1
|
Calixto CPG. Molecular aspects of heat stress sensing in land plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70069. [PMID: 40085177 PMCID: PMC11908636 DOI: 10.1111/tpj.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
Heat stress impacts all aspects of life, from evolution to global food security. Therefore, it becomes essential to understand how plants respond to heat stress, especially in the context of climate change. The heat stress response (HSR) involves three main components: sensing, signal transduction, and cellular reprogramming. Here, I focus on the heat stress sensing component. How can cells detect heat stress if it is not a signalling particle? To answer this question, I have looked at the molecular definition of heat stress. It can be defined as any particular rise in the optimum growth temperature that leads to higher-than-normal levels of reactive molecular species and macromolecular damage to biological membranes, proteins, and nucleic acid polymers (DNA and RNA). It is precisely these stress-specific alterations that are detected by heat stress sensors, upon which they would immediately trigger the appropriate level of the HSR. In addition, the work towards thermotolerance is complemented by a second type of response, here called the cellular homeostasis response (CHR). Upon mild and extreme temperature changes, the CHR is triggered by plant thermosensors, which are responsible for monitoring temperature information. Heat stress sensors and thermosensors are distinct types of molecules, each with unique modes of activation and functions. While many recent reviews provide a comprehensive overview of plant thermosensors, there remains a notable gap in the review literature regarding an in-depth analysis of plant heat stress sensors. Here, I attempt to summarise our current knowledge of the cellular sensors involved in triggering the plant HSR.
Collapse
|
2
|
Liu X, Zhang M, Zhao X, Shen M, Feng R, Wei Q. The evolution, variation and expression patterns of the annexin gene family in the maize pan-genome. Sci Rep 2025; 15:5711. [PMID: 39962090 PMCID: PMC11832922 DOI: 10.1038/s41598-025-89119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Annexins (Anns) are a family of evolutionarily conserved, calcium-dependent, phospholipid-binding proteins that play critical roles in plant growth, development, and stress responses. Utilizing the pan-genome of 26 high-quality maize genomes, we identified 12 Ann genes, comprising 9 core genes (present in all 26 lines) and 3 near-core genes (present in 24-25 lines). This highlights the limitations of studying ZmAnn genes based on a single reference genome. Evaluating the Ka/Ks values of Ann genes in 26 varieties revealed that ZmAnn10 was under positive selection in certain varieties, while the remaining genes had Ka/Ks values less than 1, indicating purifying selection. Phylogenetic analysis divided ZmAnn proteins into six groups, with group VI containing only ZmAnn12. Structural variation in certain varieties altered the conserved domains, generating many atypical genes. Transcriptome analysis showed that different Ann members have distinct expression patterns in various tissues and under different abiotic and biotic stress treatments. Weighted gene co-expression network analysis of transcriptome data from various maize tissues under cold stress identified four Ann genes (ZmAnn2, ZmAnn6, ZmAnn7, ZmAnn9) involved in co-expression modules. Overall, this study utilized high-quality maize pangenomes to perform a bioinformatic analysis of ZmAnn genes, providing a foundation for further research on ZmAnn genes.
Collapse
Affiliation(s)
- Xin Liu
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin, 644000, Sichuan, China
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Minghu Zhang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Xin Zhao
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin, 644000, Sichuan, China
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Mang Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, China
| | - Ruizhang Feng
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin, 644000, Sichuan, China
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Qin Wei
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin, 644000, Sichuan, China.
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan, China.
| |
Collapse
|
3
|
Dai K, Zhang Z, Wang S, Yang J, Wang L, Jia T, Li J, Wang H, Song S, Lu Y, Li H. Molecular mechanisms of heterosis under drought stress in maize hybrids Zhengdan7137 and Zhengdan7153. FRONTIERS IN PLANT SCIENCE 2024; 15:1487639. [PMID: 39439513 PMCID: PMC11494150 DOI: 10.3389/fpls.2024.1487639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Maize is one of the most successful crops in utilizing heterosis which significantly improves maize stresses resistance and yield. Drought is a destructive abiotic stress that significantly reduces crop yield, particularly in maize. Drought stress and re-watering frequently occur during the growth and development of maize; however, the molecular mechanisms of heterosis under drought stress and re-watering have rarely been systematically investigated. Zhengdan7137 and Zhengdan7153 are two maize hybrid varieties with robust heterosis, and separately belongs to the SS×NSS and Reid×Tangsipingtou heterotic groups. 54 transcriptomes of these two hybrids and their parental inbred lines were analyzed under well-watering (WW), water-deficit (WD), and re-watering (RW) conditions using RNA-Seq. In this study, we identified 3,411 conserved drought response genes (CDRGs) and 3,133 conserved re-watering response genes (CRRGs) between Zhengdan7137 and Zhengdan7153. When comparing CDRGs and CRRGs to overdominance and underdominance genes, we identified 303 and 252 conservative drought response overdominance genes (DODGs) and underdominance genes (DUDGs), respectively, and 165 and 267 conservative re-watering response overdominance genes (RODGs) and underdominance genes (RUDGs), respectively. DODGs are involved in stress response-related processes, such as L-phenylalanine metabolism, carbohydrate metabolism, and heat response, whereas DUDGs are associated with glucose metabolism, pentose-phosphate shunt, and starch metabolism. RODGs and RUDGs contribute to the recovery of hybrids from drought stress by upregulating cell propagation and photosynthesis processes, and repressing stress response processes, respectively. It indicated overdominant and underdominant genes conservatively contributed to hybrid heterosis under drought stress. These results deepen our understanding of the molecular mechanisms of drought resistance, uncover conservative molecular mechanisms of heterosis under drought stress and re-watering, and provide potential targets for improving drought resistance in maize.
Collapse
Affiliation(s)
- Kai Dai
- Institute of Crop Germplasm Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Haerbin, China
| | - Zhanyi Zhang
- Institute of Crop Germplasm Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Sen Wang
- Institute of Crop Germplasm Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jiwei Yang
- Institute of Crop Germplasm Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lifeng Wang
- Institute of Crop Germplasm Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Tengjiao Jia
- Institute of Crop Germplasm Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jingjing Li
- Institute of Crop Germplasm Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hao Wang
- Institute of Crop Germplasm Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Song Song
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yuncai Lu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Haerbin, China
| | - Huiyong Li
- Institute of Crop Germplasm Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
4
|
Granados-Alegría MI, Canto-Canché B, Gómez-Tah R, Félix JW, Tzec-Simá M, Ruiz-May E, Islas-Flores I. Proteomic Profiling of Cocos nucifera L. Zygotic Embryos during Maturation of Dwarf and Tall Cultivars: The Dynamics of Carbohydrate and Fatty Acid Metabolism. Int J Mol Sci 2024; 25:8507. [PMID: 39126077 PMCID: PMC11312736 DOI: 10.3390/ijms25158507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
There is a limited number of studies analyzing the molecular and biochemical processes regulating the metabolism of the maturation of Cocos nucifera L. zygotic embryos. Our research focused on the regulation of carbohydrate and lipid metabolic pathways occurring at three developmental stages of embryos from the Mexican Pacific tall (MPT) and the Yucatan green dwarf (YGD) cultivars. We used the TMT-synchronous precursor selection (SPS)-MS3 strategy to analyze the dynamics of proteomes from both embryos; 1044 and 540 proteins were determined for the MPT and YGD, respectively. A comparison of the differentially accumulated proteins (DAPs) revealed that the biological processes (BP) enriched in the MPT embryo included the glyoxylate and dicarboxylate metabolism along with fatty acid degradation, while in YGD, the nitrogen metabolism and pentose phosphate pathway were the most enriched BPs. Findings suggest that the MPT embryos use fatty acids to sustain a higher glycolytic/gluconeogenic metabolism than the YGD embryos. Moreover, the YGD proteome was enriched with proteins associated with biotic or abiotic stresses, e.g., peroxidase and catalase. The goal of this study was to highlight the differences in the regulation of carbohydrate and lipid metabolic pathways during the maturation of coconut YGD and MPT zygotic embryos.
Collapse
Affiliation(s)
- María Inés Granados-Alegría
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (M.I.G.-A.); (J.W.F.); (M.T.-S.)
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (B.C.-C.); (R.G.-T.)
| | - Rufino Gómez-Tah
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (B.C.-C.); (R.G.-T.)
| | - Jean Wildort Félix
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (M.I.G.-A.); (J.W.F.); (M.T.-S.)
| | - Miguel Tzec-Simá
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (M.I.G.-A.); (J.W.F.); (M.T.-S.)
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Colonia El Haya, Xalapa C.P. 91073, Veracruz, Mexico
| | - Ignacio Islas-Flores
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (M.I.G.-A.); (J.W.F.); (M.T.-S.)
| |
Collapse
|
5
|
Huang G, Wan R, Zou L, Ke J, Zhou L, Tan S, Li T, Chen L. The Brachypodium distachyon DREB transcription factor BdDREB-39 confers oxidative stress tolerance in transgenic tobacco. PLANT CELL REPORTS 2024; 43:143. [PMID: 38750149 DOI: 10.1007/s00299-024-03223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 06/18/2024]
Abstract
Key message BdDREB-39 is a DREB/CBF transcription factor, localized in the nucleus with transactivation activity, and BdDREB-39-overexpressing transgenic yeasts and tobacco enhanced the tolerance to oxidative stress.Abstract The DREB/CBF transcription factors are generally recognized to play an important factor in plant growth, development and response to various abiotic stresses. However, the mechanism of DREB/CBFs in oxidative stress response is largely unknown. This study isolated a DREB/CBF gene BdDREB-39 from Brachypodium distachyon (B. distachyon). Multiple sequence alignment and phylogenetic analysis showed that BdDREB-39 was closely related to the DREB proteins of oats, barley, wheat and rye and therefore its study can provide a reference for the excavation and genetic improvement of BdDREB-39 or its homologs in its closely related species. The transcript levels of BdDREB-39 were significantly up-regulated under H2O2 stress. BdDREB-39 was localised in the nucleus and functioned as a transcriptional activator. Overexpression of BdDREB-39 enhanced H2O2 tolerance in yeast. Transgenic tobaccos with BdDREB-39 had higher germination rates, longer root, better growth status, lesser reactive oxygen species (ROS) and malondialdehyde (MDA), and higher superoxide dismutase (SOD) and peroxidase (POD) activities than wild type (WT). The expression levels of ROS-related and stress-related genes were improved by BdDREB-39. In summary, these results revealed that BdDREB-39 can improve the viability of tobacco by regulating the expression of ROS and stress-related genes, allowing transgenic tobacco to accumulate lower levels of ROS and reducing the damage caused by ROS to cells. The BdDREB-39 gene has the potential for developing plant varieties tolerant to stress.
Collapse
Affiliation(s)
- Gang Huang
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Renjing Wan
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Liping Zou
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Jie Ke
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Lihong Zhou
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Shenglong Tan
- School of Information Engineering, Hubei University of Economics, Wuhan, 430205, China.
| | - Tiantian Li
- College of Life Science, Jianghan University, Wuhan, 430056, China.
| | - Lihong Chen
- College of Life Science, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
6
|
Chen L, Chen K, Xi X, Du X, Zou X, Ma Y, Song Y, Luo C, Weining S. The Evolution, Expression Patterns, and Domestication Selection Analysis of the Annexin Gene Family in the Barley Pan-Genome. Int J Mol Sci 2024; 25:3883. [PMID: 38612691 PMCID: PMC11011394 DOI: 10.3390/ijms25073883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Plant annexins constitute a conserved protein family that plays crucial roles in regulating plant growth and development, as well as in responses to both biotic and abiotic stresses. In this study, a total of 144 annexin genes were identified in the barley pan-genome, comprising 12 reference genomes, including cultivated barley, landraces, and wild barley. Their chromosomal locations, physical-chemical characteristics, gene structures, conserved domains, and subcellular localizations were systematically analyzed to reveal the certain differences between wild and cultivated populations. Through a cis-acting element analysis, co-expression network, and large-scale transcriptome analysis, their involvement in growth, development, and responses to various stressors was highlighted. It is worth noting that HvMOREXann5 is only expressed in pistils and anthers, indicating its crucial role in reproductive development. Based on the resequencing data from 282 barley accessions worldwide, genetic variations in thefamily were investigated, and the results showed that 5 out of the 12 identified HvMOREXanns were affected by selection pressure. Genetic diversity and haplotype frequency showed notable reductions between wild and domesticated barley, suggesting that a genetic bottleneck occurred on the annexin family during the barley domestication process. Finally, qRT-PCR analysis confirmed the up-regulation of HvMOREXann7 under drought stress, along with significant differences between wild accessions and varieties. This study provides some insights into the genome organization and genetic characteristics of the annexin gene family in barley at the pan-genome level, which will contribute to better understanding its evolution and function in barley and other crops.
Collapse
Affiliation(s)
- Liqin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F Univesity, Xianyang 712100, China; (L.C.); (K.C.); (X.X.)
| | - Kunxiang Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F Univesity, Xianyang 712100, China; (L.C.); (K.C.); (X.X.)
| | - Xi Xi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F Univesity, Xianyang 712100, China; (L.C.); (K.C.); (X.X.)
| | - Xianghong Du
- College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.D.); (X.Z.)
| | - Xinyi Zou
- College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.D.); (X.Z.)
| | - Yujia Ma
- College of Landscape Architecture and Art, Northwest A&F University, Xianyang 712100, China;
| | - Yingying Song
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China;
| | - Changquan Luo
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China;
| | - Song Weining
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F Univesity, Xianyang 712100, China; (L.C.); (K.C.); (X.X.)
| |
Collapse
|
7
|
Wei H, Chen J, Zhang X, Lu Z, Lian B, Liu G, Chen Y, Zhong F, Yu C, Zhang J. Comprehensive analysis of annexin gene family and its expression in response to branching architecture and salt stress in crape myrtle. BMC PLANT BIOLOGY 2024; 24:78. [PMID: 38287275 PMCID: PMC10826223 DOI: 10.1186/s12870-024-04748-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Annexin (ANN) is calcium (Ca2+)-dependent and phospholipid binding protein family, which is involved in plant growth and development and response to various stresses. However, little known about ANN genes were identified from crape myrtle, an ornamental horticultural plant widely cultivated in the world. RESULTS Here, 9 LiANN genes were identified from Lagerstroemia indica, and their characterizations and functions were investigated in L. indica for the first time. The LiANN genes were divided into 2 subfamilies. The gene structure, chromosomal location, and collinearity relationship were also explored. In addition, the GO annotation analysis of these LiANNs indicated that they are enriched in molecular functions, cellular components, and biological processes. Moreover, transcription factors (TFs) prediction analysis revealed that bHLH, MYB, NAC, and other TFs can interact with the LiANN promoters. Interestingly, the LiANN2/4/6-9 were demonstrated to play critical roles in the branching architecture of crape myrtle. Furthermore, the LiANN2/6/8/9 were differentially expressed under salt treatment, and a series of TFs regulating LiANN2/6/8/9 expression were predicted to play essential roles in salt resistance. CONCLUSIONS These results shed light on profile and function of the LiANN gene family, and lay a foundation for further studies of the LiANN genes.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Jinxin Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Xingyue Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Zixuan Lu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Bilin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China.
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China.
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| |
Collapse
|
8
|
Kang X, Zhao L, Liu X. Calcium Signaling and the Response to Heat Shock in Crop Plants. Int J Mol Sci 2023; 25:324. [PMID: 38203495 PMCID: PMC10778685 DOI: 10.3390/ijms25010324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Climate change and the increasing frequency of high temperature (HT) events are significant threats to global crop yields. To address this, a comprehensive understanding of how plants respond to heat shock (HS) is essential. Signaling pathways involving calcium (Ca2+), a versatile second messenger in plants, encode information through temporal and spatial variations in ion concentration. Ca2+ is detected by Ca2+-sensing effectors, including channels and binding proteins, which trigger specific cellular responses. At elevated temperatures, the cytosolic concentration of Ca2+ in plant cells increases rapidly, making Ca2+ signals the earliest response to HS. In this review, we discuss the crucial role of Ca2+ signaling in raising plant thermotolerance, and we explore its multifaceted contributions to various aspects of the plant HS response (HSR).
Collapse
Affiliation(s)
| | - Liqun Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China;
| | - Xiaotong Liu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China;
| |
Collapse
|
9
|
Bhar A, Chakraborty A, Roy A. The captivating role of calcium in plant-microbe interaction. FRONTIERS IN PLANT SCIENCE 2023; 14:1138252. [PMID: 36938033 PMCID: PMC10020633 DOI: 10.3389/fpls.2023.1138252] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Plant immune response is fascinating due to the complete absence of a humoral system. The adaptive immune response in plants relies on the intracellular orchestration of signalling molecules or intermediates associated with transcriptional reprogramming. Plant disease response phenomena largely depend on pathogen recognition, signal perception, and intracellular signal transduction. The pathogens possess specific pathogen-associated molecular patterns (PAMP) or microbe-associated molecular patterns (MAMP), which are first identified by pattern recognition receptors (PRRs) of host plants for successful infection. After successful pathogen recognition, the defence response is initiated within plants. The first line of non-specific defence response is called PAMP-triggered immunity (PTI), followed by the specific robust signalling is called effector-triggered immunity (ETI). Calcium plays a crucial role in both PTI and ETI. The biphasic induction of reactive oxygen species (ROS) is inevitable in any plant-microbe interaction. Calcium ions play crucial roles in the initial oxidative burst and ROS induction. Different pathogens can induce calcium accumulation in the cytosol ([Ca2+]Cyt), called calcium signatures. These calcium signatures further control the diverse defence-responsive proteins in the intracellular milieu. These calcium signatures then activate calcium-dependent protein kinases (CDPKs), calcium calmodulins (CaMs), calcineurin B-like proteins (CBLs), etc., to impart intricate defence signalling within the cell. Decoding this calcium ionic map is imperative to unveil any plant microbe interplay and modulate defence-responsive pathways. Hence, the present review is unique in developing concepts of calcium signature in plants and their subsequent decoding mechanism. This review also intends to articulate early sensing of calcium oscillation, signalling events, and comprehensive mechanistic roles of calcium within plants during pathogenic ingression. This will accumulate and summarize the exciting roles of calcium ions in plant immunity and provide the foundation for future research.
Collapse
Affiliation(s)
- Anirban Bhar
- Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Amrita Chakraborty
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
10
|
Niu S, Gu X, Zhang Q, Tian X, Chen Z, Liu J, Wei X, Yan C, Liu Z, Wang X, Zhu Z. Grapevine bZIP transcription factor bZIP45 regulates VvANN1 and confers drought tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1128002. [PMID: 36844077 PMCID: PMC9947540 DOI: 10.3389/fpls.2023.1128002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Drought is a severe environmental condition that restricts the vegetative growth and reduces the yield of grapevine (Vitis vinifera L.). However, the mechanisms underlying grapevine response and adaptation to drought stress remain unclear. In the present study, we characterized an ANNEXIN gene, VvANN1, which plays a positive role in the drought stress response. The results indicated that VvANN1 was significantly induced by osmotic stress. Expression of VvANN1 in Arabidopsis thaliana enhanced osmotic and drought tolerance through modulating the level of MDA, H2O2, and O2 ·- at the seedling stage, implying that VvANN1 might be involved in the process of ROS homeostasis under drought or osmotic stress conditions. Moreover, we used yeast one-hybridization and chromatin immunoprecipitation assays to show that VvbZIP45 could regulate VvANN1 expression by directly binding to the promoter region of VvANN1 in response to drought stress. We also generated transgenic Arabidopsis that constitutively expressed the VvbZIP45 gene (35S::VvbZIP45) and further produced VvANN1Pro::GUS/35S::VvbZIP45 Arabidopsis plants via crossing. The genetic analysis results subsequently indicated that VvbZIP45 could enhance GUS expression in vivo under drought stress. Our findings suggest that VvbZIP45 may modulate VvANN1 expression in response to drought stress and reduce the impact of drought on fruit quality and yield.
Collapse
Affiliation(s)
- Shuaike Niu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Grape Breeding, Shijiazhuang Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xiangyang Gu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Qian Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xuemin Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhan Chen
- Grape Breeding, Shijiazhuang Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jingru Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaoju Wei
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chengxiang Yan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ziwen Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaoji Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
11
|
Li X, Liu L, Sun S, Li Y, Jia L, Ye S, Yu Y, Dossa K, Luan Y. Transcriptome analysis reveals the key pathways and candidate genes involved in salt stress responses in Cymbidium ensifolium leaves. BMC PLANT BIOLOGY 2023; 23:64. [PMID: 36721093 PMCID: PMC9890885 DOI: 10.1186/s12870-023-04050-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cymbidium ensifolium L. is known for its ornamental value and is frequently used in cosmetics. Information about the salt stress response of C. ensifolium is scarce. In this study, we reported the physiological and transcriptomic responses of C. ensifolium leaves under the influence of 100 mM NaCl stress for 48 (T48) and 96 (T96) hours. RESULTS Leaf Na+ content, activities of the antioxidant enzymes i.e., superoxide dismutase, glutathione S-transferase, and ascorbate peroxidase, and malondialdehyde content were increased in salt-stressed leaves of C. ensifolium. Transcriptome analysis revealed that a relatively high number of genes were differentially expressed in CKvsT48 (17,249) compared to CKvsT96 (5,376). Several genes related to salt stress sensing (calcium signaling, stomata closure, cell-wall remodeling, and ROS scavenging), ion balance (Na+ and H+), ion homeostasis (Na+/K+ ratios), and phytohormone signaling (abscisic acid and brassinosteroid) were differentially expressed in CKvsT48, CKvsT96, and T48vsT96. In general, the expression of genes enriched in these pathways was increased in T48 compared to CK while reduced in T96 compared to T48. Transcription factors (TFs) belonging to more than 70 families were differentially expressed; the major families of differentially expressed TFs included bHLH, NAC, MYB, WRKY, MYB-related, and C3H. A Myb-like gene (CenREV3) was further characterized by overexpressing it in Arabidopsis thaliana. CenREV3's expression was decreased with the prolongation of salt stress. As a result, the CenREV3-overexpression lines showed reduced root length, germination %, and survival % suggesting that this TF is a negative regulator of salt stress tolerance. CONCLUSION These results provide the basis for future studies to explore the salt stress response-related pathways in C. ensifolium.
Collapse
Affiliation(s)
- Xiang Li
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 650021, Kunming, China
| | - Lanlan Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, 650224, Kunming, China
| | - Shixian Sun
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, 650224, Kunming, China
| | - Yanmei Li
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, 650224, Kunming, China
| | - Lu Jia
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, 650224, Kunming, China
| | - Shili Ye
- Faculty of Mathematics and Physics, Southwest Forestry University, 650224, Kunming, China
| | - Yanxuan Yu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, 650224, Kunming, China
| | - Komivi Dossa
- CIRAD, UMR AGAP Institute, F-34398, Montpellier, France
| | - Yunpeng Luan
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 650021, Kunming, China.
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, 650224, Kunming, China.
| |
Collapse
|
12
|
Moinoddini F, Mirshamsi Kakhki A, Bagheri A, Jalilian A. Genome-wide analysis of annexin gene family in Schrenkiella parvula and Eutrema salsugineum suggests their roles in salt stress response. PLoS One 2023; 18:e0280246. [PMID: 36652493 PMCID: PMC9847905 DOI: 10.1371/journal.pone.0280246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/24/2022] [Indexed: 01/19/2023] Open
Abstract
Annexins (Anns) play an important role in plant development, growth and responses to various stresses. Although Ann genes have been characterized in some plants, their role in adaptation mechanisms and tolerance to environmental stresses have not been studied in extremophile plants. In this study, Ann genes in Schrenkiella parvula and Eutrema salsugineum were identified using a genome-wide method and phylogenetic relationships, subcellular distribution, gene structures, conserved residues and motifs and also promoter prediction have been studied through bioinformatics analysis. We identified ten and eight encoding putative Ann genes in S. parvula and E. salsugineum genome respectively, which were divided into six subfamilies according to phylogenetic relationships. By observing conservation in gene structures and protein motifs we found that the majority of Ann members in two extremophile plants are similar. Furthermore, promoter analysis revealed a greater number of GATA, Dof, bHLH and NAC transcription factor binding sites, as well as ABRE, ABRE3a, ABRE4, MYB and Myc cis-acting elements in compare to Arabidopsis thaliana. To gain additional insight into the putative roles of candidate Ann genes, the expression of SpAnn1, SpAnn2 and SpAnn6 in S. parvula was studied in response to salt stress, which indicated that their expression level in shoot increased. Similarly, salt stress induced expression of EsAnn1, 5 and 7, in roots and EsAnn1, 2 and 5 in leaves of E. salsugineum. Our comparative analysis implies that both halophytes have different regulatory mechanisms compared to A. thaliana and suggest SpAnn2 gene play important roles in mediating salt stress.
Collapse
Affiliation(s)
- Fatemeh Moinoddini
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amin Mirshamsi Kakhki
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdolreza Bagheri
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Jalilian
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
13
|
Licaj I, Di Meo MC, Fiorillo A, Samperna S, Marra M, Rocco M. Comparative Analysis of the Response to Polyethylene Glycol-Simulated Drought Stress in Roots from Seedlings of "Modern" and "Ancient" Wheat Varieties. PLANTS (BASEL, SWITZERLAND) 2023; 12:428. [PMID: 36771510 PMCID: PMC9921267 DOI: 10.3390/plants12030428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Durum wheat is widely cultivated in the Mediterranean, where it is the basis for the production of high added-value food derivatives such as pasta. In the next few years, the detrimental effects of global climate change will represent a serious challenge to crop yields. For durum wheat, the threat of climate change is worsened by the fact that cultivation relies on a few genetically uniform, elite varieties, better suited to intensive cultivation than "traditional" ones but less resistant to environmental stress. Hence, the renewed interest in "ancient" traditional varieties are expected to be more tolerant to environmental stress as a source of genetic resources to be exploited for the selection of useful agronomic traits such as drought tolerance. The aim of this study was to perform a comparative analysis of the effect and response of roots from the seedlings of two durum wheat cultivars: Svevo, a widely cultivated elite variety, and Saragolla, a traditional variety appreciated for its organoleptic characteristics, to Polyethylene glycol-simulated drought stress. The effect of water stress on root growth was analyzed and related to biochemical data such as hydrogen peroxide production, electrolyte leakage, membrane lipid peroxidation, proline synthesis, as well as to molecular data such as qRT-PCR analysis of drought responsive genes and proteomic analysis of changes in the protein repertoire of roots from the two cultivars.
Collapse
Affiliation(s)
- Ilva Licaj
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Maria Chiara Di Meo
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Anna Fiorillo
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy
| | - Simone Samperna
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy
| | - Mauro Marra
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy
| | - Mariapina Rocco
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| |
Collapse
|
14
|
Ku YS, Cheng SS, Cheung MY, Law CH, Lam HM. The Re-Localization of Proteins to or Away from Membranes as an Effective Strategy for Regulating Stress Tolerance in Plants. MEMBRANES 2022; 12:membranes12121261. [PMID: 36557168 PMCID: PMC9788111 DOI: 10.3390/membranes12121261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/12/2023]
Abstract
The membranes of plant cells are dynamic structures composed of phospholipids and proteins. Proteins harboring phospholipid-binding domains or lipid ligands can localize to membranes. Stress perception can alter the subcellular localization of these proteins dynamically, causing them to either associate with or detach from membranes. The mechanisms behind the re-localization involve changes in the lipidation state of the proteins and interactions with membrane-associated biomolecules. The functional significance of such re-localization includes the regulation of molecular transport, cell integrity, protein folding, signaling, and gene expression. In this review, proteins that re-localize to or away from membranes upon abiotic and biotic stresses will be discussed in terms of the mechanisms involved and the functional significance of their re-localization. Knowledge of the re-localization mechanisms will facilitate research on increasing plant stress adaptability, while the study on re-localization of proteins upon stresses will further our understanding of stress adaptation strategies in plants.
Collapse
|
15
|
Cao Y, Qu J, Yu H, Yang Q, Li W, Fu F. Genomic Characteristics of Elite Maize Inbred Line 18-599 and Its Transcriptional Response to Drought and Low-Temperature Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3242. [PMID: 36501283 PMCID: PMC9739999 DOI: 10.3390/plants11233242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Elite inbred line 18-599 was developed via triple test cross from introduced hybrid P78599 and used as parents of dozens of maize hybrids adapting to the diverse ecological conditions of the maize ecological region in Southwest China. In this study, its genomic DNA was resequenced and aligned with the B73 genome sequence to identify single nucleotide polymorphism (SNP), and insertion (In) and deletion (Del) loci. These loci were aligned with those between B73 and 1020 inbred lines in the HapMap database to identify specific variation loci of 18-599. The results showed that there were 930,439 specific SNPs and 358,750 InDels between 18-599 and the 1020 lines. In total, 21,961 of them showed significant impacts on the functions of 12,297 genes, such as frameshift, change of splicing site, stop gain, change of start site, and stop loss. Phylogenetic analysis showed that 18-599 was closely related to inbred lines ZEAxujRAUDIAAPE and 2005-4, but far from some inbred lines directly isolated from P78599. This result indicated that 18-599 not only pyramided the elite genes of P78599, but also acquired genetic divergence during the repetitive backcrosses of triple test cross to confer its elite agronomic characteristics. Subsequently, the RNA of 18-599 was sequenced. The aligned 9713 and 37,528 of the 165,098 unigenes were screened and aligned with annotated transcripts of the B73 genome differentially expressed under drought and low-temperature stress, respectively, and their functions were involved in the responses to these stresses. The quantitative PCR results of fourteen random genes verified the RNA sequencing results. These findings suggest that the transcriptional responses of many resistance-related genes were an important mechanism for 18-599 to adapt to diverse ecological conditions.
Collapse
Affiliation(s)
- Yang Cao
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingtao Qu
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Haoqiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingqing Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wanchen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fengling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
16
|
Xu G, Moeder W, Yoshioka K, Shan L. A tale of many families: calcium channels in plant immunity. THE PLANT CELL 2022; 34:1551-1567. [PMID: 35134212 PMCID: PMC9048905 DOI: 10.1093/plcell/koac033] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/26/2022] [Indexed: 05/24/2023]
Abstract
Plants launch a concerted immune response to dampen potential infections upon sensing microbial pathogen and insect invasions. The transient and rapid elevation of the cytosolic calcium concentration [Ca2+]cyt is among the essential early cellular responses in plant immunity. The free Ca2+ concentration in the apoplast is far higher than that in the resting cytoplasm. Thus, the precise regulation of calcium channel activities upon infection is the key for an immediate and dynamic Ca2+ influx to trigger downstream signaling. Specific Ca2+ signatures in different branches of the plant immune system vary in timing, amplitude, duration, kinetics, and sources of Ca2+. Recent breakthroughs in the studies of diverse groups of classical calcium channels highlight the instrumental role of Ca2+ homeostasis in plant immunity and cell survival. Additionally, the identification of some immune receptors as noncanonical Ca2+-permeable channels opens a new view of how immune receptors initiate cell death and signaling. This review aims to provide an overview of different Ca2+-conducting channels in plant immunity and highlight their molecular and genetic mode-of-actions in facilitating immune signaling. We also discuss the regulatory mechanisms that control the stability and activity of these channels.
Collapse
Affiliation(s)
- Guangyuan Xu
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
17
|
Liu Y, Kong D, Yang H, Douxchamps S, Atieno M, Xu B, Wang W, Liu G. A Transcriptomic Analysis of Stylo [Stylosanthes guianensis (Aubl) Sw.] Provides Novel Insights Into the Basis of Salinity Tolerance. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.725656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tropical areas have a large distribution of saline soils and tidal flats with a high salinity level. Salinity stress is a key factor limiting the widespread use of tropical forage such as Stylosanthes guianensis (Aubl) Sw. This study was designed to screen the salinity tolerance of 84 S. guianensis accessions; In a greenhouse experiment, plants were subjected to Hoagland solution or Hoagland solution with 200 mM NaCl for up to 15 days. Salinity tolerant accession CIAT11365 and salinity sensitive accession FM05-2 were obtained based on withered leaf rate (WLR). Further verification of salinity tolerance in CIAT11365 and FM05-2 with different salinity gradients showed that salinity stress increased WLR and decreased relative chlorophyll content (SPAD), maximum photochemical efficiency of photosystem II (Fv/Fm), and photosynthetic rate (Pn) in FM05-2, but CIAT11365 exhibited lower WLR and higher SPAD, Fv/Fm, and Pn. Leaf RNA-Seq revealed that Ca2+ signal transduction and Na+ transport ability, salinity tolerance-related transcription factors and antioxidant ability, an increase of auxin, and inhibition of cytokinin may play key roles in CIAT11365 response to salinity stress. The results of this study may contribute to our understanding of the molecular mechanism underlying the responses of S. guianensis to salinity stress and also provide important clues for further study and in-depth characterization of salinity resistance breeding candidate genes in S. guianensis.
Collapse
|
18
|
Zhang Q, Song T, Guan C, Gao Y, Ma J, Gu X, Qi Z, Wang X, Zhu Z. OsANN4 modulates ROS production and mediates Ca 2+ influx in response to ABA. BMC PLANT BIOLOGY 2021; 21:474. [PMID: 34663209 PMCID: PMC8522085 DOI: 10.1186/s12870-021-03248-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/23/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND Plant annexins are calcium- and lipid-binding proteins that have multiple functions, and a significant amount of research on plant annexins has been reported in recent years. However, the functions of annexins in diverse biological processes in rice are largely unclear. RESULTS Herein, we report that OsANN4, a calcium-binding rice annexin protein, was induced by abscisic acid (ABA). Under ABA treatment, the plants in which OsANN4 was knocked down by RNA interference showed some visible phenotypic changes compared to the wild type, such as a lower rooting rate and shorter shoot and root lengths. Moreover, the superoxide dismutase (SOD) and catalase (CAT) activities of the RNAi lines were significantly lower and further resulted in higher accumulation of O2.- and H2O2 than those of the wild-type. A Non-invasive Micro-test Technology (NMT) assay showed that ABA-induced net Ca2+ influx was inhibited in OsANN4 knockdown plants. Interestingly, the phenotypic differences caused by ABA were eliminated in the presence of LaCl3 (Ca2+ channel inhibitor). Apart from this, we demonstrated that OsCDPK24 interacted with and phosphorylated OsANN4. When the phosphorylated serine residue of OsANN4 was substituted by alanine, the interaction between OsANN4 and OsCDPK24 was still observed, however, both the conformation of OsANN4 and its binding activity with Ca2+ might be changed. CONCLUSIONS OsANN4 plays a crucial role in the ABA response, partially by modulating ROS production, mediating Ca2+ influx or interacting with OsCDPK24.
Collapse
Affiliation(s)
- Qian Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Tao Song
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Can Guan
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Yingjie Gao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Jianchao Ma
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Xiangyang Gu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Zhiguang Qi
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Xiaoji Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Zhengge Zhu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China.
| |
Collapse
|
19
|
Harbaoui M, Ben Romdhane W, Ben Hsouna A, Brini F, Ben Saad R. The durum wheat annexin, TdAnn6, improves salt and osmotic stress tolerance in Arabidopsis via modulation of antioxidant machinery. PROTOPLASMA 2021; 258:1047-1059. [PMID: 33594480 DOI: 10.1007/s00709-021-01622-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
TdAnn6 is a gene encoding an annexin protein in durum wheat (Triticum durum). The function of TdAnn6 in plant response to stress is not yet clearly understood. Here, we isolated TdAnn6 and characterized it in genetically modified Arabidopsis thaliana. Expressing TdAnn6 in Arabidopsis coincided with an improvement in stress tolerance at germination and seedling stages. In addition, TdAnn6-expressing seedling antioxidant activities were improved with lower level of malondialdehyde, and enhanced transcript levels of six stress-related genes during salt/osmotic stresses. Under greenhouse conditions, the TdAnn6 plants exhibited increased tolerance to salt or drought stress. To deepen our understanding of TdAnn6 function, we isolated a 1515-bp genomic fragment upstream of its coding sequence, designated as PrTdAnn6. The PrTdAnn6 promoter was fused to the β-glucuronidase reporter gene and transferred to Arabidopsis. By histochemical GUS staining, GUS activity was detected in the roots, leaves, and floral organs, but no activity was detected in the seeds. Furthermore, we noticed a high stimulation of promoter activity when A. thaliana seedlings were exposed to NaCl, mannitol, ABA, GA, and cold conditions. This cross-talk between tissue-specific expression and exogenous stress stimulation may provide additional layers of regulation for salt and osmotic stress responses in crops.
Collapse
Affiliation(s)
- Marwa Harbaoui
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
- Departments of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, 2112, Gafsa, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia.
| |
Collapse
|
20
|
Wu X, Ren Y, Jiang H, Wang Y, Yan J, Xu X, Zhou F, Ding H. Genome-Wide Identification and Transcriptional Expression Analysis of Annexin Genes in Capsicum annuum and Characterization of CaAnn9 in Salt Tolerance. Int J Mol Sci 2021; 22:ijms22168667. [PMID: 34445369 PMCID: PMC8395446 DOI: 10.3390/ijms22168667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 01/21/2023] Open
Abstract
Annexin (Ann) is a polygenic, evolutionarily conserved, calcium-dependent and phospholipid-binding protein family, which plays key roles in plant growth, development, and stress response. However, a comprehensive understanding of CaAnn genes of pepper (Capsicum annuum) at the genome-wide level is limited. Based on the available pepper genomic information, we identified 15 members of the CaAnn gene family. Phylogenetic analysis showed that CaAnn proteins could be categorized into four different orthologous groups. Real time quantitative RT-PCR analysis showed that the CaAnn genes were tissue-specific and were widely expressed in pepper leaves after treatments with cold, salt, and drought, as well as exogenously applied MeJA and ABA. In addition, the function of CaAnn9 was further explored using the virus-induced gene silencing (VIGS) technique. CaAnn9-silenced pepper seedlings were more sensitive to salt stress, reflected by the degradation of chlorophyll, the accumulation of reactive oxygen species (ROS), and the decrease of antioxidant defense capacity. This study provides important information for further study of the role of pepper CaAnn genes and their coding proteins in growth, development, and environmental responses.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.R.); (H.J.); (Y.W.); (J.Y.); (X.X.)
| | - Yan Ren
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.R.); (H.J.); (Y.W.); (J.Y.); (X.X.)
| | - Hailong Jiang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.R.); (H.J.); (Y.W.); (J.Y.); (X.X.)
| | - Yan Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.R.); (H.J.); (Y.W.); (J.Y.); (X.X.)
| | - Jiaxing Yan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.R.); (H.J.); (Y.W.); (J.Y.); (X.X.)
| | - Xiaoying Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.R.); (H.J.); (Y.W.); (J.Y.); (X.X.)
| | - Fucai Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
- Correspondence: (F.Z.); (H.D.); Tel.: +86-0514-8-797-9344 (F.Z.); Tel./Fax: +86-0514-8-797-9204 (H.D.)
| | - Haidong Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.R.); (H.J.); (Y.W.); (J.Y.); (X.X.)
- Correspondence: (F.Z.); (H.D.); Tel.: +86-0514-8-797-9344 (F.Z.); Tel./Fax: +86-0514-8-797-9204 (H.D.)
| |
Collapse
|
21
|
Overexpression of Cassava MeAnn2 Enhances the Salt and IAA Tolerance of Transgenic Arabidopsis. PLANTS 2021; 10:plants10050941. [PMID: 34066809 PMCID: PMC8150822 DOI: 10.3390/plants10050941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 11/18/2022]
Abstract
Annexins are a superfamily of soluble calcium-dependent phospholipid-binding proteins that have considerable regulatory effects in plants, especially in response to adversity and stress. The Arabidopsis thaliana AtAnn1 gene has been reported to play a significant role in various abiotic stress responses. In our study, the cDNA of an annexin gene highly similar to AtAnn1 was isolated from the cassava genome and named MeAnn2. It contains domains specific to annexins, including four annexin repeat sequences (I–IV), a Ca2+-binding sequence, Ca2+-independent membrane-binding-related tryptophan residues, and a salt bridge-related domain. MeAnn2 is localized in the cell membrane and cytoplasm, and it was found to be preferentially expressed in the storage roots of cassava. The overexpression of MeAnn2 reduced the sensitivity of transgenic Arabidopsis to various Ca2+, NaCl, and indole-3-acetic acid (IAA) concentrations. The expression of the stress resistance-related gene AtRD29B and auxin signaling pathway-related genes AtIAA4 and AtLBD18 in transgenic Arabidopsis was significantly increased under salt stress, while the Malondialdehyde (MDA) content was significantly lower than that of the control. These results indicate that the MeAnn2 gene may increase the salt tolerance of transgenic Arabidopsis via the IAA signaling pathway.
Collapse
|
22
|
Tichá M, Richter H, Ovečka M, Maghelli N, Hrbáčková M, Dvořák P, Šamaj J, Šamajová O. Advanced Microscopy Reveals Complex Developmental and Subcellular Localization Patterns of ANNEXIN 1 in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:1153. [PMID: 32849711 PMCID: PMC7419693 DOI: 10.3389/fpls.2020.01153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/15/2020] [Indexed: 05/04/2023]
Abstract
Annexin 1 (ANN1) is the most abundant member of the evolutionary conserved multigene protein superfamily of annexins in plants. Generally, annexins participate in diverse cellular processes, such as cell growth, differentiation, vesicle trafficking, and stress responses. The expression of annexins is developmentally regulated, and it is sensitive to the external environment. ANN1 is expressed in almost all Arabidopsis tissues, while the most abundant is in the root, root hairs, and in the hypocotyl epidermal cells. Annexins were also occasionally proposed to associate with cytoskeleton and vesicles, but they were never developmentally localized at the subcellular level in diverse plant tissues and organs. Using advanced light-sheet fluorescence microscopy (LSFM), we followed the developmental and subcellular localization of GFP-tagged ANN1 in post-embryonic Arabidopsis organs. By contrast to conventional microscopy, LSFM allowed long-term imaging of ANN1-GFP in Arabidopsis plants at near-environmental conditions without affecting plant viability. We studied developmental regulation of ANN1-GFP expression and localization in growing Arabidopsis roots: strong accumulation was found in the root cap and epidermal cells (preferentially in elongating trichoblasts), but it was depleted in dividing cells localized in deeper layers of the root meristem. During root hair development, ANN1-GFP accumulated at the tips of emerging and growing root hairs, which was accompanied by decreased abundance in the trichoblasts. In aerial plant parts, ANN1-GFP was localized mainly in the cortical cytoplasm of trichomes and epidermal cells of hypocotyls, cotyledons, true leaves, and their petioles. At the subcellular level, ANN1-GFP was enriched at the plasma membrane (PM) and vesicles of non-dividing cells and in mitotic and cytokinetic microtubular arrays of dividing cells. Additionally, an independent immunolocalization method confirmed ANN1-GFP association with mitotic and cytokinetic microtubules (PPBs and phragmoplasts) in dividing cells of the lateral root cap. Lattice LSFM revealed subcellular accumulation of ANN1-GFP around the nuclear envelope of elongating trichoblasts. Massive relocation and accumulation of ANN1-GFP at the PM and in Hechtian strands and reticulum in plasmolyzed cells suggest a possible osmoprotective role of ANN1-GFP during plasmolysis/deplasmolysis cycle. This study shows complex developmental and subcellular localization patterns of ANN1 in living Arabidopsis plants.
Collapse
Affiliation(s)
- Michaela Tichá
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Hendrik Richter
- Institute of Celullar and Molecular Botany, University of Bonn, Bonn, Germany
| | - Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Nicola Maghelli
- Max Planck Institute of Molecular Cell Biology and Genetics, Advanced Imaging Facility, Dresden, Germany
| | - Miroslava Hrbáčková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Petr Dvořák
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
- *Correspondence: Olga Šamajová,
| |
Collapse
|