1
|
Ji J, Li D, Zhao X, Wang Y, Wang B. Genome-wide DNA methylation regulation analysis provides novel insights on post-radiation breast cancer. Sci Rep 2025; 15:5641. [PMID: 39955415 PMCID: PMC11830005 DOI: 10.1038/s41598-025-90247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
Breast cancer (BC) is the most common malignancy with a poor prognosis. Radiotherapy is one of the leading traditional treatments for BC. However, radiotherapy-associated secondary diseases are severe issues for the treatment of BC. The present study integrated multi-omics data to investigate the molecular and epigenetic mechanisms involved in post-radiation BC. The differences in the expression of radiation-associated genes between post-radiation and pre-radiation BC samples were determined. Enrichment analysis revealed that these radiation-associated genes involved diverse biological functions and pathways in BC. Combining epigenetic data, we identified radiation-associated genes whose transcriptional changes might be associated with aberrant methylation. Then, we identified potential therapeutic targets and chemical drugs for post-radiation BC patient treatment by constructing a drug-target association network. Specifically, four radiation-associated genes (CD248, CCDC80, GADD45B, and MMP2) whose increased expression might be regulated by hypomethylation of the corresponding enhancer region were found to have excellent diagnostic effects and clinical prognostic value. Finally, we further used independent samples to verify CD248 expression and established a simple epigenetic regulatory model. In summary, this study provides novel insights for understanding the regulation of target genes mediated by DNA methylation and developing potential biomarkers for radiation-associated secondary diseases in BC.
Collapse
Affiliation(s)
- Jianghuai Ji
- Department of Radiation Physics, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
| | - Dongguo Li
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Xiaoxiao Zhao
- Sir Run Run Show Hospital, Zhejiang University Medical School, Hangzhou, 310016, Zhejiang, China
| | - Yajuan Wang
- Department of Radiation Physics, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
| | - Binbing Wang
- Department of Radiation Physics, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China.
- Department of Radiation Physics, Zhejiang Key Laboratory of Radiation Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
2
|
Shao Y, Du Y, Chen Z, Xiang L, Tu S, Feng Y, Hou Y, Kou X, Ai H. Mesenchymal stem cell-mediated adipogenic transformation: a key driver of oral squamous cell carcinoma progression. Stem Cell Res Ther 2025; 16:12. [PMID: 39849541 PMCID: PMC11755832 DOI: 10.1186/s13287-025-04132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Interaction between mesenchymal stem cells (MSCs) and oral squamous cell carcinoma (OSCC) cells plays a major role in OSCC progression. However, little is known about adipogenic differentiation alteration in OSCC-derived MSCs (OSCC-MSCs) and how these alterations affect OSCC growth. METHODS MSCs were successfully isolated and cultured from normal gingival tissue, OSCC peritumoral tissue, and OSCC tissue. This included gingiva-derived MSCs (GMSCs), OSCC adjacent noncancerous tissues-derived MSCs (OSCCN-MSCs), and OSCC-MSCs. The adipogenic and osteogenic differentiation capabilities of these cells were evaluated using Oil Red O and Alizarin Red S staining, respectively. OSCC cells were then co-cultured with either OSCC-MSCs or GMSCs to assess the impact on OSCC cell proliferation and migration. Subcutaneous xenograft experiments were conducted in BALB/c-nu mice to further investigate the effects in vivo. Additionally, immunohistochemical staining was performed on clinical samples to determine the expression levels of fatty acid synthase (FASN) and the proliferation marker Ki67. RESULTS OSCC-MSCs exhibited enhanced adipogenic differentiation and reduced osteogenic differentiation compared to GMSCs. OSCC-MSCs significantly increased the proliferation and migration of OSCC cells relative to GMSCs and promoted tumor growth in mouse xenografts. Lipid droplet accumulation in the stroma was significantly more pronounced in OSCC + OSCC-MSCs xenografts compared to OSCC + GMSCs xenografts. Free fatty acids (FFAs) levels were elevated in OSCC tissues compared to normal gingival tissues. Moreover, OSCC-MSCs consistently secreted higher levels of FFAs in condition medium than GMSCs. Knockdown of FASN in OSCC-MSCs reduced their adipogenic potential and inhibited their ability to promote OSCC cell proliferation and migration. Clinical sample analysis confirmed higher FASN expression in OSCC stroma, correlating with larger tumor size and increased Ki67 expression in cancer tissues, and was associated with poorer overall survival. CONCLUSIONS OSCC-MSCs promoted OSCC proliferation and migration by upregulating FASN expression and facilitating FFAs secretion. Our results provide new insight into the mechanism of OSCC progression and suggest that the FASN of OSCC-MSCs may be potential targets of OSCC in the future.
Collapse
Affiliation(s)
- Yiting Shao
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yu Du
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zheng Chen
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Lei Xiang
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shaoqin Tu
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yi Feng
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuluan Hou
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Hong Ai
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Choi JY, Seok HJ, Lee DH, Kwon J, Shin US, Shin I, Bae IH. miR-1226-5p is involved in radioresistance of colorectal cancer by activating M2 macrophages through suppressing IRF1. J Transl Med 2024; 22:980. [PMID: 39472937 PMCID: PMC11523791 DOI: 10.1186/s12967-024-05797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Although the representative treatment for colorectal cancer (CRC) is radiotherapy, cancer cells survive due to inherent radioresistance or resistance acquired after radiation treatment, accelerating tumor malignancy and causing local recurrence and metastasis. However, the detailed mechanisms of malignancy induced after radiotherapy are not well understood. To develop more effective and improved radiotherapy and diagnostic methods, it is necessary to clearly identify the mechanisms of radioresistance and discover related biomarkers. METHODS To analyze the expression pattern of miRNAs in radioresistant CRC, sequence analysis was performed in radioresistant HCT116 cells using Gene Expression Omnibus, and then miR-1226-5p, which had the highest expression in resistant cells compared to parental cells, was selected. To confirm the effect of miR-1226-5 on tumorigenicity, Western blot, qRT-PCR, transwell migration, and invasion assays were performed to confirm the expression of EMT factors, cell mobility and invasiveness. Additionally, the tumorigenic ability of miR-1226-5p was confirmed in organoids derived from colorectal cancer patients. In CRC cells, IRF1, a target gene of miR-1226-5p, and circSLC43A1, which acts as a sponge for miR-1226-5p, were discovered and the mechanism was analyzed by confirming the tumorigenic phenotype. To analyze the effect of tumor-derived miR-1226-5p on macrophages, the expression of M2 marker in co-cultured cells and CRC patient tissues were confirmed by qRT-PCR and immunohistochemical (IHC) staining analyses. RESULTS This study found that overexpressed miR-1226-5p in radioresistant CRC dramatically promoted epithelial-mesenchymal transition (EMT), migration, invasion, and tumor growth by suppressing the expression of its target gene, IRF1. Additionally, we discovered circSLC43A1, a factor that acts as a sponge for miR-1226-5p and suppresses its expression, and verified that EMT, migration, invasion, and tumor growth are suppressed by circSLC43A1 in radioresistant CRC cells. Resistant CRC cells-derived miR-1226-5p was transferred to macrophages and contributed to tumorigenicity by inducing M2 polarization and secretion of TGF-β. CONCLUSIONS This study showed that the circSLC43A1/miR-1226-5p/IRF1 axis is involved in radioresistance and cancer aggressiveness in CRC. It was suggested that the discovered signaling factors could be used as potential biomarkers for diagnosis and treatment of radioresistant CRC.
Collapse
Affiliation(s)
- Jae Yeon Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, Republic of Korea
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Hyun Jeong Seok
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, Republic of Korea
| | - Dong Hyeon Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, Republic of Korea
| | - Junhye Kwon
- Medical Sciences Substantiation Center, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Ui Sup Shin
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - In Hwa Bae
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, Republic of Korea.
| |
Collapse
|
4
|
Mondal P, Jayaprakash G, Meeran SM. The translational potential of epigenetic modulatory bioactive phytochemicals as adjuvant therapy against cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:140-185. [PMID: 39864894 DOI: 10.1016/bs.ircmb.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
In preclinical studies, bioactive phytochemicals have shown enormous potential therapeutic efficacy against various human malignancies. These natural compounds have been shown to possess an inherent potential to alter the molecular signaling pathways and epigenetic modulatory activity involved in multiple physiological functions. Recently, epigenetic therapy has emerged as an important therapeutic modality due to the reversible nature of epigenetic alterations. To date, epigenetic modulatory compounds, for example, DNA methyltransferase inhibitors 5-azacytidine and 5'-deoxyazacytidine, as well as histone deacetylase inhibitors Vorinostat, Romidepsin, and Belinostat (PXD101), have been clinically approved by the FDA for the treatment of patients of leukemia and myelodysplastic syndrome. However, these synthetic epigenetic inhibitors are not as effective against many of the solid tumors. Therefore, the epigenetic modulatory phytochemicals provide new hope for improving the treatment modality as neoadjuvant and adjuvant therapy. It has been established that targeting more than one protein in the transformed cells simultaneously, that is, the multi-targeted therapeutic approach, might invoke a better therapeutic response. Therefore, here, we are compiling diverse evidences of the translational potential of novel combinatorial approaches utilizing the epigenetic modulatory phytochemicals with available therapeutics in the course of cancer treatment.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gowthami Jayaprakash
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
5
|
Frazzi R. KLF4 is an epigenetically modulated, context-dependent tumor suppressor. Front Cell Dev Biol 2024; 12:1392391. [PMID: 39135777 PMCID: PMC11317372 DOI: 10.3389/fcell.2024.1392391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
The epigenetic layer of regulation has become increasingly relevant in the research focused on tumor suppressors. KLF4 is a well-described zinc-finger transcription factor, mainly known for its role in the acquisition of cell pluripotency. Here we report and describe the most relevant epigenetic regulation mechanisms that affect KLF4 expression in tumors. CpG island methylation emerges as the most common mechanism in several tumors including lung adenocarcinoma, hepatocellular carcinoma, non-Hodgkin lymphomas, among others. Further layers of regulation represented by histone methylation and acetylation and by non-coding RNAs are described. Overall, KLF4 emerges as a crucial target in the fight against cancer.
Collapse
Affiliation(s)
- Raffaele Frazzi
- Molecular Pathology Laboratory, Azienda Unità Sanitaria Locale–IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
6
|
Gauss C, Stone LD, Ghafouri M, Quan D, Johnson J, Fribley AM, Amm HM. Overcoming Resistance to Standard-of-Care Therapies for Head and Neck Squamous Cell Carcinomas. Cells 2024; 13:1018. [PMID: 38920648 PMCID: PMC11201455 DOI: 10.3390/cells13121018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Although there have been some advances during in recent decades, the treatment of head and neck squamous cell carcinoma (HNSCC) remains challenging. Resistance is a major issue for various treatments that are used, including both the conventional standards of care (radiotherapy and platinum-based chemotherapy) and the newer EGFR and checkpoint inhibitors. In fact, all the non-surgical treatments currently used for HNSCC are associated with intrinsic and/or acquired resistance. Herein, we explore the cellular mechanisms of resistance reported in HNSCC, including those related to epigenetic factors, DNA repair defects, and several signaling pathways. This article discusses these mechanisms and possible approaches that can be used to target different pathways to sensitize HNSCC to the existing treatments, obtain better responses to new agents, and ultimately improve the patient outcomes.
Collapse
Affiliation(s)
- Chester Gauss
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
| | - Logan D. Stone
- Oral & Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Mehrnoosh Ghafouri
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
| | - Daniel Quan
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
| | - Jared Johnson
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
| | - Andrew M. Fribley
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48202, USA
| | - Hope M. Amm
- Oral & Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
7
|
Kumai T, Shinomiya H, Shibata H, Takahashi H, Kishikawa T, Okada R, Fujieda S, Sakashita M. Translational research in head and neck cancer: Molecular and immunological updates. Auris Nasus Larynx 2024; 51:391-400. [PMID: 37640594 DOI: 10.1016/j.anl.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) has a poor prognosis. Each year, approximately 880,000 patients are newly diagnosed with HNSCC worldwide, and 450,000 patients with HNSCC die. Risk factors for developing HNSCC have been identified, with cigarette smoking, alcohol consumption, and viral infections being the major factors. Owing to the prevalence of human papillomavirus infection, the number of HNSCC cases is increasing considerably. Surgery and chemoradiotherapy are the primary treatments for HNSCC. With advancements in tumor biology, patients are eligible for novel treatment modalities, namely targeted therapies, immunotherapy, and photoimmunotherapy. Because this area of research has rapidly progressed, clinicians should understand the basic biology of HNSCC to choose an appropriate therapy in the upcoming era of personalized medicine. This review summarized recent developments in tumor biology, focusing on epidemiology, genetic/epigenetic factors, the tumor microenvironment, microbiota, immunity, and photoimmunotherapy in HNSCC, as well as how these findings can be translated into clinical settings.
Collapse
Affiliation(s)
- Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan.
| | - Hirotaka Shinomiya
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Hirofumi Shibata
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Hideaki Takahashi
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, Yokohama, Japan.
| | - Toshihiro Kishikawa
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan.
| | - Ryuhei Okada
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Masafumi Sakashita
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| |
Collapse
|
8
|
Challis D, Lippis T, Wilson R, Wilkinson E, Dickinson J, Black A, Azimi I, Holloway A, Taberlay P, Brettingham-Moore K. Multiomics analysis of adaptation to repeated DNA damage in prostate cancer cells. Epigenetics 2023; 18:2214047. [PMID: 37196186 DOI: 10.1080/15592294.2023.2214047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023] Open
Abstract
DNA damage is frequently utilized as the basis for cancer therapies; however, resistance to DNA damage remains one of the biggest challenges for successful treatment outcomes. Critically, the molecular drivers behind resistance are poorly understood. To address this question, we created an isogenic model of prostate cancer exhibiting more aggressive characteristics to better understand the molecular signatures associated with resistance and metastasis. 22Rv1 cells were repeatedly exposed to DNA damage daily for 6 weeks, similar to patient treatment regimes. Using Illumina Methylation EPIC arrays and RNA-seq, we compared DNA methylation and transcriptional profiles between the parental 22Rv1 cell line and the lineage exposed to prolonged DNA damage. Here we show that repeated DNA damage drives the molecular evolution of cancer cells to a more aggressive phenotype and identify molecular candidates behind this process. Total DNA methylation was increased while RNA-seq demonstrated these cells had dysregulated expression of genes involved in metabolism and the unfolded protein response (UPR) with Asparagine synthetase (ASNS) identified as central to this process. Despite the limited overlap between RNA-seq and DNA methylation, oxoglutarate dehydrogenase-like (OGDHL) was identified as altered in both data sets. Utilising a second approach we profiled the proteome in 22Rv1 cells following a single dose of radiotherapy. This analysis also highlighted the UPR in response to DNA damage. Together, these analyses identified dysregulation of metabolism and the UPR and identified ASNS and OGDHL as candidates for resistance to DNA damage. This work provides critical insight into molecular changes which underpin treatment resistance and metastasis.
Collapse
Affiliation(s)
- D Challis
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - T Lippis
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - R Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - E Wilkinson
- Menzies Institute of Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - J Dickinson
- Menzies Institute of Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - A Black
- Medical Oncology, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - I Azimi
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
| | - A Holloway
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - P Taberlay
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - K Brettingham-Moore
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
9
|
Ali A, Sharma AK, Mishra PK, Saluja SS. Clinical significance of SPOP and APC gene alterations in colorectal cancer in Indian population. Mol Genet Genomics 2023:10.1007/s00438-023-02029-x. [PMID: 37289229 DOI: 10.1007/s00438-023-02029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/29/2023] [Indexed: 06/09/2023]
Abstract
Speckle-Type Poz Protein (SPOP) involved in the regulation of proteasome-mediated degradation of several oncoproteins, resulting in cancer initiation and progression. Mutations in Adenomatous Polyposis Coli (APC) gene is reported in most sporadic and hereditary colorectal cancer (CRC). Identifying the cellular changes involved in carcinogenesis when APC is mutated is an important issue that needs attention. The tumor suppressive function of SPOP and APC has long been a major focus in the research field of colorectal cancer. However, the clinical significance of SPOP and APC gene alteration in CRC has not been established to date. Mutational analysis was performed by single-strand conformational polymorphism followed by Sanger sequencing, methylation status by methylation-specific PCR, and protein expression by immunohistochemistry on 142 tumor tissues along with their adjacent non-cancerous specimens. The overall survival (OS) and recurrence free survival (RFS) were estimated by Kaplan-Meier Curve. Mutation rates of APC and SPOP gene were 2.8% and 11.9% while that of promoter hypermethylation were 37% and 47%, respectively. The grade of differentiation and Lymph node metastasis were significantly correlated with APC methylation pattern (p ≤ 0.05). The down regulation of APC was more often seen in colonic cancer compared to rectal cancer (p = 0.07) and more commonly in T3-4 depth of invasion (p = 0.07) and in patients without lymphovascular and perineural invasion (p = 0.007, p = 0.08 respectively). The median overall survival and recurrence free survival (RFS) was 67 & 36 months while 3-yr and 5-yr OS and RFS were 61.1% & 56.4% and 49.2% & 44.8%, respectively. APC promoter methylation had a better overall survival (p = 0.035) while loss of SPOP expression had a worse survival (p = 0.09). Our findings reveal high percentage of SPOP gene mutations in CRC. A significant link is found between promoter hyper methylation and protein expression in all mutant cases of APC and SPOP, suggesting that both genes may be associated in the development of colorectal cancer in people of Indian decent. Hypermethylation of APC gene and loss of SPOP expression have shown an association with disease prognosis and could be further studied looking at its potential role in planning adjuvant treatment in CRC patients.
Collapse
Affiliation(s)
- Asgar Ali
- Central Molecular Lab, Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, 110002, India
| | - Abhay Kumar Sharma
- Central Molecular Lab, Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, 110002, India
| | - Pramod Kumar Mishra
- Central Molecular Lab, Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, 110002, India
- Department of GI Surgery, GIPMER, Academic Block, New Delhi, 110002, India
| | - Sundeep Singh Saluja
- Central Molecular Lab, Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, 110002, India.
- Department of GI Surgery, GIPMER, Academic Block, New Delhi, 110002, India.
| |
Collapse
|
10
|
DNA Methylation as a Diagnostic, Prognostic, and Predictive Biomarker in Head and Neck Cancer. Int J Mol Sci 2023; 24:ijms24032996. [PMID: 36769317 PMCID: PMC9917637 DOI: 10.3390/ijms24032996] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a term collectively used to describe all cancers that develop in the oral and nasal cavities, the paranasal sinuses, the salivary glands, the pharynx, and the larynx. The majority (75%) of all newly diagnosed cases are observed in patients with locally advanced and aggressive disease, associated with significant relapse rates (30%) and poor prognostic outcomes, despite advances in multimodal treatment. Consequently, there is an unmet need for the identification and application of tools that would enable diagnosis at the earliest possible stage, accurately predict prognostic outcomes, contribute to the timely detection of relapses, and aid in the decision for therapy selection. Recent evidence suggests that DNA methylation can alter the expression of genes in a way that it favors tumorigenesis and tumor progression in HNSCC, and therefore represents a potential source for biomarker identification. This study summarizes the current knowledge on how abnormally methylated DNA profiles in HNSCC patients may contribute to the pathogenesis of HNSCC and designate the methylation patterns that have the potential to constitute clinically valuable biomarkers for achieving significant advances in the management of the disease and for improving survival outcomes in these patients.
Collapse
|
11
|
Ji Z, Moore J, Devarie-Baez NO, Lewis J, Wu H, Shukla K, Lopez EIS, Vitvitsky V, Key CCC, Porosnicu M, Kemp ML, Banerjee R, Parks JS, Tsang AW, Zhou X, Furdui CM. Redox integration of signaling and metabolism in a head and neck cancer model of radiation resistance using COSM RO. Front Oncol 2023; 12:946320. [PMID: 36686772 PMCID: PMC9846845 DOI: 10.3389/fonc.2022.946320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Redox metabolism is increasingly investigated in cancer as driving regulator of tumor progression, response to therapies and long-term patients' quality of life. Well-established cancer therapies, such as radiotherapy, either directly impact redox metabolism or have redox-dependent mechanisms of action defining their clinical efficacy. However, the ability to integrate redox information across signaling and metabolic networks to facilitate discovery and broader investigation of redox-regulated pathways in cancer remains a key unmet need limiting the advancement of new cancer therapies. To overcome this challenge, we developed a new constraint-based computational method (COSMro) and applied it to a Head and Neck Squamous Cell Cancer (HNSCC) model of radiation resistance. This novel integrative approach identified enhanced capacity for H2S production in radiation resistant cells and extracted a key relationship between intracellular redox state and cholesterol metabolism; experimental validation of this relationship highlights the importance of redox state in cellular metabolism and response to radiation.
Collapse
Affiliation(s)
- Zhiwei Ji
- Division of Radiologic Sciences – Center for Bioinformatics and Systems Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jade Moore
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Nelmi O. Devarie-Baez
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Joshua Lewis
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kirtikar Shukla
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Elsa I. Silva Lopez
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Victor Vitvitsky
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory School of Medicine, Atlanta, GA, United States
| | - Chia-Chi Chuang Key
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mercedes Porosnicu
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Melissa L. Kemp
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ruma Banerjee
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory School of Medicine, Atlanta, GA, United States
| | - John S. Parks
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Allen W. Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Xiaobo Zhou
- Division of Radiologic Sciences – Center for Bioinformatics and Systems Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
12
|
Avril D, Foy JP, Bouaoud J, Grégoire V, Saintigny P. Biomarkers of radioresistance in head and neck squamous cell carcinomas. Int J Radiat Biol 2023; 99:583-593. [PMID: 35930497 DOI: 10.1080/09553002.2022.2110301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) is a major cause of morbidity and mortality. Although HNSCC is mainly caused by tobacco and alcohol consumption, infection by Human Papilloma Virus (HPV) has been also associated with the increasing incidence of oropharyngeal squamous cell carcinomas (OPSCC) during the past decades. HPV-positive HNSCC is characterized by a higher radiosensitivity compared to HPV-negative tumor. While several clinical trials are evaluating de-escaladed radiation doses strategies in HPV-positive HNSCC, molecular mechanisms associated with relative radioresistance in HPV-negative HNSCC are still broadly unknown. Our goal was to review recently proposed biomarkers of radioresistance in this setting, which may be useful for stratifying tumor's patient according to predicted level of radioresistance. CONCLUSIONS most of biomarkers of radioresistance in HPV-negative HNSCC are identified using a hypothesis-driven approach, based on molecular mechanisms known to play a key role during carcinogenesis, compared to an unsupervised data-driven approach regardless the biological rational. DNA repair and hypoxia are the two most widely investigated biological and targetable pathways related to radioresistance in HNSCC. The better understanding of molecular mechanisms and biomarkers of radioresistance in HPV-negative HNSCC could help for the development of radiosensitization strategies, based on targetable biomarkers, in radioresistant tumors as well as de-escalation radiation dose strategies, based on biological level of radioresistance, in radiosensitive tumors.
Collapse
Affiliation(s)
- Delphine Avril
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Jean-Philippe Foy
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
- Department of Maxillo-Facial Surgery, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Jebrane Bouaoud
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
- Department of Maxillo-Facial Surgery, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Vincent Grégoire
- Department of Radiation Oncology, Centre Léon Bérard, Lyon, France
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
13
|
Yao D, Zhao J, Zhang Q, Wang T, Ni M, Qi S, Shen Q, Li W, Li B, Ding X, Liu Z. Aberrant methylation of Serpine1 mediates lung injury in neonatal mice prenatally exposed to intrauterine inflammation. Cell Biosci 2022; 12:164. [PMID: 36183130 PMCID: PMC9526974 DOI: 10.1186/s13578-022-00901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/17/2022] [Indexed: 11/05/2022] Open
Abstract
Background Intrauterine inflammation (IUI) alters epigenetic modifications in offspring, leading to lung injury. However, the epigenetic mechanism underlying IUI-induced lung injury remains uncertain. In the present study, we aim to investigate the effect of IUI on lung development, and to identify the key molecule involved in this process and its epigenetic regulatory mechanism. Results Serpine1 was upregulated in the lung tissue of neonatal mice with IUI. Intranasal delivery of Serpine1 siRNA markedly reversed IUI-induced lung injury. Serpine1 overexpression substantially promoted cell senescence of both human and murine lung epithelial cells, reflected by decreased cell proliferation and increased senescence-associated β-galactosidase activity, G0/G1 cell fraction, senescence marker, and oxidative and DNA damage marker expression. IUI decreased the methylation level of the Serpine1 promoter, and methylation of the promoter led to transcriptional repression of Serpine1. Furthermore, IUI promoted the expression of Tet1 potentially through TNF-α, while Tet1 facilitated the demethylation of Serpine1 promoter. DNA pull-down and ChIP assays revealed that the Serpine1 promoter was regulated by Rela and Hdac2. DNA demethylation increased the recruitment of Rela to the Serpine1 promoter and induced the release of Hdac2. Conclusion Increased Serpine1 expression mediated by DNA demethylation causes lung injury in neonatal mice with IUI. Therefore, therapeutic interventions targeting Serpine1 may effectively prevent IUI-induced lung injury. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00901-8.
Collapse
Affiliation(s)
- Dongting Yao
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China ,grid.411480.80000 0004 1799 1816Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiuru Zhao
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Qianqian Zhang
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Wang
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Ni
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Sudong Qi
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Qianwen Shen
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Li
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Baihe Li
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Xiya Ding
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Liu
- grid.16821.3c0000 0004 0368 8293Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Embryo Original Diseases, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Sun Y, Yang J, Cai H, Liu J, Liu Y, Luo J, Zhou H. Differential OAT methylation correlates with cell infiltration in tumor microenvironment and overall survival post-radiotherapy in oral squamous cell carcinoma patient. J Oral Pathol Med 2022; 51:611-619. [PMID: 35708285 DOI: 10.1111/jop.13328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Given that DNA methylation and tumor microenvironment (TME) are susceptible to radiotherapy, we aimed to figure out specific differential DNA methylation to reflect oral squamous cell carcinoma (OSCC) prognosis and associated effect on TME changes post-radiotherapy, performing as an efficient biomarker. MATERIALS AND METHODS Differentially methylation analysis was performed using data from TCGA. Curves of Kaplan Meier (K-M) survival, cumulative hazard and events, Cox proportional hazards and Linear regression model were conducted to screen and validate differential methylation genes, while multiple regression equation to analyze if ornithine aminotransferase (OAT) methylation correlates with radiotherapy. For correlation between OAT methylation and immune infiltrates, CIBERSORT and ESTIMATE algorithms were performed, following GSEA and ssGSEA analysis to evaluate biological process. RESULTS Compared to normal tissues, only OAT in OSCC was differential significantly by K-M analysis (p = 0.0364). OAT hypermethylation was associated with increased overall survival (HR: 0.65, p = 0.0358). Radiotherapy correlated with OAT methylation (β = -0.01, p = 0.0061); most patients with OAT hypermethylation were radiation-sensitive. Hypomethylated OAT correlated with higher cell infiltrations in TME. Neuroactive ligand-receptor interaction was most significantly related to OAT methylation (p = 9.2e-10). Sulfur metabolism was the most significantly in OAT hypermethylation group (p = 0.0041) and RIG-I-like receptor in OAT hypomethylation group (p = 0.0094). CONCLUSION OAT methylation can serve as a predictor of OSCC prognosis post-radiotherapy with potential mechanism by changing cell infiltrations in TME, but further experimental study deserves to carry out confirming the role and mechanism of OAT methylation in OSCC. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yu Sun
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - He Cai
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yangfan Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
The radiosensitizing effect of β-Thujaplicin, a tropolone derivative inducing S-phase cell cycle arrest, in head and neck squamous cell carcinoma-derived cell lines. Invest New Drugs 2022; 40:700-708. [PMID: 35412173 PMCID: PMC9288374 DOI: 10.1007/s10637-022-01229-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022]
Abstract
Background Resistance to radiotherapy is a common cause of treatment failure in advanced head and neck squamous cell carcinoma (HNSCC). ß-Thujaplicin, a natural tropolone derivative, acts as an anti-cancer agent and has recently been shown to radiosensitize non-HNSCC cancer cells. However, no data is currently available on its radiosensitizing potential in HNSCC. Methods To investigate the effect of ß-Thujaplicin and irradiation in HNSCC cell lines CAL27 and FADU, we performed a cell viability assay, colony forming assay, flow cytometry for cell cycle analysis and a wound healing assay. Drug-irradiation interaction was analyzed using a zero-interaction potency model. Results Treatment with ß-Thujaplicin led to a dose-dependent decrease in cell viability and enhanced the effect of irradiation. Clonogenic survival was inhibited with synergistic drug-irradiation interaction. ß-Thujaplicin further led to S-phase arrest and increased the sub-G1 population. Moreover, combined ß-Thujaplicin and irradiation treatment had a higher anti-migratory effect compared to irradiation alone. Conclusions ß-Thujaplicin acts as a radiosensitizer in HNSCC cell lines. Further evaluation of its use in HNSCC therapy is warranted.
Collapse
|
16
|
Solingapuram Sai KK, Chen X, Li Z, Zhu C, Shukla K, Forshaw TE, Wu H, Vance SA, Pathirannahel BL, Madonna M, Dewhirst MW, Tsang AW, Poole LB, Ramanujam N, King SB, Furdui CM. [ 18F]Fluoro-DCP, a first generation PET radiotracer for monitoring protein sulfenylation in vivo. Redox Biol 2022; 49:102218. [PMID: 34952463 PMCID: PMC8715125 DOI: 10.1016/j.redox.2021.102218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
Redox metabolism plays essential functions in the pathology of cancer and many other diseases. While several radiotracers for imaging redox metabolism have been developed, there are no reports of radiotracers for in vivo imaging of protein oxidation. Here we take the first step towards this goal and describe the synthesis and kinetic properties of a new positron emission tomography (PET) [18F]Fluoro-DCP radiotracer for in vivo imaging of protein sulfenylation. Time course biodistribution and PET/CT studies using xenograft animal models of Head and Neck Squamous Cell Cancer (HNSCC) demonstrate its capability to distinguish between tumors with radiation sensitive and resistant phenotypes consistent with previous reports of decreased protein sulfenylation in clinical specimens of radiation resistant HNSCC. We envision further development of this technology to aid research efforts towards improving diagnosis of patients with radiation resistant tumors.
Collapse
Affiliation(s)
| | - Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Zhe Li
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Caigang Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kirtikar Shukla
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Tom E Forshaw
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Stephen A Vance
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | | | - Megan Madonna
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University, Durham, NC, USA
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Nimmi Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - S Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
17
|
Kuzmina NS. Radiation-Induced DNA Methylation Disorders: In Vitro and In Vivo Studies. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Farmer M, Redd K, Roberson T, Smith M, Steed KL. The role of epigenetics in cancer metastasis. UNRAVELING THE COMPLEXITIES OF METASTASIS 2022:277-300. [DOI: 10.1016/b978-0-12-821789-4.00021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Siblini Y, Chéry C, Rouyer P, Raso J, Julien A, Hergalant S, François A, Bezdetnaya L, Vogin G, Guéant JL, Oussalah A. Ionizing radiations induce shared epigenomic signatures unraveling adaptive mechanisms of cancerous cell lines with or without methionine dependency. Clin Epigenetics 2021; 13:212. [PMID: 34852845 PMCID: PMC8638416 DOI: 10.1186/s13148-021-01199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Although radiation therapy represents a core cancer treatment modality, its efficacy is hampered by radioresistance. The effect of ionizing radiations (IRs) is well known regarding their ability to induce genetic alterations; however, their impact on the epigenome landscape in cancer, notably at the CpG dinucleotide resolution, remains to be further deciphered. In addition, no evidence is available regarding the effect of IRs on the DNA methylome profile according to the methionine dependency phenotype, which represents a hallmark of metabolic adaptation in cancer. METHODS We used a case-control study design with a fractionated irradiation regimen on four cancerous cell lines representative of HCC (HepG2), melanoma (MeWo and MeWo-LC1, which exhibit opposed methionine dependency phenotypes), and glioblastoma (U251). We performed high-resolution genome-wide DNA methylome profiling using the MethylationEPIC BeadChip on baseline conditions, irradiated cell lines (cumulative dose of 10 Gy), and non-irradiated counterparts. We performed epigenome-wide association studies to assess the effect of IRs and methionine-dependency-oriented analysis by carrying out epigenome-wide conditional logistic regression. We looked for epigenome signatures at the locus and single-probe (CpG dinucleotide) levels and through enrichment analyses of gene ontologies (GO). The EpiMet project was registered under the ID#AAP-BMS_003_211. RESULTS EWASs revealed shared GO annotation pathways associated with increased methylation signatures for several biological processes in response to IRs, including blood circulation, plasma membrane-bounded cell projection organization, cell projection organization, multicellular organismal process, developmental process, and animal organ morphogenesis. Epigenome-wide conditional logistic regression analysis on the methionine dependency phenotype highlighted several epigenome signatures related to cell cycle and division and responses to IR and ultraviolet light. CONCLUSIONS IRs generated a variation in the methylation level of a high number of CpG probes with shared biological pathways, including those associated with cell cycle and division, responses to IRs, sustained angiogenesis, tissue invasion, and metastasis. These results provide insight on shared adaptive mechanisms of the epigenome in cancerous cell lines in response to IR. Future experiments should focus on the tryptic association between IRs, the initiation of a radioresistance phenotype, and their interaction with methionine dependency as a hallmark of metabolic adaptation in cancer.
Collapse
Affiliation(s)
- Youssef Siblini
- INSERM, UMR_S1256, NGERE (Nutrition, Genetics, and Environmental Risk Exposure), Faculty of Medicine of Nancy, University of Lorraine, 9 Avenue de la Forêt de Haye, 54000, Vandoeuvre-lès-Nancy, Nancy, France
| | - Céline Chéry
- INSERM, UMR_S1256, NGERE (Nutrition, Genetics, and Environmental Risk Exposure), Faculty of Medicine of Nancy, University of Lorraine, 9 Avenue de la Forêt de Haye, 54000, Vandoeuvre-lès-Nancy, Nancy, France
- Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000, Vandoeuvre-lès-Nancy, France
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Vandoeuvre-lès-Nancy, France
| | - Pierre Rouyer
- INSERM, UMR_S1256, NGERE (Nutrition, Genetics, and Environmental Risk Exposure), Faculty of Medicine of Nancy, University of Lorraine, 9 Avenue de la Forêt de Haye, 54000, Vandoeuvre-lès-Nancy, Nancy, France
| | - Jérémie Raso
- INSERM, UMR_S1256, NGERE (Nutrition, Genetics, and Environmental Risk Exposure), Faculty of Medicine of Nancy, University of Lorraine, 9 Avenue de la Forêt de Haye, 54000, Vandoeuvre-lès-Nancy, Nancy, France
| | - Amélia Julien
- INSERM, UMR_S1256, NGERE (Nutrition, Genetics, and Environmental Risk Exposure), Faculty of Medicine of Nancy, University of Lorraine, 9 Avenue de la Forêt de Haye, 54000, Vandoeuvre-lès-Nancy, Nancy, France
| | - Sébastien Hergalant
- INSERM, UMR_S1256, NGERE (Nutrition, Genetics, and Environmental Risk Exposure), Faculty of Medicine of Nancy, University of Lorraine, 9 Avenue de la Forêt de Haye, 54000, Vandoeuvre-lès-Nancy, Nancy, France
| | | | - Lina Bezdetnaya
- Lorraine Institute of Oncology, 54000, Nancy, France
- CNRS, UMR_7039, CRAN (Centre de Recherche en Automatique de Nancy), Faculty of Medicine of Nancy, University of Lorraine, 54000, Vandoeuvre-lès-Nancy, France
| | - Guillaume Vogin
- UMR_7365, IMoPA (Ingénierie Moléculaire Et Ingénierie Articulaire), Faculty of Medicine of Nancy, CNRS-UL, University of Lorraine, 54000, Vandoeuvre-lès-Nancy, France
| | - Jean-Louis Guéant
- INSERM, UMR_S1256, NGERE (Nutrition, Genetics, and Environmental Risk Exposure), Faculty of Medicine of Nancy, University of Lorraine, 9 Avenue de la Forêt de Haye, 54000, Vandoeuvre-lès-Nancy, Nancy, France.
- Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000, Vandoeuvre-lès-Nancy, France.
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Vandoeuvre-lès-Nancy, France.
| | - Abderrahim Oussalah
- INSERM, UMR_S1256, NGERE (Nutrition, Genetics, and Environmental Risk Exposure), Faculty of Medicine of Nancy, University of Lorraine, 9 Avenue de la Forêt de Haye, 54000, Vandoeuvre-lès-Nancy, Nancy, France.
- Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000, Vandoeuvre-lès-Nancy, France.
- Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
20
|
Head and Neck Cancers Are Not Alike When Tarred with the Same Brush: An Epigenetic Perspective from the Cancerization Field to Prognosis. Cancers (Basel) 2021; 13:cancers13225630. [PMID: 34830785 PMCID: PMC8616074 DOI: 10.3390/cancers13225630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Squamous cell carcinomas affect different head and neck subsites and, although these tumors arise from the same epithelial lining and share risk factors, they differ in terms of clinical behavior and molecular carcinogenesis mechanisms. Differences between HPV-negative and HPV-positive tumors are those most frequently explored, but further data suggest that the molecular heterogeneity observed among head and neck subsites may go beyond HPV infection. In this review, we explore how alterations of DNA methylation and microRNA expression contribute to head and neck squamous cell carcinoma (HNSCC) development and progression. The association of these epigenetic alterations with risk factor exposure, early carcinogenesis steps, transformation risk, and prognosis are described. Finally, we discuss the potential application of the use of epigenetic biomarkers in HNSCC. Abstract Head and neck squamous cell carcinomas (HNSCC) are among the ten most frequent types of cancer worldwide and, despite all efforts, are still diagnosed at late stages and show poor overall survival. Furthermore, HNSCC patients often experience relapses and the development of second primary tumors, as a consequence of the field cancerization process. Therefore, a better comprehension of the molecular mechanisms involved in HNSCC development and progression may enable diagnosis anticipation and provide valuable tools for prediction of prognosis and response to therapy. However, the different biological behavior of these tumors depending on the affected anatomical site and risk factor exposure, as well as the high genetic heterogeneity observed in HNSCC are major obstacles in this pursue. In this context, epigenetic alterations have been shown to be common in HNSCC, to discriminate the tumor anatomical subsites, to be responsive to risk factor exposure, and show promising results in biomarker development. Based on this, this review brings together the current knowledge on alterations of DNA methylation and microRNA expression in HNSCC natural history, focusing on how they contribute to each step of the process and on their applicability as biomarkers of exposure, HNSCC development, progression, and response to therapy.
Collapse
|
21
|
Priya R, Das B. Global DNA methylation profile at LINE-1 repeats and promoter methylation of genes involved in DNA damage response and repair pathways in human peripheral blood mononuclear cells in response to γ-radiation. Mol Cell Biochem 2021; 477:267-281. [PMID: 34708334 DOI: 10.1007/s11010-021-04265-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 09/17/2021] [Indexed: 02/02/2023]
Abstract
DNA methylation is an epigenetic mechanism, which plays an important role in gene regulation. The present study evaluated DNA methylation profile of LINE1 repeats and promoter methylation of DNA damage response (DDR) and DNA repair (DR) genes (PARP1, ATM, BRCA1, MLH1, XPC, RAD23B, APC, TNFα, DNMT3A, MRE11A, MGMT, CDKN2A, MTHFR) in human peripheral blood mononuclear cells (PBMCs) of healthy donors in response to γ-radiation. Methylation level was correlated with gene expression profile of selected DDR and DR genes (APC, MLH1, PARP1, MRE11A, TNFα, MGMT) to understand their role in gene regulation. Blood samples were collected from 15 random healthy donors, PBMCs were isolated, exposed to 0.1 Gy (low) and 2.0 Gy (high) doses of γ-radiation and proliferated for 48 h and 72 h. Genomic DNA and total RNA were isolated from irradiated PBMCs along with un-irradiated control. Methylation profile was determined from bisulphite converted DNA and amplified by methylation sensitive high resolution melting (MS-HRM) method. Total RNA was converted to cDNA and relative expression was analysed using real time quantitative-PCR. Our results revealed that at 0.1 Gy, MRE11A and TNFα showed significant (P < 0.05) increase in methylation at 72 h. At 2.0 Gy, significant increase (P < 0.05) in methylation profile was observed at LINE1, MRE11A, PARP1, BRCA1, DNMT3A and RAD23B at 48 h and 72 h. PARP1 showed significant positive correlation of methylation status with gene expression. In conclusion, low and high doses of γ-radiation have significant influence on DNA methylation status of LINE1, DDR and DR genes suggesting their potential role as epigenetic signatures in human PBMCs, which can be further explored in human populations.
Collapse
Affiliation(s)
- Rashmi Priya
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai, 400 094, India.
| |
Collapse
|
22
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
23
|
Ju H, Hu Z, Wei D, Huang J, Zhang X, Rui M, Li Z, Zhang X, Hu J, Guo W, Ren G. A novel intronic circular RNA, circGNG7, inhibits head and neck squamous cell carcinoma progression by blocking the phosphorylation of heat shock protein 27 at Ser78 and Ser82. Cancer Commun (Lond) 2021; 41:1152-1172. [PMID: 34498800 PMCID: PMC8626595 DOI: 10.1002/cac2.12213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/02/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023] Open
Abstract
Background There is increasing evidence that circular RNAs (circRNAs) play a significant role in pathological processes including tumorigenesis. In contrast to exonic circRNAs, which are the most frequently reported circRNAs in cancer so far, the studies of intronic circRNAs have been greatly lagged behind. Here, we aimed to investigate the regulatory role of intronic circRNAs in head and neck squamous cell carcinoma (HNSCC). Methods We conducted whole‐transcriptome sequencing with four pairs of primary tumor tissues and adjacent normal tissues from HNSCC patients. Then, we characterized circGNG7 expression in HNSCC tissues and cell lines and explored its association with the prognosis of HNSCC patients. We also identified interactions between circGNG7 and functional proteins, which alter downstream signaling that regulate HNSCC progression. Results In this study, we identified a new intronic circRNA, circGNG7, and validated its functional roles in HNSCC progression. CircGNG7 was predominately localized to the cytoplasm, and its expression was downregulated in both HNSCC tissues andCAL27, CAL33, SCC4, SCC9, HN6, and HN30 cells. Low expression of circGNG7 was significantly correlated with poor prognosis in HNSCC patients. Consistent with this finding, overexpression of circGNG7 strongly inhibited tumor cell proliferation, colony formation, in vitro migration, and in vivo tumor growth. Mechanistically, the expression of circGNG7 in HNSCC cells was regulated by the transcription factor SMAD family member 4 (SMAD4). Importantly, we discovered that circGNG7 could bind to serine residues 78 and 82 of the functional heat shock protein 27 (HSP27), occupying its phosphorylation sites and hindering its phosphorylation, which reduced HSP27‐JNK/P38 mitogen‐activated protein kinase (MAPK) oncogenic signaling. Downregulation of circGNG7 expression in HNSCC increased HSP27‐JNK/P38 MAPK signaling and promoted tumor progression. Conclusions Our results revealed that a new intronic circRNA, circGNG7, functions as a strong tumor suppressor and that circGNG7/HSP27‐JNK/P38 MAPK signaling is a novel mechanism by which HNSCC progression can be controlled.
Collapse
Affiliation(s)
- Houyu Ju
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China
| | - Zhenrong Hu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,School of Stomatology, Weifang Medical University, Weifang, Shandong, 261053, P. R. China
| | - Dongliang Wei
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China
| | - Jinyun Huang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,School of Stomatology, Weifang Medical University, Weifang, Shandong, 261053, P. R. China
| | - Xinyi Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,School of Stomatology, Weifang Medical University, Weifang, Shandong, 261053, P. R. China
| | - Mengyu Rui
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China
| | - Zhi Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,School of Stomatology, Weifang Medical University, Weifang, Shandong, 261053, P. R. China
| | - Xiaomeng Zhang
- National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology, Department of Oral and Maxillo-facial Implantology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200011, P. R. China
| | - Jingzhou Hu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China
| | - Wei Guo
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China
| | - Guoxin Ren
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China.,National Clinical Research Center of Stomatology, Shanghai, 200011, P. R. China
| |
Collapse
|
24
|
Soares-Lima SC, Mehanna H, Camuzi D, de Souza-Santos PT, Simão TDA, Nicolau-Neto P, Almeida Lopes MDS, Cuenin C, Talukdar FR, Batis N, Costa I, Dias F, Degli Esposti D, Boroni M, Herceg Z, Ribeiro Pinto LF. Upper Aerodigestive Tract Squamous Cell Carcinomas Show Distinct Overall DNA Methylation Profiles and Different Molecular Mechanisms behind WNT Signaling Disruption. Cancers (Basel) 2021; 13:3014. [PMID: 34208581 PMCID: PMC8234055 DOI: 10.3390/cancers13123014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 12/28/2022] Open
Abstract
Upper aerodigestive tract (UADT) tumors present different biological behavior and prognosis, suggesting specific molecular mechanisms underlying their development. However, they are rarely considered as single entities (particularly head and neck subsites) and share the most common genetic alterations. Therefore, there is a need for a better understanding of the global DNA methylation differences among UADT tumors. We performed a genome-wide DNA methylation analysis of esophageal (ESCC), laryngeal (LSCC), oral (OSCC) and oropharyngeal (OPSCC) squamous cell carcinomas, and their non-tumor counterparts. The unsupervised analysis showed that non-tumor tissues present markedly distinct DNA methylation profiles, while tumors are highly heterogeneous. Hypomethylation was more frequent in LSCC and OPSCC, while ESCC and OSCC presented mostly hypermethylation, with the latter showing a CpG island overrepresentation. Differentially methylated regions affected genes in 127 signaling pathways, with only 3.1% of these being common among different tumor subsites, but with different genes affected. The WNT signaling pathway, known to be dysregulated in different epithelial tumors, is a frequent hit for DNA methylation and gene expression alterations in ESCC and OPSCC, but mostly for genetic alterations in LSCC and OSCC. UADT tumor subsites present differences in genome-wide methylation regarding their profile, intensity, genomic regions and signaling pathways affected.
Collapse
Affiliation(s)
- Sheila Coelho Soares-Lima
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rua André Cavalcanti, 37–6° Andar, Bairro de Fátima, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.); (P.N.-N.); (M.d.S.A.L.)
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.M.); (N.B.)
| | - Diego Camuzi
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rua André Cavalcanti, 37–6° Andar, Bairro de Fátima, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.); (P.N.-N.); (M.d.S.A.L.)
| | | | - Tatiana de Almeida Simão
- Departamento de Bioquímica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro 87 fundos, Vila Isabel, Rio de Janeiro 20551-013, Brazil;
| | - Pedro Nicolau-Neto
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rua André Cavalcanti, 37–6° Andar, Bairro de Fátima, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.); (P.N.-N.); (M.d.S.A.L.)
| | - Monique de Souza Almeida Lopes
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rua André Cavalcanti, 37–6° Andar, Bairro de Fátima, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.); (P.N.-N.); (M.d.S.A.L.)
| | - Cyrille Cuenin
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (C.C.); (F.R.T.); (D.D.E.); (Z.H.)
| | - Fazlur Rahman Talukdar
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (C.C.); (F.R.T.); (D.D.E.); (Z.H.)
| | - Nikolaos Batis
- Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.M.); (N.B.)
| | - Izabella Costa
- Seção de Cirurgia de Cabeça e Pescoço, Instituto Nacional de Câncer—INCA, Praça da Cruz Vermelha, Rio de Janeiro 20230-130, Brazil; (I.C.); (F.D.)
| | - Fernando Dias
- Seção de Cirurgia de Cabeça e Pescoço, Instituto Nacional de Câncer—INCA, Praça da Cruz Vermelha, Rio de Janeiro 20230-130, Brazil; (I.C.); (F.D.)
| | - Davide Degli Esposti
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (C.C.); (F.R.T.); (D.D.E.); (Z.H.)
| | - Mariana Boroni
- Bioinformatics and Computational Biology Lab, Brazilian National Cancer Institute, Rua André Cavalcanti, 37–1° Andar, Bairro de Fátima, Rio de Janeiro 20231-050, Brazil;
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (C.C.); (F.R.T.); (D.D.E.); (Z.H.)
| | - Luis Felipe Ribeiro Pinto
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rua André Cavalcanti, 37–6° Andar, Bairro de Fátima, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.); (P.N.-N.); (M.d.S.A.L.)
- Departamento de Bioquímica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro 87 fundos, Vila Isabel, Rio de Janeiro 20551-013, Brazil;
| |
Collapse
|
25
|
Xu X, Wu Y, Yi K, Hu Y, Ding W, Xing C. IRF1 regulates the progression of colorectal cancer via interferon‑induced proteins. Int J Mol Med 2021; 47:104. [PMID: 33907823 PMCID: PMC8054637 DOI: 10.3892/ijmm.2021.4937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
Radiation is one of the main methods for the treatment of colorectal cancer (CRC) before or after surgery. However, radiotherapy tolerance of patients with CRC is often a major concern. Interferon regulatory factor 1 (IRF1) is a member of the IRF family and is involved in the development of multiple diseases, including tumors. The present study investigated the role of IRF1 in the development and radiation sensitivity of CRC. Immunohistochemistry was performed to examine the expression levels of IRF1 in tissue samples from patients with CRC, as well as in nude mice. MTT, 5‑ethynyl‑20‑deoxyuridine, colony formation, cell cycle alteration and apoptosis assays were performed in CRC cell lines. Western blotting and immunofluorescence were used to detect the expression levels of a series of proteins. RNA sequencing was applied to identify genes whose expression was upregulated by IRF1 overexpression. Xenograft nude mouse models and hematoxylin and eosin staining were used to validate the present findings in vivo. It was revealed that the expression levels of IRF1 were significantly lower in CRC tissues than in adjacent tissues. IRF1 upregulation inhibited cell proliferation and colony formation, caused G1 cell arrest, promoted cell apoptosis, and enhanced the sensitivity of CRC cells to X‑ray irradiation. The role of IRF1 in promoting the radiosensitivity of CRC was further demonstrated in nude mice with CRC xenografts. In addition, RNA sequencing revealed that overexpression of IRF1 in CRC cells significantly increased the expression levels of interferon‑induced protein family members interferon α inducible protein 6, interferon induced transmembrane protein 1 and interferon induced protein 35 (fold change >2.0). In summary, the present study demonstrated that the upregulation of IRF1 inhibited the progression and promoted the radiosensitivity of CRC, likely by regulating interferon‑induced proteins.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
- Department of General Surgery, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, P.R. China
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, P.R. China
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Yong Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ke Yi
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Yan Hu
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Weiqun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
26
|
Kim SH, Kang BC, Seong D, Lee WH, An JH, Je HU, Cha HJ, Chang HW, Kim SY, Kim SW, Han MW. EPHA3 Contributes to Epigenetic Suppression of PTEN in Radioresistant Head and Neck Cancer. Biomolecules 2021; 11:biom11040599. [PMID: 33919657 PMCID: PMC8073943 DOI: 10.3390/biom11040599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
EPHA3, a member of the EPH family, is overexpressed in various cancers. We demonstrated previously that EPHA3 is associated with radiation resistance in head and neck cancer via the PTEN/Akt/EMT pathway; the inhibition of EPHA3 significantly enhances the efficacy of radiotherapy in vitro and in vivo. In this study, we investigated the mechanisms of PTEN regulation through EPHA3-related signaling. Increased DNA methyltransferase 1 (DNMT1) and enhancer of zeste homolog 2 (EZH2) levels, along with increased histone H3 lysine 27 trimethylation (H3K27me3) levels, correlated with decreased levels of PTEN in radioresistant head and neck cancer cells. Furthermore, PTEN is regulated in two ways: DNMT1-mediated DNA methylation, and EZH2-mediated histone methylation through EPHA3/C-myc signaling. Our results suggest that EPHA3 could display a novel regulatory mechanism for the epigenetic regulation of PTEN in radioresistant head and neck cancer cells.
Collapse
Affiliation(s)
- Song-Hee Kim
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea; (S.-H.K.); (B.-C.K.); (D.S.); (W.-H.L.); (J.-H.A.)
| | - Byung-Chul Kang
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea; (S.-H.K.); (B.-C.K.); (D.S.); (W.-H.L.); (J.-H.A.)
| | - Daseul Seong
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea; (S.-H.K.); (B.-C.K.); (D.S.); (W.-H.L.); (J.-H.A.)
| | - Won-Hyeok Lee
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea; (S.-H.K.); (B.-C.K.); (D.S.); (W.-H.L.); (J.-H.A.)
| | - Jae-Hee An
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea; (S.-H.K.); (B.-C.K.); (D.S.); (W.-H.L.); (J.-H.A.)
| | - Hyoung-Uk Je
- Department of Radiation Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea;
| | - Hee-Jeong Cha
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea;
| | - Hyo-Won Chang
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (H.-W.C.); (S.-Y.K.)
| | - Sang-Yoon Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (H.-W.C.); (S.-Y.K.)
| | - Seong-Who Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Correspondence: (S.-W.K.); (M.-W.H.)
| | - Myung-Woul Han
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Korea; (S.-H.K.); (B.-C.K.); (D.S.); (W.-H.L.); (J.-H.A.)
- Correspondence: (S.-W.K.); (M.-W.H.)
| |
Collapse
|
27
|
Lewis JE, Forshaw TE, Boothman DA, Furdui CM, Kemp ML. Personalized Genome-Scale Metabolic Models Identify Targets of Redox Metabolism in Radiation-Resistant Tumors. Cell Syst 2021; 12:68-81.e11. [PMID: 33476554 PMCID: PMC7905848 DOI: 10.1016/j.cels.2020.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/04/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Redox cofactor production is integral toward antioxidant generation, clearance of reactive oxygen species, and overall tumor response to ionizing radiation treatment. To identify systems-level alterations in redox metabolism that confer resistance to radiation therapy, we developed a bioinformatics pipeline for integrating multi-omics data into personalized genome-scale flux balance analysis models of 716 radiation-sensitive and 199 radiation-resistant tumors. These models collectively predicted that radiation-resistant tumors reroute metabolic flux to increase mitochondrial NADPH stores and reactive oxygen species (ROS) scavenging. Simulated genome-wide knockout screens agreed with experimental siRNA gene knockdowns in matched radiation-sensitive and radiation-resistant cancer cell lines, revealing gene targets involved in mitochondrial NADPH production, central carbon metabolism, and folate metabolism that allow for selective inhibition of glutathione production and H2O2 clearance in radiation-resistant cancers. This systems approach represents a significant advancement in developing quantitative genome-scale models of redox metabolism and identifying personalized metabolic targets for improving radiation sensitivity in individual cancer patients.
Collapse
Affiliation(s)
- Joshua E. Lewis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Tom E. Forshaw
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - David A. Boothman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA,Corresponding Author: Correspondence:
| |
Collapse
|
28
|
Iftikhar A, Islam M, Shepherd S, Jones S, Ellis I. Cancer and Stress: Does It Make a Difference to the Patient When These Two Challenges Collide? Cancers (Basel) 2021; 13:cancers13020163. [PMID: 33418900 PMCID: PMC7825104 DOI: 10.3390/cancers13020163] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Head and neck cancers are the sixth most common cancer in the world. The burden of the disease has remained challenging over recent years despite the advances in treatments of other malignancies. The very use of the word malignancy brings about a stress response in almost all adult patients. Being told you have a tumour is not a word anyone wants to hear. We have embarked on a study which will investigate the effect of stress pathways on head and neck cancer patients and which signalling pathways may be involved. In the future, this will allow clinicians to better manage patients with head and neck cancer and reduce the patients’ stress so that this does not add to their tumour burden. Abstract A single head and neck Cancer (HNC) is a globally growing challenge associated with significant morbidity and mortality. The diagnosis itself can affect the patients profoundly let alone the complex and disfiguring treatment. The highly important functions of structures of the head and neck such as mastication, speech, aesthetics, identity and social interactions make a cancer diagnosis in this region even more psychologically traumatic. The emotional distress engendered as a result of functional and social disruption is certain to negatively affect health-related quality of life (HRQoL). The key biological responses to stressful events are moderated through the combined action of two systems, the hypothalamus–pituitary–adrenal axis (HPA) which releases glucocorticoids and the sympathetic nervous system (SNS) which releases catecholamines. In acute stress, these hormones help the body to regain homeostasis; however, in chronic stress their increased levels and activation of their receptors may aid in the progression of cancer. Despite ample evidence on the existence of stress in patients diagnosed with HNC, studies looking at the effect of stress on the progression of disease are scarce, compared to other cancers. This review summarises the challenges associated with HNC that make it stressful and describes how stress signalling aids in the progression of cancer. Growing evidence on the relationship between stress and HNC makes it paramount to focus future research towards a better understanding of stress and its effect on head and neck cancer.
Collapse
|
29
|
Deng Q, Su B, Ji X, Fang Q, Zhou S, Zhou C. Predictive value of unmethylated RASSF1A on disease progression in non-small cell lung cancer patients receiving pemetrexed-based chemotherapy. Cancer Biomark 2020; 27:313-323. [PMID: 31839603 DOI: 10.3233/cbm-190258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Chemotherapy remains the basis of the treatment of lung cancer, and screening biomarkers with predictive value for chemotherapy is of great interest. The present study focused on status of genes methylation in NSCLC patients receiving pemetrexed- or gemcitabine-based chemotherapy. PATIENTS AND METHODS Promoter methylation of Ras association domain family (RASSF1A) and short stature homeobox 2 (SHOX2) was examined in bronchoalveolar lavage (BAL) from 117 NSCLC patients treated with chemotherapy. Multivariate analysis was used to identify the predictive value of gene methylation. Progression-free survival (PFS) rather than overall survival (OS) was used as the clinical outcome to minimize the impact of chemotherapy on gene methylation. RESULTS The methylation of RASSF1A and SHOX2 was significantly associated with shorter PFS (RASSF1A: HR = 2.355, 95% CI: 1.533-3.617, P< 0.0001; SHOX2: HR = 2.123, 95% CI: 1.392-3.236, P= 0.0004). After adjusting for confounding factors, RASSF1A methylation was still a predictive factor for PFS (HR = 1.765, 95% CI: 1.064-2.928, P= 0.0278). In the pemetrexed group, unmethylated RASSF1A could be used to predict longer PFS (P= 0.0001), and no predictive value was found in the gemcitabine group. CONCLUSION Unmethylated RASSF1A is a favorable prognostic indicator for patients receiving pemetrexed doublets. Because of the promoting effect of most chemotherapeutic drugs on gene methylation, unmethylated RASSF1A is not suitable as a predictor for gemcitabine doublets.
Collapse
Affiliation(s)
- Qinfang Deng
- Medical College of Soochow University, Soochow, China.,Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Medical College of Soochow University, Soochow, China
| | - Bo Su
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Medical College of Soochow University, Soochow, China
| | - Xianxiu Ji
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiyu Fang
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Songwen Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Medical College of Soochow University, Soochow, China.,Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Shukla K, Singh N, Lewis JE, Tsang AW, Boothman DA, Kemp ML, Furdui CM. MTHFD2 Blockade Enhances the Efficacy of β-Lapachone Chemotherapy With Ionizing Radiation in Head and Neck Squamous Cell Cancer. Front Oncol 2020; 10:536377. [PMID: 33262939 PMCID: PMC7685994 DOI: 10.3389/fonc.2020.536377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Head and Neck Squamous Cell Cancer (HNSCC) presents with multiple treatment challenges limiting overall survival rates and affecting patients' quality of life. Amongst these, resistance to radiation therapy constitutes a major clinical problem in HNSCC patients compounded by origin, location, and tumor grade that limit tumor control. While cisplatin is considered the standard radiosensitizing agent for definitive or adjuvant radiotherapy, in recurrent tumors or for palliative care other chemotherapeutics such as the antifolates methotrexate or pemetrexed are also being utilized as radiosensitizers. These drugs inhibit the enzyme dihydrofolate reductase, which is essential for DNA synthesis and connects the 1-C/folate metabolism to NAD(P)H and NAD(P)+ balance in cells. In previous studies, we identified MTHFD2, a mitochondrial enzyme involved in folate metabolism, as a key contributor to NAD(P)H levels in the radiation-resistant cells and HNSCC tumors. In the study presented here, we investigated the role of MTHFD2 in the response to radiation alone and in combination with β-lapachone, a NQO1 bioactivatable drug, which generates reactive oxygen species concomitant with NAD(P)H oxidation to NAD(P)+. These studies are performed in a matched HNSCC cell model of response to radiation: the radiation resistant rSCC-61 and radiation sensitive SCC-61 cells reported earlier by our group. Radiation resistant rSCC-61 cells had increased sensitivity to β-lapachone compared to SCC-61 and knockdown of MTHFD2 in rSCC-61 cells further potentiated the cytotoxicity of β-lapachone with radiation in a dose and time-dependent manner. rSCC-61 MTHFD2 knockdown cells irradiated and treated with β-lapachone showed increased PARP1 activation, inhibition of mitochondrial respiration, decreased respiration-linked ATP production, and increased mitochondrial superoxide and protein oxidation as compared to control rSCC-61 scrambled shRNA. Thus, these studies point to MTHFD2 as a potential target for development of radiosensitizing chemotherapeutics and potentiator of β-lapachone cytotoxicity.
Collapse
Affiliation(s)
- Kirtikar Shukla
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Naveen Singh
- Department of Biochemistry and Molecular Biology, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joshua E. Lewis
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, United States
| | - Allen W. Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - David A. Boothman
- Department of Biochemistry and Molecular Biology, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa L. Kemp
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, United States
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States,*Correspondence: Cristina M. Furdui
| |
Collapse
|
31
|
Silencing KIF18B enhances radiosensitivity: identification of a promising therapeutic target in sarcoma. EBioMedicine 2020; 61:103056. [PMID: 33038765 PMCID: PMC7648128 DOI: 10.1016/j.ebiom.2020.103056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background Sarcomas are rare heterogeneous tumours, derived from primitive mesenchymal stem cells, with more than 100 distinct subtypes. Radioresistance remains a major clinical challenge for sarcomas, demanding urgent for effective biomarkers of radiosensitivity. Methods The radiosensitive gene Kinesin family member 18B (KIF18B) was mined through bioinformatics with integrating of 15 Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) database. We used radiotherapy-sh-KIF18B combination to observe the anti-tumour effect in sarcoma cells and subcutaneous or orthotopic xenograft models. The KIF18B-sensitive drug T0901317 (T09) was further mined to act as radiosensitizer using the Genomics of Drug Sensitivity in Cancer (GDSC) database. Findings KIF18B mRNA was significantly up-regulated in most of the subtypes of bone and soft tissue sarcoma. Multivariate Cox regression analysis showed that KIF18B high expression was an independent risk factor for prognosis in sarcoma patients with radiotherapy. Silencing KIF18B or using T09 significantly improved the radiosensitivity of sarcoma cells, delayed tumour growth in subcutaneous and orthotopic xenograft model, and elongated mice survival time. Furthermore, we predicted that T09 might bind to the structural region of KIF18B to exert radiosensitization. Interpretation These results indicated that sarcomas with low expression of KIF18B may benefit from radiotherapy. Moreover, the radiosensitivity of sarcomas with overexpressed KIF18B could be effectively improved by silencing KIF18B or using T09, which may provide promising strategies for radiotherapy treatment of sarcoma. Fundings A full list of funding can be found in the Funding Sources section.
Collapse
|
32
|
Li Y, Wei Z, Huang S, Yang B. mRNA expression and DNA methylation analysis of the inhibitory mechanism of H 2O 2 on the proliferation of A549 cells. Oncol Lett 2020; 20:288. [PMID: 33014166 PMCID: PMC7520746 DOI: 10.3892/ol.2020.12151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 08/18/2020] [Indexed: 01/29/2023] Open
Abstract
Reactive oxygen species, particularly hydrogen peroxide (H2O2), can induce proliferation inhibition and death of A549 cells via oxidative stress. Oxidative stress has effect on DNA methylation. Oxidative stress and DNA methylation feature a common denominator: The one carbon cycle. To explore the inhibitory mechanism of H2O2 on the proliferation of lung cancer cells, the present study analysed the mRNA expression and methylation profiles in A549 cells treated with H2O2 for 24 h, as adenocarcinoma is the most common pathological type of lung cancer. The DNA methylation profile was constructed using reduced representation bisulphite sequencing, which identified 29,755 differentially methylated sites (15,365 upregulated and 14,390 downregulated), and 1,575 differentially methylated regions located in the gene promoters were identified using the methylKit. Analysis of the assocaition between gene expression and methylation levels revealed that several genes were downregulated and hypermethylated, including cyclin-dependent kinase inhibitor 3, denticleless E3 ubiquitin protein ligase homolog, centromere protein (CENP)F, kinesin family member (KIF)20A, CENPA, KIF11, PCNA clamp-associated factor and GINS complex subunit 2, which may be involved in the inhibitory process of H2O2 on the proliferation of A549 cells.
Collapse
Affiliation(s)
- Yepeng Li
- Department of Oncology, Biomedical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Zhongheng Wei
- Department of Oncology, Biomedical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Shiqing Huang
- Department of Oncology, Biomedical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Bo Yang
- Key Laboratory of Guangxi College and Universities, Biomedical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| |
Collapse
|
33
|
Identification of diagnostic DNA methylation biomarkers specific for early-stage lung adenocarcinoma. Cancer Genet 2020; 246-247:1-11. [PMID: 32805686 DOI: 10.1016/j.cancergen.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND DNA hypermethylation is a key event in oncogenesis and may act as a biomarker for the early detection of lung adenocarcinoma (LUAD). Here, we aimed to identify LUAD-specific methylation diagnostic biomarkers and explored potential mechanisms using data mining. METHODS Using The Cancer Genome Atlas (TCGA) LUAD and GSE83842 datasets, we identified overlapping common differentially methylated positions (DMPs) with negative correlations between methylation and gene expression. Methylation profiles of the TCGA LUAD samples were compared with 185 blood samples and 370 lung squamous cell carcinoma (LUSC) samples to build a logistic regression model. Diagnosis performance was evaluated using an independent dataset. RESULTS 160 genes were aberrantly methylated in LUAD since stage I; these genes were enriched in DNA-binding transcription factor activity, multiple embryonic development processes, and cell signaling. A diagnostic prediction model based on 10 CpG could distinguish LUAD from LUSC (area under the curve: 0.943). The derived model showed higher sensitivity and specificity than the two existing models. The homeobox A1 gene exhibited significantly higher methylation levels in LUAD than in 10 other cancers, showing potential as a LUAD-specific diagnostic biomarker. CONCLUSIONS Our findings provided insights into DNA methylation alterations in LUAD and established LUAD-specific diagnostic biomarkers.
Collapse
|
34
|
Chen J, Zhang F, Ren X, Wang Y, Huang W, Zhang J, Cui Y. Targeting fatty acid synthase sensitizes human nasopharyngeal carcinoma cells to radiation via downregulating frizzled class receptor 10. Cancer Biol Med 2020; 17:740-752. [PMID: 32944403 PMCID: PMC7476091 DOI: 10.20892/j.issn.2095-3941.2020.0219] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Objective: Our aim was to test the hypothesis that fatty acid synthase (FASN) expression contributes to radioresistance of nasopharyngeal carcinoma (NPC) cells and that inhibiting FASN enhances radiosensitivity. Methods: Targeting FASN using epigallocatechin gallate (EGCG) or RNA interference in NPC cell lines that overexpress endogenous FASN was performed to determine their effects on cellular response to radiation in vitro using MTT and colony formation assays, and in vivo using xenograft animal models. Western blot, immunohistochemistry, real-time PCR arrays, and real-time RT-PCR were used to determine the relationship between FASN and frizzled class receptor 10 (FZD10) expression. FZD10 knockdown and overexpression were used to determine its role in mediating FASN function in cellular response to radiation. Immunohistochemical staining was used to determine FASN and FZD10 expressions in human NPC tissues, followed by analysis of their association with the overall survival of patients. Results: FASN knockdown or inhibition significantly enhanced radiosensitivity of NPC cells, both in vitro and in vivo. There was a positive association between FASN and FZD10 expression in NPC cell lines grown as monolayers or xenografts, as well as human tissues. FASN knockdown reduced FZD10 expression, and rescue of FZD10 expression abolished FASN knockdown-induced enhancement of radiosensitivity. FASN and FZD10 were both negatively associated with overall survival of NPC patients. Conclusions: FASN contributes to radioresistance, possibly via FZD10 in NPC cells. Both FZD10 and FASN expressions were associated with poor outcomes of NPC patients. EGCG may sensitize radioresistance by inhibiting FASN and may possibly be developed as a radiosensitizer for better treatment of NPCs.
Collapse
Affiliation(s)
- Jiongyu Chen
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Xiaosha Ren
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yahui Wang
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Wenhe Huang
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jianting Zhang
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Yukun Cui
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Correspondence to: Yukun Cui, E-mail:
| |
Collapse
|
35
|
Cell repopulation, rewiring metabolism, and immune regulation in cancer radiotherapy. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
36
|
Naghavi AO, Kim Y, Yang GQ, Ahmed KA, Caudell JJ. Alterations in genetic pathways following radiotherapy for head and neck cancer. Head Neck 2019; 42:312-320. [PMID: 31833149 DOI: 10.1002/hed.26004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Radiotherapy (RT) is an integral component in the treatment of head and neck cancer (HNC).We hypothesized there would be alterations in gene-expression and pathway activity in HNC samples obtained in recurrent HNC that were previously treated with RT, when compared to RT-naïve disease. METHODS Patient data was abstracted from a prospectively maintained database. Linear-microarray analysis and supervised gene-set enrichment-analysis were employed to compare RT-naive and recurrent disease after prior-RT. RESULTS A total of 157 patients were analyzed, 96 (61%) were RT-naive and 61 (39%) had RT.After radiation, there was upregulation of genes associated with angiogenesis, protein-translation-machinery, cell-cycle regulation, and growth factors, and downregulation associated with Myc activity, and hypoxic response (all P < .001).Previously irradiated HNC was associated with downregulation in 19/42 genes in the Wnt/B-catenin-pathway (P = .045)and 119/199 genes involved in the MYC target pathway (P = .024). CONCLUSION Patients with recurrences salvaged surgically post-RT had significant alterations in gene-expression and in Wnt/B-catenin and MYC-target pathways. These pathways may represent potential targets to prevent development of resistance to RT.
Collapse
Affiliation(s)
- Arash O Naghavi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - George Q Yang
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kamran A Ahmed
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jimmy J Caudell
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
37
|
Putra SED, Singajaya S, Thesman F, Pranoto DA, Sanjaya R, Vianney YM, Artadana IBM. Aberrant PDK4 Promoter Methylation Preceding Hyperglycemia in a Mouse Model. Appl Biochem Biotechnol 2019; 190:1023-1034. [PMID: 31655976 DOI: 10.1007/s12010-019-03143-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/12/2019] [Indexed: 12/27/2022]
Abstract
Diabetic prevalence is at speedy increase globally. Previous studies stated that other than genetics, factors such as environment, lifestyle, and paternal-maternal condition play critical roles in diabetes through DNA methylation in specific areas of the genome. The purpose of this study is to investigate the methylation pattern of the PDK4 promoter in streptozotocin-induced diabetic mice until the 12th week of the observation. The methylation pattern in the blood samples was analyzed periodically, while the pattern in the muscle sample was only analyzed at the end of the experiment using the blood of the sacrificed animals. Three methylated CpG site 1, CpG site 6, and CpG site 7 were analyzed and quantified based on the band density using bisulfite treatment and methylation-specific polymerase chain reaction (PCR). The hyperglycemia period was developed at the 9th week of experiment. However, there was a significant increase of methylation, specifically on CpG site 6 started from week 6 to week 12. This peculiar methylation on CpG site 6 of PDK4 promoter in the blood sample before the hyperglycemic period might serve as a potential biomarker for early detection of diabetes in the patients. No significant difference was found between the methylation level of streptozotocin (STZ)-treated mice and of the control group in the muscle sample.
Collapse
Affiliation(s)
- Sulistyo Emantoko Dwi Putra
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia.
| | - Stephanie Singajaya
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Ferensia Thesman
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Dicky Andhika Pranoto
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Ricky Sanjaya
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Yoanes Maria Vianney
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Ida Bagus Made Artadana
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| |
Collapse
|
38
|
Nakagawa T, Wakui M, Hayashida T, Nishime C, Murata M. Intensive optimization and evaluation of global DNA methylation quantification using LC-MS/MS. Anal Bioanal Chem 2019; 411:7221-7231. [DOI: 10.1007/s00216-019-02115-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 01/22/2023]
|
39
|
Sheng J, Shi W, Guo H, Long W, Wang Y, Qi J, Liu J, Xu Y. The Inhibitory Effect of (-)-Epigallocatechin-3-Gallate on Breast Cancer Progression via Reducing SCUBE2 Methylation and DNMT Activity. Molecules 2019; 24:molecules24162899. [PMID: 31404982 PMCID: PMC6719997 DOI: 10.3390/molecules24162899] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications are important mechanisms responsible for cancer progression. Accumulating data suggest that (-)-epigallocatechin-3-gallate (EGCG), the most abundant catechin of green tea, may hamper carcinogenesis by targeting epigenetic alterations. We found that signal peptide-CUB (complement protein C1r/C1s, Uegf, and Bmp1)-EGF (epidermal growth factor) domain-containing protein 2 (SCUBE2), a tumor suppressor gene, was hypermethylated in breast tumors. However, it is unknown whether EGCG regulates SCUBE2 methylation, and the mechanisms remain undefined. This study was designed to investigate the effect of EGCG on SCUBE2 methylation in breast cancer cells. We reveal that EGCG possesses a significantly inhibitory effect on cell viability in a dose- and time-dependent manner and presents more effects than other catechins. EGCG treatment resulted in enhancement of the SCUBE2 gene, along with elevated E-cadherin and decreased vimentin expression, leading to significant suppression of cell migration and invasion. The inhibitory effect of EGCG on SCUBE2 knock-down cells was remarkably alleviated. Further study demonstrated that EGCG significantly decreased the SCUBE2 methylation status by reducing DNA methyltransferase (DNMT) expression and activity. In summary, this study reported for the first time that SCUBE2 methylation can be reversed by EGCG treatment, finally resulting in the inhibition of breast cancer progression. These results suggest the epigenetic role of EGCG and its potential implication in breast cancer therapy.
Collapse
Affiliation(s)
- Jie Sheng
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Weilin Shi
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hui Guo
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wenlin Long
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yuxin Wang
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiangfa Qi
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jinbiao Liu
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China.
| | - Yao Xu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
40
|
Pan Y, Song Y, Cheng L, Xu H, Liu J. Analysis of methylation‐driven genes for predicting the prognosis of patients with head and neck squamous cell carcinoma. J Cell Biochem 2019; 120:19482-19495. [PMID: 31264288 DOI: 10.1002/jcb.29252] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Yihua Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Yidan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Lanxin Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Hongdan Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
41
|
Sutton LP, Jeffreys SA, Phillips JL, Taberlay PC, Holloway AF, Ambrose M, Joo JHE, Young A, Berry R, Skala M, Brettingham-Moore KH. DNA methylation changes following DNA damage in prostate cancer cells. Epigenetics 2019; 14:989-1002. [PMID: 31208284 PMCID: PMC6691980 DOI: 10.1080/15592294.2019.1629231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Many cancer therapies operate by inducing double-strand breaks (DSBs) in cancer cells, however treatment-resistant cells rapidly initiate mechanisms to repair damage enabling survival. While the DNA repair mechanisms responsible for cancer cell survival following DNA damaging treatments are becoming better understood, less is known about the role of the epigenome in this process. Using prostate cancer cell lines with differing sensitivities to radiation treatment, we analysed the DNA methylation profiles prior to and following a single dose of radiotherapy (RT) using the Illumina Infinium HumanMethylation450 BeadChip platform. DSB formation and repair, in the absence and presence of the DNA hypomethylating agent, 5-azacytidine (5-AzaC), were also investigated using γH2A.X immunofluorescence staining. Here we demonstrate that DNA methylation is generally stable following a single dose of RT; however, a small number of CpG sites are stably altered up to 14 d following exposure. While the radioresistant and radiosensitive cells displayed distinct basal DNA methylation profiles, their susceptibility to DNA damage appeared similar demonstrating that basal DNA methylation has a limited influence on DSB induction at the regions examined. Recovery from DSB induction was also similar between these cells. Treatment with 5-AzaC did not sensitize resistant cells to DNA damage, but rather delayed recruitment of phosphorylated BRCA1 (S1423) and repair of DSBs. These results highlight that stable epigenetic changes are possible following a single dose of RT and may have significant clinical implications for cancer treatment involving recurrent or fractionated dosing regimens.
Collapse
Affiliation(s)
- Laura P Sutton
- a School of Medicine, College of Health and Medicine, University of Tasmania , Hobart , Australia
| | - Sarah A Jeffreys
- a School of Medicine, College of Health and Medicine, University of Tasmania , Hobart , Australia
| | - Jessica L Phillips
- a School of Medicine, College of Health and Medicine, University of Tasmania , Hobart , Australia
| | - Phillippa C Taberlay
- a School of Medicine, College of Health and Medicine, University of Tasmania , Hobart , Australia
| | - Adele F Holloway
- a School of Medicine, College of Health and Medicine, University of Tasmania , Hobart , Australia
| | - Mark Ambrose
- a School of Medicine, College of Health and Medicine, University of Tasmania , Hobart , Australia
| | - Ji-Hoon E Joo
- b Colorectal Oncogenomics Group, Department of Clinical Pathology & University of Melbourne Centre for Cancer Research, The University of Melbourne , Parkville , Australia
| | - Arabella Young
- a School of Medicine, College of Health and Medicine, University of Tasmania , Hobart , Australia
| | - Rachael Berry
- a School of Medicine, College of Health and Medicine, University of Tasmania , Hobart , Australia
| | - Marketa Skala
- c Department of Radiation Oncology, Royal Hobart Hospital , Hobart , Australia
| | - Kate H Brettingham-Moore
- a School of Medicine, College of Health and Medicine, University of Tasmania , Hobart , Australia
| |
Collapse
|
42
|
Solingapuram Sai KK, Bashetti N, Chen X, Norman S, Hines JW, Meka O, Kumar JVS, Devanathan S, Deep G, Furdui CM, Mintz A. Initial biological evaluations of 18F-KS1, a novel ascorbate derivative to image oxidative stress in cancer. EJNMMI Res 2019; 9:43. [PMID: 31101996 PMCID: PMC6525227 DOI: 10.1186/s13550-019-0513-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS)-induced oxidative stress damages many cellular components such as fatty acids, DNA, and proteins. This damage is implicated in many disease pathologies including cancer and neurodegenerative and cardiovascular diseases. Antioxidants like ascorbate (vitamin C, ascorbic acid) have been shown to protect against the deleterious effects of oxidative stress in patients with cancer. In contrast, other data indicate potential tumor-promoting activity of antioxidants, demonstrating a potential temporal benefit of ROS. However, quantifying real-time tumor ROS is currently not feasible, since there is no way to directly probe global tumor ROS. In order to study this ROS-induced damage and design novel therapeutics to prevent its sequelae, the quantitative nature of positron emission tomography (PET) can be harnessed to measure in vivo concentrations of ROS. Therefore, our goal is to develop a novel translational ascorbate-based probe to image ROS in cancer in vivo using noninvasive PET imaging of tumor tissue. The real-time evaluations of ROS state can prove critical in developing new therapies and stratifying patients to therapies that are affected by tumor ROS. METHODS We designed, synthesized, and characterized a novel ascorbate derivative (E)-5-(2-chloroethylidene)-3-((4-(2-fluoroethoxy)benzyl)oxy)-4-hydroxyfuran-2(5H)-one (KS1). We used KS1 in an in vitro ROS MitoSOX-based assay in two different head and neck squamous cancer cells (HNSCC) that express different ROS levels, with ascorbate as reference standard. We radiolabeled 18F-KS1 following 18F-based nucleophilic substitution reactions and determined in vitro reactivity and specificity of 18F-KS1 in HNSCC and prostate cancer (PCa) cells. MicroPET imaging and standard biodistribution studies of 18F-KS1 were performed in mice bearing PCa cells. To further demonstrate specificity, we performed microPET blocking experiments using nonradioactive KS1 as a blocker. RESULTS KS1 was synthesized and characterized using 1H NMR spectra. MitoSOX assay demonstrated good correlations between increasing concentrations of KS1 and ascorbate and increased reactivity in SCC-61 cells (with high ROS levels) versus rSCC-61cells (with low ROS levels). 18F-KS1 was radiolabeled with high radiochemical purity (> 94%) and specific activity (~ 100 GBq/μmol) at end of synthesis (EOS). Cell uptake of 18F-KS1 was high in both types of cancer cells, and the uptake was significantly blocked by nonradioactive KS1, and the ROS blocker, superoxide dismutase (SOD) demonstrating specificity. Furthermore, 18F-KS1 uptake was increased in PCa cells under hypoxic conditions, which have been shown to generate high ROS. Initial in vivo tumor uptake studies in PCa tumor-bearing mice demonstrated that 18F-KS1 specifically bound to tumor, which was significantly blocked (threefold) by pre-injecting unlabeled KS1. Furthermore, biodistribution studies in the same tumor-bearing mice showed high tumor to muscle (target to nontarget) ratios. CONCLUSION This work demonstrates the strong preliminary support of 18F-KS1, both in vitro and in vivo for imaging ROS in cancer. If successful, this work will provide a new paradigm to directly probe real-time oxidative stress levels in vivo. Our work could enhance precision medicine approaches to treat cancer, as well as neurodegenerative and cardiovascular diseases affected by ROS.
Collapse
Affiliation(s)
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh 522502 India
| | - Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Skylar Norman
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Justin W. Hines
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Omsai Meka
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - J. V. Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh 522502 India
| | | | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032 USA
| |
Collapse
|
43
|
Hsieh TH, Liu YR, Chang TY, Liang ML, Chen HH, Wang HW, Yen Y, Wong TT. Global DNA methylation analysis reveals miR-214-3p contributes to cisplatin resistance in pediatric intracranial nongerminomatous malignant germ cell tumors. Neuro Oncol 2019; 20:519-530. [PMID: 29036598 DOI: 10.1093/neuonc/nox186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Pediatric central nervous system germ cell tumors (CNSGCTs) are rare and heterogeneous neoplasms, which can be divided into germinomas and nongerminomatous germ cell tumors (NGGCTs). NGGCTs are further subdivided into mature teratomas and nongerminomatous malignant GCTs (NGMGCTs). Clinical outcomes suggest that NGMGCTs have poor prognosis and survival and that they require more extensive radiotherapy and adjuvant chemotherapy. However, the mechanisms underlying this difference are still unclear. DNA methylation alteration is generally acknowledged to cause therapeutic resistance in cancers. We hypothesized that the pediatric NGMGCTs exhibit a different genome-wide DNA methylation pattern, which is involved in the mechanism of its therapeutic resistance. Methods We performed methylation and hydroxymethylation DNA immunoprecipitation sequencing, mRNA expression microarray, and small RNA sequencing (smRNA-seq) to determine methylation-regulated genes, including microRNAs (miRNAs). Results The expression levels of 97 genes and 8 miRNAs were correlated with promoter DNA methylation and hydroxymethylation status, such as the miR-199/-214 cluster, and treatment with DNA demethylating agent 5-aza-2'-deoxycytidine elevated its expression level. Furthermore, smRNA-seq analysis showed 27 novel miRNA candidates with differential expression between germinomas and NGMGCTs. Overexpresssion of miR-214-3p in NCCIT cells leads to reduced expression of the pro-apoptotic protein BCL2-like 11 and induces cisplatin resistance. Conclusions We interrogated the differential DNA methylation patterns between germinomas and NGMGCTs and proposed a mechanism for chemoresistance in NGMGCTs. In addition, our sequencing data provide a roadmap for further pediatric CNSGCT research and potential targets for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan.,Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan.,Comprehensive Cancer Center of Taipei Medical University, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yu Chang
- Comprehensive Cancer Center of Taipei Medical University, Taipei Medical University, Taipei, Taiwan.,Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Muh-Lii Liang
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital (VGH-TPE), Taipei, Taiwan
| | - Hsin-Hung Chen
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital (VGH-TPE), Taipei, Taiwan
| | - Hsei-Wei Wang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yun Yen
- Comprehensive Cancer Center of Taipei Medical University, Taipei Medical University, Taipei, Taiwan.,Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tai-Tong Wong
- Comprehensive Cancer Center of Taipei Medical University, Taipei Medical University, Taipei, Taiwan.,Institutes of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Neuroscience Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
44
|
Lei W, Xu Y, Su J, Chong CM, Su HX, Luo J, Fang EF, Bao Z, Chen G. Applications of high-throughput ‘omics’ data in the study of frailty. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
45
|
Lewis JE, Costantini F, Mims J, Chen X, Furdui CM, Boothman DA, Kemp ML. Genome-Scale Modeling of NADPH-Driven β-Lapachone Sensitization in Head and Neck Squamous Cell Carcinoma. Antioxid Redox Signal 2018; 29:937-952. [PMID: 28762750 PMCID: PMC6104251 DOI: 10.1089/ars.2017.7048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS The purpose of this study was to investigate differential nicotinamide adenine dinucleotide phosphate, reduced (NADPH) production between radiation-sensitive and -resistant head and neck squamous cell carcinoma (HNSCC) cell lines and whether these differences are predictive of sensitivity to the chemotherapeutic β-lapachone. RESULTS We have developed a novel human genome-scale metabolic modeling platform that combines transcriptomic, kinetic, thermodynamic, and metabolite concentration data. Upon incorporation of this information into cell line-specific models, we observed that the radiation-resistant HNSCC model redistributed flux through several major NADPH-producing reactions. Upon RNA interference of canonical NADPH-producing genes, the metabolic network can further reroute flux through alternate NADPH biosynthesis pathways in a cell line-specific manner. Model predictions of perturbations in cellular NADPH production after gene knockdown match well with experimentally verified effects of β-lapachone treatment on NADPH/NADP+ ratio and cell viability. This computational approach accurately predicts HNSCC-specific oxidoreductase genes that differentially affect cell viability between radiation-responsive and radiation-resistant cancer cells upon β-lapachone treatment. INNOVATION Quantitative genome-scale metabolic models that incorporate multiple levels of biological data are applied to provide accurate predictions of responses to a NADPH-dependent redox cycling chemotherapeutic drug under a variety of perturbations. CONCLUSION Our modeling approach suggests differences in metabolism and β-lapachone redox cycling that underlie phenotypic differences in radiation-sensitive and -resistant cancer cells. This approach can be extended to investigate the synergistic action of NAD(P)H: quinone oxidoreductase 1 bioactivatable drugs and radiation therapy. Antioxid. Redox Signal. 29, 937-952.
Collapse
Affiliation(s)
- Joshua E Lewis
- 1 The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia
| | - Francesco Costantini
- 2 School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Jade Mims
- 3 Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Xiaofei Chen
- 3 Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Cristina M Furdui
- 3 Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - David A Boothman
- 4 Department of Pharmacology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Melissa L Kemp
- 1 The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia
| |
Collapse
|
46
|
Zhu X, Wang Y, Tan L, Fu X. The pivotal role of DNA methylation in the radio-sensitivity of tumor radiotherapy. Cancer Med 2018; 7:3812-3819. [PMID: 29952116 PMCID: PMC6089158 DOI: 10.1002/cam4.1614] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 12/23/2022] Open
Abstract
Radiotherapy is an important modality for treatment of carcinomas; however, radio‐resistance is still a difficult problem. Aberrant epigenetic alterations play an important role in cancer development. Among epigenetic parameters, DNA methylation has arguably attracted the most attention in the radio‐resistance process. To determine the role of DNA methylation in radiation resistance, several studies were conducted. We summarized previous studies on the role of DNA methylation in radiotherapy. We observed this significant role of DNA methylation in genes related to DNA repair, cell proliferation, cell cycle process, and re‐oxygenation. Furtherly, we also conclude the predictive effect of DNA methylation on tumor radio‐sensitivity and the using of DNA methyltransferase inhibitors in clinical practice. DNA methylation plays a pivotal role in the radio‐sensitivity of tumor radio‐therapy. While hyper‐methylation or hypo‐methylation of genes is related to gene functions.
Collapse
Affiliation(s)
- Xueru Zhu
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Chest Hospital, Shanghai, China
| | - Yiting Wang
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Chest Hospital, Shanghai, China
| | - Li Tan
- Department of Cellular and Genetic Medicine, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Chest Hospital, Shanghai, China
| |
Collapse
|
47
|
Zhang H, Song G, Song G, Li R, Gao M, Ye L, Zhang C. Identification of DNA methylation prognostic signature of acute myelocytic leukemia. PLoS One 2018; 13:e0199689. [PMID: 29933410 PMCID: PMC6014658 DOI: 10.1371/journal.pone.0199689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The aim of this study is to find the potential survival related DNA methylation signature capable of predicting survival time for acute myelocytic leukemia (AML) patients. METHODS DNA methylation data were downloaded. DNA methylation signature was identified in the training group, and subsequently validated in an independent validation group. The overall survival of DNA methylation signature was performed. Functional analysis was used to explore the function of corresponding genes of DNA methylation signature. Differentially methylated sites and CpG islands were also identified in poor-risk group. RESULTS A DNA methylation signature involving 8 DNA methylation sites and 6 genes were identified. Functional analysis showed that protein binding and cytoplasm were the only two enriched Gene Ontology terms. A total of 70 differentially methylated sites and 6 differentially methylated CpG islands were identified in poor-risk group. CONCLUSIONS The identified survival related DNA methylation signature adds to the prognostic value of AML.
Collapse
Affiliation(s)
- Haiguo Zhang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
- Department of Hematology, Jining NO.1 People’s Hospital, Jining, Shandong, P.R. China
| | - Guanli Song
- Department of Preventive and Health Care, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Guanbo Song
- Department of Clinical Laboratory, Jining Chinese Medicine Hospital, Jining, Shandong, P.R. China
| | - Ruolei Li
- Department of Clinical Laboratory, Jining NO.1 People’s Hospital, Jining, Shandong, P.R. China
| | - Min Gao
- Department of Clinical Laboratory, Jining NO.1 People’s Hospital, Jining, Shandong, P.R. China
| | - Ling Ye
- Department of Hematology, Jining NO.1 People’s Hospital, Jining, Shandong, P.R. China
| | - Chengfang Zhang
- Department of Clinical Laboratory, Jining NO.1 People’s Hospital, Jining, Shandong, P.R. China
- * E-mail:
| |
Collapse
|
48
|
Abstract
Next year will mark 60 years since Dr. Leslie Foulds outlined his hypothesis that cancer is "a dynamic process advancing through stages that are qualitatively different," leading the way to our view of cancer progression as we know it today. Our understanding of the mechanisms of these stages has been continuously evolving this past half-century, and there has always been an active discussion of the roles of both genetic and epigenetic changes in directing this progression. In this review, we focus on the roles one particular epigenetic mark-DNA methylation-plays in these various "discontinuous" stages of cancer. Understanding these steps not only gives us a better picture of how this fascinating biological process operates, but also opens the doors to new prognostic biomarkers and therapies against these malignancies.
Collapse
|
49
|
Chi HC, Tsai CY, Tsai MM, Lin KH. Impact of DNA and RNA Methylation on Radiobiology and Cancer Progression. Int J Mol Sci 2018; 19:ijms19020555. [PMID: 29439529 PMCID: PMC5855777 DOI: 10.3390/ijms19020555] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy is a well-established regimen for nearly half the cancer patients worldwide. However, not all cancer patients respond to irradiation treatment, and radioresistance is highly associated with poor prognosis and risk of recurrence. Elucidation of the biological characteristics of radioresistance and development of effective prognostic markers to guide clinical decision making clearly remain an urgent medical requirement. In tumorigenic and radioresistant cancer cell populations, phenotypic switch is observed during the course of irradiation treatment, which is associated with both stable genetic and epigenetic changes. While the importance of epigenetic changes is widely accepted, the irradiation-triggered specific epigenetic alterations at the molecular level are incompletely defined. The present review provides a summary of current studies on the molecular functions of DNA and RNA m6A methylation, the key epigenetic mechanisms involved in regulating the expression of genetic information, in resistance to irradiation and cancer progression. We additionally discuss the effects of DNA methylation and RNA N6-methyladenosine (m6A) of specific genes in cancer progression, recurrence, and radioresistance. As epigenetic alterations could be reversed by drug treatment or inhibition of specific genes, they are also considered potential targets for anticancer therapy and/or radiotherapy sensitizers. The mechanisms of irradiation-induced alterations in DNA and RNA m6A methylation, and ways in which this understanding can be applied clinically, including utilization of methylation patterns as prognostic markers for cancer radiotherapy and their manipulation for anticancer therapy or use as radiotherapy sensitizers, have been further discussed.
Collapse
Affiliation(s)
- Hsiang-Cheng Chi
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
| | - Chung-Ying Tsai
- Kidney Research Center and Department of Nephrology, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan.
| | - Ming-Ming Tsai
- Department of Nursing, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan.
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan.
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
50
|
Kemmer JD, Johnson DE, Grandis JR. Leveraging Genomics for Head and Neck Cancer Treatment. J Dent Res 2018; 97:603-613. [PMID: 29420101 DOI: 10.1177/0022034518756352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The genomic landscape of head and neck squamous cell carcinoma (HNSCC) has been recently elucidated. Key epigenetic and genetic characteristics of this cancer have been reported and substantiated in multiple data sets, including those distinctive to the growing subset of human papilloma virus (HPV)-associated tumors. This increased understanding of the molecular underpinnings of HNSCC has not resulted in new approaches to treatment. Three Food and Drug Administration-approved molecular targeting agents are currently available to treat recurrent/metastatic disease, but these have exhibited efficacy only in subsets of HNSCC patients, and thus surgery, chemotherapy, and/or radiation remain as standard approaches. The lack of predictive biomarkers to any therapy represents an obstacle to achieving the promise of precision medicine. This review aims to familiarize the reader with current insights into the HNSCC genomic landscape, discuss the currently approved and promising molecular targeting agents under exploration in laboratories and clinics, and consider precision medicine approaches to HNSCC.
Collapse
Affiliation(s)
- J D Kemmer
- 1 Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - D E Johnson
- 1 Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - J R Grandis
- 1 Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|