1
|
Singh K, Huff M, Liu J, Park JW, Rickman T, Keremane M, Krueger RR, Kunta M, Roose ML, Dardick C, Staton M, Ramadugu C. Chromosome-Scale, De Novo, Phased Genome Assemblies of Three Australian Limes: Citrus australasica, C. inodora, and C. glauca. PLANTS (BASEL, SWITZERLAND) 2024; 13:1460. [PMID: 38891269 PMCID: PMC11174732 DOI: 10.3390/plants13111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Huanglongbing (HLB) is a severe citrus disease worldwide. Wild Australian limes like Citrus australasica, C. inodora, and C. glauca possess beneficial HLB resistance traits. Individual trees of the three taxa were extensively used in a breeding program for over a decade to introgress resistance traits into commercial-quality citrus germplasm. We generated high-quality, phased, de novo genome assemblies of the three Australian limes using PacBio long-read sequencing. The genome assembly sizes of the primary and alternate haplotypes were determined for C. australasica (337 Mb/335 Mb), C. inodora (304 Mb/299 Mb), and C. glauca (376 Mb/379 Mb). The nine chromosome-scale scaffolds included 86-91% of the genome sequences generated. The integrity and completeness of the assembled genomes were estimated to be at 97.2-98.8%. Gene annotation studies identified 25,461 genes in C. australasica, 27,665 in C. inodora, and 30,067 in C. glauca. Genes belonging to 118 orthogroups were specific to Australian lime genomes compared to other citrus genomes analyzed. Significantly fewer canonical resistance (R) genes were found in C. inodora and C. glauca (319 and 449, respectively) compared to C. australasica (576), C. clementina (579), and C. sinensis (651). Similar patterns were observed for other gene families associated with potential HLB resistance, including Phloem protein 2 (PP2) and Callose synthase (CalS) genes predicted in the Australian lime genomes. The genomic information on Australian limes developed in the present study will help understand the genetic basis of HLB resistance.
Collapse
Affiliation(s)
- Khushwant Singh
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; (K.S.); (M.L.R.)
| | - Matthew Huff
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (M.H.); (T.R.); (M.S.)
| | - Jianyang Liu
- Innovative Fruit Production, Improvement, and Protection, Appalachian Fruit Research Station, USDA-ARS, Kearneysville, WV 25430, USA; (J.L.); (C.D.)
| | - Jong-Won Park
- Citrus Center, Texas A&M University-Kingsville, Weslaco, TX 78599, USA; (J.-W.P.); (M.K.)
| | - Tara Rickman
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (M.H.); (T.R.); (M.S.)
| | - Manjunath Keremane
- National Clonal Germplasm Repository for Citrus and Dates, USDA-ARS, Riverside, CA 92507, USA; (M.K.); (R.R.K.)
| | - Robert R. Krueger
- National Clonal Germplasm Repository for Citrus and Dates, USDA-ARS, Riverside, CA 92507, USA; (M.K.); (R.R.K.)
| | - Madhurababu Kunta
- Citrus Center, Texas A&M University-Kingsville, Weslaco, TX 78599, USA; (J.-W.P.); (M.K.)
| | - Mikeal L. Roose
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; (K.S.); (M.L.R.)
| | - Chris Dardick
- Innovative Fruit Production, Improvement, and Protection, Appalachian Fruit Research Station, USDA-ARS, Kearneysville, WV 25430, USA; (J.L.); (C.D.)
| | - Margaret Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (M.H.); (T.R.); (M.S.)
| | - Chandrika Ramadugu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; (K.S.); (M.L.R.)
| |
Collapse
|
2
|
Keremane M, Singh K, Ramadugu C, Krueger RR, Skaggs TH. Next Generation Sequencing, and Development of a Pipeline as a Tool for the Detection and Discovery of Citrus Pathogens to Facilitate Safer Germplasm Exchange. PLANTS (BASEL, SWITZERLAND) 2024; 13:411. [PMID: 38337944 PMCID: PMC10856814 DOI: 10.3390/plants13030411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Citrus is affected by many diseases, and hence, the movement of citrus propagative materials is highly regulated in the USA. Currently used regulatory pathogen detection methods include biological and laboratory-based technologies, which are time-consuming, expensive, and have many limitations. There is an urgent need to develop alternate, rapid, economical, and reliable testing methods for safe germplasm exchange. Citrus huanglongbing (HLB) has devastated citrus industries leading to an increased need for germplasm exchanges between citrus growing regions for evaluating many potentially valuable hybrids for both HLB resistance and multilocational performance. In the present study, Next-Generation Sequencing (NGS) methods were used to sequence the transcriptomes of 21 test samples, including 15 well-characterized pathogen-positive plants. A workflow was designed in the CLC Genomics Workbench software, v 21.0.5 for bioinformatics analysis of the sequence data for the detection of pathogens. NGS was rapid and found to be a valuable technique for the detection of viral and bacterial pathogens, and for the discovery of new citrus viruses, complementary to the existing array of biological and laboratory assays. Using NGS methods, we detected beet western yellows virus, a newly reported citrus virus, and a variant of the citrus yellow vein-associated virus associated with the "fatal yellows" disease.
Collapse
Affiliation(s)
- Manjunath Keremane
- USDA ARS, National Clonal Germplasm Repository for Citrus and Dates, Riverside, CA 92507, USA;
| | - Khushwant Singh
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA;
| | - Chandrika Ramadugu
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA;
| | - Robert R. Krueger
- USDA ARS, National Clonal Germplasm Repository for Citrus and Dates, Riverside, CA 92507, USA;
| | - Todd H. Skaggs
- USDA ARS, U.S. Salinity Laboratory, Riverside, CA 92507, USA;
| |
Collapse
|
3
|
Suri A, Singh H, Kaur K, Kaachra A, Singh P. Genome-wide characterization of FK506-binding proteins, parvulins and phospho-tyrosyl phosphatase activators in wheat and their regulation by heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1053524. [PMID: 36589073 PMCID: PMC9797600 DOI: 10.3389/fpls.2022.1053524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Peptidyl-prolyl cis-trans isomerases (PPIases) are ubiquitous proteins which are essential for cis-trans isomerisation of peptide bonds preceding the proline residue. PPIases are categorized into four sub-families viz., cyclophilins, FK506-binding proteins (FKBPs), parvulins and protein phosphatase 2A phosphatase activators (PTPAs). Apart from catalysing the cis-trans isomerization, these proteins have also been implicated in diverse cellular functions. Though PPIases have been identified in several important crop plants, information on these proteins, except cyclophilins, is scanty in wheat. In order to understand the role of these genes in wheat, we carried out genome-wide identification using computational approaches. The present study resulted in identification of 71 FKBP (TaFKBP) 12 parvulin (TaPar) and 3 PTPA (TaPTPA) genes in hexaploid wheat genome, which are distributed on different chromosomes with uneven gene densities. The TaFKBP and TaPar proteins, besides PPIase domain, also contain additional domains, indicating functional diversification. In silico prediction also revealed that TaFKBPs are localized to ER, nucleus, chloroplast and cytoplasm, while the TaPars are confined to cytoplasm and nucleus. The TaPTPAs, on the contrary, appear to be present only in the cytoplasm. Evolutionary studies predicted that most of the TaFKBP, TaPar and TaPTPA genes in hexaploid wheat have been derived from their progenitor species, with some events of loss or gain. Syntenic analysis revealed the presence of many collinear blocks of TaFKBP genes in wheat and its sub-genome donors. qRT-PCR analysis demonstrated that expression of TaFKBP and TaPar genes is regulated differentially by heat stress, suggesting their likely involvement in thermotolerance. The findings of this study will provide basis for further functional characterization of these genes and their likely applications in crop improvement.
Collapse
Affiliation(s)
- Anantika Suri
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Kirandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Anish Kaachra
- Biotechnology Division, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, HP, India
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
4
|
Tyagi S, Jha SK, Kumar A, Saripalli G, Bhurta R, Hurali DT, Sathee L, Mallick N, Mir RR, Chinnusamy V. Genome-wide characterization and identification of cyclophilin genes associated with leaf rust resistance in bread wheat (Triticum aestivum L.). Front Genet 2022; 13:972474. [PMID: 36246582 PMCID: PMC9561851 DOI: 10.3389/fgene.2022.972474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclophilins (CYPs) are a group of highly conserved proteins involved in host-pathogen interactions in diverse plant species. However, the role of CYPs during disease resistance in wheat remains largely elusive. In the present study, the systematic genome-wide survey revealed a set of 81 TaCYP genes from three subfamilies (GI, GII, and GIII) distributed on all 21 wheat chromosomes. The gene structures of TaCYP members were found to be highly variable, with 1–14 exons/introns and 15 conserved motifs. A network of miRNA targets with TaCYPs demonstrated that TaCYPs were targeted by multiple miRNAs and vice versa. Expression profiling was done in leaf rust susceptible Chinese spring (CS) and the CS-Ae. Umbellulata derived resistant IL “Transfer (TR). Three homoeologous TaCYP genes (TaCYP24, TaCYP31, and TaCYP36) showed high expression and three homoeologous TaCYP genes (TaCYP44, TaCYP49, and TaCYP54) showed low expression in TR relative to Chinese Spring. Most of the other TaCYPs showed comparable expression changes (down- or upregulation) in both contrasting TR and CS. Expression of 16 TaCYPs showed significant association (p < 0.05) with superoxide radical and hydrogen peroxide abundance, suggesting the role of TaCYPs in downstream signaling processes during wheat-leaf rust interaction. The differentially expressing TaCYPs may be potential targets for future validation using transgenic (overexpression, RNAi or CRISPR-CAS) approaches and for the development of leaf rust-resistant wheat genotypes.
Collapse
Affiliation(s)
- Sandhya Tyagi
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Shailendra Kumar Jha, ; Vinod,
| | - Anuj Kumar
- Centre for Agricultural Bioinformatics (CABin), Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gautam Saripalli
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Ramesh Bhurta
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Deepak T. Hurali
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Niharika Mallick
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Wadura Campus, Srinagar, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
5
|
Singh K, Callahan AM, Smith BJ, Malinowski T, Scorza R, Jarošová J, Beoni E, Polák J, Kundu JK, Dardick C. Long-Term Efficacy and Safety of RNAi-Mediated Virus Resistance in 'HoneySweet' Plum. FRONTIERS IN PLANT SCIENCE 2021; 12:726881. [PMID: 34712254 PMCID: PMC8546108 DOI: 10.3389/fpls.2021.726881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Interfering RNA technology has been established as an effective strategy to protect plants against viral infection. Despite this success, interfering RNA (RNAi) has rarely been applied due to the regulatory barriers that confront genetically engineered plants and concerns over possible environmental and health risks posed by non-endogenous small RNAs. 'HoneySweet' was developed as a virus-resistant plum variety that is protected by an RNAi-mediated process against Sharka disease caused by the plum pox virus. 'HoneySweet' has been approved for cultivation in the United States but not in countries where the plum pox virus is endemic. In this study, we evaluated the long-term efficacy of virus resistance in 'HoneySweet,' the nature and stability of its sRNA profile, and the potential health risks of consuming 'HoneySweet' plums. Graft-challenged 'HoneySweet' trees carrying large non-transgenic infected limbs remained virus-free after more than 10 years in the field, and the viral sequences from the non-transgenic infected limbs showed no evidence of adaptation to the RNAi-based resistance. Small RNA profiling revealed that transgene-derived sRNA levels were stable across different environments and, on average, were more than 10 times lower than those present in symptom-less fruits from virus-infected trees. Comprehensive 90-day mouse feeding studies showed no adverse health impacts in mice, and there was no evidence for potential siRNA off-target pathologies predicted by comparisons of the most abundant transgene-derived sRNAs to the mouse genome. Collectively, the data confirmed that RNAi provides a highly effective, stable, and safe strategy to combat virus diseases in crop plants.
Collapse
Affiliation(s)
- Khushwant Singh
- Innovative Fruit Production, Improvement and Protection, Appalachian Fruit Research Station, Agricultural Research Service (USDA), Kearneysville, WV, United States
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague, Czech Republic
| | - Ann M. Callahan
- Innovative Fruit Production, Improvement and Protection, Appalachian Fruit Research Station, Agricultural Research Service (USDA), Kearneysville, WV, United States
| | - Brenda J. Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Tadeusz Malinowski
- Innovative Fruit Production, Improvement and Protection, Appalachian Fruit Research Station, Agricultural Research Service (USDA), Kearneysville, WV, United States
- The National Research Institute of Horticulture, Skierniewice, Poland
| | - Ralph Scorza
- Innovative Fruit Production, Improvement and Protection, Appalachian Fruit Research Station, Agricultural Research Service (USDA), Kearneysville, WV, United States
| | - Jana Jarošová
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague, Czech Republic
| | - Eva Beoni
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague, Czech Republic
| | - Jaroslav Polák
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague, Czech Republic
| | - Jiban Kumar Kundu
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague, Czech Republic
| | - Chris Dardick
- Innovative Fruit Production, Improvement and Protection, Appalachian Fruit Research Station, Agricultural Research Service (USDA), Kearneysville, WV, United States
| |
Collapse
|
6
|
Cantila AY, Saad NSM, Amas JC, Edwards D, Batley J. Recent Findings Unravel Genes and Genetic Factors Underlying Leptosphaeria maculans Resistance in Brassica napus and Its Relatives. Int J Mol Sci 2020; 22:E313. [PMID: 33396785 PMCID: PMC7795555 DOI: 10.3390/ijms22010313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 11/20/2022] Open
Abstract
Among the Brassica oilseeds, canola (Brassica napus) is the most economically significant globally. However, its production can be limited by blackleg disease, caused by the fungal pathogen Lepstosphaeria maculans. The deployment of resistance genes has been implemented as one of the key strategies to manage the disease. Genetic resistance against blackleg comes in two forms: qualitative resistance, controlled by a single, major resistance gene (R gene), and quantitative resistance (QR), controlled by numerous, small effect loci. R-gene-mediated blackleg resistance has been extensively studied, wherein several genomic regions harbouring R genes against L. maculans have been identified and three of these genes were cloned. These studies advance our understanding of the mechanism of R gene and pathogen avirulence (Avr) gene interaction. Notably, these studies revealed a more complex interaction than originally thought. Advances in genomics help unravel these complexities, providing insights into the genes and genetic factors towards improving blackleg resistance. Here, we aim to discuss the existing R-gene-mediated resistance, make a summary of candidate R genes against the disease, and emphasise the role of players involved in the pathogenicity and resistance. The comprehensive result will allow breeders to improve resistance to L. maculans, thereby increasing yield.
Collapse
Affiliation(s)
| | | | | | | | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia; (A.Y.C.); (N.S.M.S.); (J.C.A.); (D.E.)
| |
Collapse
|
7
|
Singh H, Kaur K, Singh M, Kaur G, Singh P. Plant Cyclophilins: Multifaceted Proteins With Versatile Roles. FRONTIERS IN PLANT SCIENCE 2020; 11:585212. [PMID: 33193535 PMCID: PMC7641896 DOI: 10.3389/fpls.2020.585212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/22/2020] [Indexed: 05/03/2023]
Abstract
Cyclophilins constitute a family of ubiquitous proteins that bind cyclosporin A (CsA), an immunosuppressant drug. Several of these proteins possess peptidyl-prolyl cis-trans isomerase (PPIase) activity that catalyzes the cis-trans isomerization of the peptide bond preceding a proline residue, essential for correct folding of the proteins. Compared to prokaryotes and other eukaryotes studied until now, the cyclophilin gene families in plants exhibit considerable expansion. With few exceptions, the role of the majority of these proteins in plants is still a matter of conjecture. However, recent studies suggest that cyclophilins are highly versatile proteins with multiple functionalities, and regulate a plethora of growth and development processes in plants, ranging from hormone signaling to the stress response. The present review discusses the implications of cyclophilins in different facets of cellular processes, particularly in the context of plants, and provides a glimpse into the molecular mechanisms by which these proteins fine-tune the diverse physiological pathways.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Kirandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Mangaljeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Gundeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- William Harvey Heart Centre, Queen Mary University of London, London, United Kingdom
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
8
|
Analysis of Small RNAs of Barley Genotypes Associated with Resistance to Barley Yellow Dwarf Virus. PLANTS 2020; 9:plants9010060. [PMID: 31906504 PMCID: PMC7020447 DOI: 10.3390/plants9010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/13/2019] [Accepted: 12/24/2019] [Indexed: 11/29/2022]
Abstract
Barley yellow dwarf virus (BYDV) causes an often-devastating disease of cereals that is most effectively controlled by using plant genotypes that are resistant or tolerant to the virus. New barley lines Vir8:3 and Vir13:8, with pyramided resistance genes against different pathogens and resistance gene Ryd2 against BYDV, are currently being tested. Because microRNAs (miRNAs) are associated with antiviral plant defense, here we compared the miRNA profiles in these lines and in cultivar Wysor (carrying one resistance gene, Ryd2), with and without BYDV infection and after feeding by virus-free aphids, to determine whether the miRNA profile in the resistant variety bear similarities with the newly developed lines. The BYDV titer for each group was also determined and compared to the titer in sensitive cultivar Graciosa. Among 746 miRNAs identified in barley, 66 were known miRNAs, and 680 were novel. The expression of 73 miRNAs differed significantly after BYDV infection, including the strong, specific upregulation of novel miRNA10778 that was conserved across all the barley genotypes. This miRNA belongs to the H box and ACA box (H/ACA) snoR14 family of RNAs (Rf01280) and is associated with pseudourydilation. The expression of 48 miRNAs also differed depending on the barley genotype. The profile of miRNAs expressed in Vir8:3 and Vir13:8 in response to BYDV was similar and differed from that of Wysor. Insights into the expression patterns of miRNAs in response to BYDV in barley provided here will benefit further studies toward understanding the resistance mechanisms and developing novel strategies against virus infections.
Collapse
|
9
|
Chen Q, Chen QJ, Sun GQ, Zheng K, Yao ZP, Han YH, Wang LP, Duan YJ, Yu DQ, Qu YY. Genome-Wide Identification of Cyclophilin Gene Family in Cotton and Expression Analysis of the Fibre Development in Gossypium barbadense. Int J Mol Sci 2019; 20:E349. [PMID: 30654456 PMCID: PMC6359516 DOI: 10.3390/ijms20020349] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 11/17/2022] Open
Abstract
Cyclophilins (CYPs) are a member of the immunophilin superfamily (in addition to FKBPs and parvulins) and play a significant role in peptidyl-prolyl cis-trans isomerase (PPIase) activity. Previous studies have shown that CYPs have important functions in plants, but no genome-wide analysis of the cotton CYP gene family has been reported, and the specific biological function of this gene is still elusive. Based on the release of the cotton genome sequence, we identified 75, 78, 40 and 38 CYP gene sequences from G. barbadense, G. hirsutum, G. arboreum, and G. raimondii, respectively; 221 CYP genes were unequally located on chromosomes. Phylogenetic analysis showed that 231 CYP genes clustered into three major groups and eight subgroups. Collinearity analysis showed that segmental duplications played a significant role in the expansion of CYP members in cotton. There were light-responsiveness, abiotic-stress and hormone-response elements upstream of most of the CYPs. In addition, the motif composition analysis revealed that 49 cyclophilin proteins had extra domains, including TPR (tetratricopeptide repeat), coiled coil, U-box, RRM (RNA recognition motif), WD40 (RNA recognition motif) and zinc finger domains, along with the cyclophilin-like domain (CLD). The expression patterns based on qRT-PCR showed that six CYP expression levels showed greater differences between Xinhai21 (long fibres, G. barbadense) and Ashmon (short fibres, G. barbadense) at 10 and 20 days postanthesis (DPA). These results signified that CYP genes are involved in the elongation stage of cotton fibre development. This study provides a valuable resource for further investigations of CYP gene functions and molecular mechanisms in cotton.
Collapse
Affiliation(s)
- Qin Chen
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Quan-Jia Chen
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Guo-Qing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Kai Zheng
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Zheng-Pei Yao
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Yu-Hui Han
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Li-Ping Wang
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Ya-Jie Duan
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Dao-Qian Yu
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
- Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yan-Ying Qu
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
| |
Collapse
|
10
|
Ghartey-Kwansah G, Li Z, Feng R, Wang L, Zhou X, Chen FZ, Xu MM, Jones O, Mu Y, Chen S, Bryant J, Isaacs WB, Ma J, Xu X. Comparative analysis of FKBP family protein: evaluation, structure, and function in mammals and Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2018; 18:7. [PMID: 29587629 PMCID: PMC5870485 DOI: 10.1186/s12861-018-0167-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
Abstract
Background FK506-binding proteins (FKBPs) have become the subject of considerable interest in several fields, leading to the identification of several cellular and molecular pathways in which FKBPs impact prenatal development and pathogenesis of many human diseases. Main body This analysis revealed differences between how mammalian and Drosophila FKBPs mechanisms function in relation to the immunosuppressant drugs, FK506 and rapamycin. Differences that could be used to design insect-specific pesticides. (1) Molecular phylogenetic analysis of FKBP family proteins revealed that the eight known Drosophila FKBPs share homology with the human FKBP12. This indicates a close evolutionary relationship, and possible origination from a common ancestor. (2) The known FKBPs contain FK domains, that is, a prolyl cis/trans isomerase (PPIase) domain that mediates immune suppression through inhibition of calcineurin. The dFKBP59, CG4735/Shutdown, CG1847, and CG5482 have a Tetratricopeptide receptor domain at the C-terminus, which regulates transcription and protein transportation. (3) FKBP51 and FKBP52 (dFKBP59), along with Cyclophilin 40 and protein phosphatase 5, function as Hsp90 immunophilin co-chaperones within steroid receptor-Hsp90 heterocomplexes. These immunophilins are potential drug targets in pathways associated with normal physiology and may be used to treat a variety of steroid-based diseases by targeting exocytic/endocytic cycling and vesicular trafficking. (4) By associating with presinilin, a critical component of the Notch signaling pathway, FKBP14 is a downstream effector of Notch activation at the membrane. Meanwhile, Shutdown associates with transposons in the PIWI-interacting RNA pathway, playing a crucial role in both germ cells and ovarian somas. Mutations in or silencing of dFKBPs lead to early embryonic lethality in Drosophila. Therefore, further understanding the mechanisms of FK506 and rapamycin binding to immunophilin FKBPs in endocrine, cardiovascular, and neurological function in both mammals and Drosophila would provide prospects in generating unique, insect specific therapeutics targeting the above cellular signaling pathways. Conclusion This review will evaluate the functional roles of FKBP family proteins, and systematically summarize the similarities and differences between FKBP proteins in Drosophila and Mammals. Specific therapeutics targeting cellular signaling pathways will also be discussed.
Collapse
Affiliation(s)
- George Ghartey-Kwansah
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Zhongguang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Rui Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Liyang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Xin Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China.,Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Meng Meng Xu
- Department of Pharmacology, Duke University Medical Center, Durham, NC, USA
| | - Odell Jones
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yulian Mu
- State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Joseph Bryant
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Jianjie Ma
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Xuehong Xu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China. .,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China.
| |
Collapse
|
11
|
The immunophilin repertoire of Plasmodiophora brassicae and functional analysis of PbCYP3 cyclophilin. Mol Genet Genomics 2017; 293:381-390. [PMID: 29128880 PMCID: PMC5854754 DOI: 10.1007/s00438-017-1395-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/06/2017] [Indexed: 11/05/2022]
Abstract
Plasmodiophora brassicae is a soil-borne pathogen that belongs to Rhizaria, an almost unexplored eukaryotic organism group. This pathogen requires a living host for growth and multiplication, which makes molecular analysis further complicated. To broaden our understanding of a plasmodiophorid such as P. brassicae, we here chose to study immunophilins, a group of proteins known to have various cellular functions, including involvement in plant defense and pathogen virulence. Searches in the P. brassicae genome resulted in 20 putative immunophilins comprising of 11 cyclophilins (CYPs), 7 FK506-binding proteins (FKBPs) and 2 parvulin-like proteins. RNAseq data showed that immunophilins were differentially regulated in enriched life stages such as germinating spores, maturing spores, and plasmodia, and infected Brassica hosts (B. rapa, B. napus and B. oleracea). PbCYP3 was highly induced in all studied life stages and during infection of all three Brassica hosts, and hence was selected for further analysis. PbCYP3 was heterologously expressed in Magnaporthe oryzae gene-inactivated ΔCyp1 strain. The new strain ΔCyp1+ overexpressing PbCYP3 showed increased virulence on rice compared to the ΔCyp1 strain. These results suggest that the predicted immunophilins and particularly PbCYP3 are activated during plant infection. M. oryzae is a well-studied fungal pathogen and could be a valuable tool for future functional studies of P. brassicae genes, particularly elucidating their role during various infection phases.
Collapse
|
12
|
Sui Y, Fu X, Wang Y, Hu W, Zhang T, Liu W, Jiang L, Xing S, Fu X, Xu X. Expression, purification and characterization of a catalytic domain of human protein tyrosine phosphatase non-receptor 12 (PTPN12) in Escherichia coli with FKBP-type PPIase as a chaperon. Protein Expr Purif 2017; 142:45-52. [PMID: 28965803 DOI: 10.1016/j.pep.2017.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/25/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022]
Abstract
Protein tyrosine phosphatase non-receptor type 12 (PTPN12), also known as PTP-PEST, was broadly expressed in hemopoietic cells. Recent research has shown that this enzyme is involved in tumorigenesis, as well as in tumor progression and transfer, as it can suppress multiple oncogenic tyrosine kinases. However, the difficulty of soluble expression of PTP-PEST in prokaryotic cells has resulted in great limitations in investigating its structure and functions. In this study, we successfully carried out soluble expression of the catalytic domain of PTP-PEST (ΔPTP-PEST) in Escherichia coli and performed an enzymatic characterization and kinetics. To confirm expression efficiency, we also induced the expression of the chaperon, FKBP_C. FKBP_C expression indicated efficacious prokaryotic expression of ΔPTP-PEST. In conclusion, our work yielded a practical expression system and two-step chromatography purification method that may serve as a valuable tool for the structural and functional analysis of proteins that are difficult to express in the soluble form in prokaryotic cells.
Collapse
Affiliation(s)
- Yuan Sui
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Xingye Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Yuchen Wang
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Weiyan Hu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Tong Zhang
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Wanyao Liu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Liyan Jiang
- Core Facilities for Life Science, Jilin University, Changchun 130012, PR China
| | - Shu Xing
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, PR China.
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, PR China.
| | - Xuesong Xu
- Clinical Laboratory of China-Japan Union Hospital, Jilin University, Changchun 130033, PR China.
| |
Collapse
|
13
|
Microbial cyclophilins: specialized functions in virulence and beyond. World J Microbiol Biotechnol 2017; 33:164. [PMID: 28791545 DOI: 10.1007/s11274-017-2330-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/05/2017] [Indexed: 01/18/2023]
Abstract
Cyclophilins belong to the superfamily of peptidyl-prolyl cis/trans isomerases (PPIases, EC: 5.2.1.8), the enzymes that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Cyclophilins have been extensively studied, since they are involved in multiple cellular processes related to human pathologies, such as neurodegenerative disorders, infectious diseases, and cancer. However, the presence of cyclophilins in all domains of life indicates a broader biological importance. In this mini-review, we summarize current advances in the study of microbial cyclophilins. Apart from their anticipated role in protein folding and chaperoning, cyclophilins are involved in several other biological processes, such as cellular signal transduction, adaptation to stress, control of pathogens virulence, and modulation of host immune response. Since many existing family members do not have well-defined functions and novel ones are being characterized, the requirement for further studies on their biological role and molecular mechanism of action is apparent.
Collapse
|
14
|
Hanhart P, Thieß M, Amari K, Bajdzienko K, Giavalisco P, Heinlein M, Kehr J. Bioinformatic and expression analysis of the Brassica napus L. cyclophilins. Sci Rep 2017; 7:1514. [PMID: 28473712 PMCID: PMC5431436 DOI: 10.1038/s41598-017-01596-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/29/2017] [Indexed: 12/15/2022] Open
Abstract
Cyclophilins (CYPs) are a group of ubiquitous proteins characterized by their ability to bind to the immunosuppressive drug cyclosporin A. The CYP family occurs in a wide range of organisms and contains a conserved peptidyl-prolyl cis/trans isomerase domain. In addition to fulfilling a basic role in protein folding, CYPs may also play diverse important roles, e.g. in protein degradation, mRNA processing, development, and stress responses. We performed a genome-wide database survey and identified a total of 94 CYP genes encoding 91 distinct proteins. Sequence alignment analysis of the putative BnCYP cyclophilin-like domains revealed highly conserved motifs. By using RNA-Seq, we could verify the presence of 77 BnCYP genes under control conditions. To identify phloem-specific BnCYP proteins in a complementary approach, we used LC-MS/MS to determine protein abundances in leaf and phloem extracts. We detected 26 BnCYPs in total with 12 being unique to phloem sap. Our analysis provides the basis for future studies concentrating on the functional characterization of individual members of this gene family in a plant of dual importance: as a crop and a model system for polyploidization and long-distance signalling.
Collapse
Affiliation(s)
- Patrizia Hanhart
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststraße 18, 22609, Hamburg, Germany
| | - Melanie Thieß
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststraße 18, 22609, Hamburg, Germany
| | - Khalid Amari
- Université de Strasbourg, CNRS, IBMP UPR 2357, 12 rue du Général Zimmer, F-67000, Strasbourg, France
| | - Krzysztof Bajdzienko
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Patrick Giavalisco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Manfred Heinlein
- Université de Strasbourg, CNRS, IBMP UPR 2357, 12 rue du Général Zimmer, F-67000, Strasbourg, France
| | - Julia Kehr
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststraße 18, 22609, Hamburg, Germany.
| |
Collapse
|