1
|
Hussein KH, Ahmadzada B, Correa JC, Sultan A, Wilken S, Amiot B, Nyberg SL. Liver tissue engineering using decellularized scaffolds: Current progress, challenges, and opportunities. Bioact Mater 2024; 40:280-305. [PMID: 38973992 PMCID: PMC11226731 DOI: 10.1016/j.bioactmat.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 07/09/2024] Open
Abstract
Liver transplantation represents the only definitive treatment for patients with end-stage liver disease. However, the shortage of liver donors provokes a dramatic gap between available grafts and patients on the waiting list. Whole liver bioengineering, an emerging field of tissue engineering, holds great potential to overcome this gap. This approach involves two main steps; the first is liver decellularization and the second is recellularization. Liver decellularization aims to remove cellular and nuclear materials from the organ, leaving behind extracellular matrices containing different structural proteins and growth factors while retaining both the vascular and biliary networks. Recellularization involves repopulating the decellularized liver with appropriate cells, theoretically from the recipient patient, to reconstruct the parenchyma, vascular tree, and biliary network. The aim of this review is to identify the major advances in decellularization and recellularization strategies and investigate obstacles for the clinical application of bioengineered liver, including immunogenicity of the designed liver extracellular matrices, the need for standardization of scaffold fabrication techniques, selection of suitable cell sources for parenchymal repopulation, vascular, and biliary tree reconstruction. In vivo transplantation models are also summarized for evaluating the functionality of bioengineered livers. Finally, the regulatory measures and future directions for confirming the safety and efficacy of bioengineered liver are also discussed. Addressing these challenges in whole liver bioengineering may offer new solutions to meet the demand for liver transplantation and improve patient outcomes.
Collapse
Affiliation(s)
- Kamal H. Hussein
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
- Department of Surgery, Anesthesiology, and Radiology, College of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Boyukkhanim Ahmadzada
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Julio Cisneros Correa
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Ahmer Sultan
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Silvana Wilken
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Bruce Amiot
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Scott L. Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
2
|
Felgendreff P, Hosseiniasl SM, Minshew A, Amiot BP, Wilken S, Ahmadzada B, Huebert RC, Sakrikar NJ, Engles NG, Halsten P, Mariakis K, Barry J, Riesgraf S, Fecteau C, Ross JJ, Nyberg SL. First Application of a Mixed Porcine-Human Repopulated Bioengineered Liver in a Preclinical Model of Post-Resection Liver Failure. Biomedicines 2024; 12:1272. [PMID: 38927479 PMCID: PMC11201206 DOI: 10.3390/biomedicines12061272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, a mixed porcine-human bioengineered liver (MPH-BEL) was used in a preclinical setup of extracorporeal liver support devices as a treatment for a model of post-resection liver failure (PRLF). The potential for human clinical application is further illustrated by comparing the functional capacity of MPH-BEL grafts as assessed using this porcine PRLF model with fully human (FH-BEL) grafts which were perfused and assessed in vitro. BEL grafts were produced by reseeding liver scaffolds with HUVEC and primary porcine hepatocytes (MPH-BEL) or primary human hepatocytes (FH-BEL). PRLF was induced by performing an 85% liver resection in domestic white pigs and randomized into the following three groups 24 h after resection: standard medical therapy (SMT) alone, SMT + extracorporeal circuit (ECC), and SMT + MPH-BEL. The detoxification and metabolic functions of the MPH-BEL grafts were compared to FH-BEL grafts which were perfused in vitro. During the 24 h treatment interval, INR values normalized within 18 h in the MPH-BEL therapy group and urea synthesis increased as compared to the SMT and SMT + ECC control groups. The MPH-BEL treatment was associated with more rapid decline in hematocrit and platelet count compared to both control groups. Histological analysis demonstrated platelet sequestration in the MPH-BEL grafts, possibly related to immune activation. Significantly higher rates of ammonia clearance and metabolic function were observed in the FH-BEL grafts perfused in vitro than in the MPH-BEL grafts. The MPH-BEL treatment was associated with improved markers of liver function in PRLF. Further improvement in liver function in the BEL grafts was observed by seeding the biomatrix with human hepatocytes. Methods to reduce platelet sequestration within BEL grafts is an area of ongoing research.
Collapse
Affiliation(s)
- Philipp Felgendreff
- Department of Surgery, Mayo Clinic, Rochester, MN 55902, USA; (S.M.H.); (A.M.); (B.P.A.); (S.W.); (B.A.); (S.L.N.)
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Seyed Mohammad Hosseiniasl
- Department of Surgery, Mayo Clinic, Rochester, MN 55902, USA; (S.M.H.); (A.M.); (B.P.A.); (S.W.); (B.A.); (S.L.N.)
| | - Anna Minshew
- Department of Surgery, Mayo Clinic, Rochester, MN 55902, USA; (S.M.H.); (A.M.); (B.P.A.); (S.W.); (B.A.); (S.L.N.)
| | - Bruce P. Amiot
- Department of Surgery, Mayo Clinic, Rochester, MN 55902, USA; (S.M.H.); (A.M.); (B.P.A.); (S.W.); (B.A.); (S.L.N.)
| | - Silvana Wilken
- Department of Surgery, Mayo Clinic, Rochester, MN 55902, USA; (S.M.H.); (A.M.); (B.P.A.); (S.W.); (B.A.); (S.L.N.)
| | - Boyukkhanim Ahmadzada
- Department of Surgery, Mayo Clinic, Rochester, MN 55902, USA; (S.M.H.); (A.M.); (B.P.A.); (S.W.); (B.A.); (S.L.N.)
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55902, USA; (R.C.H.); (N.J.S.); (N.G.E.)
| | - Nidhi Jalan Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55902, USA; (R.C.H.); (N.J.S.); (N.G.E.)
| | - Noah G. Engles
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55902, USA; (R.C.H.); (N.J.S.); (N.G.E.)
| | - Peggy Halsten
- Miromatrix Medical Inc., Eden Prairie, MN 55344, USA; (P.H.); (K.M.); (J.B.); (S.R.); (C.F.); (J.J.R.)
| | - Kendra Mariakis
- Miromatrix Medical Inc., Eden Prairie, MN 55344, USA; (P.H.); (K.M.); (J.B.); (S.R.); (C.F.); (J.J.R.)
| | - John Barry
- Miromatrix Medical Inc., Eden Prairie, MN 55344, USA; (P.H.); (K.M.); (J.B.); (S.R.); (C.F.); (J.J.R.)
| | - Shawn Riesgraf
- Miromatrix Medical Inc., Eden Prairie, MN 55344, USA; (P.H.); (K.M.); (J.B.); (S.R.); (C.F.); (J.J.R.)
| | - Chris Fecteau
- Miromatrix Medical Inc., Eden Prairie, MN 55344, USA; (P.H.); (K.M.); (J.B.); (S.R.); (C.F.); (J.J.R.)
| | - Jeffrey J. Ross
- Miromatrix Medical Inc., Eden Prairie, MN 55344, USA; (P.H.); (K.M.); (J.B.); (S.R.); (C.F.); (J.J.R.)
| | - Scott L. Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN 55902, USA; (S.M.H.); (A.M.); (B.P.A.); (S.W.); (B.A.); (S.L.N.)
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
3
|
Bai YP, Zhang T, Hu ZY, Zhang Y, Wang DG, Zhou MY, Zhang Y, Zhang F, Kong X. Sesamin ameliorates nonalcoholic hepatic steatosis by inhibiting CD36-mediated hepatocyte lipid accumulation in vitro and in vivo. Biochem Pharmacol 2024; 224:116240. [PMID: 38679210 DOI: 10.1016/j.bcp.2024.116240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Hepatic steatosis is a critical factor in the development of nonalcoholic steatohepatitis (NASH). Sesamin (Ses), a functional lignan isolated from Sesamum indicum, possesses hypolipidemic, liver-protective, anti-hypertensive, and anti-tumor properties. Ses has been found to improve hepatic steatosis, but the exact mechanisms through which Ses achieves this are not well understood. In this study, we observed the anti-hepatic steatosis effects of Ses in palmitate/oleate (PA/OA)-incubated primary mouse hepatocytes, AML12 hepatocytes, and HepG2 cells, as well as in high-fat, high-cholesterol diet-induced NASH mice. RNA sequencing analysis revealed that cluster of differentiation 36 (CD36), a free fatty acid (FA) transport protein, was involved in the Ses-mediated inhibition of hepatic fat accumulation. Moreover, the overexpression of CD36 significantly increased hepatic steatosis in both Ses-treated PA/OA-incubated HepG2 cells and NASH mice. Furthermore, Ses treatment suppressed insulin-induced de novo lipogenesis in HepG2 cells, which was reversed by CD36 overexpression. Mechanistically, we found that Ses ameliorated NASH by inhibiting CD36-mediated FA uptake and upregulation of lipogenic genes, including FA synthase, stearoyl-CoA desaturase 1, and sterol regulatory element-binding protein 1. The findings of our study provide novel insights into the potential therapeutic applications of Ses in the treatment of NASH.
Collapse
Affiliation(s)
- Ya-Ping Bai
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, China
| | - Teng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Zheng-Yan Hu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, China
| | - Yan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - De-Guo Wang
- Department of Gerontology, Geriatric Endocrinology Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Meng-Yun Zhou
- Department of Gerontology, Geriatric Endocrinology Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Ying Zhang
- Department of Gerontology, Geriatric Endocrinology Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Fang Zhang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, China.
| | - Xiang Kong
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; Department of Gerontology, Geriatric Endocrinology Unit, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China.
| |
Collapse
|
4
|
Upadhyay U, Kolla S, Maredupaka S, Priya S, Srinivasulu K, Chelluri LK. Development of an alginate-chitosan biopolymer composite with dECM bioink additive for organ-on-a-chip articular cartilage. Sci Rep 2024; 14:11765. [PMID: 38782958 PMCID: PMC11116456 DOI: 10.1038/s41598-024-62656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
In vitro use of articular cartilage on an organ-on-a-chip (OOAC) via microfluidics is challenging owing to the dense extracellular matrix (ECM) composed of numerous protein moieties and few chondrocytes, which has limited proliferation potential and microscale translation. Hence, this study proposes a novel approach for using a combination of biopolymers and decellularised ECM (dECM) as a bioink additive in the development of scalable OOAC using a microfluidic platform. The bioink was tested with native chondrocytes and mesenchymal stem cell-induced chondrocytes using biopolymers of alginate and chitosan composite hydrogels. Two-dimensional (2D) and three-dimensional (3D) biomimetic tissue construction approaches have been used to characterise the morphology and cellular marker expression (by histology and confocal laser scanning microscopy), viability (cell viability dye using flow cytometry), and genotypic expression of ECM-specific markers (by quantitative PCR). The results demonstrated that the bioink had a significant impact on the increase in phenotypic and genotypic expression, with a statistical significance level of p < 0.05 according to Student's t-test. The use of a cell-laden biopolymer as a bioink optimised the niche conditions for obtaining hyaline-type cartilage under culture conditions, paving the way for testing mechano-responsive properties and translating these findings to a cartilage-on-a-chip microfluidics system.
Collapse
Affiliation(s)
- Upasna Upadhyay
- Stem Cell Unit, Global Medical Education and Research Foundation (GMERF), Lakdi-ka-pul, Hyderabad, Telangana, 500004, India
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF) Deemed to be University, Vaddeswaram, Vijayawada, Andhra Pradesh, 522302, India
| | - Saketh Kolla
- Department of Orthopaedics, Gleneagles Global Hospitals, Lakdi-ka-pul, Hyderabad, Telangana, 500004, India
| | - Siddhartha Maredupaka
- Department of Orthopaedics, Gleneagles Global Hospitals, Lakdi-ka-pul, Hyderabad, Telangana, 500004, India
| | - Swapna Priya
- Stem Cell Unit, Global Medical Education and Research Foundation (GMERF), Lakdi-ka-pul, Hyderabad, Telangana, 500004, India
| | - Kamma Srinivasulu
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF) Deemed to be University, Vaddeswaram, Vijayawada, Andhra Pradesh, 522302, India
| | - Lakshmi Kiran Chelluri
- Advanced Diagnostics and Therapeutics, Gleneagles Global Hospitals, Lakdi-ka-pul, Hyderabad, Telangana, 500004, India.
- Academics and Research, Global Medical Education and Research Foundation (GMERF), Gleneagles Global Hospitals, Lakdi-ka-pul, Hyderabad, Telangana, 500004, India.
| |
Collapse
|
5
|
Upadhyay U, Srinivasulu K, Chelluri LK. Standardizing Chondrocyte Isolation and Articular Cartilage Decellularization: A Versatile Bioink for Tissue Engineering Applications. Methods Mol Biol 2024. [PMID: 38507214 DOI: 10.1007/7651_2024_534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The extracellular matrix (ECM) is a noncellular component of tissues that provides structural and biochemical support to cells. The purpose of decellularization is to provide a tissue-specific niche to preserve the architecture, composition, and signaling molecules of the ECM. The current protocol discusses the standardization of chondrocyte isolation and the preparation of acellular ECM as a bioink additive from human native articular cartilage. Isolated chondrocytes with bioink additives provide a tissue-specific microenvironment. Herein, we discuss a standardized protocol with multiple applications in the area of organ-on-a-chip model development, spheroid formation, microfluidics platform, bioprinting, and tissue engineering. Cartilage tissue engineering is complex owing to the heterogeneous complex proteins, which are a challenge to synthesize; hence, this protocol in many ways offers cues to exploit the acellular ECM for multiple ongoing research studies.
Collapse
Affiliation(s)
- Upasna Upadhyay
- Stem Cell Unit, Global Medical Education and Research Foundation Lakdikapul, Hyderabad, Telangana, India
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation Deemed to be University, Vaddeswaram, Vijayawada, Andhra Pradesh, India
| | - Kamma Srinivasulu
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation Deemed to be University, Vaddeswaram, Vijayawada, Andhra Pradesh, India
| | - Lakshmi Kiran Chelluri
- Stem Cell Unit, Global Medical Education and Research Foundation Lakdikapul, Hyderabad, Telangana, India.
- Advanced Diagnostics and Therapeutics, Gleneagles Global Hospitals, Lakdikapul, Hyderabad, Telangana, India.
| |
Collapse
|
6
|
Zhang T, Zhou Y, Zhang Y, Wang DG, Lv QY, Wang W, Bai YP, Hua Q, Guo LQ. Sesamin ameliorates nonalcoholic steatohepatitis through inhibiting hepatocyte pyroptosis in vivo and in vitro. Front Pharmacol 2024; 15:1347274. [PMID: 38362146 PMCID: PMC10867836 DOI: 10.3389/fphar.2024.1347274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024] Open
Abstract
Sesamin (Ses) is a natural lignan abundantly present in sesame and sesame oil. Pyroptosis, a newly identified type of pro-inflammatory programmed necrosis, contributes to the development of non-alcoholic steatohepatitis (NASH) when hepatocyte pyroptosis is excessive. In this study, Ses treatment demonstrated an improvement in hepatic damage in mice with high-fat, high-cholesterol diet-induced NASH and palmitate (PA)-treated mouse primary hepatocytes. Notably, we discovered, for the first time, that Ses could alleviate hepatocyte pyroptosis both in vivo and in vitro. Furthermore, treatment with phorbol myristate acetate, a protein kinase Cδ (PKCδ) agonist, increased PKCδ phosphorylation and attenuated the protective effects of Ses against pyroptosis in PA-treated mouse primary hepatocytes. Mechanistically, Ses treatment alleviated hepatocyte pyroptosis in NASH, which was associated with the regulation of the PKCδ/nod-like receptor family CARD domain-containing protein 4/caspase-1 axis. This study introduces a novel concept and target, suggesting the potential use of functional factors in food to alleviate liver damage caused by NASH.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Yong Zhou
- Department of Cardiology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Yan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - De-Guo Wang
- Department of Gerontology, Geriatric Endocrinology Unit, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Qiu-Yue Lv
- School of Pharmacy, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu, China
| | - Wen Wang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Ya-Ping Bai
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qiang Hua
- Department of Gerontology, Geriatric Endocrinology Unit, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Li-Qun Guo
- School of Pharmacy, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu, China
| |
Collapse
|
7
|
Kasravi M, Yaghoobi A, Tayebi T, Hojabri M, Taheri AT, Shirzad F, Nooshin BJ, Mazloomnejad R, Ahmadi A, Tehrani FA, Yazdanpanah G, Farjoo MH, Niknejad H. MMP inhibition as a novel strategy for extracellular matrix preservation during whole liver decellularization. BIOMATERIALS ADVANCES 2024; 156:213710. [PMID: 38035639 DOI: 10.1016/j.bioadv.2023.213710] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/25/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
As the only reliable treatment option for end-stage liver diseases, conventional liver transplantation confronts major supply limitations. Accordingly, the decellularization of discarded livers to produce bioscaffolds that support recellularization with progenitor/stem cells has emerged as a promising translational medicine approach. The success of this approach will substantially be determined by the extent of extracellular matrix (ECM) preservation during the decellularization process. Here, we assumed that the matrix metalloproteinase (MMP) inhibition could reduce the ECM damage during the whole liver decellularization of an animal model using a perfusion-based system. We demonstrated that the application of doxycycline as an MMP inhibitor led to significantly higher preservation of collagen, glycosaminoglycans, and hepatic growth factor (HGF) contents, as well as mechanical and structural features, including tensile strength, fiber integrity, and porosity. Notably, produced bioscaffolds were biocompatible and efficiently supported cell viability and proliferation in vitro. We also indicated that produced bioscaffolds efficiently supported HepG2 cell function upon seeding onto liver ECM discs using albumin and urea assay. Additionally, MMP inhibitor pretreated decellularized livers were more durable in contact with collagenase digestion compared to control bioscaffolds in vitro. Using zymography, we confirmed the underlying mechanism that results in these promising effects is through the inhibition of MMP2 and MMP9. Overall, we demonstrated a novel method based on MMP inhibition to ameliorate the ECM structure and composition preservation during liver decellularization as a critical step in fabricating transplantable bioengineered livers.
Collapse
Affiliation(s)
- Mohammadreza Kasravi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Tayebi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Hojabri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolkarim Talebi Taheri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shirzad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Jambar Nooshin
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Radman Mazloomnejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh A Tehrani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Kasturi M, Mathur V, Gadre M, Srinivasan V, Vasanthan KS. Three Dimensional Bioprinting for Hepatic Tissue Engineering: From In Vitro Models to Clinical Applications. Tissue Eng Regen Med 2024; 21:21-52. [PMID: 37882981 PMCID: PMC10764711 DOI: 10.1007/s13770-023-00576-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 10/27/2023] Open
Abstract
Fabrication of functional organs is the holy grail of tissue engineering and the possibilities of repairing a partial or complete liver to treat chronic liver disorders are discussed in this review. Liver is the largest gland in the human body and plays a responsible role in majority of metabolic function and processes. Chronic liver disease is one of the leading causes of death globally and the current treatment strategy of organ transplantation holds its own demerits. Hence there is a need to develop an in vitro liver model that mimics the native microenvironment. The developed model should be a reliable to understand the pathogenesis, screen drugs and assist to repair and replace the damaged liver. The three-dimensional bioprinting is a promising technology that recreates in vivo alike in vitro model for transplantation, which is the goal of tissue engineers. The technology has great potential due to its precise control and its ability to homogeneously distribute cells on all layers in a complex structure. This review gives an overview of liver tissue engineering with a special focus on 3D bioprinting and bioinks for liver disease modelling and drug screening.
Collapse
Affiliation(s)
- Meghana Kasturi
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Mrunmayi Gadre
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Varadharajan Srinivasan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
9
|
Nair DG, Weiskirchen R. Recent Advances in Liver Tissue Engineering as an Alternative and Complementary Approach for Liver Transplantation. Curr Issues Mol Biol 2023; 46:262-278. [PMID: 38248320 PMCID: PMC10814863 DOI: 10.3390/cimb46010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Acute and chronic liver diseases cause significant morbidity and mortality worldwide, affecting millions of people. Liver transplantation is the primary intervention method, replacing a non-functional liver with a functional one. However, the field of liver transplantation faces challenges such as donor shortage, postoperative complications, immune rejection, and ethical problems. Consequently, there is an urgent need for alternative therapies that can complement traditional transplantation or serve as an alternative method. In this review, we explore the potential of liver tissue engineering as a supplementary approach to liver transplantation, offering benefits to patients with severe liver dysfunctions.
Collapse
Affiliation(s)
- Dileep G. Nair
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
10
|
Allu I, Sahi AK, Koppadi M, Gundu S, Sionkowska A. Decellularization Techniques for Tissue Engineering: Towards Replicating Native Extracellular Matrix Architecture in Liver Regeneration. J Funct Biomater 2023; 14:518. [PMID: 37888183 PMCID: PMC10607724 DOI: 10.3390/jfb14100518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
The process of tissue regeneration requires the utilization of a scaffold, which serves as a structural framework facilitating cellular adhesion, proliferation, and migration within a physical environment. The primary aim of scaffolds in tissue engineering is to mimic the structural and functional properties of the extracellular matrix (ECM) in the target tissue. The construction of scaffolds that accurately mimic the architecture of the extracellular matrix (ECM) is a challenging task, primarily due to the intricate structural nature and complex composition of the ECM. The technique of decellularization has gained significant attention in the field of tissue regeneration because of its ability to produce natural scaffolds by removing cellular and genetic components from the extracellular matrix (ECM) while preserving its structural integrity. The present study aims to investigate the various decellularization techniques employed for the purpose of isolating the extracellular matrix (ECM) from its native tissue. Additionally, a comprehensive comparison of these methods will be presented, highlighting their respective advantages and disadvantages. The primary objective of this study is to gain a comprehensive understanding of the anatomical and functional features of the native liver, as well as the prevalence and impact of liver diseases. Additionally, this study aims to identify the limitations and difficulties associated with existing therapeutic methods for liver diseases. Furthermore, the study explores the potential of tissue engineering techniques in addressing these challenges and enhancing liver performance. By investigating these aspects, this research field aims to contribute to the advancement of liver disease treatment and management.
Collapse
Affiliation(s)
- Ishita Allu
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, India; (I.A.); (M.K.)
| | - Ajay Kumar Sahi
- School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Meghana Koppadi
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, India; (I.A.); (M.K.)
| | - Shravanya Gundu
- Department of Biomedical Engineering, University College of Engineering (UCE), Osmania University, Hyderabad 500007, India; (I.A.); (M.K.)
| | - Alina Sionkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Jurija Gagarina 11, 87-100 Torun, Poland
- Faculty of Health Sciences, Calisia University, Nowy Świat 4, 62-800 Kalisz, Poland
| |
Collapse
|
11
|
Mik P, Barannikava K, Surkova P. Biased Quantification of Rat Liver Fibrosis-Meta-Analysis with Practical Recommendations and Clinical Implications. J Clin Med 2023; 12:5072. [PMID: 37568474 PMCID: PMC10420125 DOI: 10.3390/jcm12155072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
For liver fibrosis assessment, the liver biopsy is usually stained with Masson's trichrome (MT) or picrosirius red (PSR) to quantify liver connective tissue (LCT) for fibrosis scoring. However, several concerns of such semiquantitative assessments have been raised, and when searching for data on the amount of LCT in healthy rats, the results vastly differ. Regarding the ongoing reproducibility crisis in science, it is necessary to inspect the results and methods, and to design an unbiased and reproducible method of LCT assessment. We searched the Medline database using search terms related to liver fibrosis, LCT and collagen, rat strains, and staining methods. Our search identified 74 eligible rat groups in 57 studies. We found up to 170-fold differences in the amount of LCT among healthy Wistar and Sprague-Dawley rats, with significant differences even within individual studies. Biased sampling and quantification probably caused the observed differences. In addition, we also found incorrect handling of liver fibrosis scoring. Assessment of LCT using stereological sampling methods (such as systematic uniform sampling) would provide us with unbiased data. Such data could eventually be used not only for the objective assessment of liver fibrosis but also for validation of noninvasive methods of the assessment of early stages of liver fibrosis.
Collapse
Affiliation(s)
- Patrik Mik
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
- Biomedical Center and Department of Histology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Katsiaryna Barannikava
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Polina Surkova
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
12
|
Upadhyay U, Kolla S, Chelluri LK. Extracellular matrix composition analysis of human articular cartilage for the development of organ-on-a-chip. Biochem Biophys Res Commun 2023; 667:81-88. [PMID: 37209566 DOI: 10.1016/j.bbrc.2023.04.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/18/2023] [Accepted: 04/29/2023] [Indexed: 05/22/2023]
Abstract
INTRODUCTION Articular cartilage has a complex extracellular matrix (ECM) that provides it a defined architecture for its load-bearing properties. The complete understanding of ECM components is imperative for developing biomimetic organ-on-a-chip tissue construct. OBJECTIVE This study aimed to decellularize and characterize the ECM for its protein profiling to generate a niche for enhanced chondrocyte proliferation. METHODS Articular cartilage scrapings were subjected to mechanical and collagenase digestion, followed by sodium dodecyl sulfate (SDS) treatment for 8 h and 16 h. The de-cellularization efficiency was confirmed by hematoxylin & eosin, alcian blue, masson's trichrome staining, and scanning electron microscopy (SEM). The ECM protein profile was quantified by liquid chromatography tandem mass spectrometry (LC-MS/MS) using a bottom-up approach. RESULTS Histological characterization revealed void lacunae that lacked staining for cellular components. The ECM, sulfated glycosaminoglycan content, and collagen fibers were preserved after 8 h and 16 h of de-cellularization. The SEM ultrastructure images showed that few chondrocytes adhered to the ECM after 8 h and cell-free ECM after 16 h of de-cellularization. LC-MS/MS analysis identified 66 proteins with heterotypic collagen types COL1A1-COL6A1, COL14A1, COL22A1 and COL25A1 showed moderate fold change and expression levels, while COL18A1, COL26A1, chondroitin sulfate, matrix metalloproteinase-9 (MMP9), fibronectin, platelet glycoprotein 1 beta alpha (GP1BA), vimentin, bone morphogenetic protein 6 (BMP6), fibroblast growth factor 4 (FGF4) and growth hormone receptor (GHR) showed maximum fold change and expression levels. CONCLUSIONS The standardized de-cellularization process could preserve majority of ECM components, providing structural integrity and architecture to the ECM. The Identified proteins quantified for their expression levels provided insight into engineering the ECM composition for developing cartilage-on-a-chip.
Collapse
Affiliation(s)
- Upasna Upadhyay
- Stem Cell Unit, Global Medical Education and Research Foundation, Lakdi-ka-pul, Hyderabad, Telangana, 500004, India.
| | - Saketh Kolla
- Department of Orthopedics, Gleneagles Global Hospitals, Lakdi-ka-pul, Hyderabad, Telangana, 500004, India.
| | - Lakshmi Kiran Chelluri
- Stem Cell Unit, Global Medical Education and Research Foundation, Lakdi-ka-pul, Hyderabad, Telangana, 500004, India; Advanced Diagnostics & Therapeutics, Gleneagles Global Hospitals, Hyderabad, 500004, India.
| |
Collapse
|
13
|
Toprakhisar B, Verfaillie CM, Kumar M. Advances in Recellularization of Decellularized Liver Grafts with Different Liver (Stem) Cells: Towards Clinical Applications. Cells 2023; 12:301. [PMID: 36672236 PMCID: PMC9856398 DOI: 10.3390/cells12020301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Liver transplantation is currently the only curative therapy for patients with acute or chronic liver failure. However, a dramatic gap between the number of available liver grafts and the number of patients on the transplantation waiting list emphasizes the need for valid liver substitutes. Whole-organ engineering is an emerging field of tissue engineering and regenerative medicine. It aims to generate transplantable and functional organs to support patients on transplantation waiting lists until a graft becomes available. It comprises two base technologies developed in the last decade; (1) organ decellularization to generate a three-dimensional (3D) extracellular matrix scaffold of an organ, and (2) scaffold recellularization to repopulate both the parenchymal and vascular compartments of a decellularized organ. In this review article, recent advancements in both technologies, in relation to liver whole-organ engineering, are presented. We address the potential sources of hepatocytes and non-parenchymal liver cells for repopulation studies, and the role of stem-cell-derived liver progeny is discussed. In addition, different cell seeding strategies, possible graft modifications, and methods used to evaluate the functionality of recellularized liver grafts are outlined. Based on the knowledge gathered from recent transplantation studies, future directions are summarized.
Collapse
Affiliation(s)
- Burak Toprakhisar
- Stem Cell Institute, Department of Stem Cell and Developmental Biology, KU Leuven, 3000 Leuven, Belgium
| | | | | |
Collapse
|
14
|
Campinoti S, Almeida B, Goudarzi N, Bencina S, Grundland Freile F, McQuitty C, Natarajan D, Cox IJ, Le Guennec A, Khati V, Gaudenzi G, Gramignoli R, Urbani L. Rat liver extracellular matrix and perfusion bioreactor culture promote human amnion epithelial cell differentiation towards hepatocyte-like cells. J Tissue Eng 2023; 14:20417314231219813. [PMID: 38143931 PMCID: PMC10748678 DOI: 10.1177/20417314231219813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023] Open
Abstract
Congenital and chronic liver diseases have a substantial health burden worldwide. The most effective treatment available for these patients is whole organ transplantation; however, due to the severely limited supply of donor livers and the side effects associated with the immunosuppressive regimen required to accept allograft, the mortality rate in patients with end-stage liver disease is annually rising. Stem cell-based therapy aims to provide alternative treatments by either cell transplantation or bioengineered construct transplantation. Human amnion epithelial cells (AEC) are a widely available, ethically neutral source of cells with the plasticity and potential of multipotent stem cells and immunomodulatory properties of perinatal cells. AEC have been proven to be able to achieve functional improvement towards hepatocyte-like cells, capable of rescuing animals with metabolic disorders; however, they showed limited metabolic activities in vitro. Decellularised extracellular matrix (ECM) scaffolds have gained recognition as adjunct biological support. Decellularised scaffolds maintain native ECM components and the 3D architecture instrumental of the organ, necessary to support cells' maturation and function. We combined ECM-scaffold technology with primary human AEC, which we demonstrated being equipped with essential ECM-adhesion proteins, and evaluated the effects on AEC differentiation into functional hepatocyte-like cells (HLC). This novel approach included the use of a custom 4D bioreactor to provide constant oxygenation and media perfusion to cells in 3D cultures over time. We successfully generated HLC positive for hepatic markers such as ALB, CYP3A4 and CK18. AEC-derived HLC displayed early signs of hepatocyte phenotype, secreted albumin and urea, and expressed Phase-1 and -2 enzymes. The combination of liver-specific ECM and bioreactor provides a system able to aid differentiation into HLC, indicating that the innovative perfusion ECM-scaffold technology may support the functional improvement of multipotent and pluripotent stem cells, with important repercussions in the bioengineering of constructs for transplantation.
Collapse
Affiliation(s)
- Sara Campinoti
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Bruna Almeida
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Negin Goudarzi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Stefan Bencina
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Solna, Sweden
| | - Fabio Grundland Freile
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Department of Medical and Molecular Genetics, School of Basic and Medical Bioscience, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - Claire McQuitty
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Dipa Natarajan
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - I Jane Cox
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Adrien Le Guennec
- Centre for Biomolecular Spectroscopy, Randall Centre for Cell and Molecular Biophysics, Kings College London, London, UK
| | - Vamakshi Khati
- Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Giulia Gaudenzi
- Department of Global Public Health, Karolinska Institutet, Solna, Sweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Solna, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Huddinge, Sweden
| | - Luca Urbani
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
15
|
Antarianto RD, Pragiwaksana A, Septiana WL, Mazfufah NF, Mahmood A. Hepatocyte Differentiation from iPSCs or MSCs in Decellularized Liver Scaffold: Cell–ECM Adhesion, Spatial Distribution, and Hepatocyte Maturation Profile. Organogenesis 2022; 18:2061263. [PMID: 35435152 PMCID: PMC9037523 DOI: 10.1080/15476278.2022.2061263] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) and induced pluripotent stem cells (iPSC) have been reported to be able to differentiate to hepatocyte in vitro with varying degree of hepatocyte maturation. A simple method to decellularize liver scaffold has been established by the Department of Histology, Faculty of Medicine, Universitas Indonesia, in SCTE IMERI lab.15 This study aims to evaluate hepatocyte differentiation from iPSCs compared to MSCs derived in our decellularized liver scaffold. The research stages started with iPSC culture, decellularization, seeding cell culture into the scaffold, and differentiation into hepatocytes for 21 days. Hepatocyte differentiation from iPSCs and MSCs in the scaffolds was characterized using hematoxylin–eosin, Masson Trichrome, and immunohistochemistry staining to determine the fraction of the differentiation area. RNA samples were isolated on days 7 and 21. Expression of albumin, CYP450, and CK-19 genes were analyzed using the qRT-PCR method. Electron microscopy images were obtained by SEM. Immunofluorescence examination was done using HNF4-α and CEBPA markers. The results of this study in hepatocyte-differentiated iPSCs compared with hepatocyte-differentiated MSCs in decellularized liver scaffold showed lower adhesion capacity, single-cell-formation and adhered less abundant, decreased trends of albumin, and lower CYP450 expression. Several factors contribute to this result: lower initial seeding number, which causes only a few iPSCs to attach to certain parts of decellularized liver scaffold, and manual syringe injection for recellularization, which abruptly and unevenly creates pattern of single-cell-formation by hepatocyte-differentiated iPSC in the scaffold. Hepatocyte-differentiated MSCs have the advantage of higher adhesion capacity to collagen fiber decellularized liver scaffold. This leads to positive result: increase trends of albumin and higher CYP450 expression. Hepatocyte maturation is shown by diminishing CK-19, which is more prominent in hepatocyte-differentiated iPSCs in decellularized liver scaffold. Confirmation of mature hepatocyte-differentiated iPSCs in decellularized liver scaffold maturation is positive for HNF4-a and CEBPA. The conclusion of this study is hepatocyte-differentiated iPSCs in decellularized liver scaffold is mature with lower cell–ECM adhesion, spatial cell distribution, albumin, and CYP450 expression than hepatocyte-differentiated MSCs in decellularized liver scaffold.
Collapse
Affiliation(s)
- Radiana Dhewayani Antarianto
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Stem cell and tissue engineering research cluster, (IMERI) Indonesian Medical Education and Research Institute, Jakarta Indonesia
- Program Doktor Ilmu Biomedik, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Adrian Pragiwaksana
- Program Master Ilmu Biomedik, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Wahyunia Likhayati Septiana
- Program Doktor Ilmu Biomedik, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Histology, Faculty of Medicine, Universitas Gunadarma, Depok, Indonesia
| | - Nuzli Fahdia Mazfufah
- Stem cell and tissue engineering research cluster, (IMERI) Indonesian Medical Education and Research Institute, Jakarta Indonesia
| | - Ameer Mahmood
- Stem cell unit Department of Anatomy, King Saud University, Riyadh, Kingdom Saudi Arabia
| |
Collapse
|
16
|
Li K, Tharwat M, Larson EL, Felgendreff P, Hosseiniasl SM, Rmilah AA, Safwat K, Ross JJ, Nyberg SL. Re-Endothelialization of Decellularized Liver Scaffolds: A Step for Bioengineered Liver Transplantation. Front Bioeng Biotechnol 2022; 10:833163. [PMID: 35360393 PMCID: PMC8960611 DOI: 10.3389/fbioe.2022.833163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Bioengineered livers (BELs) are an attractive therapeutic alternative to address the donor organ shortage for liver transplantation. The goal of BELs technology aims at replacement or regeneration of the native human liver. A variety of approaches have been proposed for tissue engineering of transplantable livers; the current review will highlight the decellularization-recellularization approach to BELs. For example, vascular patency and appropriate cell distribution and expansion are critical components in the production of successful BELs. Proper solutions to these components of BELs have challenged its development. Several strategies, such as heparin immobilization, heparin-gelatin, REDV peptide, and anti-CD31 aptamer have been developed to extend the vascular patency of revascularized bioengineered livers (rBELs). Other novel methods have been developed to enhance cell seeding of parenchymal cells and to increase graft functionality during both bench and in vivo perfusion. These enhanced methods have been associated with up to 15 days of survival in large animal (porcine) models of heterotopic transplantation but have not yet permitted extended survival after implantation of BELs in the orthotopic position. This review will highlight both the remaining challenges and the potential for clinical application of functional bioengineered grafts.
Collapse
Affiliation(s)
- Kewei Li
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Mohammad Tharwat
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- General Surgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ellen L. Larson
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - Philipp Felgendreff
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Department for General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | | | - Anan Abu Rmilah
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - Khaled Safwat
- General Surgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Scott L. Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Scott L. Nyberg,
| |
Collapse
|
17
|
Dai Q, Jiang W, Huang F, Song F, Zhang J, Zhao H. Recent Advances in Liver Engineering With Decellularized Scaffold. Front Bioeng Biotechnol 2022; 10:831477. [PMID: 35223793 PMCID: PMC8866951 DOI: 10.3389/fbioe.2022.831477] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/24/2022] [Indexed: 12/02/2022] Open
Abstract
Liver transplantation is currently the only effective treatment for patients with end-stage liver disease; however, donor liver scarcity is a notable concern. As a result, extensive endeavors have been made to diversify the source of donor livers. For example, the use of a decellularized scaffold in liver engineering has gained considerable attention in recent years. The decellularized scaffold preserves the original orchestral structure and bioactive chemicals of the liver, and has the potential to create a de novo liver that is fit for transplantation after recellularization. The structure of the liver and hepatic extracellular matrix, decellularization, recellularization, and recent developments are discussed in this review. Additionally, the criteria for assessment and major obstacles in using a decellularized scaffold are covered in detail.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Wei Jiang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Huang
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fei Song
- Department of Urology, Jena University Hospital, Jena, Germany
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Jiqian Zhang, ; Hongchuan Zhao,
| | - Hongchuan Zhao
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Jiqian Zhang, ; Hongchuan Zhao,
| |
Collapse
|
18
|
Nitzahn M, Truong B, Khoja S, Vega-Crespo A, Le C, Eliav A, Makris G, Pyle AD, Häberle J, Lipshutz GS. CRISPR-Mediated Genomic Addition to CPS1 Deficient iPSCs is Insufficient to Restore Nitrogen Homeostasis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:545-557. [PMID: 34970092 PMCID: PMC8686786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CPS1 deficiency is an inborn error of metabolism caused by loss-of-function mutations in the CPS1 gene, catalyzing the initial reaction of the urea cycle. Deficiency typically leads to toxic levels of plasma ammonia, cerebral edema, coma, and death, with the only curative treatment being liver transplantation; due to limited donor availability and the invasiveness and complications of the procedure, however, alternative therapies are needed. Induced pluripotent stem cells offer an alternative cell source to partial or whole liver grafts that theoretically would not require immune suppression regimens and additionally are amenable to genetic modifications. Here, we genetically modified CPS1 deficient patient-derived stem cells to constitutively express human codon optimized CPS1 from the AAVS1 safe harbor site. While edited stem cells efficiently differentiated to hepatocyte-like cells, they failed to metabolize ammonia more efficiently than their unedited counterparts. This unexpected result appears to have arisen in part due to transgene promoter methylation, and thus transcriptional silencing, in undifferentiated cells, impacting their capacity to restore the complete urea cycle function upon differentiation. As pluripotent stem cell strategies are being expanded widely for potential cell therapies, these results highlight the need for strict quality control and functional analysis to ensure the integrity of cell products.
Collapse
Affiliation(s)
- Matthew Nitzahn
- Molecular Biology Institute, David Geffen School of
Medicine at UCLA, Los Angeles, CA, USA,Department of Surgery, David Geffen School of Medicine
at UCLA, Los Angeles, CA, USA
| | - Brian Truong
- Department of Surgery, David Geffen School of Medicine
at UCLA, Los Angeles, CA, USA,Department of Molecular and Medical Pharmacology, David
Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Suhail Khoja
- Department of Surgery, David Geffen School of Medicine
at UCLA, Los Angeles, CA, USA
| | - Agustin Vega-Crespo
- Department of Molecular and Medical Pharmacology, David
Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Colleen Le
- Department of Surgery, David Geffen School of Medicine
at UCLA, Los Angeles, CA, USA
| | - Adam Eliav
- Department of Surgery, David Geffen School of Medicine
at UCLA, Los Angeles, CA, USA
| | - Georgios Makris
- Division of Metabolism and Children’s Research Center,
University Children’s Hospital Zurich, Switzerland
| | - April D. Pyle
- Department of Microbiology, Immunology, and Molecular
Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Eli and Edythe Broad Stem Cell Center, David Geffen
School of Medicine at UCLA, Los Angeles, CA, USA
| | - Johannes Häberle
- Division of Metabolism and Children’s Research Center,
University Children’s Hospital Zurich, Switzerland
| | - Gerald S. Lipshutz
- Molecular Biology Institute, David Geffen School of
Medicine at UCLA, Los Angeles, CA, USA,Department of Surgery, David Geffen School of Medicine
at UCLA, Los Angeles, CA, USA,Department of Molecular and Medical Pharmacology, David
Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Department of Psychiatry, David Geffen School of
Medicine at UCLA, Los Angeles, CA, USA,Intellectual and Developmental Disabilities Research
Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Semel Institute for Neuroscience, David Geffen School
of Medicine at UCLA, Los Angeles, CA, USA,To whom all correspondence should be addressed:
Gerald S. Lipshutz, David Geffen School of Medicine at UCLA, Los Angeles, CA
90095-7054;
| |
Collapse
|
19
|
Cell Therapy and Bioengineering in Experimental Liver Regenerative Medicine: In Vivo Injury Models and Grafting Strategies. CURRENT TRANSPLANTATION REPORTS 2021. [DOI: 10.1007/s40472-021-00325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Purpose of Review
To describe experimental liver injury models used in regenerative medicine, cell therapy strategies to repopulate damaged livers and the efficacy of liver bioengineering.
Recent Findings
Several animal models have been developed to study different liver conditions. Multiple strategies and modified protocols of cell delivery have been also reported. Furthermore, using bioengineered liver scaffolds has shown promising results that could help in generating a highly functional cell delivery system and/or a whole transplantable liver.
Summary
To optimize the most effective strategies for liver cell therapy, further studies are required to compare among the performed strategies in the literature and/or innovate a novel modifying technique to overcome the potential limitations. Coating of cells with polymers, decellularized scaffolds, or microbeads could be the most appropriate solution to improve cellular efficacy. Besides, overcoming the problems of liver bioengineering may offer a radical treatment for end-stage liver diseases.
Collapse
|
20
|
A Perfusion Bioreactor for Longitudinal Monitoring of Bioengineered Liver Constructs. NANOMATERIALS 2021; 11:nano11020275. [PMID: 33494337 PMCID: PMC7912543 DOI: 10.3390/nano11020275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
In the field of in vitro liver disease models, decellularised organ scaffolds maintain the original biomechanical and biological properties of the extracellular matrix and are established supports for in vitro cell culture. However, tissue engineering approaches based on whole organ decellularized scaffolds are hampered by the scarcity of appropriate bioreactors that provide controlled 3D culture conditions. Novel specific bioreactors are needed to support long-term culture of bioengineered constructs allowing non-invasive longitudinal monitoring. Here, we designed and validated a specific bioreactor for long-term 3D culture of whole liver constructs. Whole liver scaffolds were generated by perfusion decellularisation of rat livers. Scaffolds were seeded with Luc+HepG2 and primary human hepatocytes and cultured in static or dynamic conditions using the custom-made bioreactor. The bioreactor included a syringe pump, for continuous unidirectional flow, and a circuit built to allow non-invasive monitoring of culture parameters and media sampling. The bioreactor allowed non-invasive analysis of cell viability, distribution, and function of Luc+HepG2-bioengineered livers cultured for up to 11 days. Constructs cultured in dynamic conditions in the bioreactor showed significantly higher cell viability, measured with bioluminescence, distribution, and functionality (determined by albumin production and expression of CYP enzymes) in comparison to static culture conditions. Finally, our bioreactor supports primary human hepatocyte viability and function for up to 30 days, when seeded in the whole liver scaffolds. Overall, our novel bioreactor is capable of supporting cell survival and metabolism and is suitable for liver tissue engineering for the development of 3D liver disease models.
Collapse
|
21
|
Caires-Júnior LC, Goulart E, Telles-Silva KA, Araujo BHS, Musso CM, Kobayashi G, Oliveira D, Assoni A, Carvalho VM, Ribeiro-Jr AF, Ishiba R, Braga KAO, Nepomuceno N, Caldini E, Rangel T, Raia S, Lelkes PI, Zatz M. Pre-coating decellularized liver with HepG2-conditioned medium improves hepatic recellularization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111862. [PMID: 33579511 DOI: 10.1016/j.msec.2020.111862] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023]
Abstract
Liver transplantation from compatible donors has been the main therapy available for patients with irreversible hepatic injuries. Due to the increasing shortage of organs suitable for transplantation, tissue engineering technologies are important alternatives or surrogate approaches for the future of human organ transplantations. New bioengineering tools have been designed to produce decellularized organs (i.e. scaffolds) which could be recellularized with human cells. Specifically, there is an unmet need for developing reproducible protocols for inducing better cellular spreading in decellularized liver scaffolds. The aim of the present work was to investigate the possibility to improve liver scaffold recellularization by pre-coating decellularized tissue scaffolds with HepG2-conditioned medium (CM). Furthermore, we evaluated the capability of commercial human liver cells (HepG2) to adhere to several types of extracellular matrices (ECM) as well as CM components. Wistar rat livers were decellularized and analyzed by histology, scanning electron microscopy (SEM), immunohistochemistry and residual DNA-content analysis. Human induced pluripotent stem cells (hiPSCs)-derived mesenchymal cells (hiMSCs), and human commercial hepatic (HepG2) and endothelial (HAEC) cells were used for liver scaffold recellularization with or without CM pre-coating. Recellularization occurred for up to 5 weeks. Hepatic tissues and CM were analyzed by proteomic assays. We show that integrity and anatomical organization of the hepatic ECM were maintained after decellularization, and proteomic analysis suggested that pre-coating with CM enriched the decellularized liver ECM. Pre-coating with HepG2-CM highly improved liver recellularization and revealed the positive effects of liver ECM and CM components association.
Collapse
Affiliation(s)
- Luiz Carlos Caires-Júnior
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Ernesto Goulart
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Kayque Alves Telles-Silva
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Bruno Henrique Silva Araujo
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), 13083-100 Campinas, Brazil
| | | | - Gerson Kobayashi
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Danyllo Oliveira
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Amanda Assoni
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | | | - Antônio Fernando Ribeiro-Jr
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Renata Ishiba
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Karina Andrighetti Oliveira Braga
- Laboratorio de Pesquisa em Cirurgia Toracica, Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Natalia Nepomuceno
- Laboratorio de Pesquisa em Cirurgia Toracica, Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Elia Caldini
- Cellular Biology Laboratory, Pathology Department, Faculty of Medicine, University of São Paulo (USP), 01246903 São Paulo, Brazil
| | - Thadeu Rangel
- Liver Unit, Surgery Department, Faculty of Medicine, University of São Paulo (USP), 01246903 São Paulo, Brazil
| | - Silvano Raia
- Liver Unit, Surgery Department, Faculty of Medicine, University of São Paulo (USP), 01246903 São Paulo, Brazil
| | - Peter I Lelkes
- Department of Bioengineering, Temple University, 19122 Philadelphia, United States
| | - Mayana Zatz
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil.
| |
Collapse
|