1
|
Weng S, Devitt CC, Nyaoga BM, Alvarado J, Wallingford JB. PCP-dependent polarized mechanics in the cortex of individual cells during convergent extension. Dev Biol 2025; 523:59-67. [PMID: 40222643 DOI: 10.1016/j.ydbio.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Convergent extension (CE) is a key process for tissue elongation during vertebrate development and is driven by polarized cell behaviors. Here, we used a novel image-based technique to investigate the mechanical properties of individual cells undergoing CE. Our results suggest a PCP- and Septin-dependent mechanical gradient, where cortical tension is higher at the anterior face of the cells compared with their posterior face. Disruption of PCP protein Vangl2 or its downstream effector Septin7 eliminates this mechanical polarity. These findings demonstrate a link between actin organization, PCP signaling, and mechanical polarization, providing new avenues into the mechanochemical regulation of cellular behaviors during CE.
Collapse
Affiliation(s)
- Shinuo Weng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Molecular Biosciences, University of Texas, Austin, TX, 78712, USA.
| | - Caitlin C Devitt
- Department of Molecular Biosciences, University of Texas, Austin, TX, 78712, USA
| | - Bill M Nyaoga
- Department of Molecular Biosciences, University of Texas, Austin, TX, 78712, USA
| | - José Alvarado
- Department of Physics, University of Texas, Austin, TX, 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX, 78712, USA
| |
Collapse
|
2
|
Liu S, Meng Y, Lan X, Li R, Kanchanawong P. Ground-state pluripotent stem cells are characterized by Rac1-dependent cadherin-enriched F-actin complexes. J Cell Sci 2025; 138:JCS263811. [PMID: 39886806 DOI: 10.1242/jcs.263811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
Pluripotent stem cells (PSCs) exhibit extraordinary differentiation potential and are thus highly valuable cellular model systems. However, although different PSC types corresponding to distinct stages of embryogenesis have been in common use, aspects of their cellular architecture and mechanobiology remain insufficiently understood. Here, we investigated how the actin cytoskeleton is regulated in different pluripotency states. We observed a drastic reorganization during the transition from ground-state naïve mouse embryonic stem cells (mESCs) into converted prime epiblast stem cells (EpiSCs). mESCs are characterized by prominent actin-enriched cortical structures that contain cadherin-based cell-cell junctional components, despite not locating at cell-cell junctions. We term these structures 'non-junctional cadherin complexes' (NJCCs) and show that they are under low mechanical tension, depend on the ectodomain but not the cytoplasmic domain of E-cadherin, and exhibit minimal Ca2+ dependence. Active Rac1 was identified as a negative regulator that promotes β-catenin dissociation and NJCC fragmentation. Our data suggests that NJCCs might arise from the cis-association of E-cadherin ectodomain, with potential roles in ground-state pluripotency, and could serve as structural markers to distinguish heterogeneous population of pluripotent stem cells.
Collapse
Affiliation(s)
- Shiying Liu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Yue Meng
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Xi Lan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Rong Li
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
3
|
Troyanovsky RB, Indra I, Troyanovsky SM. Actin-dependent α-catenin oligomerization contributes to adherens junction assembly. Nat Commun 2025; 16:1801. [PMID: 39979305 PMCID: PMC11842732 DOI: 10.1038/s41467-025-57079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Classic cadherins, specifically E-cadherin in most epithelial cells, are transmembrane adhesion receptors, whose intracellular region interacts with proteins, termed catenins, forming the cadherin-catenin complex (CCC). The cadherin ectodomain generates 2D adhesive clusters (E-clusters) through cooperative trans and cis interactions, while catenins anchor the E-clusters to the actin cytoskeleton. How these two types of interactions are coordinated in the formation of specialized cell-cell adhesions, adherens junctions (AJ), remains unclear. Here, we focus on the role of the actin-binding domain of α-catenin (αABD) by showing that the interaction of the αABD with actin generates actin-bound linear CCC oligomers (CCC/actin strands) incorporating up to six CCCs. This actin-driven CCC oligomerization, which is cadherin ectodomain independent, preferentially occurs along the actin cortex enriched with key basolateral proteins, myosin-1c, scribble, and DLG1. In cell-cell contacts, the CCC/actin strands integrate with the E-clusters giving rise to the composite oligomers, E/actin clusters. Targeted inactivation of strand formation by point mutations emphasizes the importance of this oligomerization process for blocking intercellular protrusive membrane activity and for coupling AJs with the actomyosin-derived tensional forces.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Indrajyoti Indra
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Cell & Developmental Biology, The Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Oda H, Nishiguchi S, Song C, Murata K, Uchihashi T, Suzuki Y. Nanoscale Visualization of Drosophila E-cadherin Ectodomain Fragments and Their Interactions Using DNA Origami Nanoblocks. J Mol Biol 2025; 437:168875. [PMID: 39581222 DOI: 10.1016/j.jmb.2024.168875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The adhesive function of cell surface proteins can be visually assessed through direct observation; however, the underlying structures that mediate adhesion typically remain invisible at the nanoscale level. This hinders knowledge on the diversity of molecular architectures responsible for cell-cell adhesion. Drosophila E-cadherin (DE-cadherin), a classical cadherin with a unique domain structure, demonstrates adhesive function; however, it lacks a structural model that explains its adhesion mechanism. Here, we present a novel application of DNA origami technology to create a cell-free, flat environment in which full DE-cadherin ectodomains are anchored using SNAP-tags and biotin-streptavidin interactions. DNA origami was assembled into a 120 nm long block, bearing 5 or 14 biotin:streptavidin sites that were evenly spaced on one lateral face. DE-cadherin ectodomain fragments were attached via biotinylated SNAP-tags. These decorated DNA origami nanoblocks were subjected to transmission electron and high-speed atomic force microscopy, which revealed a hinge-like site that separated the membrane-distal and -proximal portions of the DE-cadherin ectodomain, suggesting a role in mechanical flexibility. We also observed interactions between DE-cadherin ectodomains via their membrane-distal portions on single DNA origami nanoblocks. We reconstituted an adhesion-like process via pairing DNA origami nanoblocks using DE-cadherin ectodomain interactions. Homophilic associations of functional DE-cadherin ectodomains between the paired DNA origami nanoblocks were visualized at the nanoscale, displaying strand-like molecular configurations, likely representing the extracellular cadherin repeats without regular arrays of structural elements. This study introduces a DNA origami-based platform for reconstituting and visualizing cadherin ectodomain interactions, with potential applications for a broader range of adhesion molecules.
Collapse
Affiliation(s)
- Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Shigetaka Nishiguchi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Chihong Song
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yuki Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| |
Collapse
|
5
|
Gu L, Sauceda R, Brar J, Fessahaye F, Joo M, Lee J, Nguyen J, Teng M, Weng M. A novel protein Moat prevents ectopic epithelial folding by limiting Bazooka/Par3-dependent adherens junctions. Mol Biol Cell 2024; 35:ar110. [PMID: 38922850 PMCID: PMC11321041 DOI: 10.1091/mbc.e24-04-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Contractile myosin and cell adhesion work together to induce tissue shape changes, but how they are patterned to achieve diverse morphogenetic outcomes remains unclear. Epithelial folding occurs via apical constriction, mediated by apical contractile myosin engaged with adherens junctions, as in Drosophila ventral furrow formation. While it has been shown that a multicellular gradient of myosin contractility determines folding shape, the impact of multicellular patterning of adherens junction levels on tissue folding is unknown. We identified a novel Drosophila gene moat essential for differential apical constriction and folding behaviors across the ventral epithelium which contains both folding ventral furrow and nonfolding ectodermal anterior midgut (ectoAMG). We show that Moat functions to downregulate polarity-dependent adherens junctions through inhibiting cortical clustering of Bazooka/Par3 proteins. Such downregulation of polarity-dependent junctions is critical for establishing a myosin-dependent pattern of adherens junctions, which in turn mediates differential apical constriction in the ventral epithelium. In moat mutants, abnormally high levels of polarity-dependent junctions promote ectopic apical constriction in cells with low-level contractile myosin, resulting in expansion of infolding from ventral furrow to ectoAMG, and flattening of ventral furrow constriction gradient. Our results demonstrate that tissue-scale distribution of adhesion levels patterns apical constriction and establishes morphogenetic boundaries.
Collapse
Affiliation(s)
- Lingkun Gu
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| | - Rolin Sauceda
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| | - Jasneet Brar
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| | - Ferdos Fessahaye
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| | - Minsang Joo
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| | - Joan Lee
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | | - Marissa Teng
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| | - Mo Weng
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154
| |
Collapse
|
6
|
Campàs O, Noordstra I, Yap AS. Adherens junctions as molecular regulators of emergent tissue mechanics. Nat Rev Mol Cell Biol 2024; 25:252-269. [PMID: 38093099 DOI: 10.1038/s41580-023-00688-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 03/28/2024]
Abstract
Tissue and organ development during embryogenesis relies on the collective and coordinated action of many cells. Recent studies have revealed that tissue material properties, including transitions between fluid and solid tissue states, are controlled in space and time to shape embryonic structures and regulate cell behaviours. Although the collective cellular flows that sculpt tissues are guided by tissue-level physical changes, these ultimately emerge from cellular-level and subcellular-level molecular mechanisms. Adherens junctions are key subcellular structures, built from clusters of classical cadherin receptors. They mediate physical interactions between cells and connect biochemical signalling to the physical characteristics of cell contacts, hence playing a fundamental role in tissue morphogenesis. In this Review, we take advantage of the results of recent, quantitative measurements of tissue mechanics to relate the molecular and cellular characteristics of adherens junctions, including adhesion strength, tension and dynamics, to the emergent physical state of embryonic tissues. We focus on systems in which cell-cell interactions are the primary contributor to morphogenesis, without significant contribution from cell-matrix interactions. We suggest that emergent tissue mechanics is an important direction for future research, bridging cell biology, developmental biology and mechanobiology to provide a holistic understanding of morphogenesis in health and disease.
Collapse
Affiliation(s)
- Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Ivar Noordstra
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
7
|
Rabino A, Awadia S, Ali N, Edson A, Garcia-Mata R. The Scribble/SGEF/Dlg1 complex regulates the stability of apical junctions in epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586884. [PMID: 38585765 PMCID: PMC10996629 DOI: 10.1101/2024.03.26.586884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
SGEF, a RhoG specific GEF, can form a ternary complex with the Scribble polarity complex proteins Scribble and Dlg1, which regulates the formation and maintenance of adherens junctions and barrier function of epithelial cells. Notably, silencing SGEF results in a dramatic downregulation of the expression of both E-cadherin and ZO-1. However, the molecular mechanisms involved in the regulation of this pathway are not known. Here, we describe a novel signaling pathway governed by the Scribble/SGEF/Dlg1 complex. Our results show that an intact ternary complex is required to maintain the stability of the apical junctions, the expression of ZO-1, and TJ permeability. In contrast, only SGEF is necessary to regulate E-cadherin expression. The absence of SGEF destabilizes the E-cadherin/catenin complex at the membrane, triggering a positive feedback loop that exacerbates the phenotype through the repression of E-cadherin transcription in a process that involves the internalization of E-cadherin by endocytosis, β-catenin signaling and the transcriptional repressor Slug.
Collapse
Affiliation(s)
- Agustin Rabino
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Sahezeel Awadia
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Nabaa Ali
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Amber Edson
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
8
|
Troyanovsky RB, Indra I, Troyanovsky SM. Characterization of early and late events of adherens junction assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583373. [PMID: 38496678 PMCID: PMC10942379 DOI: 10.1101/2024.03.04.583373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Cadherins are transmembrane adhesion receptors. Cadherin ectodomains form adhesive 2D clusters through cooperative trans and cis interactions, whereas its intracellular region interacts with specific cytosolic proteins, termed catenins, to anchor the cadherin-catenin complex (CCC) to the actin cytoskeleton. How these two types of interactions are coordinated in the formation of specialized cell-cell adhesions, adherens junctions (AJ), remains unclear. We focus here on the role of the actin-binding domain of α-catenin (αABD) by showing that the interaction of αABD with actin generates actin-bound CCC oligomers (CCC/actin strands) incorporating up to six CCCs. The strands are primarily formed on the actin-rich cell protrusions. Once in cell-cell interface, the strands become involved in cadherin ectodomain clustering. Such combination of the extracellular and intracellular oligomerizations gives rise to the composite oligomers, trans CCC/actin clusters. To mature, these clusters then rearrange their actin filaments using several redundant pathways, two of which are characterized here: one depends on the α-catenin-associated protein, vinculin and the second one depends on the unstructured C-terminus of αABD. Thus, AJ assembly proceeds through spontaneous formation of trans CCC/actin clusters and their successive reorganization.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Indrajyoti Indra
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
- Department of Cell & Developmental Biology, The Feinberg School of Medicine, Chicago, IL 60614
| |
Collapse
|
9
|
Devitt CC, Weng S, Bejar-Padilla VD, Alvarado J, Wallingford JB. PCP and Septins govern the polarized organization of the actin cytoskeleton during convergent extension. Curr Biol 2024; 34:615-622.e4. [PMID: 38199065 PMCID: PMC10887425 DOI: 10.1016/j.cub.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/25/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Convergent extension (CE) requires the coordinated action of the planar cell polarity (PCP) proteins1,2 and the actin cytoskeleton,3,4,5,6 but this relationship remains incompletely understood. For example, PCP signaling orients actomyosin contractions, yet actomyosin is also required for the polarized localization of PCP proteins.7,8 Moreover, the actin-regulating Septins play key roles in actin organization9 and are implicated in PCP and CE in frogs, mice, and fish5,6,10,11,12 but execute only a subset of PCP-dependent cell behaviors. Septin loss recapitulates the severe tissue-level CE defects seen after core PCP disruption yet leaves overt cell polarity intact.5 Together, these results highlight the general fact that cell movement requires coordinated action by distinct but integrated actin populations, such as lamella and lamellipodia in migrating cells13 or medial and junctional actin populations in cells engaged in apical constriction.14,15 In the context of Xenopus mesoderm CE, three such actin populations are important, a superficial meshwork known as the "node-and-cable" system,4,16,17,18 a contractile network at deep cell-cell junctions,6,19 and mediolaterally oriented actin-rich protrusions, which are present both superficially and deeply.4,19,20,21 Here, we exploited the amenability of the uniquely "two-dimensional" node and cable system to probe the relationship between PCP proteins, Septins, and the polarization of this actin network. We find that the PCP proteins Vangl2 and Prickle2 and Septins co-localize at nodes, and that the node and cable system displays a cryptic, PCP- and Septin-dependent anteroposterior (AP) polarity in its organization and dynamics.
Collapse
Affiliation(s)
- Caitlin C Devitt
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Shinuo Weng
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | | | - José Alvarado
- Department of Physics, University of Texas, Austin, TX 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
10
|
Cohen DJ. Building Biomaterials to Mimic 3D Cell-Cell Junctions. Methods Mol Biol 2024; 2805:101-112. [PMID: 39008176 DOI: 10.1007/978-1-0716-3854-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cell-cell interactions typically occur in a 3D context that is distinct from conventional 2D cell-substrate interactions in a Petri dish. Here, we describe a benchtop method to combine a 2D extracellular matrix surface with a 3D, vertical boundary functionalized with the extracellular domain of E-cadherin. The methodology is suitable for any biology laboratory without requiring advanced microfabrication equipment or training. Overall, this cell-mimetic interface uniquely recapitulates key aspects of cell-cell adhesion and can serve as a versatile, reductionist technique to study general cell-cell interactions in a 3D context.
Collapse
Affiliation(s)
- Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA.
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
11
|
Weng S, Devitt CC, Nyaoga BM, Havnen AE, Alvarado J, Wallingford JB. New tools reveal PCP-dependent polarized mechanics in the cortex and cytoplasm of single cells during convergent extension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566066. [PMID: 37986924 PMCID: PMC10659385 DOI: 10.1101/2023.11.07.566066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Understanding biomechanics of biological systems is crucial for unraveling complex processes like tissue morphogenesis. However, current methods for studying cellular mechanics in vivo are limited by the need for specialized equipment and often provide limited spatiotemporal resolution. Here we introduce two new techniques, Tension by Transverse Fluctuation (TFlux) and in vivo microrheology, that overcome these limitations. They both offer time-resolved, subcellular biomechanical analysis using only fluorescent reporters and widely available microscopes. Employing these two techniques, we have revealed a planar cell polarity (PCP)-dependent mechanical gradient both in the cell cortex and the cytoplasm of individual cells engaged in convergent extension. Importantly, the non-invasive nature of these methods holds great promise for its application for uncovering subcellular mechanical variations across a wide array of biological contexts. Summary Non-invasive imaging-based techniques providing time-resolved biomechanical analysis at subcellular scales in developing vertebrate embryos.
Collapse
|
12
|
Bai Y, Zhao F, Wu T, Chen F, Pang X. Actin polymerization and depolymerization in developing vertebrates. Front Physiol 2023; 14:1213668. [PMID: 37745245 PMCID: PMC10515290 DOI: 10.3389/fphys.2023.1213668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Development is a complex process that occurs throughout the life cycle. F-actin, a major component of the cytoskeleton, is essential for the morphogenesis of tissues and organs during development. F-actin is formed by the polymerization of G-actin, and the dynamic balance of polymerization and depolymerization ensures proper cellular function. Disruption of this balance results in various abnormalities and defects or even embryonic lethality. Here, we reviewed recent findings on the structure of G-actin and F-actin and the polymerization of G-actin to F-actin. We also focused on the functions of actin isoforms and the underlying mechanisms of actin polymerization/depolymerization in cellular and organic morphogenesis during development. This information will extend our understanding of the role of actin polymerization in the physiologic or pathologic processes during development and may open new avenues for developing therapeutics for embryonic developmental abnormalities or tissue regeneration.
Collapse
Affiliation(s)
- Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Feng Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
13
|
Nagendra K, Izzet A, Judd NB, Zakine R, Friedman L, Harrison OJ, Pontani LL, Shapiro L, Honig B, Brujic J. Push-pull mechanics of E-cadherin ectodomains in biomimetic adhesions. Biophys J 2023; 122:3506-3515. [PMID: 37528581 PMCID: PMC10502478 DOI: 10.1016/j.bpj.2023.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023] Open
Abstract
E-cadherin plays a central role in cell-cell adhesion. The ectodomains of wild-type cadherins form a crystalline-like two-dimensional lattice in cell-cell interfaces mediated by both trans (apposed cell) and cis (same cell) interactions. In addition to these extracellular forces, adhesive strength is further regulated by cytosolic phenomena involving α and β catenin-mediated interactions between cadherin and the actin cytoskeleton. Cell-cell adhesion can be further strengthened under tension through mechanisms that have not been definitively characterized in molecular detail. Here we quantitatively determine the role of the cadherin ectodomain in mechanosensing. To this end, we devise an E-cadherin-coated emulsion system, in which droplet surface tension is balanced by protein binding strength to give rise to stable areas of adhesion. To reach the honeycomb/cohesive limit, an initial emulsion compression by centrifugation facilitates E-cadherin trans binding, whereas a high protein surface concentration enables the cis-enhanced stabilization of the interface. We observe an abrupt concentration dependence on recruitment into adhesions of constant crystalline density, reminiscent of a first-order phase transition. Removing the lateral cis interaction with a "cis mutant" shifts this transition to higher surface densities leading to denser, yet weaker adhesions. In both proteins, the stabilization of progressively larger areas of deformation is consistent with single-molecule experiments that show a force-dependent lifetime enhancement in the cadherin ectodomain, which may be attributed to the "X-dimer" bond.
Collapse
Affiliation(s)
- Kartikeya Nagendra
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York; Molecular Biophysics and Biochemistry Training Program, NYU Grossman School of Medicine, New York, New York
| | - Adrien Izzet
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York
| | - Nicolas B Judd
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York
| | - Ruben Zakine
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York
| | - Leah Friedman
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York; Département de Physique, École Normale Supérieure, PSL University, Paris, France
| | - Oliver J Harrison
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York
| | - Léa-Laetitia Pontani
- Laboratoire Jean Perrin, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York; Department of Medicine, Division of Nephrology, Columbia University, New York, New York; Department of Systems Biology, Columbia University, New York, New York
| | - Jasna Brujic
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York; Laboratoire de Physique et Mécanique de Milieux Hétérogènes, UMR 7636, CNRS, ESPCI Paris-PSL, Sorbonne Université, Université Paris Cité, Paris, France.
| |
Collapse
|
14
|
Troyanovsky SM. Adherens junction: the ensemble of specialized cadherin clusters. Trends Cell Biol 2023; 33:374-387. [PMID: 36127186 PMCID: PMC10020127 DOI: 10.1016/j.tcb.2022.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
The cell-cell connections in adherens junctions (AJs) are mediated by transmembrane receptors, type I cadherins (referred to here as cadherins). These cadherin-based connections (or trans bonds) are weak. To upregulate their strength, cadherins exploit avidity, the increased affinity of binding between cadherin clusters compared with isolated monomers. Formation of such clusters is a unique molecular process that is driven by a synergy of direct and indirect cis interactions between cadherins located at the same cell. In addition to their role in adhesion, cadherin clusters provide structural scaffolds for cytosolic proteins, which implicate cadherin into different cellular activities and signaling pathways. The cluster lifetime, which depends on the actin cytoskeleton, and on the mechanical forces it generates, determines the strength of AJs and their plasticity. The key aspects of cadherin adhesion, therefore, cannot be understood at the level of isolated cadherin molecules, but should be discussed in the context of cadherin clusters.
Collapse
Affiliation(s)
- Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Cell and Molecular Biology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
15
|
Noordstra I, Morris RG, Yap AS. Cadherins and the cortex: A matter of time? Curr Opin Cell Biol 2023; 80:102154. [PMID: 36822056 DOI: 10.1016/j.ceb.2023.102154] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/23/2023]
Abstract
Cell adhesion systems commonly operate in close partnership with the cytoskeleton. Adhesion receptors bind to the cortex and regulate its dynamics, organization and mechanics; conversely, the cytoskeleton influences aspects of adhesion, including strength, stability and ductility. In this review we consider recent advances in elucidating such cooperation, focusing on interactions between classical cadherins and actomyosin. The evidence presents an apparent paradox. Molecular mechanisms of mechanosensation by the cadherin-actin apparatus imply that adhesion strengthens under tension. However, this does not always translate to the broader setting of confluent tissues, where increases in fluctuations of tension can promote intercalation due to the shrinkage of adherens junctions. Emerging evidence suggests that understanding of timescales may be important in resolving this issue, but that further work is needed to understand the role of adhesive strengthening across scales.
Collapse
Affiliation(s)
- Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072 Australia
| | - Richard G Morris
- School of Physics, Sydney, NSW 2052, Australia; EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Alpha S Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072 Australia.
| |
Collapse
|
16
|
Maker A, Bolejack M, Schecterson L, Hammerson B, Abendroth J, Edwards TE, Staker B, Myler PJ, Gumbiner BM. Regulation of multiple dimeric states of E-cadherin by adhesion activating antibodies revealed through Cryo-EM and X-ray crystallography. PNAS NEXUS 2022; 1:pgac163. [PMID: 36157596 PMCID: PMC9491697 DOI: 10.1093/pnasnexus/pgac163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/15/2022] [Indexed: 01/29/2023]
Abstract
E-cadherin adhesion is regulated at the cell surface, a process that can be replicated by activating antibodies. We use cryo-electron microscopy (EM) and X-ray crystallography to examine functional states of the cadherin adhesive dimer. This dimer is mediated by N-terminal beta strand-swapping involving Trp2, and forms via a different transient X-dimer intermediate. X-dimers are observed in cryo-EM along with monomers and strand-swap dimers, indicating that X-dimers form stable interactions. A novel EC4-mediated dimer was also observed. Activating Fab binding caused no gross structural changes in E-cadherin monomers, but can facilitate strand swapping. Moreover, activating Fab binding is incompatible with the formation of the X-dimer. Both cryo-EM and X-ray crystallography reveal a distinctive twisted strand-swap dimer conformation caused by an outward shift in the N-terminal beta strand that may represent a strengthened state. Thus, regulation of adhesion involves changes in cadherin dimer configurations.
Collapse
Affiliation(s)
- Allison Maker
- Department of Biochemistry, University of Washington, USA,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, USA
| | - Madison Bolejack
- UCB Pharma, Bainbridge, WA, USA,Seattle Structural Genomics Center for Infectious Disease, USA
| | - Leslayann Schecterson
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, USA
| | - Brad Hammerson
- Seattle Structural Genomics Center for Infectious Disease, USA,Center for Global Infectious Disease Research, Seattle Children's Research Institute, USA
| | - Jan Abendroth
- UCB Pharma, Bainbridge, WA, USA,Seattle Structural Genomics Center for Infectious Disease, USA
| | - Thomas E Edwards
- UCB Pharma, Bainbridge, WA, USA,Seattle Structural Genomics Center for Infectious Disease, USA
| | - Bart Staker
- Seattle Structural Genomics Center for Infectious Disease, USA,Center for Global Infectious Disease Research, Seattle Children's Research Institute, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease, USA,Center for Global Infectious Disease Research, Seattle Children's Research Institute, USA,Department of Pediatrics, University of Washington, USA,Department of Biomedical Informatics and Medical Education, University of Washington, USA
| | | |
Collapse
|
17
|
α-catenin switches between a slip and an asymmetric catch bond with F-actin to cooperatively regulate cell junction fluidity. Nat Commun 2022; 13:1146. [PMID: 35241656 PMCID: PMC8894357 DOI: 10.1038/s41467-022-28779-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
α-catenin is a crucial protein at cell junctions that provides connection between the actin cytoskeleton and the cell membrane. At adherens junctions (AJs), α-catenin forms heterodimers with β-catenin that are believed to resist force on F-actin. Outside AJs, α-catenin forms homodimers that regulates F-actin organization and directly connect the cell membrane to the actin cytoskeleton, but their mechanosensitive properties are inherently unknown. By using ultra-fast laser tweezers we found that a single α-β-catenin heterodimer does not resist force but instead slips along F-actin in the direction of force. Conversely, the action of 5 to 10 α-β-catenin heterodimers together with force applied toward F-actin pointed end engaged a molecular switch in α-catenin, which unfolded and strongly bound F-actin as a cooperative catch bond. Similarly, an α-catenin homodimer formed an asymmetric catch bond with F-actin triggered by protein unfolding under force. Our data suggest that α-catenin clustering together with intracellular tension engage a fluid-to-solid phase transition at the membrane-cytoskeleton interface.
Collapse
|
18
|
Abstract
E-cadherin is the main component of epithelial adherens junctions (AJs), which play a crucial role in the maintenance of stable cell-cell adhesion and overall tissue integrity. Down-regulation of E-cadherin expression has been found in many carcinomas, and loss of E-cadherin is generally associated with poor prognosis in patients. During the last decade, however, numerous studies have shown that E-cadherin is essential for several aspects of cancer cell biology that contribute to cancer progression, most importantly, active cell migration. In this review, we summarize the available data about the input of E-cadherin in cancer progression, focusing on the latest advances in the research of the various roles E-cadherin-based AJs play in cancer cell dissemination. The review also touches upon the "cadherin switching" in cancer cells where N- or P-cadherin replace or are co-expressed with E-cadherin and its influence on the migratory properties of cancer cells.
Collapse
Affiliation(s)
- Svetlana N Rubtsova
- N.N. Blokhin National Medical Research Center of Oncology, Institute of Carcinogenesis, Moscow, Russia
| | - Irina Y Zhitnyak
- N.N. Blokhin National Medical Research Center of Oncology, Institute of Carcinogenesis, Moscow, Russia
| | - Natalya A Gloushankova
- N.N. Blokhin National Medical Research Center of Oncology, Institute of Carcinogenesis, Moscow, Russia
| |
Collapse
|
19
|
Chen Y, Brasch J, Harrison OJ, Bidone TC. Computational model of E-cadherin clustering under force. Biophys J 2021; 120:4944-4954. [PMID: 34687721 DOI: 10.1016/j.bpj.2021.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
E-cadherins play a critical role in the formation of cell-cell adhesions for several physiological functions, including tissue development, repair, and homeostasis. The formation of clusters of E-cadherins involves extracellular adhesive (trans-) and lateral (cis-) associations between E-cadherin ectodomains and stabilization through intracellular binding to the actomyosin cytoskeleton. This binding provides force to the adhesion and is required for mechanotransduction. However, the exact role of cytoskeletal force on the clustering of E-cadherins is not well understood. To gain insights into this mechanism, we developed a computational model based on Brownian dynamics. In the model, E-cadherins transit between structural and functional states; they are able to bind and unbind other E-cadherins on the same and/or opposite cell(s) through trans- and cis-interactions while also creating dynamic links with the actomyosin cytoskeleton. Our results show that actomyosin force governs the fraction of E-cadherins in clusters and the size and number of clusters. For low forces (below 10 pN), a large number of small E-cadherin clusters form with less than five E-cadherins each. At higher forces, the probability of forming fewer but larger clusters increases. These findings support the idea that force reinforces cell-cell adhesions, which is consistent with differences in cluster size previously observed between apical and lateral junctions of epithelial tissues.
Collapse
Affiliation(s)
- Yang Chen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Julia Brasch
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
| | - Oliver J Harrison
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
| | - Tamara C Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
20
|
Vasquez CG, de la Serna EL, Dunn AR. How cells tell up from down and stick together to construct multicellular tissues - interplay between apicobasal polarity and cell-cell adhesion. J Cell Sci 2021; 134:272658. [PMID: 34714332 DOI: 10.1242/jcs.248757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polarized epithelia define a topological inside and outside, and hence constitute a key evolutionary innovation that enabled the construction of complex multicellular animal life. Over time, this basic function has been elaborated upon to yield the complex architectures of many of the organs that make up the human body. The two processes necessary to yield a polarized epithelium, namely regulated adhesion between cells and the definition of the apicobasal (top-bottom) axis, have likewise undergone extensive evolutionary elaboration, resulting in multiple sophisticated protein complexes that contribute to both functions. Understanding how these components function in combination to yield the basic architecture of a polarized cell-cell junction remains a major challenge. In this Review, we introduce the main components of apicobasal polarity and cell-cell adhesion complexes, and outline what is known about their regulation and assembly in epithelia. In addition, we highlight studies that investigate the interdependence between these two networks. We conclude with an overview of strategies to address the largest and arguably most fundamental unresolved question in the field, namely how a polarized junction arises as the sum of its molecular parts.
Collapse
Affiliation(s)
- Claudia G Vasquez
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eva L de la Serna
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Cadherin puncta are interdigitated dynamic actin protrusions necessary for stable cadherin adhesion. Proc Natl Acad Sci U S A 2021; 118:2023510118. [PMID: 34099568 DOI: 10.1073/pnas.2023510118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cadherins harness the actin cytoskeleton to build cohesive sheets of cells using paradoxically weak bonds, but the molecular mechanisms are poorly understood. In one popular model, actin organizes cadherins into large, micrometer-sized clusters known as puncta. Myosin is thought to pull on these puncta to generate strong adhesion. Here, however, we show that cadherin puncta are actually interdigitated actin microspikes generated by actin polymerization mediated by three factors (Arp2/3, EVL, and CRMP-1). The convoluted membranes in these regions give the impression of cadherin clustering by fluorescence microscopy, but the ratio of cadherin to membrane is constant. Nevertheless, these interlocking fingers of membrane are important for adhesion because perturbing their formation disrupts cell adhesion. In contrast, blocking myosin-dependent contractility does not disrupt either the interdigitated microspikes or lateral membrane adhesion. "Puncta" are zones of strong cell-cell adhesion not due to cadherin clustering but that occur because the interdigitated microspikes expand the surface area available for adhesive bond formation and increase the asperity of the cell surface to promote friction between cells.
Collapse
|
22
|
Huebner RJ, Malmi-Kakkada AN, Sarıkaya S, Weng S, Thirumalai D, Wallingford JB. Mechanical heterogeneity along single cell-cell junctions is driven by lateral clustering of cadherins during vertebrate axis elongation. eLife 2021; 10:e65390. [PMID: 34032216 PMCID: PMC8205493 DOI: 10.7554/elife.65390] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
Morphogenesis is governed by the interplay of molecular signals and mechanical forces across multiple length scales. The last decade has seen tremendous advances in our understanding of the dynamics of protein localization and turnover at subcellular length scales, and at the other end of the spectrum, of mechanics at tissue-level length scales. Integrating the two remains a challenge, however, because we lack a detailed understanding of the subcellular patterns of mechanical properties of cells within tissues. Here, in the context of the elongating body axis of Xenopus embryos, we combine tools from cell biology and physics to demonstrate that individual cell-cell junctions display finely-patterned local mechanical heterogeneity along their length. We show that such local mechanical patterning is essential for the cell movements of convergent extension and is imparted by locally patterned clustering of a classical cadherin. Finally, the patterning of cadherins and thus local mechanics along cell-cell junctions are controlled by Planar Cell Polarity signaling, a key genetic module for CE that is mutated in diverse human birth defects.
Collapse
Affiliation(s)
- Robert J Huebner
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Abdul Naseer Malmi-Kakkada
- Department of Chemistry, University of TexasAustinUnited States
- Department of Chemistry and Physics, Augusta UniversityAugustaGeorgia
| | - Sena Sarıkaya
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Shinuo Weng
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - D Thirumalai
- Department of Chemistry, University of TexasAustinUnited States
| | - John B Wallingford
- Department of Molecular Biosciences, University of TexasAustinUnited States
| |
Collapse
|
23
|
Abstract
The generation of organismal form - morphogenesis - arises from forces produced at the cellular level. In animal cells, much of this force is produced by the actin cytoskeleton. Here, we review how mechanisms of actin-based force generation are deployed during animal morphogenesis to sculpt organs and organisms. Furthermore, we consider how cytoskeletal forces are coupled through cell adhesions to propagate across tissues, and discuss cases where cytoskeletal force or adhesion is patterned across a tissue to direct shape changes. Together, our review provides a conceptual framework that reflects our current understanding of animal morphogenesis and gives perspectives on future opportunities for study.
Collapse
Affiliation(s)
- D Nathaniel Clarke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
24
|
Indra I, Troyanovsky RB, Shapiro L, Honig B, Troyanovsky SM. Sensing Actin Dynamics through Adherens Junctions. Cell Rep 2021; 30:2820-2833.e3. [PMID: 32101754 DOI: 10.1016/j.celrep.2020.01.106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/23/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022] Open
Abstract
We study punctate adherens junctions (pAJs) to determine how short-lived cadherin clusters and relatively stable actin bundles interact despite differences in dynamics. We show that pAJ-linked bundles consist of two distinct regions-the bundle stalk (AJ-BS) and a tip (AJ-BT) positioned between cadherin clusters and the stalk. The tip differs from the stalk in a number of ways: it is devoid of the actin-bundling protein calponin, and exhibits a much faster F-actin turnover rate. While F-actin in the stalk displays centripetal movement, the F-actin in the tip is immobile. The F-actin turnover in both the tip and stalk is dependent on cadherin cluster stability, which in turn is regulated by F-actin. The close bidirectional coupling between the stability of cadherin and associated F-actin shows how pAJs, and perhaps other AJs, allow cells to sense and coordinate the dynamics of the actin cytoskeleton in neighboring cells-a mechanism we term "dynasensing."
Collapse
Affiliation(s)
- Indrajyoti Indra
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Regina B Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10032, USA.
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10032, USA.
| | - Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
25
|
Chandran R, Kale G, Philippe JM, Lecuit T, Mayor S. Distinct actin-dependent nanoscale assemblies underlie the dynamic and hierarchical organization of E-cadherin. Curr Biol 2021; 31:1726-1736.e4. [PMID: 33607036 DOI: 10.1016/j.cub.2021.01.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/05/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Cadherins are transmembrane adhesion proteins required for the formation of cohesive tissues.1-4 Intracellular interactions of E-cadherin with the Catenin family proteins, α- and β-catenin, facilitate connections with the cortical actomyosin network. This is necessary for maintaining the integrity of cell-cell adhesion in epithelial tissues.5-11 The supra-molecular architecture of E-cadherin is an important feature of its adhesion function; cis and trans interactions of E-cadherin are deployed12-15 to form clusters, both in cis and trans.11,16-21 Studies in Drosophila embryo have also shown that Drosophila E-cadherin (dE-cad) is organized as finite-sized dynamic clusters that localize with actin patches at cell-cell junctions, in continuous exchange with the extra-junctional pool of dE-cad surrounding the clusters.11,19 Here, we use the ectopic expression of dE-cad in larval hemocytes, which lack endogenous dE-cad to recapitulate functional cell-cell junctions in a convenient model system. We find that, while dE-cad at cell-cell junctions in hemocytes exhibits a clustered trans-paired organization similar to that reported previously in embryonic epithelial tissue, extra-junctional dE-cad is also organized as relatively immobile nanoclusters as well as more loosely packed diffusive oligomers. Oligomers are promoted by cis interactions of the ectodomain, and their growth is counteracted by the activity of cortical actomyosin. Oligomers in turn promote assembly of dense nanoclusters that require cortical actomyosin activity. Thus, cortical actin activity remodels oligomers and generates nanoclusters. The requirement for dynamic actin in the organization of dE-cad at the nanoscale may provide a mechanism to dynamically tune junctional strength.
Collapse
Affiliation(s)
- Rumamol Chandran
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Girish Kale
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Jean-Marc Philippe
- Aix Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, 13288 Marseille, France
| | - Thomas Lecuit
- Aix Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, 13288 Marseille, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
26
|
Maynard SA, Winter CW, Cunnane EM, Stevens MM. Advancing Cell-Instructive Biomaterials Through Increased Understanding of Cell Receptor Spacing and Material Surface Functionalization. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020; 7:553-547. [PMID: 34805482 PMCID: PMC8594271 DOI: 10.1007/s40883-020-00180-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract Regenerative medicine is aimed at restoring normal tissue function and can benefit from the application of tissue engineering and nano-therapeutics. In order for regenerative therapies to be effective, the spatiotemporal integration of tissue-engineered scaffolds by the native tissue, and the binding/release of therapeutic payloads by nano-materials, must be tightly controlled at the nanoscale in order to direct cell fate. However, due to a lack of insight regarding cell–material interactions at the nanoscale and subsequent downstream signaling, the clinical translation of regenerative therapies is limited due to poor material integration, rapid clearance, and complications such as graft-versus-host disease. This review paper is intended to outline our current understanding of cell–material interactions with the aim of highlighting potential areas for knowledge advancement or application in the field of regenerative medicine. This is achieved by reviewing the nanoscale organization of key cell surface receptors, the current techniques used to control the presentation of cell-interactive molecules on material surfaces, and the most advanced techniques for characterizing the interactions that occur between cell surface receptors and materials intended for use in regenerative medicine. Lay Summary The combination of biology, chemistry, materials science, and imaging technology affords exciting opportunities to better diagnose and treat a wide range of diseases. Recent advances in imaging technologies have enabled better understanding of the specific interactions that occur between human cells and their immediate surroundings in both health and disease. This biological understanding can be used to design smart therapies and tissue replacements that better mimic native tissue. Here, we discuss the advances in molecular biology and technologies that can be employed to functionalize materials and characterize their interaction with biological entities to facilitate the design of more sophisticated medical therapies.
Collapse
Affiliation(s)
- Stephanie A. Maynard
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Charles W. Winter
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Eoghan M. Cunnane
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
27
|
Greig J, Bulgakova NA. Arf6 determines tissue architecture by stabilizing intercellular adhesion. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190682. [PMID: 32829688 DOI: 10.1098/rstb.2019.0682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Correct cell shape is indispensable for tissue architecture, with cell shape being determined by cortical actin and surface adhesion. The role of adhesion in remodelling tissue is to counteract the deformation of cells by force, resulting from actomyosin contractility, and to maintain tissue integrity. The dynamics of this adhesion are critical to the processes of cell shape formation and maintenance. Here, we show that the trafficking molecule Arf6 has a direct impact on cell elongation, by acting to stabilize E-cadherin-based adhesion complexes at the cell surface, in addition to its canonical role in endocytosis. We demonstrate that these functions of Arf6 are dependent on the molecule Flotillin1, which recruits Arf6 to the plasma membrane. Our data suggest that Arf6 and Flotillin1 operate in a pathway distinct from clathrin-mediated endocytosis. Altogether, we demonstrate that Arf6- and Flotillin1-dependent regulation of the dynamics of cell adhesion contribute to moulding tissue in vivo. This article is part of the discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Joshua Greig
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Natalia A Bulgakova
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
28
|
Abstract
During inflammatory response, blood leukocytes adhere to the endothelium. This process involves numerous adhesion molecules, including a transmembrane chemokine, CX3CL1, which behaves as a molecular cluster. How this cluster assembles and whether this association has a functional role remain unknown. The analysis of CX3CL1 clusters using native electrophoresis and single molecule fluorescence kinetics shows that CX3CL1 is a homo-oligomer of 3 to 7 monomers. Fluorescence recovery after photobleaching assays reveal that the CX3CL1-transmembrane domain peptide self-associates in both cellular and acellular lipid environments, while its random counterpart (i.e. peptide with the same residues in a different order) does not. This strongly indicates that CX3CL1 oligomerization is driven by its intrinsic properties. According to the molecular modeling, CX3CL1 does not associate in compact bundles but rather with monomers linearly assembled side by side. Finally, the CX3CL1 transmembrane peptide inhibits both the CX3CL1 oligomerization and the adhesive function, while its random counterpart does not. This demonstrates that CX3CL1 oligomerization is mandatory for its adhesive potency. Our results provide a new direction to control CX3CL1-dependent cellular adherence in key immune processes.
Collapse
|
29
|
Ollech D, Pflästerer T, Shellard A, Zambarda C, Spatz JP, Marcq P, Mayor R, Wombacher R, Cavalcanti-Adam EA. An optochemical tool for light-induced dissociation of adherens junctions to control mechanical coupling between cells. Nat Commun 2020; 11:472. [PMID: 31980653 PMCID: PMC6981158 DOI: 10.1038/s41467-020-14390-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 01/02/2020] [Indexed: 01/19/2023] Open
Abstract
The cadherin-catenin complex at adherens junctions (AJs) is essential for the formation of cell-cell adhesion and epithelium integrity; however, studying the dynamic regulation of AJs at high spatio-temporal resolution remains challenging. Here we present an optochemical tool which allows reconstitution of AJs by chemical dimerization of the force bearing structures and their precise light-induced dissociation. For the dimerization, we reconstitute acto-myosin connection of a tailless E-cadherin by two ways: direct recruitment of α-catenin, and linking its cytosolic tail to the transmembrane domain. Our approach enables a specific ON-OFF switch for mechanical coupling between cells that can be controlled spatially on subcellular or tissue scale via photocleavage. The combination with cell migration analysis and traction force microscopy shows a wide-range of applicability and confirms the mechanical contribution of the reconstituted AJs. Remarkably, in vivo our tool is able to control structural and functional integrity of the epidermal layer in developing Xenopus embryos.
Collapse
Affiliation(s)
- Dirk Ollech
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120, Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, INF 253, D-69120, Heidelberg, Germany
- Applied Physics Department, Science for Life Laboratory and KTH Royal Technical University, Tomtebodavägen 23A, S-17165, Stockholm, Sweden
| | - Tim Pflästerer
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120, Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, INF 253, D-69120, Heidelberg, Germany
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, D-69120, Heidelberg, Germany
| | - Adam Shellard
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Chiara Zambarda
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120, Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, INF 253, D-69120, Heidelberg, Germany
| | - Joachim Pius Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120, Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, INF 253, D-69120, Heidelberg, Germany
| | - Philippe Marcq
- PMMH, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris, F-75005, Paris, France
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Richard Wombacher
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, D-69120, Heidelberg, Germany.
| | - Elisabetta Ada Cavalcanti-Adam
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120, Heidelberg, Germany.
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, INF 253, D-69120, Heidelberg, Germany.
| |
Collapse
|
30
|
Biswas KH. Molecular Mobility-Mediated Regulation of E-Cadherin Adhesion. Trends Biochem Sci 2019; 45:163-173. [PMID: 31810601 DOI: 10.1016/j.tibs.2019.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Cells in epithelial tissues utilize homotypic E-cadherin interaction-mediated adhesions to both physically adhere to each other and sense the physical properties of their microenvironment, such as the presence of other cells in close vicinity or an alteration in the mechanical tension of the tissue. These position E-cadherin centrally in organogenesis and other processes, and its function is therefore tightly regulated through a variety of means including endocytosis and gene expression. How does membrane molecular mobility of E-cadherin, and thus membrane physical properties and associated actin cytoskeleton, impinges on the assembly of adhesive clusters and signaling is discussed.
Collapse
Affiliation(s)
- Kabir H Biswas
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar.
| |
Collapse
|
31
|
Sil P, Mateos N, Nath S, Buschow S, Manzo C, Suzuki KGN, Fujiwara T, Kusumi A, Garcia-Parajo MF, Mayor S. Dynamic actin-mediated nano-scale clustering of CD44 regulates its meso-scale organization at the plasma membrane. Mol Biol Cell 2019; 31:561-579. [PMID: 31577524 PMCID: PMC7202065 DOI: 10.1091/mbc.e18-11-0715] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transmembrane adhesion receptors at the cell surface, such as CD44, are often equipped with modules to interact with the extracellular matrix (ECM) and the intracellular cytoskeletal machinery. CD44 has been recently shown to compartmentalize the membrane into domains by acting as membrane pickets, facilitating the function of signaling receptors. While spatial organization and diffusion studies of membrane proteins are usually conducted separately, here we combine observations of organization and diffusion by using high spatio-temporal resolution imaging on living cells to reveal a hierarchical organization of CD44. CD44 is present in a meso-scale meshwork pattern where it exhibits enhanced confinement and is enriched in nanoclusters of CD44 along its boundaries. This nanoclustering is orchestrated by the underlying cortical actin dynamics. Interaction with actin is mediated by specific segments of the intracellular domain. This influences the organization of the protein at the nano-scale, generating a selective requirement for formin over Arp2/3-based actin-nucleation machinery. The extracellular domain and its interaction with elements of ECM do not influence the meso-scale organization, but may serve to reposition the meshwork with respect to the ECM. Taken together, our results capture the hierarchical nature of CD44 organization at the cell surface, with active cytoskeleton-templated nanoclusters localized to a meso-scale meshwork pattern.
Collapse
Affiliation(s)
- Parijat Sil
- National Centre for Biological Sciences (NCBS)
| | - Nicolas Mateos
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona 08860, Spain
| | - Sangeeta Nath
- Institute of Stem Cell and Regenerative Medicine.,Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore 560065, India
| | - Sonja Buschow
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam 3015 GD Rotterdam, The Netherlands
| | - Carlo Manzo
- Facultat de Ciències i Tecnologia, Universitat de Vic-Universitat Central de Catalunya, Vic 08500, Spain
| | - Kenichi G N Suzuki
- Centre for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Takahiro Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.,Okinawa Institute of Science and Technology, Graduate University, Okinawa 904-0412, Japan
| | - Maria F Garcia-Parajo
- Institute of Stem Cell and Regenerative Medicine.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Satyajit Mayor
- National Centre for Biological Sciences (NCBS).,Institute of Stem Cell and Regenerative Medicine
| |
Collapse
|
32
|
Heuzé ML, Sankara Narayana GHN, D'Alessandro J, Cellerin V, Dang T, Williams DS, Van Hest JC, Marcq P, Mège RM, Ladoux B. Myosin II isoforms play distinct roles in adherens junction biogenesis. eLife 2019; 8:46599. [PMID: 31486768 PMCID: PMC6756789 DOI: 10.7554/elife.46599] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/05/2019] [Indexed: 12/27/2022] Open
Abstract
Adherens junction (AJ) assembly under force is essential for many biological processes like epithelial monolayer bending, collective cell migration, cell extrusion and wound healing. The acto-myosin cytoskeleton acts as a major force-generator during the de novo formation and remodeling of AJ. Here, we investigated the role of non-muscle myosin II isoforms (NMIIA and NMIIB) in epithelial junction assembly. NMIIA and NMIIB differentially regulate biogenesis of AJ through association with distinct actin networks. Analysis of junction dynamics, actin organization, and mechanical forces of control and knockdown cells for myosins revealed that NMIIA provides the mechanical tugging force necessary for cell-cell junction reinforcement and maintenance. NMIIB is involved in E-cadherin clustering, maintenance of a branched actin layer connecting E-cadherin complexes and perijunctional actin fibres leading to the building-up of anisotropic stress. These data reveal unanticipated complementary functions of NMIIA and NMIIB in the biogenesis and integrity of AJ.
Collapse
Affiliation(s)
- Mélina L Heuzé
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | | | - Joseph D'Alessandro
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | - Victor Cellerin
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | - Tien Dang
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | - David S Williams
- Department of Chemistry, College of Science, Swansea University, Swansea, United Kingdom
| | - Jan Cm Van Hest
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Philippe Marcq
- Laboratoire Physique et Mécanique des Milieux Hétérogènes, Sorbonne Université and CNRS UMR 7636, Paris, France
| | - René-Marc Mège
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | - Benoit Ladoux
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| |
Collapse
|
33
|
Nguyen T, Duchesne L, Sankara Narayana GHN, Boggetto N, Fernig DD, Uttamrao Murade C, Ladoux B, Mège RM. Enhanced cell-cell contact stability and decreased N-cadherin-mediated migration upon fibroblast growth factor receptor-N-cadherin cross talk. Oncogene 2019; 38:6283-6300. [PMID: 31312021 DOI: 10.1038/s41388-019-0875-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
N-cadherin adhesion has been reported to enhance cancer and neuronal cell migration either by mediating actomyosin-based force transduction or initiating fibroblast growth factor receptor (FGFR)-dependent biochemical signalling. Here we show that FGFR1 reduces N-cadherin-mediated cell migration. Both proteins are co-stabilised at cell-cell contacts through direct interaction. As a consequence, cell adhesion is strengthened, limiting the migration of cells on N-cadherin. Both the inhibition of migration and the stabilisation of cell adhesions require the FGFR activity stimulated by N-cadherin engagement. FGFR1 stabilises N-cadherin at the cell membrane through a pathway involving Src and p120. Moreover, FGFR1 stimulates the anchoring of N-cadherin to actin. We found that the migratory behaviour of cells depends on an optimum balance between FGFR-regulated N-cadherin adhesion and actin dynamics. Based on these findings we propose a positive feed-back loop between N-cadherin and FGFR at adhesion sites limiting N-cadherin-based single-cell migration.
Collapse
Affiliation(s)
- Thao Nguyen
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France
| | - Laurence Duchesne
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) - UMR 6290, F-35000, Rennes, France
| | | | - Nicole Boggetto
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France
| | - David D Fernig
- Department of Biochemistry, Institute of Integrated Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | | | - Benoit Ladoux
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France
| | - René-Marc Mège
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France.
| |
Collapse
|
34
|
The membrane environment of cadherin adhesion receptors: a working hypothesis. Biochem Soc Trans 2019; 47:985-995. [DOI: 10.1042/bst20180012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Classical cadherin cell adhesion receptors are integral membrane proteins that mediate cell–cell interactions, tissue integrity and morphogenesis. Cadherins are best understood to function as membrane-spanning molecular composites that couple adhesion to the cytoskeleton. On the other hand, the membrane lipid environment of the cadherins is an under-investigated aspect of their cell biology. In this review, we discuss two lines of research that show how the membrane can directly or indirectly contribute to cadherin function. Firstly, we consider how modification of its local lipid environment can potentially influence cadherin signalling, adhesion and dynamics, focusing on a role for phosphoinositide-4,5-bisphosphate. Secondly, we discuss how caveolae may indirectly regulate cadherins by modifying either the lipid composition and/or mechanical tension of the plasma membrane. Thus, we suggest that the membrane is a frontier of cadherin biology that is ripe for re-exploration.
Collapse
|
35
|
Montel L, Sotiropoulos A, Hénon S. The nature and intensity of mechanical stimulation drive different dynamics of MRTF-A nuclear redistribution after actin remodeling in myoblasts. PLoS One 2019; 14:e0214385. [PMID: 30921405 PMCID: PMC6438519 DOI: 10.1371/journal.pone.0214385] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/12/2019] [Indexed: 01/14/2023] Open
Abstract
Serum response factor and its cofactor myocardin-related transcription factor (MRTF) are key elements of muscle-mass adaptation to workload. The transcription of target genes is activated when MRTF is present in the nucleus. The localization of MRTF is controlled by its binding to G-actin. Thus, the pathway can be mechanically activated through the mechanosensitivity of the actin cytoskeleton. The pathway has been widely investigated from a biochemical point of view, but its mechanical activation and the timescales involved are poorly understood. Here, we applied local and global mechanical cues to myoblasts through two custom-built set-ups, magnetic tweezers and stretchable substrates. Both induced nuclear accumulation of MRTF-A. However, the dynamics of the response varied with the nature and level of mechanical stimulation and correlated with the polymerization of different actin sub-structures. Local repeated force induced local actin polymerization and nuclear accumulation of MRTF-A by 30 minutes, whereas a global static strain induced both rapid (minutes) transient nuclear accumulation, associated with the polymerization of an actin cap above the nucleus, and long-term accumulation, with a global increase in polymerized actin. Conversely, high strain induced actin depolymerization at intermediate times, associated with cytoplasmic MRTF accumulation.
Collapse
Affiliation(s)
- Lorraine Montel
- Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Athanassia Sotiropoulos
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sylvie Hénon
- Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
36
|
Wieneke R, Tampé R. Multivalent Chelators for In Vivo Protein Labeling. Angew Chem Int Ed Engl 2019; 58:8278-8290. [PMID: 30919542 DOI: 10.1002/anie.201811293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 01/09/2023]
Abstract
With the advent of single-molecule methods, chemoselective and site-specific labeling of proteins evolved to become a central aspect in chemical biology as well as cell biology. Protein labeling demands high specificity, rapid as well as efficient conjugation, while maintaining low concentration and biocompatibility under physiological conditions. Generic methods that do not interfere with the function, dynamics, subcellular localization of proteins, and crosstalk with other factors are crucial to probe and image proteins in vitro and in living cells. Alternatives to enzyme-based tags or autofluorescent proteins are short peptide-based recognition tags. These tags provide high specificity, enhanced binding rates, bioorthogonality, and versatility. Here, we report on recent applications of multivalent chelator heads, recognizing oligohistidine-tagged proteins. The striking features of this system has facilitated the analysis of protein complexes by single-molecule approaches.
Collapse
Affiliation(s)
- Ralph Wieneke
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt/M., Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt/M., Germany
| |
Collapse
|
37
|
Wieneke R, Tampé R. Multivalent Chelators for In Vivo Protein Labeling. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ralph Wieneke
- Institute of BiochemistryBiocenterGoethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt/M. Germany
| | - Robert Tampé
- Institute of BiochemistryBiocenterGoethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt/M. Germany
| |
Collapse
|
38
|
Abstract
In various physiological processes, the cell collective is organized in a monolayer, such as seen in a simple epithelium. The advances in the understanding of mechanical behavior of the monolayer and its underlying cellular and molecular mechanisms will help to elucidate the properties of cell collectives. In this Review, we discuss recent in vitro studies on monolayer mechanics and their implications on collective dynamics, regulation of monolayer mechanics by physical confinement and geometrical cues and the effect of tissue mechanics on biological processes, such as cell division and extrusion. In particular, we focus on the active nematic property of cell monolayers and the emerging approach to view biological systems in the light of liquid crystal theory. We also highlight the mechanosensing and mechanotransduction mechanisms at the sub-cellular and molecular level that are mediated by the contractile actomyosin cytoskeleton and cell-cell adhesion proteins, such as E-cadherin and α-catenin. To conclude, we argue that, in order to have a holistic understanding of the cellular response to biophysical environments, interdisciplinary approaches and multiple techniques - from large-scale traction force measurements to molecular force protein sensors - must be employed.
Collapse
Affiliation(s)
- Tianchi Chen
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Thuan Beng Saw
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,National University of Singapore, Department of Biomedical Engineering, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583
| | - René-Marc Mège
- Institut Jacques Monod (IJM), CNRS UMR 7592 & Université Paris Diderot, 75205 Paris CEDEX 13, France
| | - Benoit Ladoux
- Institut Jacques Monod (IJM), CNRS UMR 7592 & Université Paris Diderot, 75205 Paris CEDEX 13, France
| |
Collapse
|
39
|
Abstract
It is increasingly clear that mechanotransduction pathways play important roles in regulating fundamental cellular functions. Of the basic mechanical functions, the determination of cellular morphology is critical. Cells typically use many mechanosensitive steps and different cell states to achieve a polarized shape through repeated testing of the microenvironment. Indeed, morphology is determined by the microenvironment through periodic activation of motility, mechanotesting, and mechanoresponse functions by hormones, internal clocks, and receptor tyrosine kinases. Patterned substrates and controlled environments with defined rigidities limit the range of cell behavior and influence cell state decisions and are thus very useful for studying these steps. The recently defined rigidity sensing process provides a good example of how cells repeatedly test their microenvironment and is also linked to cancer. In general, aberrant extracellular matrix mechanosensing is associated with numerous conditions, including cardiovascular disease, aging, and fibrosis, that correlate with changes in tissue morphology and matrix composition. Hence, detailed descriptions of the steps involved in sensing and responding to the microenvironment are needed to better understand both the mechanisms of tissue homeostasis and the pathomechanisms of human disease.
Collapse
Affiliation(s)
- Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel 31096;
| | - Bo Yang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore;
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; .,Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
40
|
Braga V. Signaling by Small GTPases at Cell-Cell Junctions: Protein Interactions Building Control and Networks. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028746. [PMID: 28893858 DOI: 10.1101/cshperspect.a028746] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A number of interesting reports highlight the intricate network of signaling proteins that coordinate formation and maintenance of cell-cell contacts. We have much yet to learn about how the in vitro binding data is translated into protein association inside the cells and whether such interaction modulates the signaling properties of the protein. What emerges from recent studies is the importance to carefully consider small GTPase activation in the context of where its activation occurs, which upstream regulators are involved in the activation/inactivation cycle and the GTPase interacting partners that determine the intracellular niche and extent of signaling. Data discussed here unravel unparalleled cooperation and coordination of functions among GTPases and their regulators in supporting strong adhesion between cells.
Collapse
Affiliation(s)
- Vania Braga
- Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
41
|
Tang VW. Cell-cell adhesion interface: orthogonal and parallel forces from contraction, protrusion, and retraction. F1000Res 2018; 7. [PMID: 30345009 PMCID: PMC6173117 DOI: 10.12688/f1000research.15860.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 01/22/2023] Open
Abstract
The epithelial lateral membrane plays a central role in the integration of intercellular signals and, by doing so, is a principal determinant in the emerging properties of epithelial tissues. Mechanical force, when applied to the lateral cell-cell interface, can modulate the strength of adhesion and influence intercellular dynamics. Yet the relationship between mechanical force and epithelial cell behavior is complex and not completely understood. This commentary aims to provide an investigative look at the usage of cellular forces at the epithelial cell-cell adhesion interface.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, 61801, USA
| |
Collapse
|
42
|
Matsuzaki T, Matsumoto S, Kasai T, Yoshizawa E, Okamoto S, Yoshikawa HY, Taniguchi H, Takebe T. Defining Lineage-Specific Membrane Fluidity Signatures that Regulate Adhesion Kinetics. Stem Cell Reports 2018; 11:852-860. [PMID: 30197117 PMCID: PMC6178887 DOI: 10.1016/j.stemcr.2018.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 12/13/2022] Open
Abstract
Cellular membrane fluidity is a critical modulator of cell adhesion and migration, prompting us to define the systematic landscape of lineage-specific cellular fluidity throughout differentiation. Here, we have unveiled membrane fluidity landscapes in various lineages ranging from human pluripotency to differentiated progeny: (1) membrane rigidification precedes the exit from pluripotency, (2) membrane composition modulates activin signaling transmission, and (3) signatures are relatively germ layer specific presumably due to unique lipid compositions. By modulating variable lineage-specific fluidity, we developed a label-free “adhesion sorting (AdSort)” method with simple cultural manipulation, effectively eliminating pluripotent stem cells and purifying target population as a result of the over 1,150 of screened conditions combining compounds and matrices. These results underscore the important role of tunable membrane fluidity in influencing stem cell maintenance and differentiation that can be translated into lineage-specific cell purification strategy. Membrane rigidification precedes the exit from pluripotency Germ layer-specific membrane fluidity signature exists Identification of polyphenols as a membrane fluidity modulator Fluidity-based adhesion sorting purify differentiated progeny from pluripotency
Collapse
Affiliation(s)
- Takahisa Matsuzaki
- Institute of Research, Tokyo Medical and Dental University (TMDU), 15-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Shinya Matsumoto
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Toshiharu Kasai
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Emi Yoshizawa
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Satoshi Okamoto
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Hiroshi Y Yoshikawa
- Department of Chemistry, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan
| | - Takanori Takebe
- Institute of Research, Tokyo Medical and Dental University (TMDU), 15-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa 236-0004, Japan; Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
43
|
Spatial and temporal organization of cadherin in punctate adherens junctions. Proc Natl Acad Sci U S A 2018; 115:E4406-E4415. [PMID: 29691319 DOI: 10.1073/pnas.1720826115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adherens junctions (AJs) play a fundamental role in tissue integrity; however, the organization and dynamics of the key AJ transmembrane protein, E-cadherin, both inside and outside of AJs, remain controversial. Here we have studied the distribution and motility of E-cadherin in punctate AJs (pAJs) of A431 cells. Using single-molecule localization microscopy, we show that pAJs in these cells reach more than 1 μm in length and consist of several cadherin clusters with crystal-like density interspersed within sparser cadherin regions. Notably, extrajunctional cadherin appears to be monomeric, and its density is almost four orders of magnitude less than observed in the pAJ regions. Two alternative strategies of tracking cadherin motion within individual junctions show that pAJs undergo actin-dependent rapid-on the order of seconds-internal reorganizations, during which dense clusters disassemble and their cadherins are immediately reused for new clusters. Our results thus modify the classical view of AJs by depicting them as mosaics of cadherin clusters, the short lifetimes of which enable stable overall morphology combined with rapid internal rearrangements.
Collapse
|
44
|
Efimova N, Svitkina TM. Branched actin networks push against each other at adherens junctions to maintain cell-cell adhesion. J Cell Biol 2018; 217:1827-1845. [PMID: 29507127 PMCID: PMC5940301 DOI: 10.1083/jcb.201708103] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/21/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Adherens junctions (AJs) are mechanosensitive cadherin-based intercellular adhesions that interact with the actin cytoskeleton and carry most of the mechanical load at cell-cell junctions. Both Arp2/3 complex-dependent actin polymerization generating pushing force and nonmuscle myosin II (NMII)-dependent contraction producing pulling force are necessary for AJ morphogenesis. Which actin system directly interacts with AJs is unknown. Using platinum replica electron microscopy of endothelial cells, we show that vascular endothelial (VE)-cadherin colocalizes with Arp2/3 complex-positive actin networks at different AJ types and is positioned at the interface between two oppositely oriented branched networks from adjacent cells. In contrast, actin-NMII bundles are located more distally from the VE-cadherin-rich zone. After Arp2/3 complex inhibition, linear AJs split, leaving gaps between cells with detergent-insoluble VE-cadherin transiently associated with the gap edges. After NMII inhibition, VE-cadherin is lost from gap edges. We propose that the actin cytoskeleton at AJs acts as a dynamic push-pull system, wherein pushing forces maintain extracellular VE-cadherin transinteraction and pulling forces stabilize intracellular adhesion complexes.
Collapse
Affiliation(s)
- Nadia Efimova
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
45
|
Seddiki R, Narayana GHNS, Strale PO, Balcioglu HE, Peyret G, Yao M, Le AP, Teck Lim C, Yan J, Ladoux B, Mège RM. Force-dependent binding of vinculin to α-catenin regulates cell-cell contact stability and collective cell behavior. Mol Biol Cell 2017; 29:380-388. [PMID: 29282282 PMCID: PMC6014167 DOI: 10.1091/mbc.e17-04-0231] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/20/2017] [Accepted: 12/14/2017] [Indexed: 11/12/2022] Open
Abstract
Combining cell biology and biomechanical analysis, we show here that the coupling between cadherin complexes and actin through tension-dependent α-catenin/vinculin association is regulating AJ stability and dynamics as well as tissue-scale mechanics. The shaping of a multicellular body and repair of adult tissues require fine-tuning of cell adhesion, cell mechanics, and intercellular transmission of mechanical load. Adherens junctions (AJs) are the major intercellular junctions by which cells sense and exert mechanical force on each other. However, how AJs adapt to mechanical stress and how this adaptation contributes to cell–cell cohesion and eventually to tissue-scale dynamics and mechanics remains largely unknown. Here, by analyzing the tension-dependent recruitment of vinculin, α-catenin, and F-actin as a function of stiffness, as well as the dynamics of GFP-tagged wild-type and mutated α-catenins, altered for their binding capability to vinculin, we demonstrate that the force-dependent binding of vinculin stabilizes α-catenin and is responsible for AJ adaptation to force. Challenging cadherin complexes mechanical coupling with magnetic tweezers, and cell–cell cohesion during collective cell movements, further highlight that tension-dependent adaptation of AJs regulates cell–cell contact dynamics and coordinated collective cell migration. Altogether, these data demonstrate that the force-dependent α-catenin/vinculin interaction, manipulated here by mutagenesis and mechanical control, is a core regulator of AJ mechanics and long-range cell–cell interactions.
Collapse
Affiliation(s)
- Rima Seddiki
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France
| | | | - Pierre-Olivier Strale
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France.,Mechanobiology Institute, National University of Singapore, Singapore 117411
| | | | - Grégoire Peyret
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Anh Phuong Le
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Department of Biomedical Engineering, National University of Singapore, Singapore 117542
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Department of Biomedical Engineering, National University of Singapore, Singapore 117542
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Benoit Ladoux
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France.,Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - René Marc Mège
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France
| |
Collapse
|
46
|
Advedissian T, Proux-Gillardeaux V, Nkosi R, Peyret G, Nguyen T, Poirier F, Viguier M, Deshayes F. E-cadherin dynamics is regulated by galectin-7 at epithelial cell surface. Sci Rep 2017; 7:17086. [PMID: 29213102 PMCID: PMC5719072 DOI: 10.1038/s41598-017-17332-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/15/2017] [Indexed: 02/02/2023] Open
Abstract
Re-epithelialisation of wounded epidermis is ensured by collective cell migration of keratinocytes. Efficient collective migration requires the maintenance of intercellular adhesion, notably through adherens junctions, to favour cell communication, support tension forces and coordinated movement . Galectin-7, a soluble lectin expressed in stratified epithelia, has been previously implicated in cell migration and intercellular adhesion. Here, we revealed a new function of galectin-7 in the control of directionality and collective behaviour in migrating keratinocytes. Consistently, we identified galectin-7 as a direct partner of E-cadherin, a key component of adherens junctions. Unexpectedly, this interaction does not require glycosylation motifs. Focusing on the underlying mechanisms, we showed that galectin-7 stabilizes E-cadherin at the plasma membrane, restraining its endocytosis. Interestingly, galectin-7 silencing decreases E-cadherin-mediated intercellular adhesion. Consequently, this study not only identifies a new stabilizer of adherens junctions but also emphasises the importance of the interplay between E-cadherin turnover and intercellular adhesion strength.
Collapse
Affiliation(s)
- Tamara Advedissian
- Team Morphogenesis, Homeostasis and Pathologies, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France
| | - Véronique Proux-Gillardeaux
- Team Morphogenesis, Homeostasis and Pathologies, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France.,Team Membrane Traffic in Health & Disease, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France
| | - Rachel Nkosi
- Team Morphogenesis, Homeostasis and Pathologies, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France
| | - Grégoire Peyret
- Team Cell Adhesion and Mechanics, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France
| | - Thao Nguyen
- Team Cell Adhesion and Mechanics, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France
| | - Françoise Poirier
- Team Morphogenesis, Homeostasis and Pathologies, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France
| | - Mireille Viguier
- Team Morphogenesis, Homeostasis and Pathologies, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France.
| | - Frédérique Deshayes
- Team Morphogenesis, Homeostasis and Pathologies, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France.
| |
Collapse
|
47
|
|
48
|
Nanoscale mechanobiology of cell adhesions. Semin Cell Dev Biol 2017; 71:53-67. [PMID: 28754443 DOI: 10.1016/j.semcdb.2017.07.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022]
Abstract
Proper physiological functions of cells and tissues depend upon their abilities to sense, transduce, integrate, and generate mechanical and biochemical signals. Although such mechanobiological phenomena are widely observed, the molecular mechanisms driving these outcomes are still not fully understood. Cell adhesions formed by integrins and cadherins receptors are key structures that process diverse sources of signals to elicit complex mechanobiological responses. Since the nanoscale is the length scale at which molecules interact to relay force and information, the understanding of cell adhesions at the nanoscale level is important for grasping the inner logics of cellular decision making. Until recently, the study of the biological nanoscale has been restricted by available molecular and imaging tools. Fortunately, rapid technological advances have increasingly opened up the nanoscale realm to systematic investigations. In this review, we discuss current insights and key open questions regarding the nanoscale structure and function relationship of cell adhesions, focusing on recent progresses in characterizing their composition, spatial organization, and cytomechanical operation.
Collapse
|
49
|
Gloushankova NA, Rubtsova SN, Zhitnyak IY. Cadherin-mediated cell-cell interactions in normal and cancer cells. Tissue Barriers 2017; 5:e1356900. [PMID: 28783415 DOI: 10.1080/21688370.2017.1356900] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adherens junctions (AJs) are molecular complexes that mediate cell-cell adhesive interactions and play pivotal roles in maintenance of tissue organization in adult organisms and at various stages of development. AJs consist of cadherin adhesion receptors, providing homophilic ligation with cadherins on adjacent cells, and members of the catenin protein family: p120, β- and α-catenin. α-catenin's linkage with the actin cytoskeleton defines the linear or punctate organization of AJs in different cell types. Myosin II-dependent tension drives vinculin recruitment by α-catenin and stabilizes the linkage of the cadherin/catenin complex to F-actin. Neoplastic transformation leads to prominent changes in the organization, regulation and stability of AJs. Epithelial-mesenchymal transition (EMT) whereby epithelial cells lose stable cell-cell adhesion, and reorganize their cytoskeleton to acquire migratory activity, plays the central role in cancer cell invasion and metastasis. Recent data demonstrated that a partial EMT resulting in a hybrid epithelial/mesenchymal phenotype with retention of E-cadherin is essential for cancer cell dissemination. E-cadherin and E-cadherin-based AJs are required for collective invasion and migration, survival in circulation, and metastatic outgrowth.
Collapse
Affiliation(s)
- Natalya A Gloushankova
- a Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center , Moscow , Russia
| | - Svetlana N Rubtsova
- a Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center , Moscow , Russia
| | - Irina Y Zhitnyak
- a Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center , Moscow , Russia
| |
Collapse
|
50
|
De Pascalis C, Etienne-Manneville S. Single and collective cell migration: the mechanics of adhesions. Mol Biol Cell 2017; 28:1833-1846. [PMID: 28684609 PMCID: PMC5541834 DOI: 10.1091/mbc.e17-03-0134] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022] Open
Abstract
Chemical and physical properties of the environment control cell proliferation, differentiation, or apoptosis in the long term. However, to be able to move and migrate through a complex three-dimensional environment, cells must quickly adapt in the short term to the physical properties of their surroundings. Interactions with the extracellular matrix (ECM) occur through focal adhesions or hemidesmosomes via the engagement of integrins with fibrillar ECM proteins. Cells also interact with their neighbors, and this involves various types of intercellular adhesive structures such as tight junctions, cadherin-based adherens junctions, and desmosomes. Mechanobiology studies have shown that cell-ECM and cell-cell adhesions participate in mechanosensing to transduce mechanical cues into biochemical signals and conversely are responsible for the transmission of intracellular forces to the extracellular environment. As they migrate, cells use these adhesive structures to probe their surroundings, adapt their mechanical properties, and exert the appropriate forces required for their movements. The focus of this review is to give an overview of recent developments showing the bidirectional relationship between the physical properties of the environment and the cell mechanical responses during single and collective cell migration.
Collapse
Affiliation(s)
- Chiara De Pascalis
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur Paris, CNRS UMR3691, 75724 Paris Cedex 15, France
- UPMC Université Paris 06, IFD, Sorbonne Universités, 75252 Paris Cedex 05, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur Paris, CNRS UMR3691, 75724 Paris Cedex 15, France
| |
Collapse
|