1
|
Minami A, Nishi K, Yamada R, Jinnai G, Shima H, Oishi S, Akagawa H, Aono T, Hidaka M, Masaki H, Kuzuyama T, Noda Y, Ogawa T. The ribonuclease RNase T2 mediates selective autophagy of ribosomes induced by starvation in Saccharomyces cerevisiae. J Biol Chem 2025:108554. [PMID: 40294649 DOI: 10.1016/j.jbc.2025.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
RNase T2 is a conserved ribonuclease, playing essential and diverse roles despite its simple enzymatic activity. Saccharomyces cerevisiae RNase T2, known as Rny1p, is stress-responsive and localizes in the vacuole. Upon starvation, ribosomes are degraded by autophagy, in which Rny1p mediates rRNA degradation. However, whether the ribosomal degradation is selective or non-selective is still being determined in S. cerevisiae. Here, we elucidated novel aspects of ribosome degradation mechanisms and the function of Rny1p in stress response. We discovered that most ribosomes are selectively degraded, whose mechanism differs from the previously reported selective degradation process called "ribophagy." Rsa1p, a factor involved in assembling 60S ribosomal subunits, is revealed to interact with Atg8p and act as a receptor for selective ribosome degradation in the cytosol. The accumulation of rRNA in vacuoles, due to lack of Rny1p, leads to a decrease in non-selective autophagic activity. This is one of the reasons for the inability of Rny1p-deficient strains to adapt to starvation conditions. Rny1p is also reported to be secreted and associated with the cell wall. We revealed that a C-terminal extension of Rny1p, characteristic in some fungal RNase T2, is required to anchor the cell wall. Some non-fungal RNase T2 proteins also have C-terminal extensions. However, their sequences and structures differ from those of fungal RNase T2, suggesting that their biological functions may also be distinct. The diversity of C-terminal extensions across different organisms is thought to be one reason why RNase T2 plays various roles.
Collapse
Affiliation(s)
- Atsushi Minami
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kohei Nishi
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Rikusui Yamada
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Gai Jinnai
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hikari Shima
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Sakiko Oishi
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hirofumi Akagawa
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Toshihiro Aono
- Agro-Biotechnology Research Center (AgTECH), The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Makoto Hidaka
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Haruhiko Masaki
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomohisa Kuzuyama
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yoichi Noda
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tetsuhiro Ogawa
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
2
|
Marmagne A, Chardon F, Masclaux-Daubresse C. A tissue-specific rescue strategy reveals the local roles of autophagy in leaves and seeds for resource allocation. PLANT PHYSIOLOGY 2024; 197:kiae647. [PMID: 39661375 DOI: 10.1093/plphys/kiae647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Autophagy is a vesicular mechanism that plays a fundamental role in nitrogen remobilization from senescing leaves to seeds. The Arabidopsis (Arabidopsis thaliana) autophagy (atg) mutants exhibit early senescence, reduced biomass, and low seed yield. The atg seeds also exhibit major changes in N and C concentrations. During plant development, autophagy genes are expressed in the source leaves and in the sink seeds during maturation. We thus addressed the question of whether the seed composition defects in atg mutants are caused by defective N remobilization from source leaves or whether they are due to the absence of autophagy in seeds during maturation. To answer this question, we restored autophagy activity in the atg5 mutant by expressing the wild-type (WT) ATG5 allele specifically in source leaves using the senescence-associated gene 12 (SAG12) promoter or specifically in seeds using the Glycinin-1 promoter, or in both organs using both constructs. In atg5, N remobilization from the rosettes to seeds was almost completely reestablished when transformed with the pSAG12::ATG5 construct. However, transformation with the pSAG12::ATG5 construct only partially restored seed composition. In contrast, seed N and C composition was largely restored by transformation with the pGly::ATG5 construct, even though the early leaf senescence phenotype was maintained in the atg5 background. Cotransformation with pSAG12::ATG5 and pGly::ATG5 completely restored the WT remobilization and seed composition phenotypes. Our results highlight the essential role of autophagy in leaves for nitrogen supply and in seeds for the establishment of carbon and nitrogen reserves.
Collapse
Affiliation(s)
- Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| |
Collapse
|
3
|
Sedaghatmehr M, Balazadeh S. Autophagy: a key player in the recovery of plants from heat stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2246-2255. [PMID: 38236036 PMCID: PMC11016841 DOI: 10.1093/jxb/erae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/15/2024] [Indexed: 01/19/2024]
Abstract
Plants can be primed to withstand otherwise lethal heat stress (HS) through exposure to a preceding temporary and mild HS, commonly known as the 'thermopriming stimulus'. Plants have also evolved mechanisms to establish 'memories' of a previous stress encounter, or to reset their physiology to the original cellular state once the stress has ended. The priming stimulus triggers a widespread change of transcripts, proteins, and metabolites, which is crucial for maintaining the memory state but may not be required for growth and development under optimal conditions or may even be harmful. In such a scenario, recycling mechanisms such as autophagy are crucial for re-establishing cellular homeostasis and optimizing resource use for post-stress growth. While pivotal for eliminating heat-induced protein aggregates and protecting plants from the harmful impact of HS, recent evidence implies that autophagy also breaks down heat-induced protective macromolecules, including heat shock proteins, functioning as a resetting mechanism during the recovery from mild HS. This review provides an overview of the latest advances in understanding the multifaceted functions of autophagy in HS responses, with a specific emphasis on its roles in recovery from mild HS, and the modulation of HS memory.
Collapse
Affiliation(s)
- Mastoureh Sedaghatmehr
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Salma Balazadeh
- Leiden University, PO Box 9500, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
4
|
Chen Y, Liu X, Chen W, Zhu L. RNS2 is required for the biogenesis of a wounding responsive 16 nts tsRNA in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2024; 114:6. [PMID: 38265739 DOI: 10.1007/s11103-023-01399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024]
Abstract
tRNA-derived small RNAs (tsRNAs), a new category of regulatory small non-coding RNA existing in almost all branches of life, have recently attracted broad attention. Increasing evidence has shown that tsRNAs are not random degradation debris of tRNAs, but products cleaved by specific endoribonucleases, with versatile functions in response to various developmental and environmental cues. However, it is still unclear about the diversity, biogenesis and function of tsRNAs in plants. In this study, we comprehensively profiled 10-60 nts small RNAs in Arabidopsis thaliana leaf with or without wounding stress and identified four 16 nts tiny tRFs (tRNA-derived fragments) sharply increased after wounding, namely tRF5'Ala. Notably, genetic, biochemical and bioinformatic data indicated that RNS2, a member of class II RNase T2 enzymes, was the main endoribonuclease responsible for the biogenesis of tRF5'Ala. Moreover, tRF5'Ala was highly abundant and conserved in Arabidopsis and rice pollen. However, tRF5'Ala did not associate with AGO 1 in vivo or display any inhibitory effect on the translation of a luciferase mRNA in vitro. Altogether, our study highlights the discovery of a novel class of tiny tsRNAs drastically increased under wounding stress as well as their generation by RNS2, which provides a new insight into tsRNAs research in plants.
Collapse
Affiliation(s)
- Yan Chen
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Waihuanxi Road, Guangzhou, 510006, China
| | - Xiaobin Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Waihuanxi Road, Guangzhou, 510006, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urmuqi, 830000, China.
| | - Lei Zhu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 6100041, China.
| |
Collapse
|
5
|
Cadena-Ramos AI, De-la-Peña C. Picky eaters: selective autophagy in plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:364-384. [PMID: 37864806 DOI: 10.1111/tpj.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Autophagy, a fundamental cellular process, plays a vital role in maintaining cellular homeostasis by degrading damaged or unnecessary components. While selective autophagy has been extensively studied in animal cells, its significance in plant cells has only recently gained attention. In this review, we delve into the intriguing realm selective autophagy in plants, with specific focus on its involvement in nutrient recycling, organelle turnover, and stress response. Moreover, recent studies have unveiled the interesting interplay between selective autophagy and epigenetic mechanisms in plants, elucidating the significance of epigenetic regulation in modulating autophagy-related gene expression and finely tuning the selective autophagy process in plants. By synthesizing existing knowledge, this review highlights the emerging field of selective autophagy in plant cells, emphasizing its pivotal role in maintaining nutrient homeostasis, facilitating cellular adaptation, and shedding light on the epigenetic regulation that governs these processes. Our comprehensive study provides the way for a deeper understanding of the dynamic control of cellular responses to nutrient availability and stress conditions, opening new avenues for future research in this field of autophagy in plant physiology.
Collapse
Affiliation(s)
- Alexis I Cadena-Ramos
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34 Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34 Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| |
Collapse
|
6
|
Niu Y, Liu L. RNA pseudouridine modification in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6431-6447. [PMID: 37581601 DOI: 10.1093/jxb/erad323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Pseudouridine is one of the well-known chemical modifications in various RNA species. Current advances to detect pseudouridine show that the pseudouridine landscape is dynamic and affects multiple cellular processes. Although our understanding of this post-transcriptional modification mainly depends on yeast and human models, the recent findings provide strong evidence for the critical role of pseudouridine in plants. Here, we review the current knowledge of pseudouridine in plant RNAs, including its synthesis, degradation, regulatory mechanisms, and functions. Moreover, we propose future areas of research on pseudouridine modification in plants.
Collapse
Affiliation(s)
- Yanli Niu
- Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Lingyun Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| |
Collapse
|
7
|
Yue Y, Deng J, Wang H, Lv T, Dou W, Jiao Y, Peng X, Zhang Y. Two Secretory T2 RNases Act as Cytotoxic Factors Contributing to the Virulence of an Insect Fungal Pathogen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7069-7081. [PMID: 37122240 DOI: 10.1021/acs.jafc.3c01617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
RNase T2 members are secreted by several pathogens or parasites during infection, playing various roles in pathogen-host interaction. However, functions of those members in biocontrol microbes targeting their hosts are still unknown. Here, we report that an insect fungal pathogen, Beauveria bassiana, produces two secretory RNase T2 members that act as cytotoxic factors, which were examined by insect bioassays using the targeted gene(s) disruption and overexpression strains. Overexpression strains displayed dramatically increased virulence, which was concurrent with few fungal cells and hemocytes in hemocoel, suggesting a cytotoxicity of the overexpressed gene products. In vitro assays using yeast-expressed proteins verified the cytotoxicity of the two members against insect cells, to which the cytotoxic effect was dependent on their RNases enzyme activities and glycosylation modification. Moreover, the excessive humoral immune responses triggered by the two ribonucleases were examined. These results suggested prospects of these two T2 ribonucleases for improvement of biocontrol agents.
Collapse
Affiliation(s)
- Yong Yue
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Juan Deng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Huifang Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Ting Lv
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Wei Dou
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Yufei Jiao
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Xinxin Peng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
8
|
Roychowdhury A, Srivastava R, Akash, Shukla G, Zehirov G, Mishev K, Kumar R. Metabolic footprints in phosphate-starved plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:755-767. [PMID: 37363416 PMCID: PMC10284745 DOI: 10.1007/s12298-023-01319-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Plants' requirement of Phosphorus (P) as an essential macronutrient is obligatory for their normal growth and metabolism. Besides restricting plants' primary growth, P depletion affects both primary and secondary metabolism and leads to altered levels of sugars, metabolites, amino acids, and other secondary compounds. Such metabolic shifts help plants optimize their metabolism and growth under P limited conditions. Under P deprivation, both sugar levels and their mobilization change that influences the expression of Pi starvation-inducible genes. Increased sugar repartitioning from shoot to root help root growth and organic acids secretion that in turn promotes phosphate (Pi) uptake from the soil. Other metabolic changes such as lipid remodeling or P reallocation from older to younger leaves release the P from its bound forms in the cell. In this review, we summarize the metabolic footprinting of Pi-starved plants with respect to the benefits offered by such metabolic changes to intracellular Pi homeostasis.
Collapse
Affiliation(s)
- Abhishek Roychowdhury
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Rajat Srivastava
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Akash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Gyanesh Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Grigor Zehirov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Kiril Mishev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| |
Collapse
|
9
|
Borniego ML, Innes RW. Extracellular RNA: mechanisms of secretion and potential functions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2389-2404. [PMID: 36609873 PMCID: PMC10082932 DOI: 10.1093/jxb/erac512] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/21/2022] [Indexed: 06/06/2023]
Abstract
Extracellular RNA (exRNA) has long been considered as cellular waste that plants can degrade and utilize to recycle nutrients. However, recent findings highlight the need to reconsider the biological significance of RNAs found outside of plant cells. A handful of studies suggest that the exRNA repertoire, which turns out to be an extremely heterogenous group of non-coding RNAs, comprises species as small as a dozen nucleotides to hundreds of nucleotides long. They are found mostly in free form or associated with RNA-binding proteins, while very few are found inside extracellular vesicles (EVs). Despite their low abundance, small RNAs associated with EVs have been a focus of exRNA research due to their putative role in mediating trans-kingdom RNAi. Therefore, non-vesicular exRNAs have remained completely under the radar until very recently. Here we summarize our current knowledge of the RNA species that constitute the extracellular RNAome and discuss mechanisms that could explain the diversity of exRNAs, focusing not only on the potential mechanisms involved in RNA secretion but also on post-release processing of exRNAs. We will also share our thoughts on the putative roles of vesicular and extravesicular exRNAs in plant-pathogen interactions, intercellular communication, and other physiological processes in plants.
Collapse
Affiliation(s)
- M Lucía Borniego
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
10
|
Estiarte M, Campioli M, Mayol M, Penuelas J. Variability and limits of nitrogen and phosphorus resorption during foliar senescence. PLANT COMMUNICATIONS 2023; 4:100503. [PMID: 36514281 PMCID: PMC10030369 DOI: 10.1016/j.xplc.2022.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 05/04/2023]
Abstract
Foliar nutrient resorption (NuR) plays a key role in ecosystem functioning and plant nutrient economy. Most of this recycling occurs during the senescence of leaves and is actively addressed by cells. Here, we discuss the importance of cell biochemistry, physiology, and subcellular anatomy to condition the outcome of NuR at the cellular level and to explain the existence of limits to NuR. Nutrients are transferred from the leaf in simple metabolites that can be loaded into the phloem. Proteolysis is the main mechanism for mobilization of N, whereas P mobilization requires the involvement of different catabolic pathways, making the dynamics of P in leaves more variable than those of N before, during, and after foliar senescence. The biochemistry and fate of organelles during senescence impose constraints that limit NuR. The efficiency of NuR decreases, especially in evergreen species, as soil fertility increases, which is attributed to the relative costs of nutrient acquisition from soil decreasing with increasing soil nutrient availability, while the energetic costs of NuR from senescing leaves remain constant. NuR is genetically determined, with substantial interspecific variability, and is environmentally regulated in space and time, with nutrient availability being a key driver of intraspecific variability in NuR.
Collapse
Affiliation(s)
- Marc Estiarte
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Matteo Campioli
- Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Maria Mayol
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain.
| |
Collapse
|
11
|
Ding G, Mugume Y, Dueñas ME, Lee YJ, Liu M, Nettleton DS, Zhao X, Li L, Bassham DC, Nikolau BJ. Biological insights from multi-omics analysis strategies: Complex pleotropic effects associated with autophagy. FRONTIERS IN PLANT SCIENCE 2023; 14:1093358. [PMID: 36875559 PMCID: PMC9978356 DOI: 10.3389/fpls.2023.1093358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Research strategies that combine molecular data from multiple levels of genome expression (i.e., multi-omics data), often referred to as a systems biology strategy, has been advocated as a route to discovering gene functions. In this study we conducted an evaluation of this strategy by combining lipidomics, metabolite mass-spectral imaging and transcriptomics data from leaves and roots in response to mutations in two AuTophaGy-related (ATG) genes of Arabidopsis. Autophagy is an essential cellular process that degrades and recycles macromolecules and organelles, and this process is blocked in the atg7 and atg9 mutants that were the focus of this study. Specifically, we quantified abundances of ~100 lipids and imaged the cellular locations of ~15 lipid molecular species and the relative abundance of ~26,000 transcripts from leaf and root tissues of WT, atg7 and atg9 mutant plants, grown either in normal (nitrogen-replete) and autophagy-inducing conditions (nitrogen-deficient). The multi-omics data enabled detailed molecular depiction of the effect of each mutation, and a comprehensive physiological model to explain the consequence of these genetic and environmental changes in autophagy is greatly facilitated by the a priori knowledge of the exact biochemical function of the ATG7 and ATG9 proteins.
Collapse
Affiliation(s)
- Geng Ding
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Yosia Mugume
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | | | - Young Jin Lee
- Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Meiling Liu
- Department of Statistics, Iowa State University, Ames, IA, United States
| | | | - Xuefeng Zhao
- Research Information Technology, College of Liberal Arts & Sciences, Iowa State University, Ames, IA, United States
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
12
|
Yoshitake Y, Yoshimoto K. Intracellular phosphate recycling systems for survival during phosphate starvation in plants. FRONTIERS IN PLANT SCIENCE 2023; 13:1088211. [PMID: 36733584 PMCID: PMC9888252 DOI: 10.3389/fpls.2022.1088211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Phosphorus (P) is an essential nutrient for plant growth and plants use inorganic phosphate (Pi) as their P source, but its bioavailable form, orthophosphate, is often limited in soils. Hence, plants have several mechanisms for adaptation to Pi starvation. One of the most common response strategies is "Pi recycling" in which catabolic enzymes degrade intracellular constituents, such as phosphoesters, nucleic acids and glycerophospholipids to salvage Pi. Recently, several other intracellular degradation systems have been discovered that salvage Pi from organelles. Also, one of sphingolipids has recently been identified as a degradation target for Pi recycling. So, in this mini-review we summarize the current state of knowledge, including research findings, about the targets and degradation processes for Pi recycling under Pi starvation, in order to further our knowledge of the whole mechanism of Pi recycling.
Collapse
|
13
|
Soumya PR, Vengavasi K, Pandey R. Adaptive strategies of plants to conserve internal phosphorus under P deficient condition to improve P utilization efficiency. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1981-1993. [PMID: 36573147 PMCID: PMC9789281 DOI: 10.1007/s12298-022-01255-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Phosphorus (P) is one of the limiting factors for plant growth and productivity due to its slow diffusion and immobilization in the soil which necessitates application of phosphatic fertilizers to meet the crop demand and obtain maximum yields. However, plants have evolved mechanisms to adapt to low P stress conditions either by increasing acquisition (alteration of belowground processes) or by internal inorganic P (Pi) utilization (cellular Pi homeostasis) or both. In this review, we have discussed the adaptive strategies that conserve the use of P and maintain cellular Pi homeostasis in the cytoplasm. These strategies involve modification in membrane lipid composition, flavanol/anthocyanin level, scavenging and reutilization of Pi adsorbed in cell wall pectin, remobilization of Pi during senescence by enzymes like RNases and purple acid phosphatases, alternative mitochondrial electron transport, and glycolytic pathways. The remobilization of Pi from senescing tissues and its internal redistribution to various cellular organelles is mediated by various Pi transporters. Although much efforts have been made to enhance P acquisition efficiency, an understanding of the physiological mechanisms conserving internal Pi and their manipulation would be useful for plants that can utilize P more efficiently to produce optimum growth per unit P uptake.
Collapse
Affiliation(s)
- Preman R. Soumya
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
- Present Address: Regional Agricultural Research Station, Kerala Agricultural University, Ambalavayal, Wayanad, Kerala 673593 India
| | - Krishnapriya Vengavasi
- Division of Crop Production, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Renu Pandey
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| |
Collapse
|
14
|
Li L, Lee CP, Ding X, Qin Y, Wijerathna-Yapa A, Broda M, Otegui MS, Millar AH. Defects in autophagy lead to selective in vivo changes in turnover of cytosolic and organelle proteins in Arabidopsis. THE PLANT CELL 2022; 34:3936-3960. [PMID: 35766863 PMCID: PMC9516138 DOI: 10.1093/plcell/koac185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2022] [Indexed: 05/26/2023]
Abstract
Identification of autophagic protein cargo in plants in autophagy-related genes (ATG) mutants is complicated by changes in protein synthesis and protein degradation. To detect autophagic cargo, we measured protein degradation rate in shoots and roots of Arabidopsis (Arabidopsis thaliana) atg5 and atg11 mutants. These data show that less than a quarter of proteins changing in abundance are probable cargo and revealed roles of ATG11 and ATG5 in degradation of specific glycolytic enzymes and of other cytosol, chloroplast, and ER-resident proteins, and a specialized role for ATG11 in degradation of proteins from mitochondria and chloroplasts. Protein localization in transformed protoplasts and degradation assays in the presence of inhibitors confirm a role for autophagy in degrading glycolytic enzymes. Autophagy induction by phosphate (Pi) limitation changed metabolic profiles and the protein synthesis and degradation rates of atg5 and atg11 plants. A general decrease in the abundance of amino acids and increase in secondary metabolites in autophagy mutants was consistent with altered catabolism and changes in energy conversion caused by reduced degradation rate of specific proteins. Combining measures of changes in protein abundance and degradation rates, we also identify ATG11 and ATG5-associated protein cargo of low Pi-induced autophagy in chloroplasts and ER-resident proteins involved in secondary metabolism.
Collapse
Affiliation(s)
- Lei Li
- Authors for correspondence (L.L.) and (A.H.M)
| | - Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Xinxin Ding
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yu Qin
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Akila Wijerathna-Yapa
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Martyna Broda
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
15
|
Yu D, McKinley L, Nien Y, Prall W, Zvarick A. RNA biology takes root in plant systems. PLANT DIRECT 2022; 6:e445. [PMID: 36091875 PMCID: PMC9448652 DOI: 10.1002/pld3.445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Advances in RNA biology such as RNAi, CRISPR, and the first mRNA vaccine represent the enormous potential of RNA research to address current problems. Additionally, plants are a diverse and undeniably essential resource for life threatened by climate change, loss of arable land, and pollution. Different aspects of RNA such as its processing, modification and structure are intertwined with plant development, physiology and stress response. This report details the findings of researchers around the world during the 23rd Penn State Symposium in Plant Biology with a focus in RNA biology.
Collapse
Affiliation(s)
- David Yu
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Lauren McKinley
- Department of ChemistryThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Yachi Nien
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Wil Prall
- Department of BiologyThe University of PennsylvaniaPhiladelphiaPAUSA
| | - Allison Zvarick
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
16
|
Yoshitake Y, Shinozaki D, Yoshimoto K. Autophagy triggered by iron-mediated ER stress is an important stress response to the early phase of Pi starvation in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1370-1381. [PMID: 35306710 DOI: 10.1111/tpj.15743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Inorganic phosphate (Pi) is essential for plant growth. However, Pi is often limiting in soil. Hence, plants have established several mechanisms of response to Pi starvation. One of the important mechanisms is Pi recycling, which includes membrane lipid remodeling and plastid DNA degradation via catabolic enzymes. However, the involvement of other degradation systems in Pi recycling remains unclear. Autophagy, a system for degradation of intracellular components, contributes to recycling of some nutrients, such as nitrogen, carbon, and zinc, under starvation. In the present study, we found that autophagy-deficient mutants depleted Pi early and exhibited severe leaf growth defects under Pi starvation. The main cargo of autophagy induced by early Pi depleted conditions was the endoplasmic reticulum (ER), indicating that ER-phagy, a type of autophagy that selectively degrades the ER, is involved in the response to the early phase of Pi starvation for contribution to Pi recycling. This ER-phagy was suppressed in an INOSITOL-REQUIRING ENZYME 1 double mutant, ire1a ire1b, in which ER stress responses are defective, suggesting that the early Pi starvation induced ER-phagy is induced by ER stress. Furthermore, iron limitation and inhibition of lipid-reactive oxygen species accumulation suppressed the ER-phagy. Interestingly, membrane lipid remodeling, a response to late Pi starvation, was accelerated in the ire1a ire1b under early Pi-depleted conditions. Our findings reveal the existence of two different phases of responses to Pi starvation (i.e. early and late) and indicate that ER stress-mediated ER-phagy is involved in Pi recycling in the early phase to suppress acceleration of the late phase.
Collapse
Affiliation(s)
- Yushi Yoshitake
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| | - Daiki Shinozaki
- Life Science Program, Graduate School of Agriculture, Meiji University, 1-1-1, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| | - Kohki Yoshimoto
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
- Life Science Program, Graduate School of Agriculture, Meiji University, 1-1-1, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| |
Collapse
|
17
|
Luong AM, Koestel J, Bhati KK, Batoko H. Cargo receptors and adaptors for selective autophagy in plant cells. FEBS Lett 2022; 596:2104-2132. [PMID: 35638898 DOI: 10.1002/1873-3468.14412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/08/2022] [Accepted: 05/23/2022] [Indexed: 11/06/2022]
Abstract
Plant selective (macro)autophagy is a highly regulated process whereby eukaryotic cells spatiotemporally degrade some of their constituents that have become superfluous or harmful. The identification and characterization of the factors determining this selectivity make it possible to integrate selective (macro)autophagy into plant cell physiology and homeostasis. The specific cargo receptors and/or scaffold proteins involved in this pathway are generally not structurally conserved, as are the biochemical mechanisms underlying recognition and integration of a given cargo into the autophagosome in different cell types. This review discusses the few specific cargo receptors described in plant cells to highlight key features of selective autophagy in the plant kingdom and its integration with plant physiology, so as to identify evolutionary convergence and knowledge gaps to be filled by future research.
Collapse
Affiliation(s)
- Ai My Luong
- Louvain Institute of Biomolecular Science and Technology, University of Louvain Croix du Sud 4, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Jérôme Koestel
- Louvain Institute of Biomolecular Science and Technology, University of Louvain Croix du Sud 4, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Kaushal Kumar Bhati
- Louvain Institute of Biomolecular Science and Technology, University of Louvain Croix du Sud 4, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Henri Batoko
- Louvain Institute of Biomolecular Science and Technology, University of Louvain Croix du Sud 4, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Balfagón D, Gómez-Cadenas A, Rambla JL, Granell A, de Ollas C, Bassham DC, Mittler R, Zandalinas SI. γ-Aminobutyric acid plays a key role in plant acclimation to a combination of high light and heat stress. PLANT PHYSIOLOGY 2022; 188:2026-2038. [PMID: 35078231 PMCID: PMC8968390 DOI: 10.1093/plphys/kiac010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/30/2021] [Indexed: 05/29/2023]
Abstract
Plants are frequently subjected to different combinations of abiotic stresses, such as high light (HL) intensity, and elevated temperatures. These environmental conditions pose a threat to agriculture production, affecting photosynthesis, and decreasing yield. Metabolic responses of plants, such as alterations in carbohydrates and amino acid fluxes, play a key role in the successful acclimation of plants to different abiotic stresses, directing resources toward stress responses, and suppressing growth. Here we show that the primary metabolic response of Arabidopsis (Arabidopsis thaliana) plants to HL or heat stress (HS) is different from that of plants subjected to a combination of HL and HS (HL+HS). We further demonstrate that the combined stress results in a unique metabolic response that includes increased accumulation of sugars and amino acids coupled with decreased levels of metabolites participating in the tricarboxylic acid cycle. Among the amino acids exclusively accumulated during HL+HS, we identified the nonproteinogenic amino acid γ-aminobutyric acid (GABA). Analysis of different mutants deficient in GABA biosynthesis (GLUTAMATE DESCARBOXYLASE 3 [gad3]) as well as mutants impaired in autophagy (autophagy-related proteins 5 and 9 [atg5 and atg9]), revealed that GABA plays a key role in the acclimation of plants to HL+HS, potentially by promoting autophagy. Taken together, our findings identify a role for GABA in regulating plant responses to combined stress.
Collapse
Affiliation(s)
- Damián Balfagón
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - José L Rambla
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Carlos de Ollas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
19
|
Nadeem M, Wu J, Ghaffari H, Kedir AJ, Saleem S, Mollier A, Singh J, Cheema M. Understanding the Adaptive Mechanisms of Plants to Enhance Phosphorus Use Efficiency on Podzolic Soils in Boreal Agroecosystems. FRONTIERS IN PLANT SCIENCE 2022; 13:804058. [PMID: 35371179 PMCID: PMC8965363 DOI: 10.3389/fpls.2022.804058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Being a macronutrient, phosphorus (P) is the backbone to complete the growth cycle of plants. However, because of low mobility and high fixation, P becomes the least available nutrient in podzolic soils; hence, enhancing phosphorus use efficiency (PUE) can play an important role in different cropping systems/crop production practices to meet ever-increasing demands in food, fiber, and fuel. Additionally, the rapidly decreasing mineral phosphate rocks/stocks forced to explore alternative resources and methods to enhance PUE either through improved seed P reserves and their remobilization, P acquisition efficiency (PAE), or plant's internal P utilization efficiency (IPUE) or both for sustainable P management strategies. The objective of this review article is to explore and document important domains to enhance PUE in crop plants grown on Podzol in a boreal agroecosystem. We have discussed P availabilities in podzolic soils, root architecture and morphology, root exudates, phosphate transporters and their role in P uptake, different contributors to enhance PAE and IPUE, and strategies to improve plant PUE in crops grown on podzolic soils deficient in P and acidic in nature.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Jiaxu Wu
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | | | - Amana Jemal Kedir
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
- Environmental Science Program, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Shamila Saleem
- Department of Agriculture Extension, Government of Punjab, Khanewal, Pakistan
| | - Alain Mollier
- INRAE, UMR 1391 ISPA, Bordeaux Science Agro, Villenave d'Ornon, France
| | - Jaswinder Singh
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| |
Collapse
|
20
|
Mugume Y, Ding G, Dueñas ME, Liu M, Lee YJ, Nikolau BJ, Bassham DC. Complex Changes in Membrane Lipids Associated with the Modification of Autophagy in Arabidopsis. Metabolites 2022; 12:190. [PMID: 35208263 PMCID: PMC8876039 DOI: 10.3390/metabo12020190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 12/28/2022] Open
Abstract
Autophagy is a conserved mechanism among eukaryotes that degrades and recycles cytoplasmic components. Autophagy is known to influence the plant metabolome, including lipid content; however, its impact on the plant lipidome is not fully understood, and most studies have analyzed a single or few mutants defective in autophagy. To gain more insight into the effect of autophagy on lipid concentrations and composition, we quantitatively profiled glycerolipids from multiple Arabidopsis thaliana mutants altered in autophagy and compared them with wild-type seedlings under nitrogen replete (+N; normal growth) and nitrogen starvation (-N; autophagy inducing) conditions. Mutants include those in genes of the core autophagy pathway, together with other genes that have been reported to affect autophagy. Using Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-MS), we imaged the cellular distribution of specific lipids in situ and demonstrated that autophagy and nitrogen treatment did not affect their spatial distribution within Arabidopsis seedling leaves. We observed changes, both increases and decreases, in the relative amounts of different lipid species in the mutants compared to WT both in +N and -N conditions, although more changes were seen in -N conditions. The relative amounts of polyunsaturated and very long chain lipids were significantly reduced in autophagy-disrupted mutants compared to WT plants. Collectively, our results provide additional evidence that autophagy affects plant lipid content and that autophagy likely affects lipid properties such as chain length and unsaturation.
Collapse
Affiliation(s)
- Yosia Mugume
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Geng Ding
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (G.D.); (B.J.N.)
| | - Maria Emilia Dueñas
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA; (M.E.D.); (Y.-J.L.)
| | - Meiling Liu
- Department of Statistics, Iowa State University, Ames, IA 50011, USA;
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Young-Jin Lee
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA; (M.E.D.); (Y.-J.L.)
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (G.D.); (B.J.N.)
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
21
|
Rehman NU, Zeng P, Mo Z, Guo S, Liu Y, Huang Y, Xie Q. Conserved and Diversified Mechanism of Autophagy between Plants and Animals upon Various Stresses. Antioxidants (Basel) 2021; 10:1736. [PMID: 34829607 PMCID: PMC8615172 DOI: 10.3390/antiox10111736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a highly conserved degradation mechanism in eukaryotes, executing the breakdown of unwanted cell components and subsequent recycling of cellular material for stress relief through vacuole-dependence in plants and yeast while it is lysosome-dependent in animal manner. Upon stress, different types of autophagy are stimulated to operate certain biological processes by employing specific selective autophagy receptors (SARs), which hijack the cargo proteins or organelles to the autophagy machinery for subsequent destruction in the vacuole/lysosome. Despite recent advances in autophagy, the conserved and diversified mechanism of autophagy in response to various stresses between plants and animals still remain a mystery. In this review, we intend to summarize and discuss the characterization of the SARs and their corresponding processes, expectantly advancing the scope and perspective of the evolutionary fate of autophagy between plants and animals.
Collapse
Affiliation(s)
- Naveed Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Peichun Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Zulong Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Shaoying Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences and Technology, Guangxi University, Nanning 530004, China;
| | - Yifeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310001, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| |
Collapse
|
22
|
Kumaran G, Michaeli S. Eating the messenger (RNA): autophagy shapes the cellular RNA landscape. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6803-6807. [PMID: 34468738 PMCID: PMC8547149 DOI: 10.1093/jxb/erab385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
This article comments on: Hickl D, Drews F, Girke C, Zimmer D, Mühlhaus T, Hauth J, Nordström K, Trentmann O, Neuhaus EH, Scheuring D, Fehlmann T, Keller A, Simon M, Möhlmann T. 2021. Differential degradation of RNA species by autophagy-related pathways in Arabidopsis. Journal of Experimental Botany 72, 6867–6881.
Collapse
Affiliation(s)
- Girishkumar Kumaran
- Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO)-Volcani Institute, Rishon LeZion, Israel
| | - Simon Michaeli
- Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO)-Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
23
|
Hickl D, Drews F, Girke C, Zimmer D, Mühlhaus T, Hauth J, Nordström K, Trentmann O, Neuhaus EH, Scheuring D, Fehlmann T, Keller A, Simon M, Möhlmann T. Differential degradation of RNA species by autophagy-related pathways in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6867-6881. [PMID: 34244747 DOI: 10.1093/jxb/erab321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The plant vacuole recycles proteins and RNA delivered to it by autophagy. In this study, by isolating intact vacuoles from Arabidopsis plants, followed by subsequent RNA purification, and deep sequencing, we provide a comprehensive characterization of Arabidopsis vacuolar RNAome. In the vacuolar RNAome, we detected ribosomal RNAs, transfer RNAs, including those of chloroplast origin, and in addition small RNA types. As autophagy is a main mechanism for the transport of RNA to the vacuole, atg5-1 mutants deficient in autophagy were included in our analysis. We observed severely reduced amounts of most chloroplast-derived RNA species in these mutants. Comparisons with cellular RNA composition provided an indication of possible up-regulation of alternative RNA breakdown pathways. By contrast, vacuolar RNA processing and composition in plants lacking vacuolar ribonuclease 2, involved in cellular RNA homeostasis, only showed minor alterations, possibly because of the presence of further so far unknown vacuolar RNase species. Among the small RNA types, we detected mature miRNAs in all vacuolar preparations but at much lower frequency in atg5-1, raising the possibility of a biological role for vacuolar miRNAs.
Collapse
Affiliation(s)
- Daniel Hickl
- Department of Biology, Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Franziska Drews
- Department of Biology, Molecular Cell Biology, Wuppertal University, Wuppertal, Germany
- Molecular Cell Dynamics, Saarland University, Saarbrücken, Germany
| | - Christopher Girke
- Department of Biology, Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - David Zimmer
- Department of Biology, Computational Systems Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Timo Mühlhaus
- Department of Biology, Computational Systems Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Jan Hauth
- Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany
| | - Karl Nordström
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Oliver Trentmann
- Department of Biology, Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Ekkehard H Neuhaus
- Department of Biology, Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - David Scheuring
- Department of Biology, Plant Pathology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Stanford University School of Medicine, Stanford, CA, USA
| | - Martin Simon
- Department of Biology, Molecular Cell Biology, Wuppertal University, Wuppertal, Germany
| | - Torsten Möhlmann
- Department of Biology, Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
24
|
Field S, Conner WC, Roberts DM. Arabidopsis CALMODULIN-LIKE 38 Regulates Hypoxia-Induced Autophagy of SUPPRESSOR OF GENE SILENCING 3 Bodies. FRONTIERS IN PLANT SCIENCE 2021; 12:722940. [PMID: 34567037 PMCID: PMC8456008 DOI: 10.3389/fpls.2021.722940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/09/2021] [Indexed: 05/23/2023]
Abstract
During the energy crisis associated with submergence stress, plants restrict mRNA translation and rapidly accumulate stress granules that act as storage hubs for arrested mRNA complexes. One of the proteins associated with hypoxia-induced stress granules in Arabidopsis thaliana is the calcium-sensor protein CALMODULIN-LIKE 38 (CML38). Here, we show that SUPPRESSOR OF GENE SILENCING 3 (SGS3) is a CML38-binding protein, and that SGS3 and CML38 co-localize within hypoxia-induced RNA stress granule-like structures. Hypoxia-induced SGS3 granules are subject to turnover by autophagy, and this requires both CML38 as well as the AAA+-ATPase CELL DIVISION CYCLE 48A (CDC48A). CML38 also interacts directly with CDC48A, and CML38 recruits CDC48A to CML38 granules in planta. Together, this work demonstrates that SGS3 associates with stress granule-like structures during hypoxia stress that are subject to degradation by CML38 and CDC48-dependent autophagy. Further, the work identifies direct regulatory targets for the hypoxia calcium-sensor CML38, and suggest that CML38 association with stress granules and associated regulation of autophagy may be part of the RNA regulatory program during hypoxia stress.
Collapse
|
25
|
Zhang X, Cui J, Cheng L, Lin K. Enhancement of osteoporotic bone regeneration by strontium-substituted 45S5 bioglass via time-dependent modulation of autophagy and the Akt/mTOR signaling pathway. J Mater Chem B 2021; 9:3489-3501. [PMID: 33690737 DOI: 10.1039/d0tb02991b] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteoporosis (OP) is a major systemic bone disease leading to an imbalance in bone homeostasis which remains a challenge in the current treatment of bone defects. Our previous studies on strontium (Sr) doping apparently stimulated osteogenesis of bioceramics, which suggested a promising strategy for the treatment of bone defects. However, the potential effects and the underlying mechanisms of Sr-doping on osteoporotic bone defects still remain unclear. Autophagy is a conventional self-degradation process of cells involved in bone homeostasis and regeneration under physiological and pathological conditions. Therefore, it is essential to design appropriate biomaterials and investigate the associated osteogenic mechanisms via autophagy. Based on this hypothesis, Sr-doped 45S5 bioglass (Sr/45S5) was fabricated, and ovariectomy bone marrow-derived mesenchymal stem cells (OVX-BMSCs) were applied as the in vitro cell culture model. First, the optimal Sr-doping concentration of 10 mol% was screened by cell proliferation, ALP staining, alizarin red S staining and the real-time PCR assay. Then, the results of western blot (WB) analysis showed that Sr-induced osteogenic differentiation of OVX-BMSCs was associated with time-dependent modulation of autophagy and related to the AKT/mTOR signaling pathway. Meanwhile, the autophagy in Sr-induced osteogenic differentiation of OVX-BMSCs was detected by WB, immunofluorescence staining and transmission electron microscopy. Furthermore, the effect of osteogenic differentiation of OVX-BMSCs has been significantly inhibited by the administration of autophagy inhibitors and the AKT/mTOR pathway inhibitors, respectively, in the early and late periods of osteogenic differentiation. Finally, the results of the model of femoral condyle defects in OVX-rats indicated that Sr10/45S5 granules remarkably enhanced bone regeneration which provided the evidences in vivo. Our research indicates that Sr-doping provides a promising strategy to promote osteogenic differentiation of OVX-BMSCs and bone regeneration in osteoporotic bone defects via early improvement of autophagy and late activation of the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Oral and Cranio-Maxillofacial Science, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China. and School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Jinjie Cui
- Department of Oral and Cranio-Maxillofacial Science, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| | - Liming Cheng
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China. and Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Science, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| |
Collapse
|
26
|
Sedaghatmehr M, Thirumalaikumar VP, Kamranfar I, Schulz K, Mueller-Roeber B, Sampathkumar A, Balazadeh S. Autophagy complements metalloprotease FtsH6 in degrading plastid heat shock protein HSP21 during heat stress recovery. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab304. [PMID: 34185061 DOI: 10.1093/jxb/erab304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 06/13/2023]
Abstract
Moderate and temporary heat stresses (HS) prime plants to tolerate, and survive, a subsequent severe HS. Such acquired thermotolerance can be maintained for several days under normal growth conditions, and create a HS memory. We recently demonstrated that plastid-localized small heat shock protein HSP21 is a key component of HS memory in Arabidopsis thaliana. A sustained high abundance of HSP21 during the HS recovery phase extends HS memory. The level of HSP21 is negatively controlled by plastid-localized metalloprotease FtsH6 during HS recovery. Here, we demonstrate that autophagy, a cellular recycling mechanism, exerts additional control over HSP21 degradation. Genetic and chemical disruption of both, metalloprotease activity and autophagy trigger superior HSP21 accumulation, thereby improving memory. Furthermore, we provide evidence that autophagy cargo receptor ATG8-INTERACTING PROTEIN1 (ATI1) is associated with HS memory. ATI1 bodies colocalize with both autophagosomes and HSP21, and their abundance and transport to the vacuole increase during HS recovery. Together, our results provide new insights into the control module for the regulation of HS memory, in which two distinct protein degradation pathways act in concert to degrade HSP21, thereby enabling cells to recover from the HS effect at the cost of reducing the HS memory.
Collapse
Affiliation(s)
- Mastoureh Sedaghatmehr
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Venkatesh P Thirumalaikumar
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße
| | - Iman Kamranfar
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße
| | - Karina Schulz
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Salma Balazadeh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Leiden University, PO Box 9500, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
27
|
Wojciechowska N, Michalak KM, Bagniewska-Zadworna A. Autophagy-an underestimated coordinator of construction and destruction during plant root ontogeny. PLANTA 2021; 254:15. [PMID: 34184131 PMCID: PMC8238727 DOI: 10.1007/s00425-021-03668-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/20/2021] [Indexed: 05/13/2023]
Abstract
MAIN CONCLUSION Autophagy is a key but undervalued process in root ontogeny, ensuring both the proper development of root tissues as well as the senescence of the entire organ. Autophagy is a process which occurs during plant adaptation to changing environmental conditions as well as during plant ontogeny. Autophagy is also engaged in plant root development, however, the limitations of belowground studies make it challenging to understand the entirety of the developmental processes. We summarize and discuss the current data pertaining to autophagy in the roots of higher plants during their formation and degradation, from the beginning of root tissue differentiation and maturation; all the way to the aging of the entire organ. During root growth, autophagy participates in the processes of central vacuole formation in cortical tissue development, as well as vascular tissue differentiation and root senescence. At present, several key issues are still not entirely understood and remain to be addressed in future studies. The major challenge lies in the portrayal of the mechanisms of autophagy on subcellular events in belowground plant organs during the programmed control of cellular degradation pathways in roots. Given the wide range of technical areas of inquiry where root-related research can be applied, including cutting-edge cell biological methods to track, sort and screen cells from different root tissues and zones of growth, the identification of several lines of evidence pertaining to autophagy during root developmental processes is the most urgent challenge. Consequently, a substantial effort must be made to ensure whether the analyzed process is autophagy-dependent or not.
Collapse
Affiliation(s)
- Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Kornel M Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
28
|
Gomez RE, Lupette J, Chambaud C, Castets J, Ducloy A, Cacas JL, Masclaux-Daubresse C, Bernard A. How Lipids Contribute to Autophagosome Biogenesis, a Critical Process in Plant Responses to Stresses. Cells 2021; 10:1272. [PMID: 34063958 PMCID: PMC8224036 DOI: 10.3390/cells10061272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 01/18/2023] Open
Abstract
Throughout their life cycle, plants face a tremendous number of environmental and developmental stresses. To respond to these different constraints, they have developed a set of refined intracellular systems including autophagy. This pathway, highly conserved among eukaryotes, is induced by a wide range of biotic and abiotic stresses upon which it mediates the degradation and recycling of cytoplasmic material. Central to autophagy is the formation of highly specialized double membrane vesicles called autophagosomes which select, engulf, and traffic cargo to the lytic vacuole for degradation. The biogenesis of these structures requires a series of membrane remodeling events during which both the quantity and quality of lipids are critical to sustain autophagy activity. This review highlights our knowledge, and raises current questions, regarding the mechanism of autophagy, and its induction and regulation upon environmental stresses with a particular focus on the fundamental contribution of lipids. How autophagy regulates metabolism and the recycling of resources, including lipids, to promote plant acclimation and resistance to stresses is further discussed.
Collapse
Affiliation(s)
- Rodrigo Enrique Gomez
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Josselin Lupette
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Clément Chambaud
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Julie Castets
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Amélie Ducloy
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Jean-Luc Cacas
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Amélie Bernard
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| |
Collapse
|
29
|
Zandalinas SI, Sengupta S, Fritschi FB, Azad RK, Nechushtai R, Mittler R. The impact of multifactorial stress combination on plant growth and survival. THE NEW PHYTOLOGIST 2021; 230:1034-1048. [PMID: 33496342 PMCID: PMC8048544 DOI: 10.1111/nph.17232] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/17/2021] [Indexed: 05/08/2023]
Abstract
Climate change-driven extreme weather events, combined with increasing temperatures, harsh soil conditions, low water availability and quality, and the introduction of many man-made pollutants, pose a unique challenge to plants. Although our knowledge of the response of plants to each of these individual conditions is vast, we know very little about how a combination of many of these factors, occurring simultaneously, that is multifactorial stress combination, impacts plants. Seedlings of wild-type and different mutants of Arabidopsis thaliana plants were subjected to a multifactorial stress combination of six different stresses, each applied at a low level, and their survival, physiological and molecular responses determined. Our findings reveal that, while each of the different stresses, applied individually, had a negligible effect on plant growth and survival, the accumulated impact of multifactorial stress combination on plants was detrimental. We further show that the response of plants to multifactorial stress combination is unique and that specific pathways and processes play a critical role in the acclimation of plants to multifactorial stress combination. Taken together our findings reveal that further polluting our environment could result in higher complexities of multifactorial stress combinations that in turn could drive a critical decline in plant growth and survival.
Collapse
Affiliation(s)
- Sara I. Zandalinas
- Division of Plant SciencesCollege of Agriculture Food and Natural Resources and Interdisciplinary Plant GroupChristopher S. Bond Life Sciences CenterUniversity of Missouri1201 Rollins StColumbiaMO65211USA
| | - Soham Sengupta
- Department of Biological Sciences and BioDiscovery InstituteCollege of ScienceUniversity of North Texas1155 Union Circle #305220DentonTX76203‐5017USA
| | - Felix B. Fritschi
- Division of Plant SciencesCollege of Agriculture Food and Natural Resources and Interdisciplinary Plant GroupChristopher S. Bond Life Sciences CenterUniversity of Missouri1201 Rollins StColumbiaMO65211USA
| | - Rajeev K. Azad
- Department of Biological Sciences and BioDiscovery InstituteCollege of ScienceUniversity of North Texas1155 Union Circle #305220DentonTX76203‐5017USA
- Department of MathematicsUniversity of North TexasDentonTX76203USA
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life ScienceThe Hebrew University of JerusalemEdmond J. Safra Campus at Givat RamJerusalem91904Israel
| | - Ron Mittler
- Division of Plant SciencesCollege of Agriculture Food and Natural Resources and Interdisciplinary Plant GroupChristopher S. Bond Life Sciences CenterUniversity of Missouri1201 Rollins StColumbiaMO65211USA
- Department of SurgeryUniversity of Missouri School of MedicineChristopher S. Bond Life Sciences Center University of Missouri1201 Rollins StColumbiaMO65211USA
| |
Collapse
|
30
|
Genome-wide identification and expression pattern analysis of the ribonuclease T2 family in Eucommia ulmoides. Sci Rep 2021; 11:6900. [PMID: 33767357 PMCID: PMC7994793 DOI: 10.1038/s41598-021-86337-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
The 2′,3′-cycling ribonuclease (RNase) genes are catalysts of RNA cleavage and include the RNase T2 gene family. RNase T2 genes perform important roles in plants and have been conserved in the genome of eukaryotic organisms. In this study we identified 21 EURNS genes in Eucommia ulmoides Oliver (E. ulmoides) and analyzed their structure, chromosomal location, phylogenetic tree, gene duplication, stress-related cis-elements, and expression patterns in different tissues. The length of 21 predicted EURNS proteins ranged from 143 to 374 amino acids (aa), their molecular weight (MW) ranged from 16.21 to 42.38 kDa, and their isoelectric point (PI) value ranged from 5.08 to 9.09. Two classifications (class I and class III) were obtained from the conserved domains analysis and phylogenetic tree. EURNS proteins contained a total of 15 motifs. Motif 1, motif 2, motif 3, and motif 7 were distributed in multiple sequences and were similar to the conserved domain of RNase T2. EURNS genes with similar structure and the predicted EURNS proteins with conserved motif compositions are in the same group in the phylogenetic tree. The results of RT-PCR and transcription data showed that EURNS genes have tissue-specific expression and exhibited obvious trends in different developmental stages. Gene duplication analysis results indicated that segment duplication may be the dominant duplication mode in this gene family. This study provides a theoretical basis for research on the RNase T2 gene family and lays a foundation for the further study of EURNS genes.
Collapse
|
31
|
Heinemann B, Künzler P, Eubel H, Braun HP, Hildebrandt TM. Estimating the number of protein molecules in a plant cell: protein and amino acid homeostasis during drought. PLANT PHYSIOLOGY 2021; 185:385-404. [PMID: 33721903 PMCID: PMC8133651 DOI: 10.1093/plphys/kiaa050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/17/2020] [Indexed: 05/21/2023]
Abstract
During drought stress, cellular proteostasis on the one hand and amino acid homeostasis on the other hand are severely challenged, because the decrease in photosynthesis induces massive proteolysis, leading to drastic changes in both the proteome and the free amino acid pool. Thus, we selected progressive drought stress in Arabidopsis (Arabidopsis thaliana) as a model to investigate on a quantitative level the balance between protein and free amino acid homeostasis. We analyzed the mass composition of the leaf proteome based on proteomics datasets, and estimated how many protein molecules are present in a plant cell and its subcellular compartments. In addition, we calculated stress-induced changes in the distribution of individual amino acids between the free and protein-bound pools. Under control conditions, an average Arabidopsis mesophyll cell contains about 25 billion protein molecules, of which 80% are localized in chloroplasts. Severe water deficiency leads to degradation of more than 40% of the leaf protein mass, and thus causes a drastic shift in distribution toward the free amino acid pool. Stress-induced proteolysis of just half of the 340 million RubisCO hexadecamers present in the chloroplasts of a single mesophyll cell doubles the cellular content of free amino acids. A major fraction of the amino acids released from proteins is channeled into synthesis of proline, which is a compatible osmolyte. Complete oxidation of the remaining fraction as an alternative respiratory substrate can fully compensate for the lack of photosynthesis-derived carbohydrates for several hours.
Collapse
Affiliation(s)
- Björn Heinemann
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Patrick Künzler
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Holger Eubel
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Tatjana M Hildebrandt
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
- Address for communication:
| |
Collapse
|
32
|
Yoshitake Y, Nakamura S, Shinozaki D, Izumi M, Yoshimoto K, Ohta H, Shimojima M. RCB-mediated chlorophagy caused by oversupply of nitrogen suppresses phosphate-starvation stress in plants. PLANT PHYSIOLOGY 2021; 185:318-330. [PMID: 33721901 PMCID: PMC8133631 DOI: 10.1093/plphys/kiaa030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/28/2020] [Indexed: 05/26/2023]
Abstract
Inorganic phosphate (Pi) and nitrogen (N) are essential nutrients for plant growth. We found that a five-fold oversupply of nitrate rescues Arabidopsis (Arabidopsis thaliana) plants from Pi-starvation stress. Analyses of transgenic plants that overexpressed GFP-AUTOPHAGY8 showed that an oversupply of nitrate induced autophagy flux under Pi-depleted conditions. Expression of DIN6 and DIN10, the carbon (C) starvation-responsive genes, was upregulated when nitrate was oversupplied under Pi starvation, which suggested that the plants recognized the oversupply of nitrate as C starvation stress because of the reduction in the C/N ratio. Indeed, formation of Rubisco-containing bodies (RCBs), which contain chloroplast stroma and are induced by C starvation, was enhanced when nitrate was oversupplied under Pi starvation. Moreover, autophagy-deficient mutants did not release Pi (unlike wild-type plants), exhibited no RCB accumulation inside vacuoles, and were hypersensitive to Pi starvation, indicating that RCB-mediated chlorophagy is involved in Pi starvation tolerance. Thus, our results showed that the Arabidopsis response to Pi starvation is closely linked with N and C availability and that autophagy is a key factor that controls plant growth under Pi starvation.
Collapse
Affiliation(s)
- Yushi Yoshitake
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
- Department of Life Science, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Sakuya Nakamura
- Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Daiki Shinozaki
- Department of Life Science, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
- Life Science Program, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Masanori Izumi
- Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Kohki Yoshimoto
- Department of Life Science, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
- Life Science Program, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
33
|
Dissanayaka DMSB, Ghahremani M, Siebers M, Wasaki J, Plaxton WC. Recent insights into the metabolic adaptations of phosphorus-deprived plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:199-223. [PMID: 33211873 DOI: 10.1093/jxb/eraa482] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Inorganic phosphate (Pi) is an essential macronutrient required for many fundamental processes in plants, including photosynthesis and respiration, as well as nucleic acid, protein, and membrane phospholipid synthesis. The huge use of Pi-containing fertilizers in agriculture demonstrates that the soluble Pi levels of most soils are suboptimal for crop growth. This review explores recent advances concerning the understanding of adaptive metabolic processes that plants have evolved to alleviate the negative impact of nutritional Pi deficiency. Plant Pi starvation responses arise from complex signaling pathways that integrate altered gene expression with post-transcriptional and post-translational mechanisms. The resultant remodeling of the transcriptome, proteome, and metabolome enhances the efficiency of root Pi acquisition from the soil, as well as the use of assimilated Pi throughout the plant. We emphasize how the up-regulation of high-affinity Pi transporters and intra- and extracellular Pi scavenging and recycling enzymes, organic acid anion efflux, membrane remodeling, and the remarkable flexibility of plant metabolism and bioenergetics contribute to the survival of Pi-deficient plants. This research field is enabling the development of a broad range of innovative and promising strategies for engineering phosphorus-efficient crops. Such cultivars are urgently needed to reduce inputs of unsustainable and non-renewable Pi fertilizers for maximum agronomic benefit and long-term global food security and ecosystem preservation.
Collapse
Affiliation(s)
- D M S B Dissanayaka
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Mina Ghahremani
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Meike Siebers
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jun Wasaki
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
34
|
Kim SH, Witte CP, Rhee S. Structural basis for the substrate specificity and catalytic features of pseudouridine kinase from Arabidopsis thaliana. Nucleic Acids Res 2021; 49:491-503. [PMID: 33290549 PMCID: PMC7797080 DOI: 10.1093/nar/gkaa1144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022] Open
Abstract
RNA modifications can regulate the stability of RNAs, mRNA-protein interactions, and translation efficiency. Pseudouridine is a prevalent RNA modification, and its metabolic fate after RNA turnover was recently characterized in eukaryotes, in the plant Arabidopsis thaliana. Here, we present structural and biochemical analyses of PSEUDOURIDINE KINASE from Arabidopsis (AtPUKI), the enzyme catalyzing the first step in pseudouridine degradation. AtPUKI, a member of the PfkB family of carbohydrate kinases, is a homodimeric α/β protein with a protruding small β-strand domain, which serves simultaneously as dimerization interface and dynamic substrate specificity determinant. AtPUKI has a unique nucleoside binding site specifying the binding of pseudourine, in particular at the nucleobase, by multiple hydrophilic interactions, of which one is mediated by a loop from the small β-strand domain of the adjacent monomer. Conformational transition of the dimerized small β-strand domains containing active site residues is required for substrate specificity. These dynamic features explain the higher catalytic efficiency for pseudouridine over uridine. Both substrates bind well (similar Km), but only pseudouridine is turned over efficiently. Our studies provide an example for structural and functional divergence in the PfkB family and highlight how AtPUKI avoids futile uridine phosphorylation which in vivo would disturb pyrimidine homeostasis.
Collapse
Affiliation(s)
- Sang-Hoon Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Hannover, Germany
| | - Sangkee Rhee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
35
|
Kazibwe Z, Soto-Burgos J, MacIntosh GC, Bassham DC. TOR mediates the autophagy response to altered nucleotide homeostasis in an RNase mutant. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6907-6920. [PMID: 32905584 DOI: 10.1093/jxb/eraa410] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
The Arabidopsis thaliana T2 family endoribonuclease RNS2 localizes to the vacuole and functions in rRNA degradation. Loss of RNS2 activity impairs rRNA turnover and leads to constitutive autophagy, a process for degradation of cellular components. Autophagy is normally activated during environmental stress and is important for stress tolerance and homeostasis. Here we show that restoration of cytosolic purine nucleotide levels rescues the constitutive autophagy phenotype of rns2-2 seedlings, whereas inhibition of purine synthesis induces autophagy in wild-type seedlings. rns2-2 seedlings have reduced activity of the target of rapamycin (TOR) kinase complex, a negative regulator of autophagy, and this phenotype is rescued by addition of inosine to increase purine levels. Activation of TOR in rns2-2 by exogenous auxin blocks the enhanced autophagy, indicating a possible involvement of the TOR signaling pathway in the activation of autophagy in the rns2-2 mutant. Our data suggest a model in which loss of rRNA degradation in rns2-2 leads to a reduction in cytoplasmic nucleotide concentrations, which in turn inhibits TOR activity, leading to activation of autophagy to restore homeostasis.
Collapse
Affiliation(s)
- Zakayo Kazibwe
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Junmarie Soto-Burgos
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Gustavo C MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
36
|
Halat L, Gyte K, Wasteneys G. The Microtubule-Associated Protein CLASP Is Translationally Regulated in Light-Dependent Root Apical Meristem Growth. PLANT PHYSIOLOGY 2020; 184:2154-2167. [PMID: 33023938 PMCID: PMC7723079 DOI: 10.1104/pp.20.00474] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/30/2020] [Indexed: 05/23/2023]
Abstract
The ability for plant growth to be optimized, either in the light or dark, depends on the intricate balance between cell division and differentiation in specialized regions called meristems. When Arabidopsis (Arabidopsis thaliana) seedlings are grown in the dark, hypocotyl elongation is promoted, whereas root growth is greatly reduced as a result of changes in hormone transport and a reduction in meristematic cell proliferation. Previous work showed that the microtubule-associated protein CLASP sustains root apical meristem size by influencing microtubule organization and by modulating the brassinosteroid signaling pathway. Here, we investigated whether CLASP is involved in light-dependent root growth promotion, since dark-grown seedlings have reduced root apical meristem activity, as observed in the clasp-1 null mutant. We showed that CLASP protein levels were greatly reduced in the root tips of dark-grown seedlings, which could be reversed by exposing plants to light. We confirmed that removing seedlings from the light led to a discernible shift in microtubule organization from bundled arrays, which are prominent in dividing cells, to transverse orientations typically observed in cells that have exited the meristem. Brassinosteroid receptors and auxin transporters, both of which are sustained by CLASP, were largely degraded in the dark. Interestingly, we found that despite the lack of protein, CLASP transcript levels were higher in dark-grown root tips. Together, these findings uncover a mechanism that sustains meristem homeostasis through CLASP, and they advance our understanding of how roots modulate their growth according to the amount of light and nutrients perceived by the plant.
Collapse
Affiliation(s)
- Laryssa Halat
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Katherine Gyte
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Geoffrey Wasteneys
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
37
|
Gho YS, Choi H, Moon S, Song MY, Park HE, Kim DH, Ha SH, Jung KH. Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay. FRONTIERS IN PLANT SCIENCE 2020; 11:585561. [PMID: 33424882 PMCID: PMC7793952 DOI: 10.3389/fpls.2020.585561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/02/2020] [Indexed: 05/16/2023]
Abstract
The fine-tuning of inorganic phosphate (Pi) for enhanced use efficiency has long been a challenging subject in agriculture, particularly in regard to rice as a major crop plant. Among ribonucleases (RNases), the RNase T2 family is broadly distributed across kingdoms, but little has been known on its substrate specificity compared to RNase A and RNase T1 families. Class I and class II of the RNase T2 family are defined as the S-like RNase (RNS) family and have showed the connection to Pi recycling in Arabidopsis. In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. We then compared the in silico expression patterns of all RNS genes in rice and Arabidopsis under normal and Pi-deficient conditions and further confirmed the expression patterns of rice RNS genes via qRT-PCR analysis. Subsequently, we found that most of the OsRNS genes were differentially regulated under Pi-deficient treatment. Association of Pi recycling by RNase activity in rice was confirmed by measuring total RNA concentration and ribonuclease activity of shoot and root samples under Pi-sufficient or Pi-deficient treatment during 21 days. The total RNA concentrations were decreased by < 60% in shoots and < 80% in roots under Pi starvation, respectively, while ribonuclease activity increased correspondingly. We further elucidate the signaling pathway of Pi starvation through upregulation of the OsRNS genes. The 2-kb promoter region of all OsRNS genes with inducible expression patterns under Pi deficiency contains a high frequency of P1BS cis-acting regulatory element (CRE) known as the OsPHR2 binding site, suggesting that the OsRNS family is likely to be controlled by OsPHR2. Finally, the dynamic transcriptional regulation of OsRNS genes by overexpression of OsPHR2, ospho2 mutant, and overexpression of OsPT1 lines involved in Pi signaling pathway suggests the molecular basis of OsRNS family in Pi recycling via RNA decay under Pi starvation.
Collapse
Affiliation(s)
- Yun-Shil Gho
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Heebak Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Sunok Moon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Min Yeong Song
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Ha Eun Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Doh-Hoon Kim
- Department of Life Science, College of Life Science and Natural Resources, Dong-A University, Busan, South Korea
| | - Sun-Hwa Ha
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
38
|
Thirumalaikumar VP, Gorka M, Schulz K, Masclaux-Daubresse C, Sampathkumar A, Skirycz A, Vierstra RD, Balazadeh S. Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90 and ROF1. Autophagy 2020; 17:2184-2199. [PMID: 32967551 PMCID: PMC8496721 DOI: 10.1080/15548627.2020.1820778] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In nature, plants are constantly exposed to many transient, but recurring, stresses. Thus, to complete their life cycles, plants require a dynamic balance between capacities to recover following cessation of stress and maintenance of stress memory. Recently, we uncovered a new functional role for macroautophagy/autophagy in regulating recovery from heat stress (HS) and resetting cellular memory of HS in Arabidopsis thaliana. Here, we demonstrated that NBR1 (next to BRCA1 gene 1) plays a crucial role as a receptor for selective autophagy during recovery from HS. Immunoblot analysis and confocal microscopy revealed that levels of the NBR1 protein, NBR1-labeled puncta, and NBR1 activity are all higher during the HS recovery phase than before. Co-immunoprecipitation analysis of proteins interacting with NBR1 and comparative proteomic analysis of an nbr1-null mutant and wild-type plants identified 58 proteins as potential novel targets of NBR1. Cellular, biochemical and functional genetic studies confirmed that NBR1 interacts with HSP90.1 (heat shock protein 90.1) and ROF1 (rotamase FKBP 1), a member of the FKBP family, and mediates their degradation by autophagy, which represses the response to HS by attenuating the expression of HSP genes regulated by the HSFA2 transcription factor. Accordingly, loss-of-function mutation of NBR1 resulted in a stronger HS memory phenotype. Together, our results provide new insights into the mechanistic principles by which autophagy regulates plant response to recurrent HS.Abbreviations: AIM: Atg8-interacting motif; ATG: autophagy-related; BiFC: bimolecular fluorescence complementation; ConA: concanamycinA; CoIP: co-immunoprecipitation; DMSO: dimethyl sulfoxide; FKBP: FK506-binding protein; FBPASE: fructose 1,6-bisphosphatase; GFP: green fluorescent protein; HS: heat stress; HSF: heat shock factor; HSFA2: heat shock factor A2; HSP: heat shock protein; HSP90: heat shock protein 90; LC-MS/MS: Liquid chromatography-tandem mass spectrometry; 3-MA: 3-methyladenine; NBR1: next-to-BRCA1; PQC: protein quality control; RFP: red fluorescent protein; ROF1: rotamase FKBP1; TF: transcription factor; TUB: tubulin; UBA: ubiquitin-associated; YFP: yellow fluorescent protein.
Collapse
Affiliation(s)
- Venkatesh P Thirumalaikumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany.,Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Michal Gorka
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Karina Schulz
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Celine Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Salma Balazadeh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
39
|
MacIntosh GC, Castandet B. Organellar and Secretory Ribonucleases: Major Players in Plant RNA Homeostasis. PLANT PHYSIOLOGY 2020; 183:1438-1452. [PMID: 32513833 PMCID: PMC7401137 DOI: 10.1104/pp.20.00076] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/31/2020] [Indexed: 05/05/2023]
Abstract
Organellar and secretory RNases, associated with different cellular compartments, are essential to maintain cellular homeostasis during development and in stress responses.
Collapse
Affiliation(s)
- Gustavo C MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Benoît Castandet
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université de Paris, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| |
Collapse
|
40
|
Chen M, Witte CP. A Kinase and a Glycosylase Catabolize Pseudouridine in the Peroxisome to Prevent Toxic Pseudouridine Monophosphate Accumulation. THE PLANT CELL 2020; 32:722-739. [PMID: 31907295 PMCID: PMC7054038 DOI: 10.1105/tpc.19.00639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/25/2019] [Accepted: 01/06/2020] [Indexed: 05/02/2023]
Abstract
Pseudouridine (Ψ) is a frequent nucleoside modification that occurs in both noncoding RNAs and mRNAs. In pseudouridine, C5 of uracil is attached to the Rib via an unusual C-glycosidic bond. This RNA modification is introduced on the RNA by site-specific transglycosylation of uridine (U), a process mediated by pseudouridine synthases. RNA is subject to constant turnover, releasing free pseudouridine, but the metabolic fate of pseudouridine in eukaryotes is unclear. Here, we show that in Arabidopsis (Arabidopsis thaliana), pseudouridine is catabolized in the peroxisome by (1) a pseudouridine kinase (PUKI) from the PfkB family that generates 5'-pseudouridine monophosphate (5'-ΨMP) and (2) a ΨMP glycosylase (PUMY) that hydrolyzes ΨMP to uracil and ribose-5-phosphate. Compromising pseudouridine catabolism leads to strong pseudouridine accumulation and increased ΨMP content. ΨMP is toxic, causing delayed germination and growth inhibition, but compromising pseudouridine catabolism does not affect the Ψ/U ratios in RNA. The bipartite peroxisomal PUKI and PUMY are conserved in plants and algae, whereas some fungi and most animals (except mammals) possess a PUMY-PUKI fusion protein, likely in mitochondria. We propose that vacuolar turnover of ribosomal RNA produces most of the pseudouridine pool via 3'-ΨMP, which is imported through the cytosol into the peroxisomes for degradation by PUKI and PUMY, a process involving a toxic 5'-ΨMP intermediate.
Collapse
Affiliation(s)
- Mingjia Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Hannover 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Hannover 30419, Germany
| |
Collapse
|
41
|
Shinozaki D, Merkulova EA, Naya L, Horie T, Kanno Y, Seo M, Ohsumi Y, Masclaux-Daubresse C, Yoshimoto K. Autophagy Increases Zinc Bioavailability to Avoid Light-Mediated Reactive Oxygen Species Production under Zinc Deficiency. PLANT PHYSIOLOGY 2020; 182:1284-1296. [PMID: 31941669 PMCID: PMC7054869 DOI: 10.1104/pp.19.01522] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/05/2020] [Indexed: 05/23/2023]
Abstract
Zinc (Zn) is an essential micronutrient for plant growth. Accordingly, Zn deficiency (-Zn) in agricultural fields is a serious problem, especially in developing regions. Autophagy, a major intracellular degradation system in eukaryotes, plays important roles in nutrient recycling under nitrogen and carbon starvation. However, the relationship between autophagy and deficiencies of other essential elements remains poorly understood, especially in plants. In this study, we focused on Zn due to the property that within cells most Zn is tightly bound to proteins, which can be targets of autophagy. We found that autophagy plays a critical role during -Zn in Arabidopsis (Arabidopsis thaliana). Autophagy-defective plants (atg mutants) failed to grow and developed accelerated chlorosis under -Zn. As expected, -Zn induced autophagy in wild-type plants, whereas in atg mutants, various organelle proteins accumulated to high levels. Additionally, the amount of free Zn2+ was lower in atg mutants than in control plants. Interestingly, -Zn symptoms in atg mutants recovered under low-light, iron-limited conditions. The levels of hydroxyl radicals in chloroplasts were elevated, and the levels of superoxide were reduced in -Zn atg mutants. These results imply that the photosynthesis-mediated Fenton-like reaction, which is responsible for the chlorotic symptom of -Zn, is accelerated in atg mutants. Together, our data indicate that autophagic degradation plays important functions in maintaining Zn pools to increase Zn bioavailability and maintain reactive oxygen species homeostasis under -Zn in plants.
Collapse
Affiliation(s)
- Daiki Shinozaki
- Department of Life Science, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
- Life Science Program, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Ekaterina A Merkulova
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, F-78000 Versailles, France
| | - Loreto Naya
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, F-78000 Versailles, France
| | - Tetsuro Horie
- Research Center for Odontology, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, 102-8159, Japan
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshinori Ohsumi
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, F-78000 Versailles, France
| | - Kohki Yoshimoto
- Department of Life Science, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
- Life Science Program, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, F-78000 Versailles, France
| |
Collapse
|
42
|
Su T, Li X, Yang M, Shao Q, Zhao Y, Ma C, Wang P. Autophagy: An Intracellular Degradation Pathway Regulating Plant Survival and Stress Response. FRONTIERS IN PLANT SCIENCE 2020; 11:164. [PMID: 32184795 PMCID: PMC7058704 DOI: 10.3389/fpls.2020.00164] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/03/2020] [Indexed: 05/18/2023]
Abstract
Autophagy is an intracellular process that facilitates the bulk degradation of cytoplasmic materials by the vacuole or lysosome in eukaryotes. This conserved process is achieved through the coordination of different autophagy-related genes (ATGs). Autophagy is essential for recycling cytoplasmic material and eliminating damaged or dysfunctional cell constituents, such as proteins, aggregates or even entire organelles. Plant autophagy is necessary for maintaining cellular homeostasis under normal conditions and is upregulated during abiotic and biotic stress to prolong cell life. In this review, we present recent advances on our understanding of the molecular mechanisms of autophagy in plants and how autophagy contributes to plant development and plants' adaptation to the environment.
Collapse
Affiliation(s)
| | | | | | | | | | - Changle Ma
- *Correspondence: Changle Ma, ; Pingping Wang,
| | | |
Collapse
|
43
|
Witte CP, Herde M. Nucleotide Metabolism in Plants. PLANT PHYSIOLOGY 2020; 182:63-78. [PMID: 31641078 PMCID: PMC6945853 DOI: 10.1104/pp.19.00955] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 05/14/2023]
Abstract
Nucleotide metabolism is an essential function in plants.
Collapse
Affiliation(s)
- Claus-Peter Witte
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Marco Herde
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| |
Collapse
|
44
|
The Ins and Outs of Autophagic Ribosome Turnover. Cells 2019; 8:cells8121603. [PMID: 31835634 PMCID: PMC6952998 DOI: 10.3390/cells8121603] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023] Open
Abstract
Ribosomes are essential for protein synthesis in all organisms and their biogenesis and number are tightly controlled to maintain homeostasis in changing environmental conditions. While ribosome assembly and quality control mechanisms have been extensively studied, our understanding of ribosome degradation is limited. In yeast or animal cells, ribosomes are degraded after transfer into the vacuole or lysosome by ribophagy or nonselective autophagy, and ribosomal RNA can also be transferred directly across the lysosomal membrane by RNautophagy. In plants, ribosomal RNA is degraded by the vacuolar T2 ribonuclease RNS2 after transport by autophagy-related mechanisms, although it is unknown if a selective ribophagy pathway exists in plants. In this review, we describe mechanisms of turnover of ribosomal components in animals and yeast, and, then, discuss potential pathways for degradation of ribosomal RNA and protein within the vacuole in plants.
Collapse
|
45
|
Yoon SH, Chung T. Protein and RNA Quality Control by Autophagy in Plant Cells. Mol Cells 2019; 42:285-291. [PMID: 31091554 PMCID: PMC6530645 DOI: 10.14348/molcells.2019.0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/03/2019] [Accepted: 03/19/2019] [Indexed: 11/27/2022] Open
Abstract
Eukaryotic cells use conserved quality control mechanisms to repair or degrade defective proteins, which are synthesized at a high rate during proteotoxic stress. Quality control mechanisms include molecular chaperones, the ubiquitin-proteasome system, and autophagic machinery. Recent research reveals that during autophagy, membrane-bound organelles are selectively sequestered and degraded. Selective autophagy is also critical for the clearance of excess or damaged protein complexes (e.g., proteasomes and ribosomes) and membrane-less compartments (e.g., protein aggregates and ribonucleoprotein granules). As sessile organisms, plants rely on quality control mechanisms for their adaptation to fluctuating environments. In this mini-review, we highlight recent work elucidating the roles of selective autophagy in the quality control of proteins and RNA in plant cells. Emphasis will be placed on selective degradation of membrane-less compartments and protein complexes in the cytoplasm. We also propose possible mechanisms by which defective proteins are selectively recognized by autophagic machinery.
Collapse
Affiliation(s)
- Seok Ho Yoon
- Department of Biological Sciences, Pusan National University, Busan 46241,
Korea
| | - Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
46
|
Young PG, Passalacqua MJ, Chappell K, Llinas RJ, Bartel B. A facile forward-genetic screen for Arabidopsis autophagy mutants reveals twenty-one loss-of-function mutations disrupting six ATG genes. Autophagy 2019; 15:941-959. [PMID: 30734619 PMCID: PMC6526838 DOI: 10.1080/15548627.2019.1569915] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Macroautophagy is a process through which eukaryotic cells degrade large substrates including organelles, protein aggregates, and invading pathogens. Over 40 autophagy-related (ATG) genes have been identified through forward-genetic screens in yeast. Although homology-based analyses have identified conserved ATG genes in plants, only a few atg mutants have emerged from forward-genetic screens in Arabidopsis thaliana. We developed a screen that consistently recovers Arabidopsis atg mutations by exploiting mutants with defective LON2/At5g47040, a protease implicated in peroxisomal quality control. Arabidopsis lon2 mutants exhibit reduced responsiveness to the peroxisomally-metabolized auxin precursor indole-3-butyric acid (IBA), heightened degradation of several peroxisomal matrix proteins, and impaired processing of proteins harboring N-terminal peroxisomal targeting signals; these defects are ameliorated by preventing autophagy. We optimized a lon2 suppressor screen to expedite recovery of additional atg mutants. After screening mutagenized lon2-2 seedlings for restored IBA responsiveness, we evaluated stabilization and processing of peroxisomal proteins, levels of several ATG proteins, and levels of the selective autophagy receptor NBR1/At4g24690, which accumulates when autophagy is impaired. We recovered 21 alleles disrupting 6 ATG genes: ATG2/At3g19190, ATG3/At5g61500, ATG5/At5g17290, ATG7/At5g45900, ATG16/At5g50230, and ATG18a/At3g62770. Twenty alleles were novel, and 3 of the mutated genes lack T-DNA insertional alleles in publicly available repositories. We also demonstrate that an insertional atg11/At4g30790 allele incompletely suppresses lon2 defects. Finally, we show that NBR1 is not necessary for autophagy of lon2 peroxisomes and that NBR1 overexpression is not sufficient to trigger autophagy of seedling peroxisomes, indicating that Arabidopsis can use an NBR1-independent mechanism to target peroxisomes for autophagic degradation. Abbreviations: ATG: autophagy-related; ATI: ATG8-interacting protein; Col-0: Columbia-0; DSK2: dominant suppressor of KAR2; EMS: ethyl methanesulfonate; GFP: green fluorescent protein; IAA: indole-3-acetic acid; IBA: indole-3-butyric acid; ICL: isocitrate lyase; MLS: malate synthase; NBR1: Next to BRCA1 gene 1; PEX: peroxin; PMDH: peroxisomal malate dehydrogenase; PTS: peroxisomal targeting signal; thiolase: 3-ketoacyl-CoA thiolase; UBA: ubiquitin-associated; WT: wild type
Collapse
Affiliation(s)
- Pierce G Young
- a Department of Biosciences , Rice University , Houston , TX , USA
| | | | - Kevin Chappell
- a Department of Biosciences , Rice University , Houston , TX , USA.,b Department of Biology , University of Mary Hardin-Baylor , Belton , TX , USA
| | - Roxanna J Llinas
- a Department of Biosciences , Rice University , Houston , TX , USA
| | - Bonnie Bartel
- a Department of Biosciences , Rice University , Houston , TX , USA
| |
Collapse
|
47
|
Naumann C, Müller J, Sakhonwasee S, Wieghaus A, Hause G, Heisters M, Bürstenbinder K, Abel S. The Local Phosphate Deficiency Response Activates Endoplasmic Reticulum Stress-Dependent Autophagy. PLANT PHYSIOLOGY 2019; 179:460-476. [PMID: 30510038 PMCID: PMC6426416 DOI: 10.1104/pp.18.01379] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/28/2018] [Indexed: 05/08/2023]
Abstract
Inorganic phosphate (Pi) is often a limiting plant nutrient. In members of the Brassicaceae family, such as Arabidopsis (Arabidopsis thaliana), Pi deprivation reshapes root system architecture to favor topsoil foraging. It does so by inhibiting primary root extension and stimulating lateral root formation. Root growth inhibition from phosphate (Pi) deficiency is triggered by iron-stimulated, apoplastic reactive oxygen species generation and cell wall modifications, which impair cell-to-cell communication and meristem maintenance. These processes require LOW PHOSPHATE RESPONSE1 (LPR1), a cell wall-targeted ferroxidase, and PHOSPHATE DEFICIENCY RESPONSE2 (PDR2), the single endoplasmic reticulum (ER)-resident P5-type ATPase (AtP5A), which is thought to control LPR1 secretion or activity. Autophagy is a conserved process involving the vacuolar degradation of cellular components. While the function of autophagy is well established under nutrient starvation (C, N, or S), it remains to be explored under Pi deprivation. Because AtP5A/PDR2 likely functions in the ER stress response, we analyzed the effect of Pi limitation on autophagy. Our comparative study of mutants defective in the local Pi deficiency response, ER stress response, and autophagy demonstrated that ER stress-dependent autophagy is rapidly activated as part of the developmental root response to Pi limitation and requires the genetic PDR2-LPR1 module. We conclude that Pi-dependent activation of autophagy in the root apex is a consequence of local Pi sensing and the associated ER stress response, rather than a means for systemic recycling of the macronutrient.
Collapse
Affiliation(s)
- Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Jens Müller
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Siriwat Sakhonwasee
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Annika Wieghaus
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Gerd Hause
- Biocenter, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Marcus Heisters
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
48
|
Ding X, Zhang X, Otegui MS. Plant autophagy: new flavors on the menu. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:113-121. [PMID: 30267997 DOI: 10.1016/j.pbi.2018.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Autophagy mediates the delivery of cytoplasmic content to vacuoles or lysosomes for degradation or storage. The best characterized autophagy route called macroautophagy involves the sequestration of cargo in double-membrane autophagosomes and is conserved in eukaryotes, including plants. Recently, several new receptors, some of them plant-specific, that select cargo for macroautophagy have been identified. Some of these receptors appear to participate in regulation of competing catabolic pathways, for example proteasome-mediated versus autophagic degradation under specific stress conditions. Vacuolar microautophagy, a process by which the vacuole directly engulf cytoplasmic material, also occurs in plants but its underlying molecular mechanisms are yet to be elucidated.
Collapse
Affiliation(s)
- Xinxin Ding
- Department of Botany, 430 Lincoln Drive, University of Wisconsin-Madison, WI 53706, United States; Laboratory of Molecular and Cellular Biology, 1525 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Xiaoguo Zhang
- Department of Botany, 430 Lincoln Drive, University of Wisconsin-Madison, WI 53706, United States; Laboratory of Molecular and Cellular Biology, 1525 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Marisa S Otegui
- Department of Botany, 430 Lincoln Drive, University of Wisconsin-Madison, WI 53706, United States; Laboratory of Molecular and Cellular Biology, 1525 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Genetics, 405 Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
49
|
Melino VJ, Casartelli A, George J, Rupasinghe T, Roessner U, Okamoto M, Heuer S. RNA Catabolites Contribute to the Nitrogen Pool and Support Growth Recovery of Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1539. [PMID: 30455708 PMCID: PMC6230992 DOI: 10.3389/fpls.2018.01539] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/01/2018] [Indexed: 05/23/2023]
Abstract
Turn-over of RNA and catabolism of nucleotides releases one to four ammonia molecules; the released nutrients being reassimilated into primary metabolism. Preliminary evidence indicates that monocots store high levels of free nucleotides and nucleosides but their potential as a source of internal organic nitrogen for use and remobilization is uncharted. Early tillering wheat plants were therefore starved of N over a 5-day time-course with examination of nucleic acid yields in whole shoots, young and old leaves and roots. Nucleic acids constituted ∼4% of the total N pool of N starved wheat plants, which was comparable with the N available from nitrate (NO3 -) and greater than that available from the sum of 20 proteinogenic amino acids. Methods were optimized to detect nucleotide (purine and pyrimidine) metabolites, and wheat orthologs of RNA degradation (TaRNS), nucleoside transport (TaENT1, TaENT3) and salvage (TaADK) were identified. It was found that N starved wheat roots actively catabolised RNA and specific purines but accumulated pyrimidines. Reduced levels of RNA corresponded with induction of TaRNS2, TaENT1, TaENT3, and TaADK in the roots. Reduced levels of GMP, guanine, xanthine, allantoin, allantoate and glyoxylate in N starved roots correlated with accumulation of allantoate and glyoxylate in the oldest leaf, suggesting translocation of allantoin. Furthermore, N starved wheat plants exogenously supplied with N in the form of purine catabolites grew and photosynthesized as well as those plants re-supplied with NO3 -. These results support the hypothesis that the nitrogen and carbon recovered from purine metabolism can support wheat growth.
Collapse
Affiliation(s)
- Vanessa Jane Melino
- Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
- School of Agriculture and Food, University of Melbourne, Parkville, VIC, Australia
| | - Alberto Casartelli
- Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Jessey George
- Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ute Roessner
- Metabolomics Australia, School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Mamoru Okamoto
- Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Sigrid Heuer
- Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
50
|
Bao Y, Pu Y, Yu X, Gregory BD, Srivastava R, Howell SH, Bassham DC. IRE1B degrades RNAs encoding proteins that interfere with the induction of autophagy by ER stress in Arabidopsis thaliana. Autophagy 2018; 14:1562-1573. [PMID: 29940799 DOI: 10.1080/15548627.2018.1462426] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Macroautophagy/autophagy is a conserved process in eukaryotes that contributes to cell survival in response to stress. Previously, we found that endoplasmic reticulum (ER) stress induces autophagy in plants via a pathway dependent upon AT5G24360/IRE1B (INOSITOL REQUIRING 1-1), an ER membrane-anchored factor involved in the splicing of AT1G42990/BZIP60 (basic leucine zipper protein 60) mRNA. IRE1B is a dual protein kinase and ribonuclease, and here we determined the involvement of the protein kinase catalytic domain, nucleotide binding and RNase domains of IRE1B in activating autophagy. We found that the nucleotide binding and RNase activity of IRE1B, but not its protein kinase activity or splicing target BZIP60, are required for ER stress-mediated autophagy. Upon ER stress, the RNase activity of IRE1B engages in regulated IRE1-dependent decay of messenger RNA (RIDD), in which mRNAs of secreted proteins are degraded by IRE1 upon ER stress. Twelve genes most highly targeted by RIDD were tested for their role in inhibiting ER stress-induced autophagy, and 3 of their encoded proteins, AT1G66270/BGLU21 (β-glucosidase 21), AT2G16005/ROSY1/ML (MD2-related lipid recognition protein) and AT5G01870/PR-14 (pathogenesis-related protein 14), were found to inhibit autophagy upon overexpression. From these findings, IRE1B is posited to be a 'licensing factor' linking ER stress to autophagy by degrading the RNA transcripts of factors that interfere with the induction of autophagy. ABBREVIATIONS ACT2: actin 2; ATG: autophagy-related; BGLU21: β-glucosidase 21; BIP3: binding protein 3; BZIP: basic leucine zipper; DAPI: 4', 6-diamidino-2-phenylindole; DTT: dithiothreitol; ER: endoplasmic reticulum; ERN1: endoplasmic reticulum to nucleus signaling 1; IRE1: inositol requiring 1; GFP: green fluorescent protein; MAP3K5/ASK1: mitogen-activated protein kinase kinase kinase 5; MAPK8/JNK1: mitogen-activated protein kinase 8/c-Jun N-terminal kinase 1; MDC: monodansylcadaverine; PR-14: pathogenesis-related protein 14; RIDD: Regulated IRE1-Dependent Decay of Messenger RNA; ROSY1/ML: interactor of synaptotagmin1/MD2-related lipid recognition protein; Tm: tunicamycin; UPR: unfolded protein response; WT: wild-type.
Collapse
Affiliation(s)
- Yan Bao
- a Department of Genetics, Development and Cell Biology , Iowa State University , Ames , IA , USA
| | - Yunting Pu
- a Department of Genetics, Development and Cell Biology , Iowa State University , Ames , IA , USA.,b Interdepartmental Genetics and Genomics Program , Iowa State University , Ames , IA , USA
| | - Xiang Yu
- c Department of Biology , University of Pennsylvania , Philadelphia , PA , USA
| | - Brian D Gregory
- c Department of Biology , University of Pennsylvania , Philadelphia , PA , USA
| | - Renu Srivastava
- d Plant Sciences Institute , Iowa State University , Ames , IA , USA
| | - Stephen H Howell
- a Department of Genetics, Development and Cell Biology , Iowa State University , Ames , IA , USA.,d Plant Sciences Institute , Iowa State University , Ames , IA , USA
| | - Diane C Bassham
- a Department of Genetics, Development and Cell Biology , Iowa State University , Ames , IA , USA.,b Interdepartmental Genetics and Genomics Program , Iowa State University , Ames , IA , USA
| |
Collapse
|