential in being targeted during cancer therapy, the importance of Cathepsin B (CtsB) stands out as being truly exceptional. Based on its contribution to oncogenesis, its intimate connection with regulating apoptosis and modulating extracellular and intracellular functions through its secretion or compartmentalized subcellular localization, collectively highlight its complex molecular involvement with a myriad of normal and pathological regulatory processes. Despite its complex functional nature, CtsB is emerging as one of the few cathepsin proteases that has been extensively researched to yield tangible outcomes for cancer therapy. AREAS COVERED In this article, we review the scientific literature that has justified or shaped the importance of CtsB expression in cancer progression, from the perspective of highlighting a paradigm that is rapidly changing from basic research toward a broader clinical and translational context. EXPERT OPINION In doing so, we detail its maturation as a diagnostic marker through describing the development of CtsB-specific Activity-Based Probes, the rapid evolution of these toward a new generation of Prodrugs, and the evaluation of these in model systems for their therapeutic potential as anti-cancer agents in the clinic.
Collapse
Affiliation(s)
- Andrey A Zamyatnin
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Levy C Gregory
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Paul A Townsend
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Surinder M Soond
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
5
|
Diao Q, Du H, Zhao N, Wu Y, Du X, Sun Y, Zhou Y, Cao Z. Cathepsin C (CTSC) contributes to the antibacterial immunity in golden pompano (Trachinotus ovatus). FISH & SHELLFISH IMMUNOLOGY 2022; 128:316-326. [PMID: 35952999 DOI: 10.1016/j.fsi.2022.07.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Cathepsins, as a class of protein hydrolases, are widely found in the lysosomes of many tissues and play an essential role in various physiological activities. Cathepsin C (CTSC), a lysosomal cysteine protease, is an essential component of the lysosomal hydrolase family. In this study, we identified a CTSC from Trachinotus ovatus (TroCTSC) and analyzed its function. TroCTSC contained an ORF of 1368 bp and encoded 455 amino acids, which included three conserved catalytically active sites (Cys251, His397, and Asn419). It shares high homology (69.47%-90.77%) with the other known CTSC sequences of teleosts, which was most closely related to Seriola dumerili. TroCTSC was most abundant in the muscle, liver, and head kidney. After Vibrio harveyi infection, the expression levels of TroCTSC in liver, spleen, and head kidney were significantly up-regulated. TroCTSC was found in the cytoplasm with some of which were co-located with the lysosome. After V. harveyi stimulation, TroCTSC was translocated to nucleus in golden pompano snout (GPS) cells. In vitro, results revealed that the optimal hydrolase activity of the recombinant protein, rTroCTSC, was at 40 °C and pH 5.5. The activity of rTroCTSC was promoted by Zn2+ and Ca2+ but inhibited by Fe2+ and Cu2+. However, three mutant proteins, rTroCTSC-C251A, rTroCTSC-H397A, rTroCTSC-N419A, were dramatically reduced the proteolytic activity. Furthermore, in vivo results showed that overexpression of TroCTSC could significantly enhance body's ability to resist V. harveyi and promote the expression of proinflammatory cytokines, including interleukin 1-beta (IL-1β), IL-6, IL-8, interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α). In contrast, the interference of TroCTSC expression induced a significant increase in the number of bacteria after V. harveyi infection. Our results suggested that TroCTSC was an essential effector of the innate immune system and played a pivotal role in antibacterial immunity.
Collapse
Affiliation(s)
- Qianying Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Hehe Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Na Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Ying Wu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Xiangyu Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| |
Collapse
|
6
|
NO news: S-(de)nitrosylation of cathepsins and their relationship with cancer. Anal Biochem 2022; 655:114872. [PMID: 36027970 DOI: 10.1016/j.ab.2022.114872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Tumor formation and progression have been much of a study over the last two centuries. Recent studies have seen different developments for the early diagnosis and treatment of the disease; some of which even promise survival of the patient. Cysteine proteases, mainly cathepsins have been unequivocally identified as putative worthy players of redox imbalance that contribute to the premonition and further progression of cancer by interfering in the normal extracellular and intracellular proteolysis and initiating a proteolytic cascade. The present review article focuses on the study of cancer so far, while establishing facts on how future studies focused on the cellular interrelation between nitric oxide (NO) and cancer, can direct their focus on cathepsins. For a tumor cell to thrive and synergize a cancerous environment, different mutations in the proteolytic and signaling pathways and the proto-oncogenes, oncogenes, and the tumor suppressor genes are made possible through cellular biochemistry and some cancer-stimulating environmental factors. The accumulated findings show that S-nitrosylation of cathepsins under the influence of NO-donors can prevent the invasion of cancer and cause cancer cell death by blocking the activity of cathepsins as well as the major denitrosylase systems using a multi-way approach. Faced with a conundrum of how to fill the gap between the dodging of established cancer hallmarks with cathepsin activity and gaining appropriate research/clinical accreditation using our hypothesis, the scope of this review also explores the interplay and crosstalk between S-nitrosylation and S-(de)nitrosylation of this protease and highlights the utility of charging thioredoxin (Trx) reductase inhibitors, low-molecular-weight dithiols, and Trx mimetics using efficient drug delivery system to prevent the denitrosylation or regaining of cathepsin activity in vivo. In foresight, this raises the prospect that drugs or novel compounds that target cathepsins taking all these factors into consideration could be deployed as alternative or even better treatments for cancer, though further research is needed to ascertain the safety, efficiency and effectiveness of this approach.
Collapse
|
7
|
Abstract
The intimate involvement of pathogens with the heightened risk for developing certain cancers is an area of research that has captured a great deal of attention over the last 10 years. One firmly established paradigm that highlights this aspect of disease progression is in the instance of Helicobacter pylori infection and the contribution it makes in elevating the risk for developing gastric cancer. Whilst the molecular mechanisms that pinpoint the contribution that this microorganism inflicts towards host cells during gastric cancer initiation have come into greater focus, another picture that has also emerged is one that implicates the host's immune system, and the chronic inflammation that can arise therefrom, as being a central contributory factor in disease progression. Consequently, when taken with the underlying role that the extracellular matrix plays in the development of most cancers, and how this dynamic can be modulated by proteases expressed from the tumor or inflammatory cells, a complex and detailed relationship shared between the individual cellular components and their surroundings is coming into focus. In this review article, we draw attention to the emerging role played by the cathepsin proteases in modulating the stage-specific progression of Helicobacter pylori-initiated gastric cancer and the underlying immune response, while highlighting the therapeutic significance of this dynamic and how it may be amenable for novel intervention strategies within a basic research or clinical setting.
Collapse
|
8
|
Peng P, Chen JY, Zheng K, Hu CH, Han YT. Favorable Prognostic Impact of Cathepsin H (CTSH) High Expression in Thyroid Carcinoma. Int J Gen Med 2021; 14:5287-5299. [PMID: 34522128 PMCID: PMC8434881 DOI: 10.2147/ijgm.s327689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Background Presently, no study reported the function of cathepsin H (CTSH) in thyroid carcinoma (THCA). The aim of present study was to initially explore the factors affecting CTSH expression, and association between CTSH expression and survival rate in THCA. Methods We explored mRNA expression of CTSH in normal and BRCA tissues, and evaluated prognostic impact of CTSH expression on the overall survival of THCA patients. Then, related factors influencing CTSH mRNA expression in THCA were analyzed. Functional enrichment analysis was performed to reveal the potential function of CTSH involved in THCA. We also constructed PPI network among co-expressed genes of CTSH to determine hub genes, followed by association analysis on hub genes with CTSH. Results (1) CTSH mRNA was highly expressed in THCA compared with normal group (P<0.001). High expression of CTSH was conducive to the overall survival of THCA patients (P=0.0027). CTSH was then determined as an independent prognostic factor in THCA (P=0.024). (2) The mRNA expression of CTSH was statistically related to patient’s histological type, N stage, T stage, tumor stage and sample type (all P<0.001). CTSH copy number variation and methylation also influenced its mRNA expression (all P<0.001). (3) Pathway analysis indicated that CTSH mainly participated in cancer-related pathways, such as hedgehog signaling pathway, cytokine–cytokine receptor interaction and JAK-STAT signaling pathway (all P<0.05). (4) The top 10 co-expressed genes in whole PPI network showed significant correlation with CTSH expression (all P<0.001). Conclusion CTSH higher expression was observed in THCA, which caused a good prognosis of patients. CTSH expression might be regulated by multiple factors including clinical characteristic, methylation, copy number and other genes. This study demonstrated the clinical significance of CTSH in THCA, as well as revealed the potential pathway associated with CTSH involved in thyroid cancer.
Collapse
Affiliation(s)
- Pai Peng
- Department of Breast and Thyroid Surgery, Xiaogan Central Hospital&Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, 432000, People's Republic of China
| | - Jiang-Yuan Chen
- School of Medicine, Jianghan University, Wuhan, 430000, People's Republic of China
| | - Kai Zheng
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430000, People's Republic of China
| | - Chao-Hua Hu
- Department of Breast and Thyroid Surgery, Xiaogan Central Hospital&Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, 432000, People's Republic of China
| | - Yun-Tao Han
- Department of Breast and Thyroid Surgery, Xiaogan Central Hospital&Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, 432000, People's Republic of China
| |
Collapse
|
9
|
Cathepsin D-Managing the Delicate Balance. Pharmaceutics 2021; 13:pharmaceutics13060837. [PMID: 34198733 PMCID: PMC8229105 DOI: 10.3390/pharmaceutics13060837] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Lysosomal proteases play a crucial role in maintaining cell homeostasis. Human cathepsin D manages protein turnover degrading misfolded and aggregated proteins and favors apoptosis in the case of proteostasis disruption. However, when cathepsin D regulation is affected, it can contribute to numerous disorders. The down-regulation of human cathepsin D is associated with neurodegenerative disorders, such as neuronal ceroid lipofuscinosis. On the other hand, its excessive levels outside lysosomes and the cell membrane lead to tumor growth, migration, invasion and angiogenesis. Therefore, targeting cathepsin D could provide significant diagnostic benefits and new avenues of therapy. Herein, we provide a brief overview of cathepsin D structure, regulation, function, and its role in the progression of many diseases and the therapeutic potentialities of natural and synthetic inhibitors and activators of this protease.
Collapse
|
10
|
Intrinsically Connected: Therapeutically Targeting the Cathepsin Proteases and the Bcl-2 Family of Protein Substrates as Co-regulators of Apoptosis. Int J Mol Sci 2021; 22:ijms22094669. [PMID: 33925117 PMCID: PMC8124540 DOI: 10.3390/ijms22094669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
Taken with the growing importance of cathepsin-mediated substrate proteolysis in tumor biology and progression, the focus and emphasis placed on therapeutic design and development is coming into fruition. Underpinning this approach is the invariable progression from the direction of fully characterizing cathepsin protease members and their substrate targets, towards targeting such an interaction with tangible therapeutics. The two groups of such substrates that have gained much attention over the years are the pro- and anti- apoptotic protein intermediates from the extrinsic and intrinsic signaling arms of the apoptosis pathway. As proteins that are central to determining cellular fate, some of them present themselves as very favorable candidates for therapeutic targeting. However, considering that both anti- and pro- apoptotic signaling intermediates have been reported to be downstream substrates for certain activated cathepsin proteases, therapeutic targeting approaches based on greater selectivity do need to be given greater consideration. Herein, we review the relationships shared by the cathepsin proteases and the Bcl-2 homology domain proteins, in the context of how the topical approach of adopting 'BH3-mimetics' can be explored further in modulating the relationship between the anti- and pro- apoptotic signaling intermediates from the intrinsic apoptosis pathway and their upstream cathepsin protease regulators. Based on this, we highlight important future considerations for improved therapeutic design.
Collapse
|
11
|
Soond SM, Savvateeva LV, Makarov VA, Gorokhovets NV, Townsend PA, Zamyatnin AA. Cathepsin S Cleaves BAX as a Novel and Therapeutically Important Regulatory Mechanism for Apoptosis. Pharmaceutics 2021; 13:pharmaceutics13030339. [PMID: 33807987 PMCID: PMC8035670 DOI: 10.3390/pharmaceutics13030339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Certain lysosomal cathepsin proteins have come into focus as being good candidates for therapeutic targeting, based on them being over-expressed in a variety of cancers and based on their regulation of the apoptotic pathway. Here, we report novel findings that highlight the ability of cathepsin S expression to be up-regulated under Paclitaxel-stimulatory conditions in kidney cell lines and it being able to cleave the apoptotic p21 BAX protein in intact cells and in vitro. Consistent with this, we demonstrate that this effect can be abrogated in vitro and in mammalian cells under conditions that utilize dominant-inhibitory cathepsin S expression, cathepsin S expression-knockdown and through the activity of a novel peptide inhibitor, CS-PEP1. Moreover, we report a unique role for cathepsin S in that it can cleave a polyubiquitinated-BAX protein intermediate and is a step that may contribute to down-regulating post-translationally-modified levels of BAX protein. Finally, CS-PEP1 may possess promising activity as a potential anti-cancer therapeutic against chemotherapeutic-resistant Renal Clear Cell Carcinoma kidney cancer cells and for combined uses with therapeutics such as Paclitaxel.
Collapse
Affiliation(s)
- Surinder M. Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
- Correspondence: (S.M.S.); (A.A.Z.J.)
| | - Lyudmila V. Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Neonila V. Gorokhovets
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Paul A. Townsend
- Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7X, UK
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Correspondence: (S.M.S.); (A.A.Z.J.)
| |
Collapse
|
12
|
Rudzińska M, Daglioglu C, Savvateeva LV, Kaci FN, Antoine R, Zamyatnin AA. Current Status and Perspectives of Protease Inhibitors and Their Combination with Nanosized Drug Delivery Systems for Targeted Cancer Therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:9-20. [PMID: 33442233 PMCID: PMC7797289 DOI: 10.2147/dddt.s285852] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
In cancer treatments, many natural and synthetic products have been examined; among them, protease inhibitors are promising candidates for anti-cancer agents. Since dysregulated proteolytic activities can contribute to tumor development and metastasis, antagonization of proteases with tailored inhibitors is an encouraging approach. Although adverse effects of early designs of these inhibitors disappeared after the introduction of next-generation agents, most of the proposed inhibitors did not pass the early stages of clinical trials due to their nonspecific toxicity and lack of pharmacological effects. Therefore, new applications that modulate proteases more specifically and serve their programmed way of administration are highly appreciated. In this context, nanosized drug delivery systems have attracted much attention because preliminary studies have demonstrated that the therapeutic capacity of inhibitors has been improved significantly with encapsulated formulation as compared to their free forms. Here, we address this issue and discuss the current application and future clinical prospects of this potential combination towards targeted protease-based cancer therapy.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Cenk Daglioglu
- Biotechnology and Bioengineering Application and Research Center, Integrated Research Centers, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Fatma Necmiye Kaci
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Yakutiye, Erzurum 25050, Turkey
| | - Rodolphe Antoine
- CNRS, Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, Lyon F-69622, France
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Department of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
| |
Collapse
|
13
|
Soond SM, Savvateeva LV, Makarov VA, Gorokhovets NV, Townsend PA, Zamyatnin AA. Making Connections: p53 and the Cathepsin Proteases as Co-Regulators of Cancer and Apoptosis. Cancers (Basel) 2020; 12:cancers12113476. [PMID: 33266503 PMCID: PMC7700648 DOI: 10.3390/cancers12113476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This article describes an emerging area of significant interest in cancer and cell death and the relationships shared by these through the p53 and cathepsin proteins. While it has been demonstrated that the p53 protein can directly induce the leakage of cathepsin proteases from the lysosome, directly triggering cell death, little is known about what factors set the threshold at which the lysosome can become permeabilized. It appears that the expression levels of cathepsin proteases may be central to this process, with some of them being transcriptionally regulated by p53. The consequences of such a mechanism have serious implications for lysosomal-mediated apoptosis and have significant input into the design of therapeutics and their strategic use. In this review, we highlight the importance of extending such findings to other cathepsin family members and the need to assess the roles of p53 isoforms and mutants in furthering this mechanism. Abstract While viewed as the “guardian of the genome”, the importance of the tumor suppressor p53 protein has increasingly gained ever more recognition in modulating additional modes of action related to cell death. Slowly but surely, its importance has evolved from a mutated genetic locus heavily implicated in a wide array of cancer types to modulating lysosomal-mediated cell death either directly or indirectly through the transcriptional regulation of the key signal transduction pathway intermediates involved in this. As an important step in determining the fate of cells in response to cytotoxicity or during stress response, lysosomal-mediated cell death has also become strongly interwoven with the key components that give the lysosome functionality in the form of the cathepsin proteases. While a number of articles have been published highlighting the independent input of p53 or cathepsins to cellular homeostasis and disease progression, one key area that warrants further focus is the regulatory relationship that p53 and its isoforms share with such proteases in regulating lysosomal-mediated cell death. Herein, we review recent developments that have shaped this relationship and highlight key areas that need further exploration to aid novel therapeutic design and intervention strategies.
Collapse
Affiliation(s)
- Surinder M. Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
- Correspondence: (S.M.S.); (A.A.Z.J.)
| | - Lyudmila V. Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Neonila V. Gorokhovets
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Paul A. Townsend
- Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, and the NIHR Manchester Biomedical Research Centre, Manchester M13 9PL, UK;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Correspondence: (S.M.S.); (A.A.Z.J.)
| |
Collapse
|
14
|
Integrative p53, micro-RNA and Cathepsin Protease Co-Regulatory Expression Networks in Cancer. Cancers (Basel) 2020; 12:cancers12113454. [PMID: 33233599 PMCID: PMC7699684 DOI: 10.3390/cancers12113454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This article describes an emerging area of significant interest in cancer and cell death and the relationships shared by these through the transcriptional regulation of cathepsin protease genes by micro-RNAs that are connected to p53 activation. While it has been demonstrated that the p53 protein can directly regulate some cathepsin genes and the expression of their upstream regulatory micro-RNAs, very little is known about what input the p53 isoform proteins may have in regulating this relationship. Herein, we draw attention to this important regulatory aspect in the context of describing mechanisms that are being established for the micro-RNA regulation of cathepsin protease genes and their collective use in diagnostic or prognostic assays. Abstract As the direct regulatory role of p53 and some of its isoform proteins are becoming established in modulating gene expression in cancer research, another aspect of this mode of gene regulation that has captured significant interest over the years is the mechanistic interplay between p53 and micro-RNA transcriptional regulation. The input of this into modulating gene expression for some of the cathepsin family members has been viewed as carrying noticeable importance based on their biological effects during normal cellular homeostasis and cancer progression. While this area is still in its infancy in relation to general cathepsin gene regulation, we review the current p53-regulated micro-RNAs that are generating significant interest through their regulation of cathepsin proteases, thereby strengthening the link between activated p53 forms and cathepsin gene regulation. Additionally, we extend our understanding of this developing relationship to how such micro-RNAs are being utilized as diagnostic or prognostic tools and highlight their future uses in conjunction with cathepsin gene expression as potential biomarkers within a clinical setting.
Collapse
|
15
|
Leto G, Sepporta MV. The potential of cystatin C as a predictive biomarker in breast cancer. Expert Rev Anticancer Ther 2020; 20:1049-1056. [PMID: 32990495 DOI: 10.1080/14737140.2020.1829481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Breast cancer (BCa) is the leading cause of cancer-related deaths among women. Numerous efforts are being directed toward identifying novel tissue and/or circulating molecular markers that may help clinicians in detecting early-stage BCa patients and in providing an accurate estimation of the prognosis and prediction of response to clinical treatments. In this setting, emerging evidence has indicated Cystatin C (Cyst C), as the most potent endogenous inhibitor of cysteine cathepsins, as a possible useful marker in the clinical management of BCa patients. AREAS COVERED This review analyzes the results of emerging studies underpinning a potential clinical role of Cyst C, as additional marker in BCa. EXPERT OPINION Cyst C expression levels have been reported to be altered in tumor tissues and/or in biological fluids of BCa patients. Furthermore, clinical evidence has highlighted a significant correlation between altered Cyst C levels in tumor tissues and/or biological fluids and some clinco-biological parameters of BCa progression. These findings provide evidence for a potential clinical use of Cyst C as a novel marker to improve the clinical and therapeutic management of BCa patients and as a gauge for better clarifying the role of cysteine proteinases in the various steps of BCa progression.
Collapse
Affiliation(s)
- Gaetano Leto
- Laboratory of Experimental Pharmacology, Department of Health Promotion Sciences, School of Medicine, University of Palermo , Palermo, Italy
| | - Maria Vittoria Sepporta
- Pediatric Unit, Department Women-Mother-Children, Pediatric Hematology-Oncology Research Laboratory, Lausanne University Hospital , Lausanne, Switzerland
| |
Collapse
|
16
|
Yang H, Heyer J, Zhao H, Liang S, Guo R, Zhong L. The Potential Role of Cathepsin K in Non-Small Cell Lung Cancer. Molecules 2020; 25:molecules25184136. [PMID: 32927648 PMCID: PMC7571067 DOI: 10.3390/molecules25184136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Cathepsin K has been found overexpressed in several malignant tumors. However, there is little information regarding the involvement of Cathepsin K in non-small cell lung cancer (NSCLC). (2) Methods: Cathepsin K expression was tested in human NSCLC cell lines A549 and human embryo lung fibroblast MRC-5 cells using Western blot and immunofluorescence assay. Cathepsin K was transiently overexpressed or knocked down using transfection with a recombinant plasmid and siRNA, respectively, to test the effects on cell proliferation, migration, invasion, and on the mammalian target of rapamycin (mTOR) signaling pathway. (3) Results: Expression of Cathepsin K was increased significantly in A549 cells and diffused within the cytoplasm compared to the MRC-5 cells used as control. Cathepsin K overexpression promoted the proliferation, migration, and invasion of A549 cells, accompanied by mTOR activation. Cathepsin K knockdown reversed the above malignant behavior and inhibited the mTOR signaling activation, suggesting that Cathepsin K may promote the progression of NSCLC by activating the mTOR signaling pathway. (4) Conclusion: Cathepsin K may potentially represent a viable drug target for NSCLC treatment.
Collapse
Affiliation(s)
- Hui Yang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China; (H.Y.); (H.Z.); (S.L.)
| | - Jasmine Heyer
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Hui Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China; (H.Y.); (H.Z.); (S.L.)
| | - Shengxian Liang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China; (H.Y.); (H.Z.); (S.L.)
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China; (H.Y.); (H.Z.); (S.L.)
- Correspondence: (R.G.); (L.Z.)
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China; (H.Y.); (H.Z.); (S.L.)
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
- Correspondence: (R.G.); (L.Z.)
| |
Collapse
|
17
|
Petushkova AI, Zamyatnin AA. Redox-Mediated Post-Translational Modifications of Proteolytic Enzymes and Their Role in Protease Functioning. Biomolecules 2020; 10:biom10040650. [PMID: 32340246 PMCID: PMC7226053 DOI: 10.3390/biom10040650] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022] Open
Abstract
Proteolytic enzymes play a crucial role in metabolic processes, providing the cell with amino acids through the hydrolysis of multiple endogenous and exogenous proteins. In addition to this function, proteases are involved in numerous protein cascades to maintain cellular and extracellular homeostasis. The redox regulation of proteolysis provides a flexible dose-dependent mechanism for proteolytic activity control. The excessive reactive oxygen species (ROS) and reactive nitrogen species (RNS) in living organisms indicate pathological conditions, so redox-sensitive proteases can swiftly induce pro-survival responses or regulated cell death (RCD). At the same time, severe protein oxidation can lead to the dysregulation of proteolysis, which induces either protein aggregation or superfluous protein hydrolysis. Therefore, oxidative stress contributes to the onset of age-related dysfunction. In the present review, we consider the post-translational modifications (PTMs) of proteolytic enzymes and their impact on homeostasis.
Collapse
Affiliation(s)
- Anastasiia I. Petushkova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence:
| |
Collapse
|
18
|
Søreide K, Roalsø M, Aunan JR. Is There a Trojan Horse to Aggressive Pancreatic Cancer Biology? A Review of the Trypsin-PAR2 Axis to Proliferation, Early Invasion, and Metastasis. J Pancreat Cancer 2020; 6:12-20. [PMID: 32064449 PMCID: PMC7014313 DOI: 10.1089/pancan.2019.0014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Purpose: Pancreatic cancer is one of the most lethal of solid tumors and is associated with aggressive cancer biology. The purpose is to review the role of trypsin and effect on molecular and cellular processes potentially explaining the aggressive biology in pancreatic cancer. Methods: A narrative literature review of studies investigating trypsin and its effect on protease systems in cancer, with special reference to pancreatic cancer biology. Results: Proteases, such as trypsin, provides a significant advantage to developing tumors through the ability to remodel the extracellular matrix, promote cell invasion and migration, and facilitate angiogenesis. Trypsin is a digestive enzyme produced by the exocrine pancreas that is also related to mechanisms of proliferation, invasion and metastasis. Several of these mechanisms may be co-regulated or influenced by activation of proteinase-activated receptor 2 (PAR-2). The current role in pancreatic cancer is not clear but emerging data suggest several potential mechanisms. Trypsin may act as a Trojan horse in the pancreatic gland, facilitating several molecular pathways from the onset, which leads to rapid progression of the disease. Pancreatic cancer cell lines containing PAR-2 proliferate upon exposure to trypsin, whereas cancer cell lines not containing PAR-2 fail to proliferate upon trypsin expression. Several mechanisms of action include a proinflammatory environment, signals inducing proliferation and migration, and direct and indirect evidence for mechanisms promoting invasion and metastasis. Novel techniques (such as organoid models) and increased understanding of mechanisms (such as the microbiome) may yield improved understanding into the role of trypsin in pancreatic carcinogenesis. Conclusion: Trypsin is naturally present in the pancreatic gland and may experience pathological activation intracellularly and in the neoplastic environment, which speeds up molecular mechanisms of proliferation, invasion, and metastasis. Further investigation of these processes will provide important insights into how pancreatic cancer evolves, and suggest new ways for treatment.
Collapse
Affiliation(s)
- Kjetil Søreide
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Marcus Roalsø
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway.,Faculty of Health and Medicine, University of Stavanger, Stavanger, Norway
| | - Jan Rune Aunan
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
19
|
Soond SM, Kozhevnikova MV, Frolova AS, Savvateeva LV, Plotnikov EY, Townsend PA, Han YP, Zamyatnin AA. Lost or Forgotten: The nuclear cathepsin protein isoforms in cancer. Cancer Lett 2019; 462:43-50. [PMID: 31381961 DOI: 10.1016/j.canlet.2019.07.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
While research into the role of cathepsins has been progressing at an exponential pace over the years, research into their respective isoform proteins has been less frenetic. In view of the functional and biological potential of such protein isoforms in model systems for cancer during their initial discovery, much later they have offered a new direction in the field of cathepsin basic and applied research. Consequently, the analysis of such isoforms has laid strong foundations in revealing other important regulatory aspects of the cathepsin proteins in general. In this review article, we address these key aspects of cathepsin isoform proteins, with particular emphasis on how they have shaped what is now known in the context of nuclear cathepsin localization and what potential these hold as nuclear-based therapeutic targets in cancer.
Collapse
Affiliation(s)
- Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russian Federation.
| | - Maria V Kozhevnikova
- Hospital Therapy Department № 1, Sechenov First Moscow State Medical University , 6-1 Bolshaya Pirogovskaya str, Moscow, 119991, Russian Federation.
| | - Anastasia S Frolova
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russian Federation.
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russian Federation.
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russian Federation.
| | - Paul A Townsend
- Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre; and the NIHR Manchester Biomedical Research Centre, Manchester, UK.
| | - Yuan-Ping Han
- College of Life Sciences Sichuan University, Chengdu, Sichuan, PO 6100064, People's Republic of China.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russian Federation; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russian Federation.
| |
Collapse
|