1
|
Zhang L, Jiang C, Sun Y, Chen F, Wang J, Li Y. β-Carotene addition into a Tris-based diluent improves Hu ram sperm parameters after cryopreservation. Cryobiology 2025; 119:105254. [PMID: 40318450 DOI: 10.1016/j.cryobiol.2025.105254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/16/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
The effect of β-Carotene on ram semen cryopreservation has not been previously evaluated. The present research aimed to investigate the impact of different concentrations of β-Carotene in the diluent on the quality of ram semen and to analyze its antioxidant effects by the addition of tert-butyl hydroperoxide (TBHP) during cryopreservation. Semen samples were diluted with a Tris-based extender containing the β-Carotene (0, 10, 20, 30 and 40 mg/L). The motility and biokinetic characteristics, membrane and acrosome integrity, related parameters of oxidative stress, mitochondrial membrane potential (MMP) and apoptosis rate were measured after the cryo-preservation. The results indicated that the 20 mg/L β-Carotene group significantly improved total motility (TM), progressive motility (PM), average motion degree (MAD), membrane and acrosome integrity, total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and catalase (CAT) compared to the other groups (P < 0.05). Additionally, this group significantly reduced reactive oxygen species (ROS) and malondialdehyde (MDA) content compared to the control group (P < 0.05). Furthermore, the TM, PM, wobble (WOB), MAD, membrane and acrosome integrity, CAT, SOD, T-AOC and MMP in the 100 μM TBHP+20 mg/ml β-Carotene group were higher than those in the 100 μM TBHP group (P < 0.05). The combined supplementation group also significantly decreased the ROS, MDA, the protein level of Cytochrome C and sperm apoptosis rates (P < 0.05). Therefore, 20 mg/L is identified as the optimal concentration for the cryopreservation of ram semen, and β-Carotene can improve the oxidative stress damage during the frozen-thawed process by enhancing the antioxidant capacity of sperm and maintaining mitochondrial function.
Collapse
Affiliation(s)
- Liuming Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Caiyu Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Yuxuan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Fuhao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Jian Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China.
| | - Yongjun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Saez Lancellotti TE, Avena MV, Funes AK, Bernal-López MR, Gómez-Huelgas R, Fornes MW. Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects. Nat Rev Urol 2025; 22:294-312. [PMID: 39528754 DOI: 10.1038/s41585-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The decline in male fertility correlates with the global rise in obesity and dyslipidaemia, representing significant public health challenges. High-fat diets induce metabolic alterations, including hypercholesterolaemia, hepatic steatosis and atherosclerosis, with detrimental effects on testicular function. Testicular tissue, critically dependent on lipids for steroidogenesis, is particularly vulnerable to these metabolic disruptions. Excessive lipid accumulation within the testes, including cholesterol, triglycerides and specific fatty acids, disrupts essential sperm production processes such as membrane formation, maturation, energy metabolism and cell signalling. This leads to apoptosis, impaired spermatogenesis, and abnormal sperm morphology and function, ultimately compromising male fertility. During spermiogenesis, round spermatids undergo extensive reorganization, including the formation of the acrosome, manchette and specialized filamentous structures, which are essential for defining the final sperm cell shape. In this Perspective, we examine the impact of high-fat diets on the cytoskeleton of spermatogenic cells and its consequences to identify the mechanisms underlying male infertility associated with dyslipidaemia. Understanding these processes may facilitate the development of therapeutic strategies, such as dietary interventions or natural product supplementation, that aim to address infertility in men with obesity and hypercholesterolaemia. The investigation of cytoskeleton response to lipid stress extends beyond male reproduction, offering insights with broader implications.
Collapse
Affiliation(s)
- Tania E Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina.
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.
| | - María V Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
3
|
Shao W, Li W, Yuan X, Zhang H, Zhao J. Obesity alters testicular gene expression in mice, monkeys and humans. ZYGOTE 2025:1-7. [PMID: 40114606 DOI: 10.1017/s0967199425000061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Obesity, a global health issue, is associated with numerous diseases and has been shown to affect male reproductive health by inducing endocrine hormonal changes, chronic inflammation, oxidative stress and epigenetic alterations in reproductive cells. This study investigates the impact of obesity on testicular gene expression across mice, monkeys and humans, identifying 730 conserved testis-specific genes. High-fat diet-induced obesity upregulates GNG5, INHA, MSH5, SLC30A8 and SLC7A4 in testes, suggesting their potential as regulatory targets in testicular damage associated with obesity. Single-cell analysis reveals species-conserved expression patterns of SLC7A4 in Sertoli cells and SLC30A8 in SPG cells. It also confirmed that SLC30A8 and SLC7A4 were significantly upregulated in the testes of spontaneously obese mice. The findings highlight the potential of these genes as regulatory targets in obesity-related testicular dysfunction, providing insights into male reproductive health impairments caused by obesity.
Collapse
Affiliation(s)
- Wen Shao
- State-owned Assets Management Office, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, SN, 710061, China
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, SN, 710061, China
| | - Weijie Li
- State-owned Assets Management Office, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, SN, 710061, China
| | - Xingjuan Yuan
- Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, SN, 710061, China
| | - Haifeng Zhang
- Xi'an International Medical Center Hospital, Xi'an, SN, China
| | - Juan Zhao
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, SN, 710061, China
- Laboratory Animal Center, School of Basic Science, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, SN, 710061, China
| |
Collapse
|
4
|
Moreira RJ, Oliveira PF, Spadella MA, Ferreira R, Alves MG. Do Lifestyle Interventions Mitigate the Oxidative Damage and Inflammation Induced by Obesity in the Testis? Antioxidants (Basel) 2025; 14:150. [PMID: 40002337 PMCID: PMC11851673 DOI: 10.3390/antiox14020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Obesity results from a disproportionate accumulation of fat and has become a global health concern. The increase in adipose tissue is responsible for several systemic and testicular changes including hormone levels (leptin, adiponectin, testosterone, estrogen), inflammatory cytokines (increase in TNF-α and IL-6 and decrease in IL-10), and redox state (increase in reactive oxygen species and reduction in antioxidant enzymes). This results in poor sperm quality and compromised fertility in men with obesity. Lifestyle modifications, particularly diet transition to caloric restriction and physical exercise, are reported to reverse these negative effects. Nevertheless, precise mechanisms mediating these benefits, including how they modulate testicular oxidative stress, inflammation, and metabolism, remain to be fully elucidated. The main pathway described by which these lifestyle interventions reverse obesity-induced oxidative damage is the Nrf2-SIRT1 axis, which modulates the overexpression of antioxidant defenses. Of note, some of the detrimental effects of obesity on the testis are inherited by the descendants of individuals with obesity, and while caloric restriction reverses some of these effects, no significant work has been carried out regarding physical exercise. This review discusses the consequences of obesity-induced testicular oxidative stress on adult and pediatric populations, emphasizing the therapeutic potential of lifestyle to mitigate these detrimental effects.
Collapse
Affiliation(s)
- Ruben J. Moreira
- Institute of Biomedicine, Department of Medical Sciences (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal;
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (P.F.O.); (R.F.)
| | - Pedro F. Oliveira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (P.F.O.); (R.F.)
| | | | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (P.F.O.); (R.F.)
| | - Marco G. Alves
- Institute of Biomedicine, Department of Medical Sciences (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
5
|
Hafez Hafez M, El-Kazaz SES, El-Neweshy MS, Shukry M, Ghamry HI, Tohamy HG. Resveratrol mitigates heat stress-induced testicular injury in rats: enhancing male fertility via antioxidant, antiapoptotic, pro-proliferative, and anti-inflammatory mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03759-4. [PMID: 39792167 DOI: 10.1007/s00210-024-03759-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
This study investigates the protective effects of resveratrol (RSV) against heat stress (HS)-induced testicular injury in rats. Climate change has exacerbated heat stress, particularly affecting male fertility by impairing testicular function and sexual behavior. A total of 32 rats were allocated into four experimental groups: control, RSV control, HS control, and RSV + HS. The HS groups were subjected to a 43 °C water bath for 20 min to induce testicular hyperthermia, while the RSV + HS group received 20 mg/kg of RSV starting just before HS and continuing for eight weeks. Our findings reveal that HS significantly impairs male sexual behavior, evidenced by reduced mount and intromission numbers, and increased latencies. It also negatively affects the reproductive system, decreasing the weights of testes (Cohen's d = 1.8), epididymis, and accessory sex glands, and deteriorating sperm profile parameters such as motility (Cohen's d = 2.1), viability, and morphology. Furthermore, HS notably decreases reproductive performance in female rats, reducing litter size, live births, and conception rates. Biochemically, HS decreases activities of key antioxidant enzymes in the testes-glutathione peroxidase, superoxide dismutase, and catalase-while increasing lipid peroxidation, nitrite levels, and proinflammatory cytokines (IL-1β and TNF-α). It also reduces serum levels of reproductive hormones like testosterone (Cohen's d = 2.0) and 17β-estradiol. These results were affirmed with the histopathological evaluation and the immunohistochemistry staining (Ki-67, PCNA, Bax 5, and caspase-3 protein expression). Remarkably, RSV treatment mitigated these adverse effects, restoring both physiological and biochemical parameters toward normal levels (e.g., testicular weight Cohen's d = 1.6, sperm motility Cohen's d = 1.9, and testosterone levels Cohen's d = 1.7). This suggests that RSV's antioxidative, anti-inflammatory, antiapoptotic, and androgenic properties could effectively counteract the degenerative impacts of testicular hyperthermia. This highlights the potential of RSV as a therapeutic agent against climate change-induced fertility issues in males.
Collapse
Affiliation(s)
- Mona Hafez Hafez
- Department of Physiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| | - Sara El-Sayed El-Kazaz
- Animal and Poultry Behavior and Management, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| | - Mahmoud S El-Neweshy
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Heba I Ghamry
- Nutrition and Food Science, Department of Biology, College of Science, King Khalid University, P.O. Box 960, Abha, 61421, Saudi Arabia
| | - Hossam G Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| |
Collapse
|
6
|
Li T, Guo H. Overexpression of PD-L1 causes germ cell failure and infertility via CRISP1/PD-L1 interaction in mouse epididymis. ZYGOTE 2024; 32:224-229. [PMID: 38828560 DOI: 10.1017/s0967199424000157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Spermatogenesis is a highly complex process through which mature sperms are produced, and it requires three important stages; mitosis, meiosis and sperm formation. The expression of genes regulated by transcription factors at specific stages exerts important regulatory effects on the development process of germ cells. Male mice with overexpressed programmed death ligand 1 (PD-L1) (B7 homolog1) in the testis have infertility and abnormal sperm development, thereby exhibiting severe malformation and sloughing throughout spermatid maturation and collapsed and disorganized seminiferous epithelium structure. Furthermore, PD-L1 overexpression causes overexpression of cysteine-rich secretory protein 1 (CRISP1) in the epididymis and adversely affects or precludes sperm energization, sperm-pellucida binding and sperm-oocyte fusion. These findings suggest that CRISP1 and PD-L1 can interact with each other to induce male infertility and germ-cell dissociation.
Collapse
Affiliation(s)
- Ting Li
- School of Food and Bioengineering, Wuhu Institute of Technology, Wuhu, China
| | - Hongmin Guo
- Department of Reproductive Medicine, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
7
|
Li J, Li Y, Su W, Zhang X, Liang D, Tan M. In vivo anti-obesity efficacy of fucoxanthin/HP-β-CD nanofibers in high-fat diet induced obese mice. Food Chem 2023; 429:136790. [PMID: 37467668 DOI: 10.1016/j.foodchem.2023.136790] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/14/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
Fucoxanthin (Fx) has poor water solubility and bioavailability, which limits its application in the food industry. To improve the physicochemical properties of Fx, hydroxypropyl-β-cyclodextrin (HP-β-CD) encapsulated Fx nanofibers (Fx/HP-β-CD nanofibers) were fabricated via electrospinning without using polymer. Molecular docking analysis showed the Fx/HP-β-CD nanofibers contained Fx and HP-β-CD at 1:2. Morphological analysis revealed the nanofibers were homogeneous without beads, having a diameter around 499 nm. The thermostability of Fx was significantly improved after encapsulationg by HP-β-CD. Animal studies showed that there was a 14% decrease of body weight, 11% white adipose tissue reduction and 9% lower of liver triglyceride for the mice treated with Fx/HP-β-CD nanofibers as compared with that of Fx treated mice. The total cholesterol was reduced by 23% in mice serum after treatment with Fx/HP-β-CD as compared with that of Fx. Interestingly, the Fx/HP-β-CD in this study could attenuate the testicular histopathology in obese mice.
Collapse
Affiliation(s)
- Jiaxuan Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Duo Liang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
8
|
Ma J, Bi J, Sun B, Li H, Li Y, Wang S. Zinc Improves Semen Parameters in High-Fat Diet-Induced Male Rats by Regulating the Expression of LncRNA in Testis Tissue. Biol Trace Elem Res 2023; 201:4793-4805. [PMID: 36600170 DOI: 10.1007/s12011-022-03550-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
This study aimed to identify differentially expressed LncRNAs in testis tissue of male rats induced by high-fat diet and their changes after zinc supplementation, by constructing a high-fat feeding rat model, and then supplemented with zinc, and observed the expression of LncRNA in three groups of normal, high-fat fed, and zinc-intervened rats. Experimental studies show that the semen parameters of male rats with high-fat diet were decreased but recovered after zinc supplementation, and the related LncRNA also changed. Zinc may improve the high-fat diet-induced reduction of semen parameters by changing the expression of related LncRNA.
Collapse
Affiliation(s)
- Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Street, Shijiazhuang, 050071, Xinhua District, China
| | - Jiajie Bi
- Graduate School of Chengde Medical University, Chengde, 067000, China
| | - Bo Sun
- Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Huanhuan Li
- Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Street, Shijiazhuang, 050071, Xinhua District, China
| | - Yuejia Li
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Street, Shijiazhuang, 050071, Xinhua District, China.
- Graduate School of Chengde Medical University, Chengde, 067000, China.
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
9
|
Altered transcriptomic and metabolomic profiles of testicular interstitial fluid during aging in mice. Theriogenology 2023; 200:86-95. [PMID: 36773384 DOI: 10.1016/j.theriogenology.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 01/12/2023] [Accepted: 02/04/2023] [Indexed: 02/07/2023]
Abstract
The testicular interstitial fluid (TIF) that bathes seminiferous tubules and testicular interstitial cells is the main microenvironment of the testis and involved in crosstalk between testicular cells. TIF also provides a new mean to investigate dysfunctional states of testis such as spermatogenic disorder and aging. In this study, we performed integrative omics analysis on the exosomal transcriptomics and liquid chromatography-tandem mass spectrometry (LC-MS/MS) based non-targeted metabolomics in TIF by comparison between 21-month-old and 3-month-old male mice. A total of 1627 genes were identified as aging-related differently expressed genes (DEGs) in mouse TIF exosomes, with 1139 downregulated and 488 upregulated. Functional and pathway analysis revealed that the DEGs were associated with oxidative stress, carbon metabolism, and systemic lupus erythematosus. By comparing the DEGs with the Aging Atlas Database, we screened out key aging-related genes functioning as oxidative stress regulators, and their expression pattern in human testis with age was confirmed by immunohistochemistry results in the Human Protein Atlas database. In addition, the metabolomic analysis identified mild differences between young and old groups with 28 downregulated differently expressed metabolites (DEMs) and 6 upregulated DEMs, in the negative ion mode, including decreased level of several antioxidant metabolites. The KEGG analysis demonstrated that 10 pathways were upregulated, while the pyrimidine metabolism pathway was downregulated in the aged mice TIF. Taken together, this study highlighted the prominent role of oxidative stress that contributed to the aging microenvironment in the TIF, and brought comprehensive transcriptomic and metabolomic perspectives for understanding the mechanism underlying the testicular aging.
Collapse
|
10
|
Mekki S, Belhocine M, Bouzouina M, Chaouad B, Mostari A. Therapeutic effects of Salvia balansae on metabolic disorders and testicular dysfunction mediated by a high-fat diet in Wistar rats. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2023. [DOI: 10.3233/mnm-220094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Medicinal plants offer an important therapeutic resource in treatment of male infertility. We aim to evaluate the possible therapeutic effects of Salvia balansae on metabolic disorders and testicular dysfunction resulting from a high-fat diet (HFD). Antioxidant activity of aqueous extract of S. balansae leaves was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 2,2’-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay and total antioxidant capacity (TAC) assay. Antidiabetic activity was determined by α-amylase inhibition. In vivo, HFD was administered in Wistar rats for 18 weeks and aqueous extract of S. balansae for the last 6 weeks (200 mg/Kg of body weight/day). At the term of experimentation, testosterone and some plasma parameters were analyzed and removed testes were subjected to a histomorphometric study. Our results show high levels of phenolic components in aqueous extract of S. balansae and significant antioxidant and antidiabetic activity. HFD increases body weight, causes type 2 diabetes, dyslipidemia, liver failure and inflammation. Also, HFD decreases testosterone and alters testis histological structure (seminiferous tubular degeneration, impaired spermatogenesis and interstitial fibrosis). Treatment of HFD rats with extract of S. balansae normalizes body weight and plasma parameters, increases testosterone and regenerates testicular structure and function. In summary, S. balansae could reduce metabolic complications induced by HFD and serve the basis for developing a new therapy for testicular dysfunction.
Collapse
Affiliation(s)
- Siham Mekki
- Laboratory of Sciences and Technics of Animal Production (LSTPA), University of Mostaganem, Mostaganem, Algeria
| | - Mansouria Belhocine
- Laboratory of Sciences and Technics of Animal Production (LSTPA), University of Mostaganem, Mostaganem, Algeria
| | - Mohamed Bouzouina
- Laboratory of Plant Protection, University of Mostaganem, Mostaganem, Algeria
| | - Billel Chaouad
- Laboratory of Cellular and Molecular Biology, Extracellular Matrix, University of Science and Technology Houari Boumediene (USTHB), Algiers, Algeria
- Khemis Miliana University, Faculty of Natural and Life Sciences and Earth Sciences, Algeria
| | - Abassia Mostari
- Laboratory of Geo-Environment and spaces development, University Mustpha Stamboli of Mascara, BP 305 SidiSaid, Mascara, Algeria
| |
Collapse
|
11
|
Steg A, Oczkowicz M, Smołucha G. Omics as a Tool to Help Determine the Effectiveness of Supplements. Nutrients 2022; 14:nu14245305. [PMID: 36558464 PMCID: PMC9784029 DOI: 10.3390/nu14245305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
There has been considerable interest in dietary supplements in the last two decades. Companies are releasing new specifics at an alarming pace, while dietary supplements are one of the less-studied substances released for public consumption. However, access to state-of-the-art and high-throughput techniques, such as the ones used in omics, make it possible to check the impact of a substance on human transcriptome or proteome and provide answers to whether its use is reasonable and beneficial. In this review, the main domains of omics are briefly introduced. The review focuses on the three most widely used omics techniques: NGS, LC-MS, NMR, and their usefulness in studying dietary supplements. Examples of studies are described for some of the most commonly supplemented substances, such as vitamins: D, E, A, and plant extracts: resveratrol, green tea, ginseng, and curcumin extract. Techniques used in omics have proven to be useful in studying dietary supplements. NGS techniques are helpful in identifying pathways that change upon supplementation and determining polymorphisms or conditions that qualify for the necessity of a given supplementation. LC-MS techniques are used to establish the serum content of supplemented a compound and its effects on metabolites. Both LC-MS and NMR help establish the actual composition of a compound, its primary and secondary metabolites, and its potential toxicity. Moreover, NMR techniques determine what conditions affect the effectiveness of supplementation.
Collapse
|
12
|
Tsampoukas G, Tharakan T, Narayan Y, Khan F, Cayetano A, Papatsoris A, Buchholz N, Minhas S. Investigating the therapeutic options for diabetes-associated male infertility as illustrated in animal experimental models. Andrologia 2022; 54:e14521. [PMID: 35934995 DOI: 10.1111/and.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes is a rising global health concern and an increasingly common cause of male infertility. Although the definitive pathophysiological mechanisms underpinning the association between diabetes and infertility is unclear, there are several animal studies showing diabetes to be a detrimental factor on reproductive health through apoptosis, oxidative stress and impairment of steroidogenesis. Furthermore, as reflected in animal models, antidiabetic strategies and relevant treatments are beneficial in the management of infertile men with diabetes as the recovery of euglycemic status affects positively the spermatogenesis. However, the available data are still evolving and specific conclusion in human populations are not possible yet. In this review, we are discussing the current literature concerning the association of diabetes and male infertility, focusing on the therapeutic approach as illustrated in animals' models.
Collapse
Affiliation(s)
- Georgios Tsampoukas
- U-merge Ltd. (Urology for emerging countries), London, UK.,Department of Urology, Great Western Hospital NHS Trust, Swindon, UK
| | - Tharu Tharakan
- Department of Urology, Imperial Healthcare NHS Trust, Charing Cross Hospital, London, UK.,Section of Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Yash Narayan
- Department of Surgery, Cairns Hospital, Cairns North, Queensland, Australia
| | - Faisal Khan
- Department of Urology, North Devon Hospital, Barnstaple, UK
| | - Axel Cayetano
- Department of Urology, Imperial Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - Athanasios Papatsoris
- U-merge Ltd. (Urology for emerging countries), London, UK.,Department of Urology, Sismanoglio University Hospital of Athens, Athens, Greece
| | - Noor Buchholz
- U-merge Ltd. (Urology for emerging countries), London, UK
| | - Suks Minhas
- Department of Urology, Imperial Healthcare NHS Trust, Charing Cross Hospital, London, UK
| |
Collapse
|
13
|
Neuroprotective Effects of Resveratrol by Modifying Cholesterol Metabolism and Aβ Processing in SAMP8 Mice. Int J Mol Sci 2022; 23:ijms23147580. [PMID: 35886936 PMCID: PMC9324102 DOI: 10.3390/ijms23147580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cholesterol metabolism seems dysregulated and linked to amyloid-β (Aβ) formation in neurodegeneration, but the underlying mechanisms are poorly known. Resveratrol (RSV) is a polyphenol with antioxidant activity and neuroprotective properties. Here, we analyzed the effect of age and RSV supplementation on cholesterol metabolism in the brain and blood serum, and its potential link to Aβ processing, in SAMP8 mice—an animal model of aging and Alzheimer’s disease. In the brain, our results revealed an age-related increase in ApoE and unesterified cholesterol in the plasma membrane whereas LDL receptor, HMG-CoA reductase, HMG-CoA-C1 synthase, and ABCA1 transporter remained unaltered. Furthermore, BACE-1 and APP gene expression was decreased. This dysregulation could be involved in the amyloidogenic processing pathway of APP towards Aβ formation. In turn, RSV exhibited an age-dependent effect. While levels of unesterified cholesterol in the plasma membrane were not affected by RSV, several participants in cholesterol uptake, release, and de novo synthesis differed, depending on age. Thus, RSV supplementation exhibited a different neuroprotective effect acting on Aβ processing or cholesterol metabolism in the brain at earlier or later ages, respectively. In blood serum, HDL lipoprotein and free cholesterol were increased by age, whereas VLDL and LDL lipoproteins remained unaltered. Again, the protective effect of RSV by decreasing the LDL or increasing the HDL levels also seems to depend on the intervention’s moment. In conclusion, age is a prominent factor for cholesterol metabolism dysregulation in the brain of SAMP8 mice and influences the protective effects of RSV through cholesterol metabolism and Aβ processing.
Collapse
|
14
|
Tüfek NH, Yahyazadeh A, Altunkaynak BZ. Protective effect of indole-3-carbinol on testis of a high fat diet induced obesity. Biotech Histochem 2022; 98:1-12. [PMID: 35703014 DOI: 10.1080/10520295.2022.2073612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
We investigated the effects of obesity caused by a high fat diet (HFD) on rat testes and evaluated the possible protective effects of indole-3-carbinol (IND). We used 24 8-10-week-old 200 g male rats randomly assigned to 4 groups: non-obese control (NC), obese control (OC), non-obese IND group (NI), obese + IND group (OI). Testis samples were examined using stereological, immunohistochemical, biochemical and histological methods. The number of spermatogenic cells, Leydig cells, mean volume of testes and seminiferous tubules was significantly decreased in the OC group compared to the NC group, but these values were increased significantly in the OI group compared to the OC group. We found a significant increase in catalase and myeloperoxidase activities in the OC group compared to the NC group. In the OI group, catalase and myeloperoxidase levels were decreased compared to the OC group. TUNEL-positive cells also were increased in the OC group compared to the NC group (p < 0.05), but these were fewer in the OI group than the OC group. We found marked morphological changes in testicular tissues between the NC and OC groups, as well as between the OI and OC groups. We found that HFD induced obesity was detrimental to rat testes and that administration of IND ameliorated testicular changes caused by obesity.
Collapse
Affiliation(s)
- Nur Hande Tüfek
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Medical Faculty, Karabuk University, Karabuk, Turkey
| | | |
Collapse
|
15
|
Obesity and Male Reproduction: Do Sirtuins Play a Role? Int J Mol Sci 2022; 23:ijms23020973. [PMID: 35055159 PMCID: PMC8779691 DOI: 10.3390/ijms23020973] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity is a major current public health problem of global significance. A progressive sperm quality decline, and a decline in male fertility, have been reported in recent decades. Several studies have reported a strict relationship between obesity and male reproductive dysfunction. Among the many mechanisms by which obesity impairs male gonadal function, sirtuins (SIRTs) have an emerging role. SIRTs are highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases that play a role in gene regulation, metabolism, aging, and cancer. SIRTs regulate the energy balance, the lipid balance, glucose metabolism, and adipogenesis, but current evidence also indicates a role for SIRTs in male reproduction. However, the majority of the studies have been conducted in animal models and very few have been conducted with humans. This review shows that SIRTs play an important role among the molecular mechanisms by which obesity interferes with male fertility. This highlights the need to deepen this relationship. It will be of particular interest to evaluate whether synthetic and/or natural compounds capable of modifying the activity of SIRTs may also be useful for the treatment of obesity and its effects on gonadal function. Although few studies have explored the role of SIRT activators in obesity-induced male infertility, some molecules, such as resveratrol, appear to be effective in modulating SIRT activity, as well as counteracting the negative effects of obesity on male fertility. The search for strategies to improve male reproductive function in overweight/obese patients is a challenge and understanding the role of SIRTs and their activators may open new interesting scenarios in the coming years.
Collapse
|
16
|
Feng Y, Wang R, Su D, Zhai Y, Wang L, Yu L, Zhang Y, Ma X, Ma F. Identifying new sperm Western blot loading controls. Andrologia 2021; 53:e14226. [PMID: 34478154 DOI: 10.1111/and.14226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/31/2021] [Accepted: 08/12/2021] [Indexed: 02/05/2023] Open
Abstract
The measurement of protein expression level plays a pivotal role in both biological and medical studies. Housekeeping proteins, generally encoded by housekeeping genes are used as loading control proteins to normalize protein expression. Obviously, proper reference standards are essential for adequate analysis of protein expression. However, our study showed that the widely used normalisation proteins, whose expression levels varied greatly among sperm samples, were unsuitable for data standardisation. To uncover the proteins steadily expressed in sperm, we analysed several published transcriptome data of sperm. Seven proteins whose expression levels were relatively stable (co-efficient variation values less than 0.35) were selected and further evaluated by quantitative real-time polymerase chain reaction, Western Blot (WB) and immunocytochemistry. Our results showed that among the classical housekeeping proteins, only β-tubulin remained constant in sperm samples from 85 individuals. Compared with other classical housekeeping proteins such as glyceraldehyde 3-phosphate dehydrogenase, actin and histone H3, Cullin-1 (CUL1) and F-box only protein 7 (FBXO7) seemed to be more suitable to be used as internal controls for WB in sperm protein studies. Combined with the locations of these proteins, CUL1 and FBXO7 were suggested to be used as a housekeeping protein for total proteins.
Collapse
Affiliation(s)
- Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ruohan Wang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dongmei Su
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yujia Zhai
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Wang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Yu
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Ma
- Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Suleiman JB, Bakar ABA, Mohamed M. Review on Bee Products as Potential Protective and Therapeutic Agents in Male Reproductive Impairment. Molecules 2021; 26:molecules26113421. [PMID: 34198728 PMCID: PMC8201164 DOI: 10.3390/molecules26113421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/22/2022] Open
Abstract
Bee products are sources of functional food that have been used in complementary medicine to treat a variety of acute and chronic illnesses in many parts of the world. The products vary from location to location as well as country to country. Therefore, the aim of this review was to identify various bee products with potential preventive and therapeutic values used in the treatment of male reproductive impairment. We undertook a vigorous search for bee products with preventive and therapeutic values for the male reproductive system. These products included honey, royal jelly, bee pollen, bee brood, apilarnil, bee bread, bee wax, and bee venom. We also explained the mechanisms involved in testicular steroidogenesis, reactive oxygen species, oxidative stress, inflammation, and apoptosis, which may cumulatively lead to male reproductive impairment. The effects of bee pollen, bee venom, honey, propolis, royal jelly, and bee bread on male reproductive parameters were examined. Conclusively, these bee products showed positive effects on the steroidogenic, spermatogenic, oxidative stress, inflammatory, and apoptotic parameters, thereby making them a promising possible preventive and therapeutic treatment of male sub/infertility.
Collapse
Affiliation(s)
- Joseph Bagi Suleiman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (J.B.S.); (A.B.A.B.)
- Department of Science Laboratory Technology, Akanu Ibiam Federal Polytechnic, Unwana P.M.B. 1007, Afikpo, Ebonyi State, Nigeria
| | - Ainul Bahiyah Abu Bakar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (J.B.S.); (A.B.A.B.)
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (J.B.S.); (A.B.A.B.)
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence:
| |
Collapse
|
18
|
The Role of Resveratrol in Human Male Fertility. Molecules 2021; 26:molecules26092495. [PMID: 33923359 PMCID: PMC8123193 DOI: 10.3390/molecules26092495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/31/2022] Open
Abstract
Resveratrol (RSV) (3,4′,5 trihydroxystilbene) is a natural non-flavonoid polyphenol widely present in the Mediterranean diet. In particular, RSV is found in grapes, peanuts, berries, and red wine. Many beneficial effects of this molecule on human health have been reported. In fact, it improves some clinical aspects of various diseases, such as obesity, tumors, hypertension, Alzheimer’s disease, stroke, cardiovascular diseases, and diabetes mellitus. However, little is known about the relationship between this compound and male fertility and the few available results are often controversial. Therefore, this review evaluated the effects of RSV on human male fertility and the mechanisms through which this polyphenol could act on human spermatozoa.
Collapse
|
19
|
Environmental Impact on Male (In)Fertility via Epigenetic Route. J Clin Med 2020; 9:jcm9082520. [PMID: 32764255 PMCID: PMC7463911 DOI: 10.3390/jcm9082520] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
In the last 40 years, male reproductive health-which is very sensitive to both environmental exposure and metabolic status-has deteriorated and the poor sperm quality observed has been suggested to affect offspring development and its health in adult life. In this scenario, evidence now suggests that epigenetics shapes endocrine functions, linking genetics and environment. During fertilization, spermatozoa share with the oocyte their epigenome, along with their haploid genome, in order to orchestrate embryo development. The epigenetic signature of spermatozoa is the result of a dynamic modulation of the epigenetic marks occurring, firstly, in the testis-during germ cell progression-then, along the epididymis, where spermatozoa still receive molecules, conveyed by epididymosomes. Paternal lifestyle, including nutrition and exposure to hazardous substances, alters the phenotype of the next generations, through the remodeling of a sperm epigenetic blueprint that dynamically reacts to a wide range of environmental and lifestyle stressors. With that in mind, this review will summarize and discuss insights into germline epigenetic plasticity caused by environmental stimuli and diet and how spermatozoa may be carriers of induced epimutations across generations through a mechanism known as paternal transgenerational epigenetic inheritance.
Collapse
|