1
|
Yahya R, Albaqami A, Alzahrani A, Althubaiti SM, Alhariri M, Alrashidi ET, Alhazmi N, Al-Matary MA, Alharbi N. Comprehensive Genomic Analysis of Klebsiella pneumoniae and Its Temperate N-15-like Phage: From Isolation to Functional Annotation. Microorganisms 2025; 13:908. [PMID: 40284744 PMCID: PMC12029707 DOI: 10.3390/microorganisms13040908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Antibiotic resistance to Klebsiella pneumoniae poses a major public health threat, particularly in intensive care unit (ICU) settings. The emergence of extensively drug-resistant (XDR) strains complicates treatment options, requiring a deeper understanding of their genetic makeup and potential therapeutic targets. This research delineated an extensively drug-resistant (XDR) Klebsiella pneumoniae strain obtained from an ICU patient and telomeric temperate phage derived from hospital effluent. The bacteria showed strong resistance to multiple antibiotics, including penicillin (≥16 μg/mL), ceftriaxone (≥32 μg/mL), and meropenem (≥8 μg/mL), which was caused by SHV-11 beta-lactamase, NDM-1 carbapenemase, and porin mutations (OmpK37, MdtQ). The strain was categorized as K46 and O2a types and carried virulence genes involved in iron acquisition, adhesion, and immune evasion, as well as plasmids (IncHI1B_1_pNDM-MAR, IncFIB) and eleven prophage regions, reflecting its genetic adaptability and resistance dissemination. The 172,025 bp linear genome and 46.3% GC content of the N-15-like phage showed strong genomic similarities to phages of the Sugarlandvirus genus, especially those that infect K. pneumoniae. There were structural proteins (11.8%), DNA replication and repair enzymes (9.3%), and a toxin-antitoxin system (0.4%) encoded by the phage genome. A protelomerase and ParA/B partitioning proteins indicate that the phage is replicating and maintaining itself in a manner similar to the N15 phage, which is renowned for maintaining a linear plasmid prophage throughout lysogeny. Understanding the dynamics of antibiotic resistance and pathogen development requires knowledge of phages like this one, which are known for their temperate nature and their function in altering bacterial virulence and resistance profiles. The regulatory and structural proteins of the phage also provide a model for research into the biology of temperate phages and their effects on microbial communities. The importance of temperate phages in bacterial genomes and their function in the larger framework of microbial ecology and evolution is emphasized in this research.
Collapse
Affiliation(s)
- Reham Yahya
- Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (A.A.); (A.A.); (S.M.A.); (M.A.); (E.T.A.); (N.A.)
- King Abduallah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
| | - Aljawharah Albaqami
- Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (A.A.); (A.A.); (S.M.A.); (M.A.); (E.T.A.); (N.A.)
- King Abduallah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
| | - Amal Alzahrani
- Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (A.A.); (A.A.); (S.M.A.); (M.A.); (E.T.A.); (N.A.)
- King Abduallah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
| | - Suha M. Althubaiti
- Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (A.A.); (A.A.); (S.M.A.); (M.A.); (E.T.A.); (N.A.)
- King Abduallah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
| | - Moayad Alhariri
- Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (A.A.); (A.A.); (S.M.A.); (M.A.); (E.T.A.); (N.A.)
- King Abduallah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
| | - Eisa T. Alrashidi
- Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (A.A.); (A.A.); (S.M.A.); (M.A.); (E.T.A.); (N.A.)
- King Abduallah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
| | - Nada Alhazmi
- Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (A.A.); (A.A.); (S.M.A.); (M.A.); (E.T.A.); (N.A.)
- King Abduallah International Medical Research Center, Riyadh 11481, Saudi Arabia
- Ministry of the National Guard-Health Affairs, Riyadh 11426, Saudi Arabia
| | - Mohammed A. Al-Matary
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.A.-M.); (N.A.)
- Department of Animal Production, Faculty of Agriculture, Sana’a University, Sana’a 12191, Yemen
| | - Najwa Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.A.-M.); (N.A.)
| |
Collapse
|
2
|
Hashem SM, Abdel-Kader F, Ismael E, Hassan AM, Farouk MM, Elhariri M, Elhelw R. Evidence of hypervirulent carbapenem-resistant Klebsiella pneumoniae in cats with urinary affections and associated humans in Egypt. Sci Rep 2025; 15:12950. [PMID: 40234530 PMCID: PMC12000467 DOI: 10.1038/s41598-025-96147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
The emergence of hypervirulent and carbapenem-resistant Klebsiella pneumoniae poses a significant threat to the public health of both cats and their owners. Therefore, conducting molecular characterization and phylogenetic analysis of K. pneumoniae strains in both cats and humans in Egypt is crucial. 108 feline and 101 human urine samples were collected and subjected to routine microbiological isolation and molecular identification of K. pneumoniae. Subsequently, phenotypic antimicrobial sensitivity patterns and molecular identification of classical virulence, hypervirulence, and carbapenem resistance genes were examined. A total of 46 K. pneumoniae isolates were recovered, comprising 43.4% (23 out of 53) from diseased humans, 4.17% (2 out of 48) from healthy humans, 22.95% (14 out of 61) from diseased felines, and 14.89% (7 out of 47) from healthy felines. The detection rates for narrow drug-resistant (NDR), multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan drug-resistant (PDR) strains were 41.30%, 54.35%, 2.17%, and 2.17%, respectively. The distribution rates for mrKD, entB, K2, Kfu, and MagA genes were 76.1%, 82.6%, 8.7%, 13.0%, and 0%, respectively. In addition, the distribution of hypervirulence genes was 41.3%, 36.9%, 13.0%, 10.9%, and 17.4% for iucA, iroB, Peg344, rmPA, and rmPA2, respectively, and 43.5%, 30.4%, 19.6%, and 52.2% for NDM, OXA-48, VIM, and KPC resistance genes, respectively. Phylogenetic analysis of the entB gene from four recovered strains revealed a relationship between feline strains and other human strains. In conclusion, this study focused on the molecular characterization and phylogenetic analysis of hypervirulent and carbapenem-resistant K. pneumoniae in companion cats and humans in Egypt.
Collapse
Affiliation(s)
- Sarah M Hashem
- Department of Microbiology, Immunology and Mycology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fatma Abdel-Kader
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Elshaimaa Ismael
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ayah M Hassan
- Genome Research Unit (GRU), Animal Health Research Institute (AHRI), Dokki, Giza, Egypt
| | - Manar M Farouk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mahmoud Elhariri
- Department of Microbiology, Immunology and Mycology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Rehab Elhelw
- Department of Microbiology, Immunology and Mycology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Khalefa HS, Arafa AA, Hamza D, El-Razik KAA, Ahmed Z. Emerging biofilm formation and disinfectant susceptibility of ESBL-producing Klebsiella pneumoniae. Sci Rep 2025; 15:1599. [PMID: 39794383 PMCID: PMC11724021 DOI: 10.1038/s41598-024-84149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen responsible for various infections in humans and animals. It is known for its resistance to multiple antibiotics, particularly through the production of Extended-Spectrum Beta-Lactamases (ESBLs), and its ability to form biofilms that further complicate treatment. This study aimed to isolate and identify K. pneumoniae from animal and environmental samples and assess commercial disinfectants' effectiveness against K. pneumoniae isolates exhibiting ESBL-mediated resistance and biofilm-forming ability in poultry and equine farms in Giza Governorate, Egypt. A total of 320 samples, including nasal swabs from equine (n = 60) and broiler chickens (n = 90), environmental samples (n = 140), and human hand swabs (n = 30), were collected. K. pneumoniae was isolated using lactose broth enrichment and MacConkey agar, with molecular confirmation via PCR targeting the gyrA and magA genes. PCR also identified ESBL genes (blaTEM, blaSHV, blaCTX-M, blaOXA-1) and biofilm genes (luxS, Uge, mrkD). Antimicrobial susceptibility was assessed, and the efficacy of five commercial disinfectants was evaluated by measuring inhibition zones. Klebsiella pneumoniae was isolated from poultry (13.3%), equine (8.3%), wild birds (15%), water (10%), feed (2%), and human hand swabs (6.6%). ESBL and biofilm genes were detected in the majority of the isolates, with significant phenotypic resistance to multiple antibiotics. The disinfectants containing peracetic acid and hydrogen peroxide were the most effective, producing the largest inhibition zones, while disinfectants based on sodium hypochlorite and isopropanol showed lower efficacy. Statistical analysis revealed significant differences in the effectiveness of disinfectants against K. pneumoniae isolates across various sample origins (P < 0.05). The presence of K. pneumoniae in animal and environmental sources, along with the high prevalence of ESBL-mediated resistance and biofilm-associated virulence genes, underscores the zoonotic potential of this pathogen. The study demonstrated that disinfectants containing peracetic acid and hydrogen peroxide are highly effective against ESBL-producing K. pneumoniae. Implementing appropriate biosecurity measures, including the use of effective disinfectants, is essential for controlling the spread of resistant pathogens in farm environments.
Collapse
Affiliation(s)
- Hanan S Khalefa
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Amany A Arafa
- Department of Microbiology and Immunology, Veterinary Research Institute, National Research Centre, Dokki, Egypt
| | - Dalia Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Khaled A Abd El-Razik
- Department of Animal Reproduction, Veterinary Research Institute, National Research Centre, Dokki, Egypt
| | - Zeinab Ahmed
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
4
|
Ilyas M, Purkait D, Atmakuri K. Genomic islands and their role in fitness traits of two key sepsis-causing bacterial pathogens. Brief Funct Genomics 2024; 23:55-68. [PMID: 36528816 DOI: 10.1093/bfgp/elac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 01/21/2024] Open
Abstract
To survive and establish a niche for themselves, bacteria constantly evolve. Toward that, they not only insert point mutations and promote illegitimate recombinations within their genomes but also insert pieces of 'foreign' deoxyribonucleic acid, which are commonly referred to as 'genomic islands' (GEIs). The GEIs come in several forms, structures and types, often providing a fitness advantage to the harboring bacterium. In pathogenic bacteria, some GEIs may enhance virulence, thus altering disease burden, morbidity and mortality. Hence, delineating (i) the GEIs framework, (ii) their encoded functions, (iii) the triggers that help them move, (iv) the mechanisms they exploit to move among bacteria and (v) identification of their natural reservoirs will aid in superior tackling of several bacterial diseases, including sepsis. Given the vast array of comparative genomics data, in this short review, we provide an overview of the GEIs, their types and the compositions therein, especially highlighting GEIs harbored by two important pathogens, viz. Acinetobacter baumannii and Klebsiella pneumoniae, which prominently trigger sepsis in low- and middle-income countries. Our efforts help shed some light on the challenges these pathogens pose when equipped with GEIs. We hope that this review will provoke intense research into understanding GEIs, the cues that drive their mobility across bacteria and the ways and means to prevent their transfer, especially across pathogenic bacteria.
Collapse
Affiliation(s)
- Mohd Ilyas
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Dyuti Purkait
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Krishnamohan Atmakuri
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| |
Collapse
|
5
|
Zhu X, Yue C, Geng H, Song L, Yuan H, Zhang X, Sun C, Luan G, Jia X. Coexistence of tet(A) and bla KPC-2 in the ST11 hypervirulent tigecycline- and carbapenem-resistant Klebsiella pneumoniae isolated from a blood sample. Eur J Clin Microbiol Infect Dis 2023; 42:23-31. [PMID: 36322255 PMCID: PMC9816190 DOI: 10.1007/s10096-022-04512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Carbapenem-resistant Klebsiella pneumoniae are distributed worldwide. This study aimed to characterize a hypervirulent tigecycline-resistant and carbapenem-resistant Klebsiella pneumoniae strain, XJ-K2, collected from a patient's blood. We tested antimicrobial susceptibility, virulence, and whole-genome sequencing (WGS) on strain XJ-K2. WGS data were used to identify virulence and resistance genes and to perform multilocus sequence typing (MLST) and phylogenetic analysis. Three novel plasmids, including a pLVPK-like virulence plasmid (pXJ-K2-p1) and two multiple resistance plasmids (pXJ-K2-KPC-2 and pXJ-K2-p3), were discovered in strain XJ-K2. The IncFII(pCRY) plasmid pXJ-K2-p3 carried the dfrA14, sul2, qnrS1, blaLAP-2, and tet(A) resistance genes. The IncFII(pHN7A8)/IncR plasmid pXJ-K2-KPC-2 also carried a range of resistance elements, containing rmtB, blaKPC-2, blaTEM-1, blaCTX-M-65, and fosA3. MLST analysis revealed that strain XJ-K2 belonged to sequence type 11 (ST11). Seven complete phage sequences and many virulence genes were found in strain XJ-K2. Meanwhile, antimicrobial susceptibility tests and G. mellonella larval infection models confirmed the extensively drug resistance (XDR) and hypervirulence of KJ-K2. To our knowledge, this is the first observation and description of the ST11 hypervirulent tigecycline- and carbapenem-resistant K. pneumoniae strain co-carrying blaKPC-2 and the tet(A) in a patient's blood in China. Further investigation is needed to understand the resistance and virulence mechanisms of this significant hypervirulent tigecycline- and carbapenem-resistant strain.
Collapse
Affiliation(s)
- Xiaokui Zhu
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Changwu Yue
- Key Laboratory of Microbial Drugs Innovation and Transformation, Medical College, Yan’an University, Yan’an, China
| | - Huaixin Geng
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Lingjie Song
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Huiming Yuan
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Xianqin Zhang
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Chuanyu Sun
- Huashan Hospital, Fudan University, Shanghai, China
| | - Guangxin Luan
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Xu Jia
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| |
Collapse
|
6
|
Conceição-Neto OC, da Costa BS, Pontes LDS, Silveira MC, Justo-da-Silva LH, de Oliveira Santos IC, Teixeira CBT, Tavares e Oliveira TR, Hermes FS, Galvão TC, Antunes LCM, Rocha-de-Souza CM, Carvalho-Assef APD. Polymyxin Resistance in Clinical Isolates of K. pneumoniae in Brazil: Update on Molecular Mechanisms, Clonal Dissemination and Relationship With KPC-Producing Strains. Front Cell Infect Microbiol 2022; 12:898125. [PMID: 35909953 PMCID: PMC9334684 DOI: 10.3389/fcimb.2022.898125] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/24/2022] [Indexed: 11/14/2022] Open
Abstract
In Brazil, the production of KPC-type carbapenemases in Enterobacteriales is endemic, leading to widespread use of polymyxins. In the present study, 502 Klebsiella pneumoniae isolates were evaluated for resistance to polymyxins, their genetic determinants and clonality, in addition to the presence of carbapenem resistance genes and evaluation of antimicrobial resistance. Resistance to colistin (polymyxin E) was evaluated through initial selection on EMB agar containing 4% colistin sulfate, followed by Minimal Inhibitory Concentration (MIC) determination by broth microdilution. The susceptibility to 17 antimicrobials was assessed by disk diffusion. The presence of blaKPC, blaNDM and blaOXA-48-like carbapenemases was investigated by phenotypic methods and conventional PCR. Molecular typing was performed by PFGE and MLST. Allelic variants of the mcr gene were screened by PCR and chromosomal mutations in the pmrA, pmrB, phoP, phoQ and mgrB genes were investigated by sequencing. Our work showed a colistin resistance frequency of 29.5% (n = 148/502) in K. pneumoniae isolates. Colistin MICs from 4 to >128 µg/mL were identified (MIC50 = 64 µg/mL; MIC90 >128 µg/mL). All isolates were considered MDR, with the lowest resistance rates observed for amikacin (34.4%), and 19.6% of the isolates were resistant to all tested antimicrobials. The blaKPC gene was identified in 77% of the isolates, in consonance with the high rate of resistance to polymyxins related to its use as a therapeutic alternative. Through XbaI-PFGE, 51 pulsotypes were identified. MLST showed 21 STs, with ST437, ST258 and ST11 (CC11) being the most prevalent, and two new STs were determined: ST4868 and ST4869. The mcr-1 gene was identified in 3 K. pneumoniae isolates. Missense mutations in chromosomal genes were identified, as well as insertion sequences in mgrB. Furthermore, the identification of chromosomal mutations in K. pneumoniae isolates belonging from CC11 ensures its success as a high-risk epidemic clone in Brazil and worldwide.
Collapse
Affiliation(s)
- Orlando C. Conceição-Neto
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Faculdade de Medicina, Universidade Estácio de Sá (UNESA), Rio de Janeiro, Brazil
| | - Bianca Santos da Costa
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Leilane da Silva Pontes
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Melise Chaves Silveira
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Ivson Cassiano de Oliveira Santos
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Camila Bastos Tavares Teixeira
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Thamirys Rachel Tavares e Oliveira
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Fernanda Stephens Hermes
- Laboratório de Genômica Funcional e Bioinformática (LAGFB), Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Teca Calcagno Galvão
- Laboratório de Genômica Funcional e Bioinformática (LAGFB), Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - L. Caetano M. Antunes
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cláudio Marcos Rocha-de-Souza
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Ana P. D. Carvalho-Assef
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- *Correspondence: Ana P. D. Carvalho-Assef,
| |
Collapse
|
7
|
Patrinos GP, Kambouris ME. The genomic dimension in biodefense: Therapeutics. GENOMICS IN BIOSECURITY 2022:183-195. [DOI: 10.1016/b978-0-323-85236-4.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
8
|
Louka C, Ravensbergen SJ, Ott A, Zhou X, García-Cobos S, Friedrich AW, Pournaras S, Rosema S, Rossen JW, Stienstra Y, Bathoorn E. Predominance of CTX-M-15-producing ST131 strains among ESBL-producing Escherichia coli isolated from asylum seekers in the Netherlands. J Antimicrob Chemother 2021; 76:70-76. [PMID: 33009805 PMCID: PMC7729386 DOI: 10.1093/jac/dkaa395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/19/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives Numerous studies show increased prevalence of MDR bacteria amongst asylum seekers, but data on the molecular profiles of such strains are limited. We aimed to evaluate the molecular profiles of ESBL-producing Escherichia coli (ESBL-E. coli) strains isolated from asylum seekers and investigate their phylogenetic relatedness. Methods WGS data of ESBL-E. coli isolates from asylum seekers, retrieved from 1 January to 31 December 2016, were analysed to assess MLST STs, fim types, phylogroups and resistance genes. Fifty-two ESBL-E. coli isolates from the Dutch–German border region were used for genome comparison purposes as a control group. Results Among 112 ESBL-E. coli isolates from asylum seekers, originating mostly from Syria (n = 40) and Iraq (n = 15), the majority belonged to ST131 (21.4%) and ST10 (17.0%). The predominant gene for β-lactam resistance was blaCTX-M-15 (67.9%), followed by the often co-detected blaTEM-1B (39.3%). No mcr or carbapenemase genes were detected. The majority of the strains belonged to phylogroups B2 (38.4%) and A (32.1%), carrying fimH27 (25%) and fimH30 (19.6%). A core genome MLST minimum spanning tree did not reveal clusters containing strains from the asylum seekers and the control group. Five clusters were formed within the asylum seeker group, by strains isolated from people originating from different countries. Conclusions The most frequently isolated clones in this study were isolated on a regular basis within the Dutch population before the increase in the asylum seeker population. No mcr- or carbapenemase-producing clones were detected among the asylum seeker population. Minor clustering was observed amongst the asylum seeker strains.
Collapse
Affiliation(s)
- Christina Louka
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine/Infectious Diseases, Groningen, The Netherlands.,ESCMID Study Group for Infections in Travellers and Migrants, Basel, Switzerland
| | - Sofanne J Ravensbergen
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine/Infectious Diseases, Groningen, The Netherlands.,ESCMID Study Group for Infections in Travellers and Migrants, Basel, Switzerland
| | - Alewijn Ott
- Department of Medical Microbiology and Infection Prevention, Certe, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - Xuewei Zhou
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - Silvia García-Cobos
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - Alexander W Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - Spyros Pournaras
- Department of Medical Microbiology, 'ATTIKON' University Hospital of Athens, Athens, Greece
| | - Sigrid Rosema
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - John W Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - Ymkje Stienstra
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine/Infectious Diseases, Groningen, The Netherlands.,ESCMID Study Group for Infections in Travellers and Migrants, Basel, Switzerland
| | - Erik Bathoorn
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| |
Collapse
|
9
|
Vegetable-Derived Carbapenemase-Producing High-Risk Klebsiella pneumoniae ST15 and Acinetobacter baumannii ST2 Clones in Japan: Coexistence of bla NDM-1, bla OXA-66, bla OXA-72, and an AbaR4-Like Resistance Island in the Same Sample. Appl Environ Microbiol 2021; 87:AEM.02166-20. [PMID: 33674428 DOI: 10.1128/aem.02166-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
This study was conducted to characterize carbapenemase-producing Klebsiella pneumoniae and Acinetobacter baumannii isolated from fresh vegetables in Japan. Two K. pneumoniae isolates (AO15 and AO22) and one A. baumannii isolate (AO22) were collected from vegetables in the city of Higashihiroshima, Japan, and subjected to antimicrobial susceptibility testing, conjugation experiments, and complete genome sequencing using Illumina MiniSeq and Oxford Nanopore MinION sequencing platforms. The two K. pneumoniae isolates were clonal, belonging to sequence type 15 (ST15), and were determined to carry 19 different antimicrobial resistance genes, including bla NDM-1 Both the isolates carried bla NDM-1 on a self-transmissible IncFII(K):IncR plasmid of 122,804 bp with other genes conferring resistance to aminoglycosides [aac(6')-Ib, aadA1, and aph(3')-VI], β-lactams (bla CTX-M-15, bla OXA-9, and bla TEM-1A), fluoroquinolones [aac(6')-Ib-cr], and quinolones (qnrS1). A. baumannii AO22 carried bla OXA-66 on the chromosome, while bla OXA-72 was found as two copies on a GR2-type plasmid of 10,880 bp. Interestingly, A. baumannii AO22 harbored an AbaR4-like genomic resistance island (GI) of 41,665 bp carrying genes conferring resistance to tetracycline [tet(B)], sulfonamides (sul2), and streptomycin (strAB). Here, we identified Japanese carbapenemase-producing Gram-negative bacteria isolated from vegetables, posing a food safety issue and a public health concern. Additionally, we reported a GR2-type plasmid carrying two copies of bla OXA-72 and an AbaR4-like resistance island from a foodborne A. baumannii isolate.IMPORTANCE Carbapenemase-producing Gram-negative bacteria (CPGNB) cause severe health care-associated infections and constitute a major public health threat. Here, we investigated the genetic features of CPGNB isolated from fresh vegetable samples in Japan and found CPGNB, including Klebsiella pneumoniae and Acinetobacter baumannii, with dissimilar carbapenemases. The NDM carbapenemase, rarely described in Japan, was detected in two K. pneumoniae isolates. The A. baumannii isolate identified in this study carried bla OXA-66 on the chromosome, while bla OXA-72 was found as two copies on a GR2-type plasmid. This study indicates that even one fresh ready-to-eat vegetable sample might serve as a significant source of genes (bla NDM-1, bla OXA-72, bla CTX-M-14b, and bla CTX-M-15) encoding resistance to frontline and clinically important antibiotics (carbapenems and cephalosporins). Furthermore, the detection of these organisms in fresh vegetables in Japan is alarming and poses a food safety issue and a public health concern.
Collapse
|
10
|
Usman Qamar M, S Lopes B, Hassan B, Khurshid M, Shafique M, Atif Nisar M, Mohsin M, Nawaz Z, Muzammil S, Aslam B, Ejaz H, A Toleman M. The Present Danger of New Delhi Metallo-β-Lactamase: A Threat to Public Health. Future Microbiol 2020; 15:1759-1778. [DOI: doi.org/10.2217/fmb-2020-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 11/19/2020] [Indexed: 04/10/2025] Open
Affiliation(s)
- Muhammad Usman Qamar
- Department of Microbiology,Faculty of Life Sciences,Government College University Faisalabad,
38000,
Pakistan
| | - Bruno S Lopes
- School of Medicine,Medical Sciences & Nutrition,University of Aberdeen,
AB24 3DR,
Scotland,
UK
| | - Brekhna Hassan
- Department of Medical Microbiology & Infectious Diseases,Institute of Infection & Immunity,School of Medicine,Cardiff University,
CF10 3AT,
Cardiff,
UK
| | - Mohsin Khurshid
- Department of Microbiology,Faculty of Life Sciences,Government College University Faisalabad,
38000,
Pakistan
| | - Muhammad Shafique
- Department of Microbiology,Faculty of Life Sciences,Government College University Faisalabad,
38000,
Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology,Faculty of Life Sciences,Government College University Faisalabad,
38000,
Pakistan
- College of Science and Engineering,Flinders University,
5042,
Australia
| | - Mashkoor Mohsin
- Institute of Microbiology,University of Agriculture Faisalabad,
38000,
Pakistan
| | - Zeeshan Nawaz
- Department of Microbiology,Faculty of Life Sciences,Government College University Faisalabad,
38000,
Pakistan
| | - Saima Muzammil
- Department of Microbiology,Faculty of Life Sciences,Government College University Faisalabad,
38000,
Pakistan
| | - Bilal Aslam
- Department of Microbiology,Faculty of Life Sciences,Government College University Faisalabad,
38000,
Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences,College of Applied Medical Sciences,Jouf University,
Al
Jouf,
72388,
Saudi Arabia
| | - Mark A Toleman
- Department of Medical Microbiology & Infectious Diseases,Institute of Infection & Immunity,School of Medicine,Cardiff University,
CF10 3AT,
Cardiff,
UK
| |
Collapse
|
11
|
Latifi B, Tajbakhsh S, Askari A, Yousefi F. Phenotypic and genotypic characterization of carbapenemase-producing Klebsiella pneumoniae clinical isolates in Bushehr province, Iran. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Usman Qamar M, S Lopes B, Hassan B, Khurshid M, Shafique M, Atif Nisar M, Mohsin M, Nawaz Z, Muzammil S, Aslam B, Ejaz H, A Toleman M. The Present Danger of New Delhi Metallo-β-Lactamase: A Threat to Public Health. Future Microbiol 2020; 15:1759-1778. [DOI: https:/doi.org/10.2217/fmb-2020-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 11/19/2020] [Indexed: 04/10/2025] Open
Affiliation(s)
- Muhammad Usman Qamar
- Department of Microbiology,Faculty of Life Sciences,Government College University Faisalabad,
38000,
Pakistan
| | - Bruno S Lopes
- School of Medicine,Medical Sciences & Nutrition,University of Aberdeen,
AB24 3DR,
Scotland,
UK
| | - Brekhna Hassan
- Department of Medical Microbiology & Infectious Diseases,Institute of Infection & Immunity,School of Medicine,Cardiff University,
CF10 3AT,
Cardiff,
UK
| | - Mohsin Khurshid
- Department of Microbiology,Faculty of Life Sciences,Government College University Faisalabad,
38000,
Pakistan
| | - Muhammad Shafique
- Department of Microbiology,Faculty of Life Sciences,Government College University Faisalabad,
38000,
Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology,Faculty of Life Sciences,Government College University Faisalabad,
38000,
Pakistan
- College of Science and Engineering,Flinders University,
5042,
Australia
| | - Mashkoor Mohsin
- Institute of Microbiology,University of Agriculture Faisalabad,
38000,
Pakistan
| | - Zeeshan Nawaz
- Department of Microbiology,Faculty of Life Sciences,Government College University Faisalabad,
38000,
Pakistan
| | - Saima Muzammil
- Department of Microbiology,Faculty of Life Sciences,Government College University Faisalabad,
38000,
Pakistan
| | - Bilal Aslam
- Department of Microbiology,Faculty of Life Sciences,Government College University Faisalabad,
38000,
Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences,College of Applied Medical Sciences,Jouf University,
Al
Jouf,
72388,
Saudi Arabia
| | - Mark A Toleman
- Department of Medical Microbiology & Infectious Diseases,Institute of Infection & Immunity,School of Medicine,Cardiff University,
CF10 3AT,
Cardiff,
UK
| |
Collapse
|
13
|
Qamar MU, Lopes BS, Hassan B, Khurshid M, Shafique M, Atif Nisar M, Mohsin M, Nawaz Z, Muzammil S, Aslam B, Ejaz H, Toleman MA. The present danger of New Delhi metallo-β-lactamase: a threat to public health. Future Microbiol 2020; 15:1759-1778. [PMID: 33404261 DOI: 10.2217/fmb-2020-0069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The evolution of antimicrobial-resistant Gram-negative pathogens is a substantial menace to public health sectors, notably in developing countries because of the scarcity of healthcare facilities. New Delhi metallo-β-lactamase (NDM) is a potent β-lactam enzyme able to hydrolyze several available antibiotics. NDM was identified from the clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Swedish patient in New Delhi, India. This enzyme horizontally passed on to various Gram-negative bacteria developing resistance against a variety of antibiotics which cause treatment crucial. These bacteria increase fatality rates and play an integral role in the economic burden. The efficient management of NDM-producing isolates requires the coordination between each healthcare setting in a region. In this review, we present the prevalence of NDM in children, fatality and the economic burden of resistant bacteria, the clonal spread of NDM harboring bacteria and modern techniques for the detection of NDM producing pathogens.
Collapse
Affiliation(s)
- Muhammad Usman Qamar
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Bruno S Lopes
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, AB24 3DR, Scotland, UK
| | - Brekhna Hassan
- Department of Medical Microbiology & Infectious Diseases, Institute of Infection & Immunity, School of Medicine, Cardiff University, CF10 3AT, Cardiff, UK
| | - Mohsin Khurshid
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Muhammad Shafique
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
- College of Science and Engineering, Flinders University, 5042, Australia
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan
| | - Zeeshan Nawaz
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, 72388, Saudi Arabia
| | - Mark A Toleman
- Department of Medical Microbiology & Infectious Diseases, Institute of Infection & Immunity, School of Medicine, Cardiff University, CF10 3AT, Cardiff, UK
| |
Collapse
|
14
|
Ebomah KE, Okoh AI. Detection of Carbapenem-Resistance Genes in Klebsiella Species Recovered from Selected Environmental Niches in the Eastern Cape Province, South Africa. Antibiotics (Basel) 2020; 9:E425. [PMID: 32708057 PMCID: PMC7400071 DOI: 10.3390/antibiotics9070425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 02/02/2023] Open
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) have been heavily linked to hospital acquired infections (HAI) thereby leading to futility of antibiotics in treating infections and this have complicated public health problems. There is little knowledge about carbapenemase-producing Klebsiella spp. (CPK) in South Africa. This study aimed at determining the occurrence of CPK in different samples collected from selected environmental niches (hospitals, wastewater treatment plants, rivers, farms) in three district municipalities located in the Eastern Cape Province, South Africa. Molecular identification and characterization of the presumptive isolates were determined using polymerase chain reaction (PCR) and isolates that exhibited phenotypic carbapenem resistance were further screened for the possibility of harbouring antimicrobial resistance genes. One hundred (43%) of the 234 confirmed Klebsiella spp. isolates harboured carbapenem-resistance genes; 10 isolates harboured blaOXA-48-like; 17 harboured blaKPC; and 73 isolates harboured blaNDM-1. The emergence of blaKPC, blaOXA-48-like, and blaNDM-1 carbapenem-resistance genes in Klebsiella species associated with environmental sources is of great concern to public health.
Collapse
Affiliation(s)
- Kingsley Ehi Ebomah
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
15
|
OXA-48 Carbapenemase in Klebsiella pneumoniae Sequence Type 307 in Ecuador. Microorganisms 2020; 8:microorganisms8030435. [PMID: 32204571 PMCID: PMC7143988 DOI: 10.3390/microorganisms8030435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 01/04/2023] Open
Abstract
Antibiotic resistance is on the rise, leading to an increase in morbidity and mortality due to infectious diseases. Klebsiella pneumoniae is a Gram-negative bacterium that causes bronchopneumonia, abscesses, urinary tract infection, osteomyelitis, and a wide variety of infections. The ubiquity of this microorganism confounds with the great increase in antibiotic resistance and have bred great concern worldwide. K. pneumoniae sequence type (ST) 307 is a widespread emerging clone associated with hospital-acquired infections, although sporadic community infections have also been reported. The aim of our study is to describe the first case of Klebsiella pneumoniae (ST) 307 harboring the blaOXA-48-like gene in Ecuador. We characterized a new plasmid that carry OXA-48 and could be the source of future outbreaks. The strain was recovered from a patient with cancer previously admitted in a Ukrainian hospital, suggesting that this mechanism of resistance could be imported. These findings highlight the importance of programs based on active molecular surveillance for the intercontinental spread of multidrug-resistant microorganisms with emergent carbapenemases.
Collapse
|
16
|
Hammerum AM, Lauridsen CAS, Blem SL, Roer L, Hansen F, Henius AE, Holzknecht BJ, Søes L, Andersen LP, Røder BL, Justesen US, Østergaard C, Søndergaard T, Dzajic E, Wang M, Fulgsang-Damgaard D, Møller KL, Porsbo LJ, Hasman H. Investigation of possible clonal transmission of carbapenemase-producing Klebsiella pneumoniae complex member isolates in Denmark using core genome MLST and National Patient Registry Data. Int J Antimicrob Agents 2020; 55:105931. [PMID: 32135203 DOI: 10.1016/j.ijantimicag.2020.105931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/29/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES The aim of this study was to identify clonally-related carbapenemase-producing Klebsiella pneumoniae complex members that could be involved in outbreaks among hospitalized patients in Denmark, and to identify possible epidemiological links. METHODS From January 2014 to June 2018, 103 isolates belonging to the K. pneumoniae complex were collected from 102 patients. From the whole-genome sequencing (WGS) data, presence of genes encoding carbapenemase and multilocal sequence typing (MLST) data were extracted. Core genome MLST (cgMLST) cluster analysis was performed. Using data from the Danish National Patient Registry (DNPR) and reported travel history, presumptive outbreaks were investigated for possible epidemiological links. RESULTS The most common detected carbapenemase gene was blaOXA-48, followed by blaNDM-1. The 103 K. pneumoniae complex isolates belonged to 47 sequence types (STs) and cgMLST subdivided the isolates into 80 different complex types. cgMLST identified 13 clusters with 2-4 isolates per cluster. For five of the 13 clusters, a direct link (the patients stayed at the same ward on the same day) could be detected between at least some of the patients. In two clusters, the patients resided simultaneously at the same hospital, but not the same ward. A possible link (same ward within 1-13 days) was detected for the patients in one cluster. For five clusters detected by cgMLST, no epidemiological link could be detected using data from DNPR. CONCLUSION In this study, cgMLST combined with patient hospital admission data and travel information was found to be a reliable and detailed approach to detect possible clonal transmission of carbapenemase-producing K. pneumoniae complex members.
Collapse
Affiliation(s)
- Anette M Hammerum
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
| | - Caroline A S Lauridsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Sanne L Blem
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Louise Roer
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Hansen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Anna E Henius
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Lillian Søes
- Department of Clinical Microbiology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Leif P Andersen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Bent L Røder
- Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark
| | - Ulrik S Justesen
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Claus Østergaard
- Department of Clinical Microbiology, Lillebaelt Hospital, Vejle, Denmark
| | - Turid Søndergaard
- Department of Clinical Microbiology, Hospital Sønderjylland, Sønderborg, Denmark
| | - Esad Dzajic
- Department of Clinical Microbiology, Hospital South West Jutland, Esbjerg, Denmark
| | - Mikala Wang
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Lone Jannok Porsbo
- Infectious Disease Epidemiology & Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik Hasman
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
17
|
Abd El Ghany M, Fouz N, Hill-Cawthorne GA. Human Movement and Transmission of Antimicrobial-Resistant Bacteria. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020:311-344. [DOI: 10.1007/698_2020_560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
18
|
Tekeli A, Dolapci İ, Evren E, Oguzman E, Karahan ZC. Characterization of Klebsiella pneumoniae Coproducing KPC and NDM-1 Carbapenemases from Turkey. Microb Drug Resist 2019; 26:118-125. [PMID: 31539303 DOI: 10.1089/mdr.2019.0086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aims: The emergence of multidrug-resistant and carbapenem-resistant Klebsiella pneumoniae has became a major public health threat. In this study, we describe the characteristics of isolates coproducing KPC and NDM-1 carbapenemases from patients hospitalized at an emergency unit in Ankara, Turkey, between January and August 2018. The isolates were characterized by antibiogram susceptibility, carbapenemase and extended-spectrum beta-lactamase production, plasmid-mediated colistin (COL) resistance, and high-level aminoglycoside resistance. Pulsed field gel electrophoresis (PFGE), sequencing, wzi typing, multilocus sequence typing, and plasmid analysis were used to investigate the epidemiological relationship between the isolates. Results: All isolates were found to be resistant to amoxicillin-clavulanic acid, piperacillin-tazobactam, cefotaxime, cefoxitin, cefuroxime, ceftazidime, cefepime, imipenem, meropenem, ertapenem, amikacin, gentamicin, ciprofloxacin, levofloxacin, and trimethoprim-sulfamethoxazole. The minimum inhibitory concentration values for imipenem, meropenem, and ertapenem were >32 μg/mL, and >256 μg/mL for amikacin and gentamicin, and two isolates were found to be susceptible to both tigecycline and COL. All strains were positive for SHV, CTX-M, and rmtC, and negative for mcr-1 genes. A/C and FIIAS plasmids were found in all isolates. All isolates had the same PFGE pattern: wzi type 93 and ST15. Conclusion: Here, we have documented the characteristics of KPC- and NDM-1-coproducing isolates that harbored SHV, CTX-M, and rmtC and were typed as wzi 93 and ST15. We conclude that continuous monitoring of carbapenemases for unusual carbapenemase production is crucial to prevent the spread of these powerful isolates.
Collapse
Affiliation(s)
- Alper Tekeli
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey
| | - İştar Dolapci
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey
| | - Ebru Evren
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey.,Central Bacteriology Laboratory, İbn-i Sina Hospital, Ankara, Turkey
| | - Elif Oguzman
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey
| | - Zeynep Ceren Karahan
- Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey.,Central Bacteriology Laboratory, İbn-i Sina Hospital, Ankara, Turkey
| |
Collapse
|
19
|
Dandachi I, Chaddad A, Hanna J, Matta J, Daoud Z. Understanding the Epidemiology of Multi-Drug Resistant Gram-Negative Bacilli in the Middle East Using a One Health Approach. Front Microbiol 2019; 10:1941. [PMID: 31507558 PMCID: PMC6716069 DOI: 10.3389/fmicb.2019.01941] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
In the last decade, extended-spectrum cephalosporin and carbapenem resistant Gram-negative bacilli (GNB) have been extensively reported in the literature as being disseminated in humans but also in animals and the environment. These resistant organisms often cause treatment challenges due to their wide spectrum of antibiotic resistance. With the emergence of colistin resistance in animals and its subsequent detection in humans, the situation has worsened. Several studies reported the transmission of resistant organisms from animals to humans. Studies from the middle east highlight the spread of resistant organisms in hospitals and to a lesser extent in livestock and the environment. In view of the recent socio-economical conflicts that these countries are facing in addition to the constant population mobilization; we attempt in this review to highlight the gaps of the prevalence of resistance, antibiotic consumption reports, infection control measures and other risk factors contributing in particular to the spread of resistance in these countries. In hospitals, carbapenemases producers appear to be dominant. In contrast, extended spectrum beta lactamases (ESBL) and colistin resistance are becoming a serious problem in animals. This is mainly due to the continuous use of colistin in veterinary medicine even though it is now abandoned in the human sphere. In the environment, despite the small number of reports, ESBL and carbapenemases producers were both detected. This highlights the importance of the latter as a bridge between humans and animals in the transmission chain. In this review, we note that in the majority of the Middle Eastern area, little is known about the level of antibiotic consumption especially in the community and animal farms. Furthermore, some countries are currently facing issues with immigrants, poverty and poor living conditions which has been imposed by the civil war crisis. This all greatly facilitates the dissemination of resistance in all environments. In the one health concept, this work re-emphasizes the need to have global intervention measures to avoid dissemination of antibiotic resistance in humans, animals and the environment in Middle Eastern countries.
Collapse
Affiliation(s)
- Iman Dandachi
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Amer Chaddad
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Jason Hanna
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Jessika Matta
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Ziad Daoud
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
- Division of Clinical Microbiology, Saint George Hospital University Medical Center, Beirut, Lebanon
| |
Collapse
|
20
|
Arabaghian H, Salloum T, Alousi S, Panossian B, Araj GF, Tokajian S. Molecular Characterization of Carbapenem Resistant Klebsiella pneumoniae and Klebsiella quasipneumoniae Isolated from Lebanon. Sci Rep 2019; 9:531. [PMID: 30679463 PMCID: PMC6345840 DOI: 10.1038/s41598-018-36554-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative organism and a major public health threat. In this study, we used whole-genome sequences to characterize 32 carbapenem-resistant K. pneumoniae (CRKP) and two carbapenem-resistant K. quasipneumoniae (CRKQ). Antimicrobial resistance was assessed using disk diffusion and E-test, while virulence was assessed in silico. The capsule type was determined by sequencing the wzi gene. The plasmid diversity was assessed by PCR-based replicon typing to detect the plasmid incompatibility (Inc) groups. The genetic relatedness was determined by multilocus sequence typing, pan-genome, and recombination analysis. All of the isolates were resistant to ertapenem together with imipenem and/or meropenem. Phenotypic resistance was due to blaOXA-48,blaNDM-1, blaNDM-7, or the coupling of ESBLs and outer membrane porin modifications. This is the first comprehensive study reporting on the WGS of CRKP and the first detection of CRKQ in the region. The presence and dissemination of CRKP and CRKQ, with some additionally having characteristics of hypervirulent clones such as the hypermucoviscous phenotype and the capsular type K2, are particularly concerning. Additionally, mining the completely sequenced K. pneumoniae genomes revealed the key roles of mobile genetic elements in the spread of antibiotic resistance and in understanding the epidemiology of these clinically significant pathogens.
Collapse
Affiliation(s)
- Harout Arabaghian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1401, Lebanon
| | - Tamara Salloum
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1401, Lebanon
| | - Sahar Alousi
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1401, Lebanon
| | - Balig Panossian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1401, Lebanon
| | - George F Araj
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, 1107, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1401, Lebanon.
| |
Collapse
|