1
|
Ha T, Kang B, Kim MS, Chu JW, Kim K, Yoon W, Kim SH, Kang T, Kim MS, Kim C, Cha JY, Oh U, Han K, Choi CW, Hong GS. Uncaria Rhynchophylla and hirsuteine as TRPV1 agonists inducing channel desensitization. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118869. [PMID: 39353479 DOI: 10.1016/j.jep.2024.118869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Uncaria rhynchophylla (UR) is recognized for its therapeutic applications in treating hypertension and inflammation. However, the specific molecular mechanisms how UR and its bioactive constituents modulate inflammatory pathways remain unknown. This study investigates the effects of UR extract and its constituent, hirsuteine (HST), on TRPV1 channel modulation which is related to hypertension and inflammation. MATERIALS AND METHODS Electrophysiological recordings and calcium imaging experiments were conducted to assess TRPV1 activation by UR extract and HST in HEK293T cells and sensory neurons. RESULTS UR extract and HST activated TRPV1 in HEK293T cells, with repeated applications causing channel desensitization. HST application on TRPV1-positive sensory neurons significantly reduced electrical activity compared to capsaicin. CONCLUSION This study demonstrated UR extract and HST are a novel TRPV1 agonists inducing channel desensitization and a potent agent for treatment of TRPV1 dependent pain relief.
Collapse
Affiliation(s)
- Taewoong Ha
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Bokeum Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Mi-Sun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jung Woong Chu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology KIST School, Seoul, Republic of Korea
| | - Kyungmin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Wooseung Yoon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Soon Ho Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Taek Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology KIST School, Seoul, Republic of Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Joo Young Cha
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Uhtaek Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyungreem Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology KIST School, Seoul, Republic of Korea
| | - Chun Whan Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Gyeonggi-Do, Republic of Korea
| | - Gyu-Sang Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology KIST School, Seoul, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Bukowska P, Bralewska M, Pietrucha T, Sakowicz A. Nutraceuticals as Modulators of Molecular Placental Pathways: Their Potential to Prevent and Support the Treatment of Preeclampsia. Int J Mol Sci 2024; 25:12167. [PMID: 39596234 PMCID: PMC11594370 DOI: 10.3390/ijms252212167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Preeclampsia (PE) is a serious condition characterized by new-onset hypertension and proteinuria or organ dysfunction after the 20th week of gestation, making it a leading cause of maternal and fetal mortality worldwide. Despite extensive research, significant gaps remain in understanding the mechanisms underlying PE, contributing to the ineffectiveness of current prevention and treatment strategies. Consequently, premature cesarean sections often become the primary intervention to safeguard maternal and fetal health. Emerging evidence indicates that placental insufficiency, driven by molecular disturbances, plays a central role in the development of PE. Additionally, the maternal microbiome may be implicated in the pathomechanism of preeclampsia by secreting metabolites that influence maternal inflammation and oxidative stress, thereby affecting placental health. Given the limitations of pharmaceuticals during pregnancy due to potential risks to fetal development and concerns about teratogenic effects, nutraceuticals may provide safer alternatives. Nutraceuticals are food products or dietary supplements that offer health benefits beyond basic nutrition, including plant extracts or probiotics. Their historical use in traditional medicine has provided valuable insights into their safety and efficacy, including for pregnant women. This review will examine how the adoption of nutraceuticals can enhance dysregulated placental pathways, potentially offering benefits in the prevention and treatment of preeclampsia.
Collapse
Affiliation(s)
| | | | | | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
3
|
Lei S, Lu J, Cheng A, Hussain Z, Tidgewell K, Zhu J, Ma X. Identification of PXR Activators from Uncaria Rhynchophylla (Gou Teng) and Uncaria Tomentosa (Cat's Claw). Drug Metab Dispos 2023; 51:629-636. [PMID: 36797057 PMCID: PMC10158501 DOI: 10.1124/dmd.122.001234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Uncaria rhynchophylla (Gou Teng) and Uncaria tomentosa (cat's claw) are frequently used herbal supplements in Asia and America, respectively. Despite their common usage, information is limited regarding potential herb-drug interactions associated with Gou Teng and cat's claw. The pregnane X receptor (PXR) is a ligand-dependent transcription factor that regulates cytochrome P450 3A4 (CYP3A4) expression and contributes to some known herb-drug interactions. A recent study found that Gou Teng induces CYP3A4 expression, but its mechanism is unknown. Cat's claw has been determined as a PXR-activating herb, but the PXR activators in cat's claw have not been identified. Using a genetically engineered PXR cell line, we found that the extracts of Gou Teng and cat's claw can dose-dependently activate PXR and induce CYP3A4 expression. We next used a metabolomic approach to profile the chemical components in the extracts of Gou Teng and cat's claw followed by screening for PXR activators. Four compounds, isocorynoxeine, rhynchophylline, isorhynchophylline, and corynoxeine, were identified as PXR activators from both Gou Teng and cat's claw extracts. In addition, three more PXR activators were identified from the extracts of cat's claw, including isopteropodine, pteropodine, and mitraphylline. All seven of these compounds showed the half-maximal effective concentration <10 µM for PXR activation. In summary, our work determined Gou Teng as a PXR-activating herb and discovered novel PXR activators from Gou Teng as well as cat's claw. SIGNIFICANCE STATEMENT: This study's data can be used to guide the safe use of Gou Teng and cat's claw by avoiding PXR-mediated herb-drug interactions.
Collapse
Affiliation(s)
- Saifei Lei
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (S.L., J.L., A.C., Z.H., J.Z., X.M.) and Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (K.T.)
| | - Jie Lu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (S.L., J.L., A.C., Z.H., J.Z., X.M.) and Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (K.T.)
| | - Anqi Cheng
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (S.L., J.L., A.C., Z.H., J.Z., X.M.) and Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (K.T.)
| | - Zahir Hussain
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (S.L., J.L., A.C., Z.H., J.Z., X.M.) and Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (K.T.)
| | - Kevin Tidgewell
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (S.L., J.L., A.C., Z.H., J.Z., X.M.) and Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (K.T.)
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (S.L., J.L., A.C., Z.H., J.Z., X.M.) and Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (K.T.)
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (S.L., J.L., A.C., Z.H., J.Z., X.M.) and Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (K.T.)
| |
Collapse
|
4
|
Zhang ZL, Li YZ, Wu GQ, Li YM, Zhang DD, Wang R. A comprehensive review of phytochemistry, pharmacology and clinical applications of Uncariae Ramulus Cum Uncis. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
5
|
A comprehensive review on phytochemicals for fatty liver: are they potential adjuvants? J Mol Med (Berl) 2022; 100:411-425. [PMID: 34993581 DOI: 10.1007/s00109-021-02170-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome and, as such, is associated with obesity. With the current and growing epidemic of obesity, NAFLD is already considered the most common liver disease in the world. Currently, there is no official treatment for the disease besides weight loss. Although there are a few synthetic drugs currently being studied, there is also an abundance of herbal products that could also be used for treatment. With the World Health Organization (WHO) traditional medicine strategy (2014-2023) in mind, this review aims to analyze the mechanisms of action of some of these herbal products, as well as evaluate toxicity and herb-drug interactions available in literature.
Collapse
|
6
|
Cellular Effects of Rhynchophylline and Relevance to Sleep Regulation. Clocks Sleep 2021; 3:312-341. [PMID: 34207633 PMCID: PMC8293156 DOI: 10.3390/clockssleep3020020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Uncaria rhynchophylla is a plant highly used in the traditional Chinese and Japanese medicines. It has numerous health benefits, which are often attributed to its alkaloid components. Recent studies in humans show that drugs containing Uncaria ameliorate sleep quality and increase sleep time, both in physiological and pathological conditions. Rhynchophylline (Rhy) is one of the principal alkaloids in Uncaria species. Although treatment with Rhy alone has not been tested in humans, observations in rodents show that Rhy increases sleep time. However, the mechanisms by which Rhy could modulate sleep have not been comprehensively described. In this review, we are highlighting cellular pathways that are shown to be targeted by Rhy and which are also known for their implications in the regulation of wakefulness and sleep. We conclude that Rhy can impact sleep through mechanisms involving ion channels, N-methyl-d-aspartate (NMDA) receptors, tyrosine kinase receptors, extracellular signal-regulated kinases (ERK)/mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K)/RAC serine/threonine-protein kinase (AKT), and nuclear factor-kappa B (NF-κB) pathways. In modulating multiple cellular responses, Rhy impacts neuronal communication in a way that could have substantial effects on sleep phenotypes. Thus, understanding the mechanisms of action of Rhy will have implications for sleep pharmacology.
Collapse
|
7
|
Ożarowski M, Karpiński TM, Szulc M, Wielgus K, Kujawski R, Wolski H, Seremak-Mrozikiewicz A. Plant Phenolics and Extracts in Animal Models of Preeclampsia and Clinical Trials-Review of Perspectives for Novel Therapies. Pharmaceuticals (Basel) 2021; 14:269. [PMID: 33809556 PMCID: PMC8000132 DOI: 10.3390/ph14030269] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022] Open
Abstract
The current health requirements set the direction in pharmacological research, especially as regards diseases that require improvement of existing therapeutic regimens. Such diseases include preeclampsia, which is a hypertensive disorder of pregnancy during which there occurs progressive increasing activation of the immune system through elevation of pro-inflammatory cytokines and antiangiogenic factors, which is dangerous for the mother and fetus. A promising field of research for new drugs to treat this disease is the study of natural phenolic compounds of plant origin and herbal extracts, which are complex matrices of chemical compounds with broad biological activities. Many plant substances with anti‑inflammatory and anti‑hypertensive properties are known, but studies in animal models of preeclampsia and clinical trials concerning this disease constitute a new and developing research trend of significant medical importance. The aim of our research review was to identify and analyze the results of already available studies on baicalin, curcumin, epigallocatechin gallate, punicalagin, quercetin, resveratrol, salvianolic acid A (danshensu), silibinin, and vitexin, as well as plant extracts from Brassica oleracea L., Euterpe oleracea Mart., Moringa oleifera Lam., Punica granatum L., Silybum marianum (L.) Gaertner, Thymus schimperi Ronniger, Uncaria rhynchophylla (Miq.) Miq. ex Havil., and Vitis vinifera L., which are potential and promising candidates for further research and for potential new therapies.
Collapse
Affiliation(s)
- Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland;
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| | - Michał Szulc
- Department of Pharmacology, Poznań University of Medical Sciences, Rokietnicka 5a, 60-806 Poznań, Poland; (M.S.); (R.K.)
| | - Karolina Wielgus
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland;
| | - Radosław Kujawski
- Department of Pharmacology, Poznań University of Medical Sciences, Rokietnicka 5a, 60-806 Poznań, Poland; (M.S.); (R.K.)
| | - Hubert Wolski
- Division of Gynecology and Obstetrics, Podhale Multidisciplinary Hospital, 34-400 Nowy Targ, Poland;
- Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland;
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland;
- Laboratory of Molecular Biology in Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, 60-535 Poznań, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, 62-064 Poznań, Poland
| |
Collapse
|
8
|
Liang JH, Wang C, Huo XK, Tian XG, Zhao WY, Wang X, Sun CP, Ma XC. The genus Uncaria: A review on phytochemical metabolites and biological aspects. Fitoterapia 2020; 147:104772. [PMID: 33152463 DOI: 10.1016/j.fitote.2020.104772] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/03/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
The genus Uncaira (Rubiaceae) comprises of 34 species, many of which are usually used as traditional Chinese medicines (TCMs) to treat hypertension, fever, headache, gastrointestinal illness, and fungal infection. Over the past twenty years, Uncaira species have been paid the considerable attentions in phytochemical and biological aspects, and about 100 new secondary metabolites, including alkaloids, triterpenes, and flavonoids, have been elucidated. This review aims to present a comprehensive and up-to date overview of the biological source, structures and their biosynthetic pathways, as well as the pharmacological of the compounds reported in the genus Uncaria for the past two decades. It would provide an insight into the emerging pharmacological applications of the genus Uncaria.
Collapse
Affiliation(s)
- Jia-Hao Liang
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China
| | - Chao Wang
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China
| | - Xiao-Kui Huo
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China
| | - Xiang-Ge Tian
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China
| | - Wen-Yu Zhao
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China
| | - Xun Wang
- Department of Neurosurgery, The Third People's Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Cheng-Peng Sun
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China.
| | - Xiao-Chi Ma
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China.
| |
Collapse
|
9
|
Wu LZ, Xiao XM. Evaluation of the effects of Uncaria rhynchophylla alkaloid extract on LPS-induced preeclampsia symptoms and inflammation in a pregnant rat model. Braz J Med Biol Res 2019; 52:e8273. [PMID: 31116257 PMCID: PMC6526749 DOI: 10.1590/1414-431x20198273] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/07/2019] [Indexed: 01/07/2023] Open
Abstract
Excessive pro-inflammatory cytokines result in adverse pregnancy outcomes, including preeclampsia-like phenotypes, and fetal growth restriction. Anti-inflammation might be an effective therapy. The aim of this research was to investigate whether Uncaria rhynchophylla alkaloid extract (URE), a highly safe anti-inflammation constituent of the herb, can inhibit inflammation and improve clinical characteristics of preeclampsia in a lipopolysaccharide (LPS)-induced preeclampsia rat model. The rat model was established by daily administration of LPS (1 μg/kg body weight per day) from gestational day (GD) 14 to 19. Different doses of URE (35, 70, and 140 mg/kg body weight per day) were administered from GD 14 to GD 19. The effects of URE on proteinuria, maternal hypertension, pregnancy outcomes, as well as pro-inflammatory cytokines levels in serum and placenta were measured. High-dose URE (HURE) treatment decreased LPS-induced mean 24-h proteinuria and systolic blood pressure, and increased fetal weight, placental weight, and the number of live pups (P<0.05). Moreover, increased serum and placental levels of interleukin (IL)-6, IL-1β, tumor necrosis factor-α, and interferon-γ in the LPS-treated group were obviously inhibited after HURE administration (P<0.01). URE improved preeclampsia symptoms and mitigated inflammatory responses in the LPS-induced preeclampsia rat model, which suggests that the anti-inflammation effect of URE might be an alternative therapy for preeclampsia.
Collapse
Affiliation(s)
- Liang-Zhi Wu
- Department of Obstetrics and Gynecology, 1st Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China,Department of Obstetrics and Gynecology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Xiao-Min Xiao
- Department of Obstetrics and Gynecology, 1st Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Uncaria rhynchophylla ameliorates amyloid beta deposition and amyloid beta-mediated pathology in 5XFAD mice. Neurochem Int 2018; 121:114-124. [PMID: 30291956 DOI: 10.1016/j.neuint.2018.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 01/31/2023]
Abstract
One of the pathological hallmarks of Alzheimer's disease (AD) is the abnormal aggregation of amyloid beta (Aβ) peptides. Uncaria rhynchophylla (UR), one of the Uncaria species, has long been used to treat neurodegenerative disease. In particular, it has been reported that UR inhibits aggregation of Aβ in vitro. However, little is known about the histological effects of UR treatment on Aβ pathology in AD animal models. In the present study, we investigated the effect of UR on Aβ aggregation, Aβ-mediated pathologies and adult hippocampal neurogenesis in the brain of 5XFAD mice. First, using the thioflavin T assay and amyloid staining, we demonstrated that UR treatment effectively inhibited Aβ aggregation and accumulation in the cortex and subiculum. Second, immunofluorescence staining showed that administration of UR attenuated gliosis and neurodegeneration in the subiculum and cortex. Third, UR treatment ameliorated impaired adult hippocampal neurogenesis. The present results indicate that UR significantly alleviates Aβ deposition and Aβ-mediated neuropathology in the brain in 5XFAD mice, suggesting the potency of UR as a preventive and therapeutic agent for AD.
Collapse
|
11
|
Lee K, Joo H, Sun M, Kim M, Kim B, Lee BJ, Cho JH, Jung JY, Park JW, Bu Y. Review on the characteristics of liver-pacifying medicinal in relation to the treatment of stroke: from scientific evidence to traditional medical theory. J TRADIT CHIN MED 2018. [DOI: 10.1016/j.jtcm.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Chen Y, Li C, Zhu J, Xie W, Hu X, Song L, Zi J, Yu R. Purification and characterization of an antibacterial and anti-inflammatory polypeptide from Arca subcrenata. Int J Biol Macromol 2017; 96:177-184. [DOI: 10.1016/j.ijbiomac.2016.11.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/14/2016] [Indexed: 12/30/2022]
|
13
|
Zhang Q, Zhao JJ, Xu J, Feng F, Qu W. Medicinal uses, phytochemistry and pharmacology of the genus Uncaria. JOURNAL OF ETHNOPHARMACOLOGY 2015; 173:48-80. [PMID: 26091967 DOI: 10.1016/j.jep.2015.06.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/31/2015] [Accepted: 06/05/2015] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Uncaria belongs to the family Rubiaceae, which mainly distributed in tropical regions, such as Southeast Asia, Africa and Southeast America. Their leaves and hooks have long been thought to have healing powers and are already being tested as a treatment for asthma, cancer, cirrhosis, diabetes, hypertension, stroke and rheumatism. The present review aims to provide systematically reorganized information on the ethnopharmacology, phytochemistry and pharmacology of the genus Uncaria to support for further therapeutic potential of this genus. To better understanding this genus, information on the stereo-chemistry and structure-activity relationships in indole alkaloids is also represented. MATERIAL AND METHODS The literature study of this review is based on various databases search (SCIFinder, Science Direct, CNKI, Wiley online library, Spring Link, Web of Science, PubMed, Wanfang Data, Medalink, Google scholar, ACS, Tropicos, Council of Heads of Australasian Herbaria, The New York Botanical Garden, African Plants Database at Genera Botanical Garden, The Plant List and SEINet) and library search for Biological Abstract and some local books on ethnopharmacology. RESULTS 19 species of the genus Uncaria are found to be important folk medicines in China, Malaysia, Phillippines, Africa and Southeast America, etc, and have been served for the treatment of asthma, rheumatism, hyperpyrexia, hypertension and headaches, etc. More than 200 compounds have been isolated from Uncaria, including indole alkaloids, triterpenes, flavonoids, phenols, phenylpropanoids, etc. As characteristic constituents, indole alkaloids have been considered as main efficacy component for hypertension, epilepsy, depressant, Parkinson's disease and Alzheimer's disease. In addition, pharmacokinetic and metabolism investigation reveal that the indole alkaloids are likely to be absorbed, metabolized and excreted at early time points. Moreover, the specific inhibition of CYP isozymes can regulate their hydroxylation metabolites at C-10 and C-11. CONCLUSION Preliminary investigations on pharmacological properties of the Uncaria species have enlightened their efficacious remedy for hypertension, asthma, cancer, diabetes, rheumatism and neurodegenerative diseases. To ensure the safety and effectiveness in clinical application, research on bioactive compounds, pharmacological mechanisms and toxicity of the genus Uncaria as well as the stereo-chemistry and structure-activity relationships of indole alkaloids seem very important.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jiao Jiao Zhao
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jian Xu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
14
|
Zhai Z, Gomez-Mejiba SE, Zhu H, Lupu F, Ramirez DC. The spin trap 5,5-dimethyl-1-pyrroline N-oxide inhibits lipopolysaccharide-induced inflammatory response in RAW 264.7 cells. Life Sci 2012; 90:432-9. [PMID: 22285597 DOI: 10.1016/j.lfs.2011.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 11/22/2011] [Accepted: 12/22/2011] [Indexed: 12/24/2022]
Abstract
AIM Exposure of macrophages to lipopolysaccharide (LPS) induces oxidative and inflammatory stresses, which cause cell damage. Antioxidant and anti-inflammatory properties have been attributed to the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO), commonly used in free radical analysis, but these aspects of DMPO have been little explored. In this study, we sought to establish the anti-inflammatory activity of DMPO, presumably by removing free radicals which otherwise help activate inflammatory response and damage cells. MAIN METHODS RAW 264.7 macrophages were treated with LPS and/or DMPO for different time points, cell damage, production of inflammatory mediators, inducible nitric oxide synthase (iNOS) expression, NF-κB p65 activation, phosphorylation of MAPKs and Akt, and intracellular reactive oxygen species (ROS) were determined. KEY FINDINGS After cells were treated with LPS and/or DMPO for 24 h, DMPO reduced the LPS-induced inflammatory response as indicated by downregulated iNOS expression and production of inflammatory mediators. Accordingly, DMPO protected cells from LPS-induced cytotoxicity. In order to understand the mechanistic basis of these DMPO effects, the NF-κB p65 activation and the phosphorylation of MAPKs and Akt were examined. We found, by assaying cells treated with LPS and/or DMPO for 15-60 min, that DMPO inhibited the phosphorylation of MAPKs, Akt, and IκBα, and reduced the NF-κB p65 translocation. Furthermore, we demonstrated that DMPO inhibited LPS-induced ROS production. SIGNIFICANCE DMPO showed the anti-inflammatory activity and attenuated LPS-induced cell damage, most likely by reducing ROS production and thus preventing the subsequent inflammatory activation and damage.
Collapse
Affiliation(s)
- Zili Zhai
- Experimental Therapeutics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|