1
|
Wang Y, Li T, Dong Z, Zhang Q, Mi J, Wang Q, Lin G, Ma Q, Jia R, Huang S. Extracellular Vesicles From Lactobacillus fermentum Enhance Intestinal Barrier Integrity and Restore Gut Microbial Homeostasis in Experimental Murine Colitis. J Nutr 2025; 155:1311-1323. [PMID: 40058701 DOI: 10.1016/j.tjnut.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/19/2025] [Accepted: 03/02/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Lactobacillus fermentum has been shown to improve intestinal health and treat colitis; however, its precise efficacy and mechanisms in inflammatory bowel disease remain unclear. OBJECTIVES This study aimed to evaluate whether L fermentum and its metabolites, extracellular vesicles, and other components could modulate intestinal barrier function and gut microbiota to alleviate dextran sulfate sodium (DSS)-induced colitis in mice. METHODS Forty-eight mice were randomly assigned to 6 groups: control, DSS, L fermentum+DSS group (LF+DSS), heat-inactivated L fermentum+DSS group (LHF+DSS), L fermentum supernatant solution+DSS group (LSF+DSS), and L fermentum extracellular vesicles+DSS group (LEV+DSS). After a 1-wk acclimation, mice were gavaged daily for 3 wk. Fresh cultures, including live (LF+DSS), heat-inactivated (LHF+DSS), supernatant (LSF+DSS), and extracellular vesicles (LEV+DSS), were prepared daily. During the final 7 d, the control group received normal water, and the other groups received 3% DSS. Data were collected daily, followed by sample collection from the mice. RESULTS In this study, significant reductions (P < 0.05) in body weight changes, disease activity index, intestinal damage, and histology scores were observed in the treatment groups, especially LEV+DSS and LF+DSS. Additionally, compared with the DSS group, colonic mucus secretion, as well as claudin-1 and occludin expression, increased significantly (P < 0.05) in the LEV+DSS and LF+DSS groups, whereas proinflammatory cytokines IL-1β and TNF-α decreased (P < 0.05) and IL-10 increased (P < 0.05) in the LEV+DSS group. L fermentum and its components significantly regulated gut microbiota α-diversity and β-diversity, affecting overall composition. Linear discriminant analysis effect size analysis revealed an enrichment of beneficial bacteria including Prevotellaceae_UCG-001, Romboutsia, and Ruminococcus species in the LF+DSS group and Akkermansia, Odoribacter, and Marvinbryantia species in the LEV+DSS group. Both L fermentum and its extracellular vesicles significantly downregulated the gene expression of TNF-α and IL-1β, whereas the expression of IL-10 was upregulated, thereby contributing to the alleviation of colitis symptoms. CONCLUSIONS This study reveals that L fermentum alleviates colitis through modulation of the gut microbiota and reinforcement of the intestinal mucosal barrier, with its extracellular vesicles potentially playing a key role in this regulatory process.
Collapse
Affiliation(s)
- Yanwei Wang
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; School of Life Science, Shanxi University, Taiyuan, China; Laboratory of Feed grain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| | - Tiantian Li
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Zhuo Dong
- Hubei International Travel Healthcare Center, Hubei, China
| | - Qiyue Zhang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jingqiu Mi
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of Feed grain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| | - Qingfeng Wang
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of Feed grain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| | - Gang Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Beijing, China
| | - Qiugang Ma
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of Feed grain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| | - Ru Jia
- School of Life Science, Shanxi University, Taiyuan, China.
| | - Shimeng Huang
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of Feed grain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China.
| |
Collapse
|
2
|
Zhang Z, Boggavarapu NR, Muhr LSA, Garcia-Serrango A, Aeppli TRJ, Nava TS, Zhao Y, Gutierrez-Farewik EM, Kulachenko A, Sävendahl L, Zaman F. Genomic Effects of Biomechanical Loading in Adolescent Human Growth Plate Cartilage: A Pilot Study. Cartilage 2024:19476035241302954. [PMID: 39655393 PMCID: PMC11629350 DOI: 10.1177/19476035241302954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE The genomic effects of biomechanical loading on human growth plate cartilage are unknown so far. To address this, we used rare human growth plate biopsies obtained from children undergoing epiphysiodesis and exposed them to precisely controlled mechanical loading using a microloading device. The biopsies were cultured 24 hours after mechanical loading, followed by RNA-sequencing analyses to decipher the genomic regulation. DESIGN We conducted RNA-seq analysis of human growth plate cartilage obtained from three patients cultured ex vivo and subjected to cyclical mechanical loading with peak 0.4 N with frequency 0.77 Hz during a 30-second duration, using a specialized microloading device. RESULTS Gene ontology analysis revealed novel data showing three significantly upregulated signaling pathways, including notch, oxytocin, and tight junction, and three significantly downregulated signaling pathways, including lysosome, sphingolipid metabolism, and peroxisome proliferator-activated receptor (PPAR) in human growth plate cartilage. Moreover, we found 15 significantly regulated genes within these signaling pathways from all three patients. These genes included PSEN2, HEY1, and NCOR2 from the notch signaling; CACNB1 and PPP3R2 from the oxytocin signaling; ACTR3C, WHAMM, and ARHGEF18 from the tight junction signaling; ARSA, SMPD1, and CD68 from the lysosome signaling; ARSA and SMPD1 from the sphingolipid metabolism signaling; and SLC27A4 and AQP7 from the PPAR signaling pathway. In addition, 20 significantly upregulated genes and six significantly downregulated genes shared between two patient samples were identified. CONCLUSION Our study provides the first-ever transcriptomic data of mechanical loading of human growth plate cartilage. These findings can potentially provide genetic targets for future investigations in physiological and pathological bone growth conditions.
Collapse
Affiliation(s)
- Zhengpei Zhang
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Nageswara Rao Boggavarapu
- Division of Obstetrics and Gynaecology, Department of Women’s and Children’s Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Laila Sara Arroyo Muhr
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Ainhoa Garcia-Serrango
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Tim RJ Aeppli
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Tobia Sebastiano Nava
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yunhan Zhao
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Elena M. Gutierrez-Farewik
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Artem Kulachenko
- Material and Structural Mechanics, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lars Sävendahl
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Farasat Zaman
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
3
|
Ni W, Li Y, Feng J, Liu B, Yuan H, Tai G, Bi H. Therapeutic Efficacy and Underlying Mechanisms of a Mannoglucan from Hirsutella sinensis Mycelium on Dextran Sulfate Sodium-Induced Inflammatory Bowel Disease in Mice: Modulation of the Intestinal Barrier, Oxidative Stress and Gut Microbiota. Int J Mol Sci 2024; 25:13100. [PMID: 39684811 DOI: 10.3390/ijms252313100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Hirsutella sinensis (H. sinensis), a non-sexual form of the valuable Chinese medicinal herb, demonstrates various biological activities, such as immune modulation and antioxidative capabilities. Nonetheless, the effects of bioactive polysaccharides derived from H. sinensis on colitis have yet to be investigated. In our prior research, we extracted a mannoglucan (HSWP-1d) from H. sinensis and found that it attenuates TGF-β1-induced epithelial-mesenchymal transition. The present study investigated the protective effects of HSWP-1d against colitis induced by dextran sulfate sodium (DSS) in mice. The results demonstrate that HSWP-1d effectively ameliorates symptoms of colitis and preserves the intestinal barrier's stability by enhancing the expression of tight junction proteins. The administration of HSWP-1d results in a reduction in oxidative stress through the augmentation of antioxidative enzyme activities, concomitant with the suppression of oxidative product generation. Simultaneously, HSWP-1d reduced the levels of pro-inflammatory cytokines while elevating the levels of anti-inflammatory cytokines, effectively mitigating the inflammatory response. Furthermore, HSWP-1d influences and alters short-chain-fatty-acid (SCFA) levels, thereby enhancing the intestinal microenvironment. In conclusion, HSWP-1d contributes to intestinal well-being and holds potential as both a therapeutic choice and a supplier of essential nutrients for the amelioration of colitis.
Collapse
Affiliation(s)
- Weihua Ni
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Yu Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Jingyue Feng
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Boxuan Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Hongyan Yuan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Guixiang Tai
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Hongtao Bi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, CAS, 23 Xinning Road, Xining 810008, China
| |
Collapse
|
4
|
Wen B, Huang Y, Deng G, Yan Q, Jia L. Gut microbiota analysis and LC-MS-based metabolomics to investigate AMPK/NF-κB regulated by Clostridium butyricum in the treatment of acute pancreatitis. J Transl Med 2024; 22:1072. [PMID: 39604956 PMCID: PMC11600808 DOI: 10.1186/s12967-024-05764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory condition with potentially life-threatening complications. This study investigates the therapeutic potential of Clostridium butyricum for modulating the inflammatory cascade through the AMPK/NF-κB signaling pathway, focusing on inflammation induced by AP. LC-MS analysis of serum samples from AP patients highlighted the regulation of lipid metabolism and inflammation, and found that metabolites involved in the inhibition of NF-κB phosphorylation and the AMPK activation pathway were downregulated. We hypothesized that pre-administration of Clostridium butyricum and its culture supernatant could mitigate AP-induced damage by modulating the AMPK/NF-κB pathway. METHODS Lipopolysaccharide (LPS)-induced cell inflammation models. LPS combined with CAE induced acute pancreatitis in mice. We divided mice into four groups: Con, AP, AP + C.Buty (AP with Clostridium butyricum treatment), and AP + CFS (AP with culture supernatant treatment). Analyses were performed using WB, RT-qPCR, Elisa, flow cytometry, IHC, and HE, respectively. RESULTS Our study shows that CFS can reduce the apoptosis of LPS-induced cellular inflammation and reduce the release of LPS-induced cytoinflammatory factors through the AMPK/NF-κB pathway in vitro. In vivo, Clostridium butyricum and its supernatant significantly reduced inflammatory markers, and corrected histopathological alterations in AP mice. Gut microbiota analysis further supported these results, showing that Clostridium butyricum and its supernatant could restore the balance of intestinal flora disrupted by AP. CONCLUSIONS Mechanistically, our results indicated that the therapeutic effects of Clostridium butyricum are mediated through the activation of AMPK, leading to the inhibition of the NF-κB pathway, thereby reducing the production of pro-inflammatory cytokines. Clostridium butyricum and its culture supernatant exert a protective effect against AP-induced damage by modulating the AMPK/NF-κB signaling pathway. Future studies will further elucidate the molecular mechanisms underlying the beneficial effects of Clostridium butyricum in AP and explore its clinical applicability in human subjects.
Collapse
Affiliation(s)
- Biyan Wen
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013, China
- Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Yaoxing Huang
- Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Guiqing Deng
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013, China
| | - Qingqing Yan
- Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Lin Jia
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013, China.
- Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China.
| |
Collapse
|
5
|
Liu Y, Liu S, Wan S, Li Z, Li H, Tang S. Anti-inflammatory properties of Bacillus pumilus TS1 in lipopolysaccharide-induced inflammatory damage in broilers. Anim Biotechnol 2024; 35:2418516. [PMID: 39460459 DOI: 10.1080/10495398.2024.2418516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
This study investigates whether Bacillus pumilus TS1 improves growth performance and alleviates inflammatory damage in broilers and explored its feasibility as an antibiotic alternative. We divided 240 one-day-old AA308 white-finned broilers into five groups (con, LPS, TS1L + LPS, TS1M + LPS and TS1H + LPS). The TS1L + LPS, TS1M + LPS and TS1H + LPS groups were fed TS1 for 15 days by gavage. The LPS, TS1L + LPS, TS1M + LPS and TS1H + LPS groups were injected intraperitoneally with 1 mg/kg LPS for three days. We investigated the probiotic and anti-inflammatory activities by measuring body weight, sequencing the intestinal flora and examining the structure of tissues by using pathological stain, real-time PCR, Western blotting and immunohistochemical detection. TS1 could improve growth performance and intestinal flora composition, also reduced different organ damage and inflammatory cytokine expression in serum and organs. The mechanism may involve upregulating HSP60 and HSP70 expression, targeting and regulating Nrf2 and P38 MAPK and modulating NF-κB and HO-1 expression at the transcriptional level in different organs. B. pumilus TS1 alleviated Inflammatory injury caused by LPS and attenuated the inflammatory response in broilers, and these effects were achieved through MAPK and Nrf2 regulation of HSPs/HO-1 in different organs. The above results suggested broilers fed with TS1 could release the LPS caused organ damage, and the most suggested dosage was 1.4 × 108 CFU/mL.
Collapse
Affiliation(s)
- Yinkun Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Sirui Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuangshuang Wan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zixin Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Yin Z, Zhang J, Qin J, Guo L, Guo Q, Kang W, Ma C, Chen L. Anti-inflammatory properties of polysaccharides from edible fungi on health-promotion: a review. Front Pharmacol 2024; 15:1447677. [PMID: 39130633 PMCID: PMC11310034 DOI: 10.3389/fphar.2024.1447677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Edible fungus polysaccharides have garnered significant attention from scholars due to their safety and potential anti-inflammatory activity. However, comprehensive summaries of their anti-inflammatory properties are still rare. This paper provides a detailed overview of the anti-inflammatory effects and mechanisms of these polysaccharides, as well as their impact on inflammation-related diseases. Additionally, the relationship between their structure and anti-inflammatory activity is discussed. It is believed that this review will greatly enhance the understanding of the application of edible fungus polysaccharides in anti-inflammatory treatments, thereby significantly promoting the development and utilization of edible fungi.
Collapse
Affiliation(s)
- Zhenhua Yin
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Juanjuan Zhang
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| | - Jingjing Qin
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| | - Lin Guo
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Qingfeng Guo
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| | - Wenyi Kang
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Changyang Ma
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Lin Chen
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| |
Collapse
|
7
|
Lao J, Yan S, Yong Y, Li Y, Wen Z, Zhang X, Ju X, Li Y. Lacticaseibacillus casei IB1 Alleviates DSS-Induced Inflammatory Bowel Disease by Regulating the Microbiota and Restoring the Intestinal Epithelial Barrier. Microorganisms 2024; 12:1379. [PMID: 39065147 PMCID: PMC11278699 DOI: 10.3390/microorganisms12071379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) is becoming an increasingly serious health problem in humans and animals. Probiotics can inhibit the development of IBD. Due to the specificity of the strains, the function and mechanism of action of different strains are still unclear. Here, a DSS-induced colitis mouse model was utilized to investigate the ability and mechanism by which Lacticaseibacillus casei IB1 alleviates colitis. Treatment with L. casei IB1 improved DSS-induced colitis in mice, as indicated by increased body weight, colon length, and goblet cell numbers and decreased disease activity index (DAI), proinflammatory factor (TNF-α, IL-1β, and IL-6) levels, and histopathological scores after intake of IB1. IB1 supplementation also improved the expression of tight junction proteins and inhibited the activation of the MAPK and NF-κB signaling pathways to alleviate intestinal inflammation. In addition, IB1 rebalanced the intestinal microbial composition of colitis mice by increasing the abundance of Faecalibaculum and Alistipes and decreasing the abundance of Bacteroides and Escherichia_Shigella. In summary, L. casei IB1 showed great potential for relieving colitis by regulating the microbiota and restoring the epithelial barrier. It can be used as a potential probiotic for the prevention and treatment of UC in the future.
Collapse
Affiliation(s)
- Jianlong Lao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Shuping Yan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Yanhong Yong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Yin Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Zhaohai Wen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Xiaoyong Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Youquan Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| |
Collapse
|
8
|
Chen J, Gao Y, Zhang Y, Wang M. Research progress in the treatment of inflammatory bowel disease with natural polysaccharides and related structure-activity relationships. Food Funct 2024; 15:5680-5702. [PMID: 38738935 DOI: 10.1039/d3fo04919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Inflammatory bowel disease (IBD) comprises a group of highly prevalent and chronic inflammatory intestinal tract diseases caused by multiple factors. Despite extensive research into the causes of the disease, IBD's pathogenic mechanisms remain unclear. Moreover, side effects of current IBD therapies restrict their long-term clinical use. In contrast, natural polysaccharides exert beneficial anti-IBD effects and offer advantages over current anti-IBD drugs, including enhanced safety and straightforward isolation from abundant and reliable sources, and thus may serve as components of functional foods and health products for use in IBD prevention and treatment. However, few reviews have explored natural polysaccharides with anti-IBD activities or the relationship between polysaccharide conformation and anti-IBD biological activity. Therefore, this review aims to summarize anti-IBD activities and potential clinical applications of polysaccharides isolated from plant, animal, microorganismal, and algal sources, while also exploring the relationship between polysaccharide conformation and anti-IBD bioactivity for the first time. Furthermore, potential mechanisms underlying polysaccharide anti-IBD effects are summarized, including intestinal microbiota modulation, intestinal inflammation alleviation, and intestinal barrier protection from IBD-induced damage. Ultimately, this review provides a theoretical foundation and valuable insights to guide the development of natural polysaccharide-containing functional foods and nutraceuticals for use as dietary IBD therapies.
Collapse
Affiliation(s)
- Jiaqi Chen
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanqiu Zhang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
9
|
Rohith HS, Peddha MS, Halami PM. Probiotic Bacillus licheniformis MCC2514 and Bifidobacterium breve NCIM 5671 Regulates GATA3 and Foxp3 Expression in the Elevated Disease Condition. Probiotics Antimicrob Proteins 2024; 16:894-910. [PMID: 37195508 DOI: 10.1007/s12602-023-10080-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/18/2023]
Abstract
TNBS-induced ulcerative colitis was evaluated using Bacillus licheniformis MCC 2514 (B. licheniformis) and Bifidobacterium breve NCIM 5671 (Bf. breve) as immune modulators. The study aims to analyze probiotic efficiency of ulcerative colitis induced by TNBS in Wistar rats. The tumor-like structure was found in the colon of TNBS inflammation-induced rats. Nitric oxide production was inhibited by about 65.2% fed with combination of bacteria and C-reactive protein, and decreased by 12% and 10.8% upon supplementing B. licheniformis and Bf. breve against the TNBS-treated rats, respectively. Liver damage was observed in the TNBS-treated rats; addition of probiotic bacteria reduced SGPT (75.4%) and SGOT (42.5%). On TNBS treatment, the transcriptional factor responsible for Th2 cell immune response (GATA3) was analyzed, and the elevation in gene expression (5.31-fold) was found. The FOXP-3 responsible for T-regulatory cells was expressed about 0.91-fold upon the treatment with a combination of bacteria. The expression of antioxidant genes such as iNOS (1.11-fold), GPx (1.29-fold), and PON1 (1.48-fold) has been increased when compared with that of the TNBS-treated group. The cytokines specific to Th2-driven immune response, such as IL-4, IL-5, and TNF-α, were reduced upon feeding the bacteria. It is observed that the B. licheniformis and Bf. breve used in the study have reduced Th2-driven immune response.
Collapse
Affiliation(s)
- H S Rohith
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
| | - Muthukumar Serva Peddha
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Prakash Motiram Halami
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India.
| |
Collapse
|
10
|
Mazhar MU, Naz S, Zulfiqar T, Khan JZ, Ghazanfar S, Tipu MK. Immunostimulant, hepatoprotective, and nephroprotective potential of Bacillus subtilis (NMCC-path-14) in comparison to dexamethasone in alleviating CFA-induced arthritis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3275-3299. [PMID: 37930392 DOI: 10.1007/s00210-023-02814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
To investigate and compare efficacy as well as safety of Bacillus subtilis and dexamethasone (Dexa) in complete Freund's adjuvant (CFA)-induced arthritis, we used glucocorticoid monotherapy (Dexa 5 mg/kg/day) and B. subtilis (1 × 108 CFU/animal/day p.o) as pre-treatment and concurrent treatment for a duration of 35 days. Specific emphasis was on chronic aspect of this study since long-term use of Dexa is known to produce undesirable side effects. Treatment with Dexa significantly attenuated the arthritic symptoms but produced severe side effects like weight loss, increased mortality, immunosuppression, and altered histology of liver, kidney, and spleen. Oxidative stress was also elevated by Dexa in these organs which contributed to the damage. Treatment with B. subtilis improved symptoms of arthritis without producing any deleterious side effects as seen with Dexa therapy. Immunohistochemistry (IHC) profile revealed decreased expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1β, tumor necrosis factor alpha (TNF-α), and increased nuclear factor erythroid 2-related factor 2 (Nrf-2) expression by B. subtilis and Dexa treatment in ankle joint of arthritic mice. Radiological scores were also improved by both treatments. This study concludes that B. subtilis could be an effective alternative for treating arthritis than Dexa since it does not produce life-threatening side effects on prolong treatment.
Collapse
Affiliation(s)
- Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sadaf Naz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tayyaba Zulfiqar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
11
|
Yadav D, Sainatham C, Filippov E, Kanagala SG, Ishaq SM, Jayakrishnan T. Gut Microbiome-Colorectal Cancer Relationship. Microorganisms 2024; 12:484. [PMID: 38543535 PMCID: PMC10974515 DOI: 10.3390/microorganisms12030484] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 11/12/2024] Open
Abstract
Traditionally, the role of gut dysbiosis was thought to be limited to pathologies like Clostridioides difficile infection, but studies have shown its role in other intestinal and extraintestinal pathologies. Similarly, recent studies have surfaced showing the strong potential role of the gut microbiome in colorectal cancer, which was traditionally attributed mainly to sporadic or germline mutations. Given that it is the third most common cancer and the second most common cause of cancer-related mortality, 78 grants totaling more than USD 28 million have been granted to improve colon cancer management since 2019. Concerted efforts by several of these studies have identified specific bacterial consortia inducing a proinflammatory environment and promoting genotoxin production, causing the induction or progression of colorectal cancer. In addition, changes in the gut microbiome have also been shown to alter the response to cancer chemotherapy and immunotherapy, thus changing cancer prognosis. Certain bacteria have been identified as biomarkers to predict the efficacy of antineoplastic medications. Given these discoveries, efforts have been made to alter the gut microbiome to promote a favorable diversity to improve cancer progression and the response to therapy. In this review, we expand on the gut microbiome, its association with colorectal cancer, and antineoplastic medications. We also discuss the evolving paradigm of fecal microbiota transplantation in the context of colorectal cancer management.
Collapse
Affiliation(s)
- Devvrat Yadav
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Chiranjeevi Sainatham
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Evgenii Filippov
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Sai Gautham Kanagala
- Department of Internal Medicine, NYC Health + Hospital/Metropolitan, New York, NY 10029, USA
| | - Syed Murtaza Ishaq
- Department of Internal Medicine, Sinai Hospital of Baltimore, 2401 W Belvedere Ave, Baltimore, MD 21215, USA (E.F.); (S.M.I.)
| | - Thejus Jayakrishnan
- Division of Hematology and Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
12
|
Liu Y, Liu G, Fang J. Progress on the mechanisms of Lactobacillus plantarum to improve intestinal barrier function in ulcerative colitis. J Nutr Biochem 2024; 124:109505. [PMID: 37890709 DOI: 10.1016/j.jnutbio.2023.109505] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Ulcerative colitis (UC) is a chronic, non-specific inflammatory sickness of the intestinal tract, chiefly implicating the rectum and colon, which is characterized by chronic or subacute diarrhea, mucopurulent stools, and abdominal pain. The pathogeny of UC is still uncertain, and it is thought that multiple factors interact to cause the disease, such as environment, genetics, gut microbes, and immunity. Injuring the intestinal barrier is one of the most significant features of UC and includes mechanical, chemical, immune, and biological barriers. Plenty of research has shown that probiotics, as profitable bacteria in the gut, can play a prominent role in the treatment of UC by improving gut barrier function and modulating gut immunity. Lactobacillus plantarum (L. plantarum), a common probiotic, has made outstanding contributions to food and medicine, and many studies in recent years have shown that L. plantarum has great preventive and therapeutic effects on ulcerative colitis and restores the intestinal barrier. This paper reviews the mechanisms of L. plantarum for improving the intestinal barrier function of UC organisms, mainly including regulating the immune response, inhibiting oxidative stress, raising the expression of tight junction (TJ) proteins, promoting the formation of mucin, improving the composition of gut flora, and raising the levels of short-chain fatty acids (SCFAs), which offers some help for the clinical therapy of UC.
Collapse
Affiliation(s)
- Yihui Liu
- College of Bioscience and Biotechnology, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410128, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410128, China.
| |
Collapse
|
13
|
Yu C, Liu J, Liu Z, Ding Q, Zhu Q, Chen N, Fu J, Valencak TG, Ren D. Lactobacillus plantarum ZJUIDS04 alleviates DSS-induced colitis via modulating gut microbiota. J Funct Foods 2023; 109:105794. [DOI: 10.1016/j.jff.2023.105794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
14
|
Wu Q, Er-Bu A, Liang X, He C, Yin L, Xu F, Zou Y, Yin Z, Yue G, Li L, Song X, Tang H, Zhang W, Lv C, Jing B, Sang G, Rangnanjia C. Isolation, structure identification, and immunostimulatory effects in vitro and in vivo of polysaccharides from Onosma hookeri Clarke var. longiforum Duthie. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:328-338. [PMID: 35871477 DOI: 10.1002/jsfa.12145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND This study characterized an acidic polysaccharide (OHC-LDPA) isolated from the medicinal and edible homologous plant Onosma hookeri Clarke var. longiforum Duthie. The structure of OHC-LDPA was elucidated based on the analysis of infrared, one-/two-dimensional nuclear magnetic resonance, and gas chromatography-mass spectrometry data. The immunostimulatory effects of OHC-LDPA were identified by both in vitro and in vivo models. RESULTS The structure of OHC-LDPA was elucidated as a typical pectin polysaccharide, consisting of galacturonic acid, galactose, arabinose, and rhamnose as the primary sugars, with linear galacturonic acid as the main chain and arabinogalacturonic acid as the main branched components. OHC-LDPA could significantly stimulate the proliferation and phagocytosis of RAW264.7 macrophages and the release of nitric oxide in vitro. Also, it could accelerate the recovery of spleen and thymus indexes, enhance the splenic lymphocyte proliferation responses, and restore the levels of interleukin-2, interleukin-10, interferon-γ, and immunoglobulin G in the serum in a cyclophosphamide-induced immunosuppressed-mice model. In addition, OHC-LDPA could restore the intestinal mucosal immunity and reduce the inflammatory damage. CONCLUSION OHC-LDPA could improve the immunity both in vitro and in vivo and could be used as a potential immunostimulant agent. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Aga Er-Bu
- Medical College, Tibet University, Lasa, P. R. China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Funeng Xu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Guizhou Yue
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Huaqiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Bo Jing
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Geng Sang
- Graduate school, Tibet Medical University, Lasa, P. R. China
| | - Car Rangnanjia
- Graduate school, Tibet Medical University, Lasa, P. R. China
| |
Collapse
|
15
|
Dou X, Zhang B, Qiao L, Song X, Pi S, Chang J, Zhang X, Zeng X, Zhu L, Xu C. Biogenic Selenium Nanoparticles Synthesized by Lactobacillus casei ATCC 393 Alleviate Acute Hypobaric Hypoxia-Induced Intestinal Barrier Dysfunction in C57BL/6 Mice. Biol Trace Elem Res 2022:10.1007/s12011-022-03513-y. [PMID: 36469280 DOI: 10.1007/s12011-022-03513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022]
Abstract
Exposure to hypobaric hypoxia at high altitude will cause different tissue and organ damage over a long period of time. Studies have shown that hypobaric hypoxia can cause severe primary intestinal barrier dysfunction, and then cause multiple organ dysfunction. Our previous research showed that selenium nanoparticles (SeNPs) synthesized by Lactobacillus casei ATCC 393 (L. casei ATCC 393) can effectively alleviate intestinal barrier dysfunction caused by oxidative stress and inflammation in mice. This study was conducted to investigate the protective effect of biological SeNPs synthesized by L. casei ATCC 393 on intestinal barrier function in acute hypobaric hypoxic stress mice. The results showed that compared with the hypobaric hypoxic, the SeNPs synthesized by L. casei ATCC 393 by oral administration could effectively alleviate the shortening of intestinal villi, which decreased the level of diamine oxidase (DAO) and myeloperoxidase (MPO), and the expression level of tight junction protein in ileum was increased. In addition, SeNPs significantly increased the activities of superoxide dismutase (SOD), cyclooxygenase (COX-1) and glutathione peroxidase (GPx), and decreased the level of malondialdehyde (MDA), and inhibit the increase of hypoxia related factor. SeNPs effectively regulate the intestinal microecology disorder caused by hypobaric hypoxia stress, and maintain the intestinal microecology balance. In addition, oral administration of SeNPs had better protective effect on intestinal barrier function of mice under hypobaric hypoxia stress. These results suggested that SeNPs synthesized by L. casei ATCC 393 can effectively alleviate the damage of intestinal barrier function under acute hypobaric hypoxic stress, which may be closely related to the antioxidant activity of SeNPs.
Collapse
Affiliation(s)
- Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Baohua Zhang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Shanyao Pi
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Xinyi Zhang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Xiaonan Zeng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Lixu Zhu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyixi Road Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
16
|
Shi Q, Yang C, Zhang B, Chen D, Lu F, Zhao H. Bacillus coagulans Alleviates Intestinal Damage Induced by TiO2 Nanoparticles in Mice on a High-Fat Diet. Foods 2022; 11:foods11213368. [PMID: 36359981 PMCID: PMC9655532 DOI: 10.3390/foods11213368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are generally added in considerable amounts to food as a food additive. Oral exposure to TiO2 NPs could induce intestinal damage, especially in obese individuals with a high-fat diet. The probiotic Bacillus coagulans (B. coagulans) exhibits good resistance in the gastrointestinal system and is beneficial to intestinal health. In this study, B. coagulans was used to treat intestinal damage caused by TiO2 NPs in high-fat-diet mice via two intervention methods: administration of TiO2 NPs and B. coagulans simultaneously and administration of TiO2 NPs followed by that of B. coagulans. The intervention with B. coagulans was found to reduce the inflammatory response and oxidative stress. A 16S rDNA sequencing analysis revealed that B. coagulans had increased the diversity of gut microbiota and optimized the composition of gut microbiota. Fecal metabolomics analysis indicated that B. coagulans had restored the homeostasis of sphingolipids and amino acid metabolism. The intervention strategy of administering TiO2 NPs followed by B. coagulans was found to be more effective. In conclusion, B. coagulans could alleviate intestinal damage induced by TiO2 NPs in high-fat-diet mice TiO2B. coagulans. Our results suggest a new avenue for interventions against intestinal damage induced by TiO2 NPs.
Collapse
Affiliation(s)
- Qingying Shi
- College of Biotechnology, Tianjin University of Science and Technology, 9 TEDA 13th Street, Tianjin 300457, China
| | - Chen Yang
- College of Biotechnology, Tianjin University of Science and Technology, 9 TEDA 13th Street, Tianjin 300457, China
| | - Bingjie Zhang
- College of Biotechnology, Tianjin University of Science and Technology, 9 TEDA 13th Street, Tianjin 300457, China
| | - Dongxiao Chen
- College of Biotechnology, Tianjin University of Science and Technology, 9 TEDA 13th Street, Tianjin 300457, China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science and Technology, 9 TEDA 13th Street, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300450, China
| | - Huabing Zhao
- College of Biotechnology, Tianjin University of Science and Technology, 9 TEDA 13th Street, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300450, China
- Correspondence:
| |
Collapse
|
17
|
Liu Z, Jiang Z, Zhang Z, Liu T, Fan Y, Liu T, Peng N. Bacillus coagulans in Combination with Chitooligosaccharides Regulates Gut Microbiota and Ameliorates the DSS-Induced Colitis in Mice. Microbiol Spectr 2022; 10:e0064122. [PMID: 35900082 PMCID: PMC9430726 DOI: 10.1128/spectrum.00641-22] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Ulcerative colitis (UC) are chronic inflammatory disorders, which may be caused by intestinal barrier dysfunction, immune system disorders and intestinal microbiota dysbiosis. Synbiotic, the combination of probiotics and prebiotics, is thought to be a pragmatic approach in mitigating inflammation in UC. Bacillus coagulans has been recognized as a potential probiotic for treating intestinal diseases because of its favorable industrial and probiotic properties, including sporulation and lactic acid production. In this study, we evaluated the treatment effects of the B. coagulans FCYS01 spores with or without the chitooligosaccharides (COSs) on UC generated using dextran sulfate sodium (DSS) in mice. Supplementation of B. coagulans spores, prebiotic COSs or the synbiotic (the spores + COSs) had a significant positive effect on DSS-induced UC. The disease activity index and histological damage score were significantly reduced after these supplementations. Compared to DSS group, these supplementations also significantly modulated the cytokines IL-4, IL-6, IL-8, IL-10, and C-reactive protein (CRP) levels and significantly maintained expressions of tight junction proteins and mucin protein and promotes recovery of the intestinal barrier. In addition, these supplementations regulate the composition of gut microbiota and improve the production of short-chain fatty acids (SCFAs), through enrichment of SCFA-producing bacteria, such as Akkermansia and Ruminococcus species. In summary, the synbiotic ameliorated the overall inflammatory status of the experimental UC model and showed a better treatment effect than B. coagulans or COSs did alone as revealed by the markers such as, colon length, IL-4 and Occludin levels. IMPORTANCE Probiotic and prebiotic are believed to be useful in alleviating the inflammatory, thereby resolving or preventing the severity of UC. Spore-forming bacteria Bacillus coagulans show advantages of stability and probiotic effects, being suggested as the important probiotics for UC treatment. Here, we demonstrate that administration of B. coagulans spores, chitooligosaccharides (COSs), or the synbiotic attenuates DSS-induced colitis and significantly correlates with altered gut immune responses. The treatment effect of the synbiotic is inferred to be relied on the enrichment of probiotic bacteria, such as Akkermansia and Ruminococcaceae species, which are reported to be crucial important for gut health. Our findings facilitate the development of therapeutic and preventive strategies for UC using spore-forming lactic acid bacteria in combination with COSs.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, People’s Republic of China
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ziyang Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Zhenting Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Tong Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yurong Fan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Tao Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Nan Peng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, People’s Republic of China
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
18
|
Amevor FK, Cui Z, Du X, Ning Z, Deng X, Xu D, Shu G, Wu Y, Cao X, Shuo W, Tian Y, Li D, Wang Y, Zhang Y, Du X, Zhu Q, Han X, Zhao X. Supplementation of Dietary Quercetin and Vitamin E Promotes the Intestinal Structure and Immune Barrier Integrity in Aged Breeder Hens. Front Immunol 2022; 13:860889. [PMID: 35386687 PMCID: PMC8977514 DOI: 10.3389/fimmu.2022.860889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
In aged animals, the physiological functions of the gastrointestinal tract (GIT) are reduced. Dietary intervention is necessary to re-activate GIT functions. The objective of this study was to investigate the impacts of dietary combination of quercetin (Q) and vitamin E (VE) on the intestinal structure and barrier integrity in aged breeder chickens. A sum of 400 (65-wks-old) Tianfu breeder hens were randomly allotted into four (4) groups with four (4) replicates, and fed with basal diet; basal diet supplemented with 0.4g/kg of Q; basal diet supplemented with 0.2g/kg of VE; and basal diet supplemented with the combination of Q (0.4 g/kg) and VE (0.2 g/kg) for 14 weeks. At the end of the 14th week, serum and gut segments were collected from eight hens per group for analyses. The results showed that Q+VE exerted synergistic effects on intestinal morphology by promoting villi height and crypt depth (P < 0.05), as well as mitigated the intestinal inflammatory damage of the aged hens, but decreased the concentration of serum D-lactate and diamine oxidase; and increased the levels of secretory immunoglobulin A (sIgA) and Mucin-2 mRNA (P < 0.05). Furthermore, the mRNA expression of intestinal tight junction proteins including occludin, ZO1, and claudin-1 was increased by Q+VE (P < 0.05). Moreover, Q+VE decreased the mRNA expression of the pro-inflammatory genes (TNF-α, IL-6, and IL-1β), and increased the expression of anti-inflammatory genes (IL-10 and IL-4) (P < 0.05). These results were consistent with the mRNA expression of Bax and Bcl-2. In addition, Q+VE protected the small intestinal tract from oxidative damage by increasing the levels of superoxide dismutase, total antioxidant capacity, glutathione peroxidase, catalase (P < 0.05), and the mRNA expression of SOD1 and GPx-2. However, Q+VE decreased malondialdehyde levels in the intestine compared to the control (P < 0.05). These results indicated that dietary Q+VE improved intestinal function in aged breeder hens, by protecting the intestinal structure and integrity. Therefore, Q+VE could act as an anti-aging agent to elevate the physiological functions of the small intestine in chickens.
Collapse
Affiliation(s)
- Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Youhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xueqing Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wei Shuo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xue Han
- Guizhou Institute of Animal Husbandry and Veterinary Medicine, Guiyang, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
19
|
Guo G, Tan Z, Liu Y, Shi F, She J. The therapeutic potential of stem cell-derived exosomes in the ulcerative colitis and colorectal cancer. Stem Cell Res Ther 2022; 13:138. [PMID: 35365226 PMCID: PMC8973885 DOI: 10.1186/s13287-022-02811-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/23/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) therapy is a novel treatment strategy for cancer and a wide range of diseases with an excessive immune response such as ulcerative colitis (UC), due to its powerful immunomodulatory properties and its capacity for tissue regeneration and repair. One of the promising therapeutic options can focus on MSC-secreted exosomes (MSC-Exo), which have been identified as a type of paracrine interaction. In light of a wide variety of recent experimental studies, the present review aims to seek the recent research advances of therapies based on the MSC-Exo for treating UC and colorectal cancer (CRC). METHODS A systematic literature search in MEDLINE, Scopus, and Google Scholar was performed from inception to December 2021 using the terms [("colorectal cancer" OR "bowel cancer" OR "colon cancer" OR "rectal cancer") AND (exosome) AND (stem cell) AND ("inflammatory bowel disease" OR "Crohn's disease" OR "colitis")] in titles and abstracts. FINDINGS Exosomes derived from various sources of MSCs, including human umbilical cord-derived MSCs (hUC-MSCs), human adipose-derived MSCs (hAD-MSCs), human bone marrow-derived MSCs (hBM-MSCs), and olfactory ecto-MSCs (OE-MSCs), have shown the protective role against UC and CRC. Exosomes from hUC-MSCs, hBM-MSCs, AD-MSCs, and OE-MSCs have been found to ameliorate the experimental UC through suppressing inflammatory cells including macrophages, Th1/Th17 cells, reducing the expression of proinflammatory cytokines, as well as inducing the anti-inflammatory function of Treg and Th2 cells and enhancing the expression of anti-inflammatory cytokines. In addition, hBM-MSC-Exo and hUC-MSC-Exo containing tumor-suppressive miRs (miR-3940-5p/miR-22-3p/miR-16-5p) have been shown to suppress proliferation, migration, and invasion of CRC cells via regulation of RAP2B/PI3K/AKT signaling pathway and ITGA2/ITGA6. KEY MESSAGES The MSC-Exo can exert beneficial effects on UC and CRC through two different mechanisms including modulating immune responses and inducing anti-tumor responses, respectively.
Collapse
Affiliation(s)
- Gang Guo
- Center for Gut Microbiome Research, Med-X Institute Centre, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, 710061 China
- Department of Talent Highland, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, 710061 China
| | - Zhaobang Tan
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi’an, 710032 China
| | - Yaping Liu
- Department of Gastroenterology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Feiyu Shi
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, 710061 China
| | - Junjun She
- Center for Gut Microbiome Research, Med-X Institute Centre, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, 710061 China
- Department of Talent Highland, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, 710061 China
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, 710061 China
| |
Collapse
|
20
|
Okyere SK, Wen J, Cui Y, Xie L, Gao P, Zhang M, Wang J, Wang S, Ran Y, Ren Z, Hu Y. Bacillus toyonensis SAU-19 and SAU-20 Isolated From Ageratina adenophora Alleviates the Intestinal Structure and Integrity Damage Associated With Gut Dysbiosis in Mice Fed High Fat Diet. Front Microbiol 2022; 13:820236. [PMID: 35250935 PMCID: PMC8891614 DOI: 10.3389/fmicb.2022.820236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
This study was performed to identify potential probiotic endophytes from Ageratina adenophora and evaluate their ameliorating effects on gut injury and integrity damage associated with microbiota dysbiosis in mice fed high fat diet. Using morphological and biochemical tests, and 16S rRNA gene sequencing technique, two bacteria endophytes were identified as strains of Bacillus toyonensis and were named Bacillus toyonensis SAU-19 (GenBank No. MW287198) and Bacillus toyonensis SAU-20 (GenBank No. MW287199). Sixty (60) mice were divided into five groups, group 1 was the negative control fed normal diet (NS), group 2 was fed High fat diet (HF), Group 3 was fed High fat diet + 106 Lactobacillus rhamnosus (LGG), group 4 was fed High fat + 106 Bacillus toyonensis SAU-19 and group 5 fed High fat diet + 106 Bacillus toyonensis SAU-20. After 35 days, histological and immunohistochemistry examination were performed in the ileum tissues. Furthermore, DAO and antioxidants activities were measured in serum, mRNA expressions of tight junction proteins (occludin and ZO-1) and inflammation related cytokines (IL-1β, TFN-α, IL-2, IL-4, and IL-10) in the ileum tissues as well as sIgA levels and total bacteria (Escherichia coli, Salmonella, Staphylococcus, and Lactobacillus) in the small intestine and cecum content. The results showed an increase in the DAO activity, oxidative stress parameter (MDA), pro-inflammation cytokines (IL-1β, TFN-α, IL-2), reduce immunity (sIgA), and destroyed intestinal structure and integrity (reduce tight junction proteins) in the high fat diet group and this was associated with destruction of the gut microbiota composition (increasing pathogenic bacteria; E. coli, Salmonella, Staphylococcus and reducing beneficial bacteria, Lactobacillus spp.) in mice (P < 0.05). However, the administration of Bacillus toyonensis SAU-19 and SAU-20 reverted these effects. Our findings indicated that, Bacillus toyonensis SAU-19 and SAU-20 isolated from A. adenophora could prevent the excess weight gain from high fat diet feeding, improved antioxidant status and alleviated the intestine integrity damage as well as reduce the population of enteric bacteria such as E. coli, Salmonella, and S. aureus and increasing the population of beneficial bacteria such as Lactobacillus in the gut of mice fed high fat diet, therefore, can serve as a potential probiotics in humans and animals.
Collapse
Affiliation(s)
- Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yujing Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Pei Gao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ming Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jianchen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shu Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yinan Ran
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- New Ruipeng Pet Healthcare Group Co., Ltd., Shenzhen, China
| |
Collapse
|
21
|
Zhang R, Li Z, Gu X, Zhao J, Guo T, Kong J. Probiotic Bacillus subtilis LF11 Protects Intestinal Epithelium Against Salmonella Infection. Front Cell Infect Microbiol 2022; 12:837886. [PMID: 35252040 PMCID: PMC8889029 DOI: 10.3389/fcimb.2022.837886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 01/14/2023] Open
Abstract
Enteric diseases caused by Salmonella are prevalent in poultry farming. With the forbiddance of antibiotics in feedstuff industry, Bacillus subtilis (B. subtilis) preparation as antibiotic alternatives against Salmonella infection has gained increasing attention recently. However, the protection modes of B. subtilis against Salmonella infection in broilers are strain-specific. In this study, probiotic B. subtilis LF11 significantly reduced diarrhea and mortality of broilers caused by Salmonella braenderup (S. braenderup) in spite of no inhibition effect on it in vitro. Here, the intestinal epithelial cells NCM460 were incubated to explore the protection of B. subtilis LF11 on intestinal epithelium against Salmonella. The results revealed that B. subtilis LF11 showed obvious exclusion activity with the decrease of adhesion and invasion of S. braenderup to NCM460 cells, accordingly with the increase of NCM460 cell survival compared with S. braenderup challenge alone. Meanwhile, RT-PCR and Western blot proved that the gene transcription and expression levels of four tight junction proteins in NCM 460 cells were upregulated, which was further confirmed by immunofluorescence observation. Besides, B. subtilis LF11 downregulated the gene transcription levels of the proinflammatory cytokines IL-6, IL-8, and TNF-α induced by S. braenderup H9812. ELISA analysis also verified that B. subtilis LF11 reduced the IL-8 production significantly. In general, B. subtilis LF11 has the ability to protect the intestinal epithelium against Salmonella infection by reducing the Salmonella adhesion and invasion, enhancing the intestinal barrier and attenuating the enterocyte inflammatory responses, and has the potential as probiotics to prevent enteric diseases in broilers.
Collapse
Affiliation(s)
- Rongling Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Research and Development Center, Jinan Scenk Sanfeng Bioengineering Co., Ltd, Jinan, China
| | - Zhengguang Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xinyi Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jiancun Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Jian Kong,
| |
Collapse
|
22
|
Danenberg AH. The etiology of gut dysbiosis and its role in chronic disease. MICROBIOME, IMMUNITY, DIGESTIVE HEALTH AND NUTRITION 2022:71-91. [DOI: 10.1016/b978-0-12-822238-6.00020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Todorov SD, Ivanova IV, Popov I, Weeks R, Chikindas ML. Bacillus spore-forming probiotics: benefits with concerns? Crit Rev Microbiol 2021; 48:513-530. [PMID: 34620036 DOI: 10.1080/1040841x.2021.1983517] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Representatives of the genus Bacillus are multifunctional microorganisms with a broad range of applications in both traditional fermentation and modern biotechnological processes. Bacillus spp. has several beneficial properties. They serve as starter cultures for various traditional fermented foods and are important biotechnological producers of enzymes, antibiotics, and bioactive peptides. They are also used as probiotics for humans, in veterinary medicine, and as feed additives for animals of agricultural importance. The beneficial effects of bacilli are well-reported and broadly acknowledged. However, with a better understanding of their positive role, many questions have been raised regarding their safety and the relevance of spore formation in the practical application of this group of microorganisms. What is the role of Bacillus spp. in the human microbial consortium? When and why did they start colonizing the gastrointestinal tract (GIT) of humans and other animals? Can spore-forming probiotics be considered as truly beneficial organisms, or should they still be approached with caution and regarded as "benefits with concerns"? In this review, we not only hope to answer the above questions but to expand the scope of the conversation surrounding bacilli probiotics.
Collapse
Affiliation(s)
| | - Iskra Vitanova Ivanova
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Michael Leonidas Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia.,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
24
|
Chen L, Zhang S, Wu S, Ren Z, Liu G, Wu J. Synergistic Protective Effect of Konjac Mannan Oligosaccharides and Bacillus subtilis on Intestinal Epithelial Barrier Dysfunction in Caco-2 Cell Model and Mice Model of Lipopolysaccharide Stimulation. Front Immunol 2021; 12:696148. [PMID: 34603279 PMCID: PMC8484872 DOI: 10.3389/fimmu.2021.696148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023] Open
Abstract
As the first line of defense against intestinal bacteria and toxins, intestinal epithelial cells are always exposed to bacteria or lipopolysaccharide (LPS), whereas pathogenic bacteria or LPS can cause intestinal epithelial cell damage. Previous studies have shown that konjac mannan oligosaccharides (KMOS) have a positive effect on maintaining intestinal integrity, and Bacillus subtilis (BS) can promote the barrier effect of the intestine. However, it is still unknown whether KMOS and BS have a synergistic protective effect on the intestines. In this study, we used the LPS-induced Caco-2 cell injury model and mouse intestinal injury model to study the synergistic effects of KMOS and BS. Compared with KMOS or BS alone, co-treatment with KMOS and BS significantly enhanced the activity and antioxidant capacity of Caco-2 cell, protected mouse liver and ileum from LPS-induced oxidative damage, and repaired tight junction and mucus barrier damage by up-regulating the expression of Claudin-1, ZO-1 and MUC-2. Our results demonstrate that the combination of KMOS and BS has a synergistic repair effect on inflammatory and oxidative damage of Caco-2 cells and aIIeviates LPS-induced acute intestinal injury in mice.
Collapse
Affiliation(s)
- Lupeng Chen
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuai Zhang
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shi Wu
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhuqing Ren
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guoquan Liu
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jian Wu
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Liu Y, Yin F, Huang L, Teng H, Shen T, Qin H. Long-term and continuous administration of Bacillus subtilis during remission effectively maintains the remission of inflammatory bowel disease by protecting intestinal integrity, regulating epithelial proliferation, and reshaping microbial structure and function. Food Funct 2021; 12:2201-2210. [PMID: 33595001 DOI: 10.1039/d0fo02786c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gut microbiota takes part in the pathogenesis of inflammatory bowel disease (IBD). Clinical research has found that probiotics have a beneficial effect on active ulcerative colitis, but to date, significant efficacy has rarely been found in the use of probiotics in the remission phase of ulcerative colitis and Crohn's disease. More studies are needed to assess the utilization of probiotics in IBD remission. In this study, we assessed the administration of Bacillus subtilis in remission and its possible mechanism in mice with IBD. Oral administration of B. subtilis was implemented for 6 weeks (dextran sulfate sodium (DSS)-P6w group), 2 weeks (DSS-P2w group) or 0 weeks (DSS-control(CT) group) in the remission phase in rodents with (DSS)-induced IBD. The body weight, colon length and disease activity index (DAI) were recorded, and colon H&E staining was performed. The expression of tight junction proteins (ZO-1 and occludin) mRNA and epithelium proliferation-related Ki67 was detected. Gut microbiota were tested by 16S rRNA sequencing. Administration of B. subtilis in remission effectively increased the body weight and colon length and decreased DAI in the DSS-P6w group compared with the DSS-CT group, but there is no significant difference between the DSS-P2w and DSS-CT groups. The epithelial integrity was improved, and the expression of ZO-1 and occludin increased due to administration of B. subtilis in remission, which was more evident in the DSS-P6w group. The expression of Ki67 increased in the DSS-CT group compared with that in the CT group. The administration of B. subtilis effectively down-regulated the expression of Ki67 in the DSS-P6w and DSS-P2w groups compared with the DSS-CT group. Furthermore, gut microbial structure was improved, with significantly decreased Escherichia/Shigella and Enterococcus, and increased Akkermansia and corresponding microbial function in the DSS-P6w group. Short-term administration of B. subtilis in the remission phase showed no significant improvement in mice with IBD. Long-term and continuous supplementation of B. subtilis in remission could effectively maintain the remission by protecting epithelial integrity, regulating proliferation of intestinal epithelial cells, and improving gut microbiota and the corresponding microbial function.
Collapse
Affiliation(s)
- Yongqiang Liu
- Department of Surgery, Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Fang Yin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China.
| | - Linsheng Huang
- Department of Pediatrics, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China
| | - Hongfei Teng
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China.
| | - Tongyi Shen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China.
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China.
| |
Collapse
|
26
|
Yang S, Liang X, Song J, Li C, Liu A, Luo Y, Ma H, Tan Y, Zhang X. A novel therapeutic approach for inflammatory bowel disease by exosomes derived from human umbilical cord mesenchymal stem cells to repair intestinal barrier via TSG-6. Stem Cell Res Ther 2021; 12:315. [PMID: 34051868 PMCID: PMC8164818 DOI: 10.1186/s13287-021-02404-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Exosomes as the main therapeutic vectors of mesenchymal stem cells (MSC) for inflammatory bowel disease (IBD) treatment and its mechanism remain unexplored. Tumor necrosis factor-α stimulated gene 6 (TSG-6) is a glycoprotein secreted by MSC with the capacities of tissue repair and immune regulation. This study aimed to explore whether TSG-6 is a potential molecular target of exosomes derived from MSCs (MSCs-Exo) exerting its therapeutic effect against colon inflammation and repairing mucosal tissue. METHODS Two separate dextran sulfate sodium (DSS) and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced IBD mouse models were intraperitoneally administered MSCs-Exo extracted from human umbilical cord MSC (hUC-MSC) culture supernatant. Effects of MSCs-Exo on intestinal inflammation, colon barrier function, and proportion of T cells were investigated. We explored the effects of MSCs-Exo on the intestinal barrier and immune response with TSG-6 knockdown. Moreover, recombinant human TSG-6 (rhTSG-6) was administered exogenously and colon inflammation severity in mice was evaluated. RESULTS Intraperitoneal injection of MSCs-Exo significantly ameliorated IBD symptoms and reduced mortality rate. The protective effect of MSCs-Exo on intestinal barrier was demonstrated evidenced by the loss of goblet cells and intestinal mucosa permeability, thereby improving the destruction of tight junctions (TJ) structures and microvilli, as well as increasing the expression of TJ proteins. Microarray analysis revealed that MSCs-Exo administration downregulated the level of pro-inflammatory cytokines and upregulated the anti-inflammatory cytokine in colon tissue. MSCs-Exo also modulated the response of Th2 and Th17 cells in the mesenteric lymph nodes (MLN). Reversely, knockdown of TSG-6 abrogated the therapeutic effect of MSCs-Exo on mucosal barrier maintenance and immune regulation, whereas rhTSG-6 administration showed similar efficacy to that of MSCs-Exo. CONCLUSIONS Our findings suggested that MSCs-Exo protected against IBD through restoring mucosal barrier repair and intestinal immune homeostasis via TSG-6 in mice.
Collapse
Affiliation(s)
- Shaopeng Yang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - Xiaonan Liang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - Jia Song
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - Chenyang Li
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - Airu Liu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - Yuxin Luo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - Heran Ma
- Shandong Qilu Cell Therapy Engineering Technology Co., Ltd, Jinan, Shandong, China
| | - Yi Tan
- Shandong Qilu Cell Therapy Engineering Technology Co., Ltd, Jinan, Shandong, China
| | - Xiaolan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
27
|
Zhang G, Wang H, Zhang J, Tang X, Raheem A, Wang M, Lin W, Liang L, Qi Y, Zhu Y, Jia Y, Cui S, Qin T. Modulatory Effects of Bacillus subtilis on the Performance, Morphology, Cecal Microbiota and Gut Barrier Function of Laying Hens. Animals (Basel) 2021; 11:1523. [PMID: 34073794 PMCID: PMC8225007 DOI: 10.3390/ani11061523] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
We investigated the efficacy of a single bacterium strain, Bacillus subtilis (B. subtilis) YW1, on the performance, morphology, cecal microbiota, and intestinal barrier function of laying hens. A total of 216 28-week-old Hy-line Brown laying hens were divided into three dietary treatment groups, with six replicates of 12 birds each for 4 weeks. The control group (Ctr) was fed a basal diet and the treatment groups, T1 and T2, were fed a basal diet supplemented with B. subtilis at a dose rate of 5 × 108 CFU/kg and 2.5 × 109 CFU/kg, respectively. Dietary supplementation with B. subtilis did not significantly affect overall egg production in both groups, with no obvious changes in average egg weight and intestine morphology. B. subtilis administration also improved the physical barrier function of the intestine by inducing significantly greater expression levels of the tight junction protein occludin in T1 (p = 0.07) and T2 (p < 0.05). Further, supplementation with B. subtilis effectively modulated the cecal microbiota, increasing the relative level of beneficial bacteria at the genus level (e.g., Bifidobacterium p < 0.05, Lactobacillus p = 0.298, Bacillus p = 0.550) and decreasing the level of potential pathogens (e.g., Fusobacterium p < 0.05, Staphylococcus p < 0.05, Campylobacter p = 0.298). Overall, B. subtilis YW1 supplementation cannot significantly improve the egg production; however, it modulated the cecal microbiota towards a healthier pattern and promoted the mRNA expression of the tight junction protein occludin in laying hens, making B. subtilis YW1 a good probiotic candidate for application in the poultry industry, and further expanding the resources of strains of animal probiotics.
Collapse
Affiliation(s)
- Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Hao Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
| | - Jianwei Zhang
- Beijing General Station of Animal Husbandry, Beijing 100107, China;
| | - Xinming Tang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Mingyan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Weidong Lin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Yuzhuo Qi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Yali Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Yaxiong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Tong Qin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| |
Collapse
|
28
|
Li Y, Zhang T, Guo C, Geng M, Gai S, Qi W, Li Z, Song Y, Luo X, Zhang T, Wang N. Bacillus subtilis RZ001 improves intestinal integrity and alleviates colitis by inhibiting the Notch signalling pathway and activating ATOH-1. Pathog Dis 2020; 78:5804729. [PMID: 32166323 DOI: 10.1093/femspd/ftaa016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Intestinal mucosal barriers help the body resist many intestinal inflammatory diseases, such as inflammatory bowel disease (IBD). In this study, we identified a novel bacterium promoting the repair of intestinal mucosa and investigated the potential mechanisms underlying its activity. Culture supernatant of Bacillus subtilis RZ001 upregulated the expression of mucin 2 (MUC2) and tight junction (TJ) proteins in HT-29 cells in vitro. Oral administration of B. subtilis RZ001 may have significantly reduced symptoms such as the dextran sulfate sodium (DSS)-induced decrease in body weight, shortening of colon length and overproduction of proinflammatory factors. The number of goblet cells and levels of MUC2 and TJ proteins were significantly increased in adult mice fed with B. subtilis RZ001. B. subtilis RZ001 cells upregulated the levels of MUC2 in the intestinal organoids. Furthermore, culture supernatant of B. subtilis RZ001 could suppress the Notch signalling pathway and activate the expression of atonal homolog 1 (Atoh1). The transcription factor Atoh1 is required for intestinal secretory cell differentiation and activates transcription of MUC2 via binding to E-boxes on the MUC2 promoter. Taken together, B. subtilis strain RZ001 has the potential for treating IBD. The present study is helpful to elucidate the mechanisms of B. subtilis action.
Collapse
Affiliation(s)
- Yanru Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Tengxun Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Congcong Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Meng Geng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Sailun Gai
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Wei Qi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Zhongyuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Yajian Song
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Tongcun Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| |
Collapse
|
29
|
Yan J, Wang D, Li K, Chen Q, Lai W, Tian L, Lin B, Tan Y, Liu X, Xi Z. Toxic effects of the food additives titanium dioxide and silica on the murine intestinal tract: Mechanisms related to intestinal barrier dysfunction involved by gut microbiota. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103485. [PMID: 32891757 DOI: 10.1016/j.etap.2020.103485] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/16/2020] [Accepted: 08/26/2020] [Indexed: 05/28/2023]
Abstract
This study aimed to compare the effects of three food-grade particles (micro-TiO2, nano-TiO2, and nano-SiO2) on the murine intestinal tract and to investigate their potential mechanisms of action. A 28-day oral exposure murine model was established. Samples of blood, intestinal tissues and colon contents were collected for detection. The results showed that all three particles could cause inflammatory damage to the intestine, with nano-TiO2 showing the strongest effects. Exposure also led to changes in gut microbiota, especially mucus-associated bacteria. Our results suggest that the toxic effects on the intestine were due to reduced intestinal mucus barrier function and an increase in metabolite lipopolysaccharides which activated the expression of inflammatory factors downstream. In mice exposed to nano-TiO2, the intestinal PKC/TLR4/NF-κB signalling pathway was activated. These findings will raise awareness of toxicities associated with the use of food-grade TiO2 and SiO2.
Collapse
Affiliation(s)
- Jun Yan
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Degang Wang
- National Center of Biomedical Analysis, No. 27, Tai-Ping Road, Beijing, 100850, China
| | - Kang Li
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Qi Chen
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Bencheng Lin
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Yizhe Tan
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China.
| |
Collapse
|
30
|
Modulations of genes related to gut integrity, apoptosis, and immunity underlie the beneficial effects of Bacillus amyloliquefaciens CECT 5940 in broilers fed diets with different protein levels in a necrotic enteritis challenge model. J Anim Sci Biotechnol 2020; 11:104. [PMID: 33088501 PMCID: PMC7566066 DOI: 10.1186/s40104-020-00508-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/26/2020] [Indexed: 01/25/2023] Open
Abstract
Background The ban of in-feed antimicrobial additives has negatively affected the poultry industry by causing necrotic enteritis (NE) to emerge in the flocks. Alternatives such as Bacillus probiotics have shown to be effective on eliminating the negative effects of this disease. Two experiments were conducted to investigate the effect of Bacillus amyloliquefaciens CECT 5940 (BA) in broiler chickens under NE challenge and/or fed diets with different protein levels. Methods In both experiments, 480 day-old mix-sexed Ross-308 broilers were arranged in a 2 × 2 factorial arrangement of treatments. In experiment 1, the factors were NE challenge (yes or no) and probiotic (yes or no). In experiment 2, the factors were dietary crude protein levels (standard or reduced) and probiotic (yes or no) and were used under NE challenge condition. Oral administration of Eimeria oocysts (day 9) followed by inoculation with Clostridium perfringens (day 14 and 15) was used to induce NE challenge. On day 16, two birds from each treatment were gavaged with fluorescein isothiocyanate-dextran (FITC-d) and blood samples were collected for gut integrity evaluation, and jejunal samples were collected for gene expression assay. Results In experiment 1, BA supplementation decreased caspase-3 (CASP3) (P < 0.001) and caspase-8 (CASP8) (P < 0.05) and increased occludin (OCLD) (P < 0.05) expression regardless of the challenge. Additionally, BA supplementation downregulated interfron-γ (IFN-γ) expression (P < 0.01) and upregulated immunoglobulin-G (IgG) (P < 0.01) and immunoglobulin-M (IgM) (P < 0.05) only in challenged birds. In experiment 2, the expression of genes encoding mucin-2 (MUC2) (P < 0.001), tight junction protein-1 (TJP1) (P < 0.05) and OCLD (P < 0.05) were upregulated by the addition of BA in the diet, regardless of the crude protein level. Further, BA supplementation downregulated INF-γ (P < 0.01) and upregulated immunoglobulin-A (IgA) (P < 0.05), IgM (P < 0.05) and IgG (P < 0.01) regardless of the crude protein level. Conclusion These findings suggest that supplementation of BA in broiler diets can improve gut health by modulation of genes related to the mucosal barrier, tight junction, and immunity in broilers challenged by unfavourable conditions such as NE challenge.
Collapse
|
31
|
Structural elucidation, anti-inflammatory activity and intestinal barrier protection of longan pulp polysaccharide LPIIa. Carbohydr Polym 2020; 246:116532. [DOI: 10.1016/j.carbpol.2020.116532] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
|
32
|
Discovery of a Novel Multi-Strains Probiotic Formulation with Improved Efficacy toward Intestinal Inflammation. Nutrients 2020; 12:nu12071945. [PMID: 32629887 PMCID: PMC7400193 DOI: 10.3390/nu12071945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Dysbiosis is commonly detected in patients with inflammatory bowel disease (IBD), supporting the concept that a dysregulated immune reaction to bacterial antigens has a pathogenic role in the development of intestinal inflammation. In the present study, we have investigated the beneficial effects of a novel probiotic formulation assembled by combining four probiotics (Streptococcus thermophilus, Lactobacillus casei, Bifidobacterium breve, Bifidobacterium animalis subsp. Lactis) with Bacillus subtilis, a Gram-positive bacterium, with extensive bio-applications. Mice rendered colitic by administration of TNBS or DSS were administered with Bacillus subtilis alone, Vivomixx® or the novel Five strains formulation. Vivomixx® attenuated the severity of inflammation and reduced the development of signs and symptoms of colitis in both models. Adding Bacillus subtilis to Vivomixx® improved the beneficial effects of the bacterial therapy. The novel Five strains formulation was as effective as Vivomixx® in reducing the development of signs and symptoms of colitis and reduced the expression of pro-inflammatory mediators including Il-6 and Tnf-α while increased the expression of Il-10 mRNA and the number of Treg. In summary, we have shown that a novel Five strains probiotics formulation exerts beneficial effects on two chemical models of colitis, establishing Bacillus subtilis as a probiotic in rodent models of inflammation.
Collapse
|
33
|
Wu M, Shen A, Chen Y, Liu L, Li L, Sankararaman S, Chen H, Guan B, Zhan Z, Nan S, Sferra TJ, Peng J. Xinhuang Tablets Improve Intestinal Barrier Function via Regulating Epithelial Tight Junctions in Dextran Sulfate Sodium-Induced Ulcerative Colitis Mice. J Med Food 2020; 24:33-39. [PMID: 32522051 DOI: 10.1089/jmf.2020.0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intestinal mucosal barrier dysfunction is involved in the pathogenesis of inflammatory bowel disease, including ulcerative colitis (UC). Xinhuang tablets (XHTs) have been prescribed for several kinds of inflammatory diseases, including UC, whereas its possible underlying molecular mechanisms had never been explored. Mouse model of UC was constructed by DSS treatment and followed by XHT treatment. Disease activity index, histopathological of colonic tissue, tumor necrosis factor-alpha (TNF-α), and serum amyloid A (SAA) levels in serum were further assessed. The underlying mechanism was further explored by determination of the expression of epithelial tight junction-related protein. XHT administration ameliorated dextran sulfate sodium (DSS)-induced clinical symptoms, colonic histological injury, and decreased the circulating levels of TNF-α and SAA. Moreover, XHT treatment significantly increased the protein levels of zona occludens (ZO)-1, whereas decreased the levels of phosphorylation of Elk-1. In conclusion, this study confirmed the therapeutic effects of XHT treatment on UC in a DSS-induced mouse model, and indicated that by increasing expression of epithelial tight junctions and decreasing phosphorylation of Elk-1 might be one of the underlying mechanisms of XHT treatment on UC.
Collapse
Affiliation(s)
- Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Youqin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
| | - Li Li
- Department of Health Management, Fujian Provincial Hospital, Fuzhou, China.,Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Senthilkumar Sankararaman
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
| | - Hongwei Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
| | - Bin Guan
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen, China
| | - Zhixue Zhan
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen, China
| | - Shuhua Nan
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen, China
| | - Thomas J Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
34
|
Xie Y, Zhou L, Yao X, Li Y. Protective Effects of Clostridium Butyricum in a Murine Model of Dextran Sodium Sulfate-Induced Colitis That Involve Inhibition of the TLR2 Signaling Pathway and T Helper 17 Cells. Am J Med Sci 2020; 360:176-191. [PMID: 32553747 DOI: 10.1016/j.amjms.2020.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/08/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND This study aimed to investigate the role of Clostridium butyricum (C. butyricum) in conjunction with the Toll-like receptor2 (TLR2) signaling pathway and T helper 17 (Th17) cells in dextran sodium sulfate (DSS)-induced colitis in mice. METHODS Forty 8-week-old BALB/c mice were randomly divided into 5 groups of 8 mice for 7 days: control, DSS (5% DSS), DSS+C. butyricum (1 × 109 CFU), DSS+C. butyricum (1 × 108 CFU) and DSS+C. butyricum (1 × 107 CFU) groups. We assessed the disease activity index (DAI) and histological damage scores. The expression levels of TLR2, myeloid differentiation factor 88 (MyD88), nuclear factor kappa-B p65 (NF-κBp65), interleukin (IL) 17 (IL17), IL23 and retineic acid receptor related orphan nuclear receptor gamma t (RORγt) were determined through immunohistochemical staining, western blot and quantitative real-time PCR (qRT-PCR). The expression levels of CD3+CD4+IL17+ cells in peripheral blood were measured by flow cytometry. RESULTS C. butyricum dose-dependently decreased DAI and histological damage scores in DSS mice and down-regulated the mRNA and protein levels of TLR2, MyD88 and NF-κBp65 in mouse colon tissue (all P < 0.05). In addition, C. butyricum dose-dependently decreased the levels of CD3+CD4+IL17+ cells in peripheral blood and down-regulated the mRNA and protein levels of IL17, IL23 and RORγt in mouse colon tissue (all P < 0.05). Moreover, the effect of C. butyricum on TLR2 was positively correlated with IL17, IL23 and RORγt. CONCLUSIONS C. butyricum exerts a dose-dependently protective effect on acute intestinal inflammation induced by DSS in mice, by inhibiting the TLR2 signaling pathway, down-regulating the expression of IL23 and RORγt, and inhibiting the secretion of IL17.
Collapse
Affiliation(s)
- Ying Xie
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Linyan Zhou
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xinjie Yao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yan Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
35
|
Xu J, Liang R, Zhang W, Tian K, Li J, Chen X, Yu T, Chen Q. Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression. J Diabetes 2020; 12:224-236. [PMID: 31503404 PMCID: PMC7064962 DOI: 10.1111/1753-0407.12986] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Impaired intestinal barrier structure and function have been validated as an important pathogenic process in type 2 diabetes mellitus (T2DM). Gut dysbiosis is thought to be the critical factor in diabetic intestinal pathogenesis. As the most abundant commensal bacteria, Faecalibacterium prausnitzii (F. prausnitzii) play important roles in gut homeostasis. The microbial anti-inflammatory molecule (MAM), an F. prausnitzii metabolite, has anti-inflammatory potential in inflammatory bowel disease (IBD). Thus, we aimed to explore the function and mechanism of MAM on the diabetic intestinal epithelium. METHODS 16S high-throughput sequencing was used to analyze the gut microbiota of db/db mice (T2DM mouse model). We transfected a FLAG-tagged MAM plasmid into human colonic cells to explore the protein-protein interactions and observe cell monolayer permeability. For in vivo experiments, db/db mice were supplemented with recombinant His-tagged MAM protein from E. coli BL21 (DE3). RESULTS The abundance of F. prausnitzii was downregulated in the gut microbiota of db/db mice. Immunoprecipitation (IP) and mass spectroscopy (MS) analyses revealed that MAM potentially interacts with proteins in the tight junction pathway, including zona occludens 1 (ZO-1). FLAG-tagged MAM plasmid transfection stabilized the cell permeability and increased ZO-1 expression in NCM460, Caco2, and HT-29 cells. The db/db mice supplemented with recombinant His-tagged MAM protein showed restored intestinal barrier function and elevated ZO-1 expression. CONCLUSIONS Our study shows that MAM from F. prausnitzii can restore the intestinal barrier structure and function in DM conditions via the regulation of the tight junction pathway and ZO-1 expression.
Collapse
Affiliation(s)
- Jihao Xu
- Department of GastroenterologySun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongPeople's Republic of China
| | - Rongrong Liang
- Department of PediatricsSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongPeople's Republic of China
| | - Wang Zhang
- Department of GastroenterologySun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongPeople's Republic of China
- Department of GastroenterologyGuangdong Provincial Hospital of Chinese Medicine (2nd Clinical Hospital of Guangzhou University of Chinese Medicine), Guangzhou University of Chinese MedicineGuangzhouGuangdongPeople's Republic of China
| | - Kuangyi Tian
- Department of GastroenterologySun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongPeople's Republic of China
| | - Jieyao Li
- Department of GastroenterologySun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongPeople's Republic of China
| | - Xianming Chen
- Department of Medical Microbiology and ImmunologyCreighton University School of MedicineOmahaNebraska
| | - Tao Yu
- Department of GastroenterologySun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongPeople's Republic of China
| | - Qikui Chen
- Department of GastroenterologySun Yat‐Sen Memorial Hospital, Sun Yat‐Sen UniversityGuangzhouGuangdongPeople's Republic of China
| |
Collapse
|
36
|
Synbiotic supplementation with prebiotic green banana resistant starch and probiotic Bacillus coagulans spores ameliorates gut inflammation in mouse model of inflammatory bowel diseases. Eur J Nutr 2020; 59:3669-3689. [PMID: 32067099 PMCID: PMC7669818 DOI: 10.1007/s00394-020-02200-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
Purpose The research goal is to develop dietary strategies to help address the growing incidence of inflammatory bowel diseases (IBD). This study has investigated the effectiveness of green banana resistant starch (GBRS) and probiotic Bacillus coagulans MTCC5856 spores for the amelioration of dextran-sulfate sodium (DSS)-induced colitis in mice. Methods Eight-week-old C57BL/6 mice were fed standard rodent chow diet supplemented with either B. coagulans, GBRS or its synbiotic combination. After 7 days supplementation, colitis was induced by adding 2% DSS in drinking water for 7 days while continuing the supplemented diets. Animal health was monitored and after 14 days all animals were sacrificed to measure the biochemical and histochemical changes associated with each supplement type. Results The disease activity index and histological damage score for DSS-control mice (6.1, 17.1, respectively) were significantly higher (p < 0.0001) than the healthy mice. Synbiotic supplementation alleviated these markers (− 67%, − 94% respectively) more adequately than B. coagulans (− 52%, − 58% respectively) or GBRS (− 57%, − 26%, respectively) alone. Compared to DSS-control synbiotic supplementation significantly (p < 0.0001) maintained expressions of tight junction proteins. Moreover, synbiotic effects accounted for ~ 40% suppression of IL-1β and ~ 29% increase in IL-10 levels in serum while also reducing C-reactive protein (− 37%) compared to that of the DSS-control. While, B. coagulans alone could not induce additional levels of short-chain fatty acid (SCFA) production beyond the caecum, the synbiotic combination with GBRS resulted in substantial increased SCFA levels across the whole length of the colon. Conclusion The synbiotic supplementation with B. coagulans and GBRS ameliorated the overall inflammatory status of the experimental IBD model via synergistic functioning. This supports researching its application in mitigating inflammation in human IBD. Electronic supplementary material The online version of this article (10.1007/s00394-020-02200-9) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Sun H, Shang M, Tang Z, Jiang H, Dong H, Zhou X, Lin Z, Shi C, Ren P, Zhao L, Shi M, Zhou L, Pan H, Chang O, Li X, Huang Y, Yu X. Oral delivery of Bacillus subtilis spores expressing Clonorchis sinensis paramyosin protects grass carp from cercaria infection. Appl Microbiol Biotechnol 2020; 104:1633-1646. [PMID: 31912200 PMCID: PMC7223688 DOI: 10.1007/s00253-019-10316-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Clonorchis sinensis (C. sinensis), an important fishborne zoonotic parasite threatening public health, is of major socioeconomic importance in epidemic areas. Effective strategies are still urgently expected to prevent against C. sinensis infection. In the present study, paramyosin of C. sinensis (CsPmy) was stably and abundantly expressed on the surface of Bacillus subtilis spores. The recombinant spores (B.s-CotC-CsPmy) were incorporated in the basal pellets diet in three different dosages (1 × 105, 1 × 108, 1 × 1011 CFU/g pellets) and orally administrated to grass carp (Ctenopharyngodon idella). The immune responses and intestinal microbiota in the treated grass carp were investigated. Results showed that specific anti-CsPmy IgM levels in sera, skin mucus, bile, and intestinal mucus, as well as mRNA levels of IgM and IgZ in the spleen and head kidney, were significantly increased in B.s-CotC-CsPmy-1011 group. Besides, transcripts levels of IL-8 and TNF-αin the spleen and head kidney were also significantly elevated than the control groups. Moreover, mRNA levels of tight junction proteins in the intestines of B.s-CotC-CsPmy-1011 group increased. Potential pathogenetic bacteria with lower abundance and higher abundances of candidate probiotics and bacteria associated with digestion in 1 × 1011 CFU/g B.s-CotC-CsPmy spores administrated fishes could be detected compared with control group. The amount of metacercaria in per gram fish flesh was statistically decreased in 1 × 1011 CFU/g B.s-CotC-CsPmy spores orally immunized group. Our work demonstrated that B. subtilis spores presenting CsPmy on the surface could be a promising effective, safe, and needle-free candidate vaccine against C. sinensis infection for grass carp.
Collapse
Affiliation(s)
- Hengchang Sun
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Mei Shang
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Zeli Tang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Hongye Jiang
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Huimin Dong
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinyi Zhou
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Zhipeng Lin
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River, Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Pengli Ren
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Lu Zhao
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Mengchen Shi
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Lina Zhou
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Houjun Pan
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River, Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Ouqin Chang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River, Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Xuerong Li
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Yan Huang
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China.
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China.
| | - Xinbing Yu
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China.
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
38
|
The effect of dietary supplementation with Clostridium butyricum on the growth performance, immunity, intestinal microbiota and disease resistance of tilapia (Oreochromis niloticus). PLoS One 2019; 14:e0223428. [PMID: 31815958 PMCID: PMC6901227 DOI: 10.1371/journal.pone.0223428] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
This study was conducted to assess the effects of dietary Clostridium butyricum on the growth, immunity, intestinal microbiota and disease resistance of tilapia (Oreochromis niloticus). Three hundreds of tilapia (56.21 ± 0.81 g) were divided into 5 groups and fed a diet supplemented with C. butyricum at 0, 1 x 104, 1 x 105, 1 x 106 or 1 x 107 CFU g-1 diet (denoted as CG, CB1, CB2, CB3 and CB4, respectively) for 56 days. Then 45 fish from each group were intraperitoneally injected with Streptococcus agalactiae, and the mortality was recorded for 14 days. The results showed that dietary C. butyricum significantly improved the specific growth rate (SGR) and feed intake in the CB2 group and decreased the cumulative mortality post-challenge with S. agalactiae in the CB2, CB3 and CB4 groups. The serum total antioxidant capacity and intestinal interleukin receptor-associated kinase-4 gene expression were significantly increased, and serum malondialdehyde content and diamine oxidase activity were significantly decreased in the CB1, CB2, CB3 and CB4 groups. Serum complement 3 and complement 4 concentrations and intestinal gene expression of tumour necrosis factor α, interleukin 8, and myeloid differentiation factor 88 were significantly higher in the CB2, CB3 and CB4 groups. Intestinal toll-like receptor 2 gene expression was significantly upregulated in the CB3 and CB4 groups. Dietary C. butyricum increased the diversity of the intestinal microbiota and the relative abundance of beneficial bacteria (such as Bacillus), and decreased the relative abundance of opportunistic pathogenic bacteria (such as Aeromonas) in the CB2 group. These results revealed that dietary C. butyricum at a suitable dose enhanced growth performance, elevated humoral and intestinal immunity, regulated the intestinal microbial components, and improved disease resistance in tilapia. The optimal dose was 1 x 105 CFU g-1 diet.
Collapse
|
39
|
Huang T, Peng XY, Gao B, Wei QL, Xiang R, Yuan MG, Xu ZH. The Effect of Clostridium butyricum on Gut Microbiota, Immune Response and Intestinal Barrier Function During the Development of Necrotic Enteritis in Chickens. Front Microbiol 2019; 10:2309. [PMID: 31681193 PMCID: PMC6797560 DOI: 10.3389/fmicb.2019.02309] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/20/2019] [Indexed: 01/19/2023] Open
Abstract
Necrotic enteritis (NE) causes huge economic losses to the poultry industry. Probiotics are used as potential alternatives to antibiotics to prevent NE. It is known that Clostridium butyricum can act as a probiotic that can prevent infection. However, whether or not it exerts a beneficial effect on NE in chickens remains elusive. Therefore, we investigated the impact of C. butyricum on immune response and intestinal microbiota during the development of NE in chickens, including experimental stages with basal diets, high-fishmeal-supplementation diets, and Clostridium perfringens challenge. Chickens were divided into two groups from day 1 to day 20: one group had its diet supplemented with C. butyricum supplementation and one did not. At day 20, the chickens were divided into four groups: C. perfringens challenged and unchallenged chickens with and without C. butyricum supplementation. All groups were fed a basal diet for 13 days and thereafter a basal diet with 50% fishmeal from day 14 to 24. Chickens were infected with C. perfringens from day 21 to 23. At days 13, 20 and 24, samples were collected for analysis of the relative expression of immune response and intestinal mucosa barrier-related genes and intestinal microbes. The results show that C. butyricum can inhibit the increase in IL-17A gene expression and the reduction in Claudin-1 gene induced-expression caused by C. perfringens challenge. Moreover, C. butyricum was found to increase the expression of anti-inflammatory IL-10 in infected chickens. Although C. butyricum was found to have a significant beneficial effect on the structure of intestinal bacteria in the basal diet groups and decrease the abundance of C. perfringens in the gut, it did not significantly affect the occurrence of intestinal lesions and did not significantly correct the shift in gut bacterial composition post C. perfringens infection. In conclusion, although C. butyricum promotes the expression of anti-inflammatory and tight junction protein genes and inhibits pro-inflammatory genes in C. perfringens-challenged chickens, it is not adequate to improve the structure of intestinal microbiota in NE chickens. Therefore, more effective schemes of C. butyricum supplementation to prevent and treat NE in chickens need to be identified.
Collapse
Affiliation(s)
- Ting Huang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China.,Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Xin-Yu Peng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China.,Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Biao Gao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China.,Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Qi-Lin Wei
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China.,Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Rong Xiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China.,Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Ming-Gui Yuan
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China.,Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| | - Zhi-Hong Xu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangzhou, China.,Chinese Traditional Medicine Engineering Technology Research Center of Guangdong Province, Guangzhou, China
| |
Collapse
|
40
|
Li BX, Li WY, Tian YB, Guo SX, Huang YM, Xu DN, Cao N. Polysaccharide ofAtractylodes macrocephalaKoidz Enhances Cytokine Secretion by Stimulating theTLR4–MyD88–NF-κBSignaling Pathway in the Mouse Spleen. J Med Food 2019; 22:937-943. [DOI: 10.1089/jmf.2018.4393] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Bing-Xin Li
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
- South China Agricultural University, Guangzhou, China
| | - Wan-Yan Li
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yun-Bo Tian
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Si-Xuan Guo
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yun-Mao Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Dan-Ning Xu
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Nan Cao
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| |
Collapse
|
41
|
Zhu L, Han J, Li L, Wang Y, Li Y, Zhang S. Claudin Family Participates in the Pathogenesis of Inflammatory Bowel Diseases and Colitis-Associated Colorectal Cancer. Front Immunol 2019; 10:1441. [PMID: 31316506 PMCID: PMC6610251 DOI: 10.3389/fimmu.2019.01441] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022] Open
Abstract
Claudins are a multigene transmembrane protein family comprising at least 27 members. In gastrointestinal tract, claudins are mainly located in the intestinal epithelia; many types of claudins form a network of strands in tight junction plaques within the intercellular space of neighboring epithelial cells and build paracellular selective channels, while others act as signaling proteins and mediates cell behaviors. Claudin dysfunction may contribute to epithelial permeation disorder and multiple intestinal diseases. Over recent years, the importance of claudins in the pathogenesis of inflammatory bowel diseases (IBD) has gained focus and is being investigated. This review analyzes the expression pattern and regulatory mechanism of claudins based on existing evidence and elucidates the fact that claudin dysregulation correlates with increased intestinal permeability, sustained activation of inflammation, epithelial-to-mesenchymal transition (EMT), and tumor progression in IBD as well as consequent colitis-associated colorectal cancer (CAC), possibly shedding new light on further etiologic research and clinical treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
42
|
Kim K, He Y, Xiong X, Ehrlich A, Li X, Raybould H, Atwill ER, Maga EA, Jørgensen J, Liu Y. Dietary supplementation of Bacillus subtilis influenced intestinal health of weaned pigs experimentally infected with a pathogenic E. coli. J Anim Sci Biotechnol 2019. [DOI: 10.1186/s40104-019-0364-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
43
|
Shinde T, Perera AP, Vemuri R, Gondalia SV, Karpe AV, Beale DJ, Shastri S, Southam B, Eri R, Stanley R. Synbiotic Supplementation Containing Whole Plant Sugar Cane Fibre and Probiotic Spores Potentiates Protective Synergistic Effects in Mouse Model of IBD. Nutrients 2019; 11:E818. [PMID: 30979002 PMCID: PMC6521199 DOI: 10.3390/nu11040818] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are a chronic inflammatory disorders with increasing global incidence. Synbiotic, which is a two-point approach carrying probiotic and prebiotic components in mitigating inflammation in IBD, is thought to be a pragmatic approach owing to the synergistic outcomes. In this study, the impacts of dietary supplementation with probiotic Bacillus coagulans MTCC5856 spores (B. coagulans) and prebiotic whole plant sugar cane fibre (PSCF) was assessed using a murine model of IBD. Eight-week-old C57BL/6 mice were fed a normal chow diet supplemented with either B. coagulans, PSCF or its synbiotic combination. After seven days of supplementation, colitis was induced with dextran sulfate sodium (DSS) in drinking water for seven days during the continuation of the supplemented diets. Synbiotic supplementation ameliorated disease activity index and histological score (-72%, 7.38, respectively), more effectively than either B. coagulans (-47%, 10.1) and PSCF (-53%, 13.0) alone. Synbiotic supplementation also significantly (p < 0.0001) prevented the expression of tight junction proteins and modulated the altered serum IL-1β (-40%), IL-10 (+26%), and C-reactive protein (CRP) (-39%) levels. Synbiotic supplementations also raised the short-chain fatty acids (SCFA) profile more extensively compared to the unsupplemented DSS-control. The synbiotic health outcome effect of the probiotic and prebiotic combinations may be associated with a synergistic direct immune-regulating efficacy of the components, their ability to protect epithelial integrity, stimulation of probiotic spores by the prebiotic fibre, and/or with stimulation of greater levels of fermentation of fibres releasing SCFAs that mediate the reduction in colonic inflammation. Our model findings suggest synbiotic supplementation should be tested in clinical trials.
Collapse
Affiliation(s)
- Tanvi Shinde
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia.
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia.
| | - Agampodi Promoda Perera
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia.
| | - Ravichandra Vemuri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia.
| | - Shakuntla V Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Avinash V Karpe
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| | - Sonia Shastri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia.
| | - Benjamin Southam
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia.
| | - Rajaraman Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7250, Australia.
| | - Roger Stanley
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia.
| |
Collapse
|
44
|
Wen ZS, Tang Z, Gu LX, Xiang XW, Qu YL. Immunomodulatory effect of low molecular-weight seleno-aminopolysaccharide on immunosuppressive mice. Int J Biol Macromol 2019; 123:1278-1288. [DOI: 10.1016/j.ijbiomac.2018.10.099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/29/2018] [Accepted: 10/14/2018] [Indexed: 12/27/2022]
|
45
|
Cao H, Liu J, Shen P, Cai J, Han Y, Zhu K, Fu Y, Zhang N, Zhang Z, Cao Y. Protective Effect of Naringin on DSS-Induced Ulcerative Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13133-13140. [PMID: 30472831 DOI: 10.1021/acs.jafc.8b03942] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is an important member of the nuclear receptor superfamily. Previous studies have shown the satisfactory anti-inflammatory role of PPARγ in experimental colitis models, mainly through negatively regulating several transcription factors such as nuclear factor-κB (NF-κB). Therefore, regulating PPARγ and PPARγ-related pathways has great promise for treating ulcerative colitis (UC). In the present study, our objective was to explore the potential effect of naringin on dextran sulfate sodium (DSS) induced UC in mice and its involved potential mechanism. We found that naringin significantly relieved DSS-induced disease activities index (DAI), colon length shortening, and colonic pathological damage. Exploration of the potential mechanisms demonstrated that naringin significantly activated DSS-induced PPARγ and subsequently suppressed NF-κB activation. PPARγ inhibitor GW9662 largely abrogated the roles of naringin in vitro. Moreover, DSS induced the activation of mitogen-activated protein kinase (MAPK) and (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome was inhibited by naringin. Tight junction (TJ) architecture in naringin groups was also maintained by regulating zonula occludens-1 (ZO-1) expression. These results suggested that naringin may be a potential natural agent for protecting mice from DSS-induced UC.
Collapse
Affiliation(s)
- Hongyang Cao
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Jiuxi Liu
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Peng Shen
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Jiapei Cai
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Yuchang Han
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Kunpeng Zhu
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Yunhe Fu
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Naisheng Zhang
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Zecai Zhang
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis , Jilin University , Changchun 130062 , People's Republic of China
| | - Yongguo Cao
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| |
Collapse
|
46
|
Catestatin Regulates Epithelial Cell Dynamics to Improve Intestinal Inflammation. Vaccines (Basel) 2018; 6:vaccines6040067. [PMID: 30241336 PMCID: PMC6313945 DOI: 10.3390/vaccines6040067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is characterized by aberrant regulation of tight junctions (TJ), signal transducer and activator of transcription 3 (STAT3), and interleukin (IL)-8/18, which lead to intestinal barrier defects. Catestatin (CST), an enterochromaffin-derived peptide, regulates immune communication and STAT-3 in the inflamed intestine. Here, we investigated the effects of CST during the development of inflammation using human biopsies from patients with active UC, human colonic epithelial cells (Caco2), and an experimental model of UC (dextran sulfate sodium [DSS]-colitis). In UC patients, the protein and mRNA level of CST was significantly decreased. Colonic expression of CST showed a strong positive linear relationship with TJ proteins and STAT3, and a strong negative correlation with IL-8 and IL-18. Intra-rectal administration of CST reduced the severity of experimental colitis, IL-18 colonic levels, maintained TJ proteins and enhanced the phosphorylation of STAT3. CST administration increased proliferation, viability, migration, TJ proteins, and p-STAT3 levels, and reduced IL-8 & IL-18 in LPS- & DSS-induced Caco2 cell epithelial injury, and the presence of STAT-3 inhibitor abolished the beneficial effect of CST. In inflammatory conditions, we conclude that CST could regulate intestinal mucosal dynamic via a potential STAT3-dependent pathway that needs to be further defined. Targeting CST in intestinal epithelial cells (IECs) should be a promising therapeutic approach such as when intestinal epithelial cell homeostasis is compromised in UC patients.
Collapse
|
47
|
Tan Y, Zheng C. Effects of Alpinetin on Intestinal Barrier Function, Inflammation and Oxidative Stress in Dextran Sulfate Sodium-Induced Ulcerative Colitis Mice. Am J Med Sci 2018; 355:377-386. [PMID: 29661352 DOI: 10.1016/j.amjms.2018.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alpinetin is a flavonoid isolated from Alpinia katsumadai Hayata that has demonstrated anti-inflammatory, antibacterial and anti-tumor activities. However, alpinetin has not been widely studied in amelioration of inflammatory bowel disease. The study aimed to investigate the role of alpinetin on intestinal epithelial tight junctions, oxidative stress and Nrf2/HO-1 signaling pathway in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. METHODS A total of 40 mice were divided into 5 groups (n = 8/group): control group, DSS group (received 3% DSS), and low, medium and high-dose treatment groups (3% DSS + alpinetin 25, 50 and 100mg/kg). The disease activity index (DAI), histological scores, epithelial tight junctions, oxidative stress factors, and Nrf2/HO-1 signaling pathway in the colon were determined. RESULTS Alpinetin improved DAI, colonic shortening, histological scores and myeloperoxidase activity compared with the DSS group. The expression of occludin and zonula occludens-1 were upregulated by alpinetin, whereas the expression of claudin-2 was reduced. Moreover, alpinetin inhibited the level of malondialdehyde, and increased the level of superoxide dismutase. Nrf2/HO-1 signaling pathways were also found to be activated. CONCLUSION Alpinetin is associated with decreased intestinal inflammation and oxidative stress dose-dependently, and also regulated the expression of tight junctions between cells in UC mice. The findings of our study may shed light on the use of alpinetin in the treatment of UC.
Collapse
Affiliation(s)
- Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Changqing Zheng
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
48
|
Bao Y, Li Y, Qiu C, Wang W, Yang Z, Huang L, Feng X, Liu Y, Li J, Zhou Q, Wang H, Li D, Wang H, Dai W, Zheng Y. Bronchoalveolar lavage fluid microbiota dysbiosis in infants with protracted bacterial bronchitis. J Thorac Dis 2018; 10:168-174. [PMID: 29600046 DOI: 10.21037/jtd.2017.12.59] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Protracted bacterial bronchitis (PBB) is a chronic purulent bronchitis which could cause recurrent coughing and wheezing in infants. Based on previous reports, main pathogens which caused PBB were identified in the patients, but their impacts on lung microbiota dysbiosis remain unclear. Methods In this study, bronchoalveolar lavage fluid (BALF) was collected from PBB infants and tracheomalacia (TM) infants younger than 3 years old under the instruction of Shenzhen Children's Hospital, and 12 samples were randomly selected for 16S rDNA analysis in each group. Based on the results of bacterial composition, the microbiota diversity and co-occurrence network in PBB and TM group were detected and compared. Results Microbiota diversity was significantly lower in PBB group than it in TM group (P<0.001 for the comparison of Shannon and Simpson indexes). The PBB group was found to harbor 25 accumulated bacterial agents by comparison with TM group, including Haemophilus (P<0.001) and Bacteroides (P<0.001). Whilst, the populations of Lactococcus (P<0.001) and Lactobacillus (P<0.001) were dramatically smaller in PBB group. The co-occurrence network in PBB group also differed from that of TM group. It contained four core nodes in PBB patients, including Haemophilus, Parabacteroides, Porphyromonas, and Cronobacter. Haemophilus was found to be negatively associated with most counterparts, including Clostridium and Bacillus. Conclusions PBB infants contained discrepant lung genera and co-occurrence network when compared with TM infants. This retrospective study may deepen our understanding of PBB pathogenesis, and it also provided a foundation for bacterial adjunctive therapy of infantile PBB in accordance with clinical treatment.
Collapse
Affiliation(s)
- Yanmin Bao
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Yinhu Li
- Department of Microbial Research, WeHealthGene, Shenzhen 518129, China
| | - Chuangzhao Qiu
- Department of Microbial Research, WeHealthGene, Shenzhen 518129, China
| | - Wenjian Wang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Zhenyu Yang
- Department of Microbial Research, WeHealthGene, Shenzhen 518129, China
| | - Lu Huang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Xin Feng
- Department of Microbial Research, WeHealthGene, Shenzhen 518129, China
| | - Yanhong Liu
- Department of Microbial Research, WeHealthGene, Shenzhen 518129, China
| | - Jing Li
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Qian Zhou
- Department of Microbial Research, WeHealthGene, Shenzhen 518129, China
| | - Heping Wang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Dongfang Li
- Department of Microbial Research, WeHealthGene, Shenzhen 518129, China
| | - Hongmei Wang
- Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Wenkui Dai
- Department of Microbial Research, WeHealthGene, Shenzhen 518129, China
| | - Yuejie Zheng
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen 518026, China
| |
Collapse
|
49
|
Jing Y, Liu H, Xu W, Yang Q. Amelioration of the DSS-induced colitis in mice by pretreatment with 4,4'-diaponeurosporene-producing Bacillus subtilis. Exp Ther Med 2017; 14:6069-6073. [PMID: 29285159 PMCID: PMC5740520 DOI: 10.3892/etm.2017.5282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronically relapsing inflammatory disorder of the gastrointestinal tract. Current IBD treatments have poor tolerability and insufficient therapeutic efficacy, thus, alternative therapeutic approaches are required. Recently, a number of dietary supplements have emerged as promising interventions. In the present study oral administration of a carotenoid (4,4'-diaponeurosporene)-producing Bacillus subtilis markedly ameliorated dextran sulfate sodium salt-induced mouse colitis, as demonstrated by a reduction in weight loss and the severity of bleeding, which indicated that 4,4'-diaponeurosporene may have beneficial effects on treatments for colitis. This preliminary study indicated that 4,4'-diaponeurosporene may function synergistically with probiotics to provide a novel and effective strategy to prevent colitis.
Collapse
Affiliation(s)
- Yuchao Jing
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Haofei Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Wenwen Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
50
|
Eichele DD, Kharbanda KK. Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol 2017; 23:6016-6029. [PMID: 28970718 PMCID: PMC5597494 DOI: 10.3748/wjg.v23.i33.6016] [Citation(s) in RCA: 556] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/07/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are complex diseases that result from the chronic dysregulated immune response in the gastrointestinal tract. The exact etiology is not fully understood, but it is accepted that it occurs when an inappropriate aggressive inflammatory response in a genetically susceptible host due to inciting environmental factors occurs. To investigate the pathogenesis and etiology of human IBD, various animal models of IBD have been developed that provided indispensable insights into the histopathological and morphological changes as well as factors associated with the pathogenesis of IBD and evaluation of therapeutic options in the last few decades. The most widely used experimental model employs dextran sodium sulfate (DSS) to induce epithelial damage. The DSS colitis model in IBD research has advantages over other various chemically induced experimental models due to its rapidity, simplicity, reproducibility and controllability. In this manuscript, we review the newer publicized advances of research in murine colitis models that focus upon the disruption of the barrier function of the intestine, effects of mucin on the development of colitis, alterations found in microbial balance and resultant changes in the metabolome specifically in the DSS colitis murine model and its relation to the pathogenesis of IBD.
Collapse
Affiliation(s)
- Derrick D Eichele
- Department of Internal Medicine, Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Biochemistry and Molecular Biology, Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|