1
|
Platt JL, Cascalho M. Somatic Cell Fusion in Host Defense and Adaptation. Results Probl Cell Differ 2024; 71:213-225. [PMID: 37996680 DOI: 10.1007/978-3-031-37936-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Evidence of fusion of somatic cells has been noted in health and in disease for more than a century. The most obvious but uncertain hallmark has been the presence of multiple nuclei in cells. Although multinucleated cells are found in normal and diseased tissues, the benefit or harm of such cells can be difficult to elucidate. Still more difficult however is the identification of mononuclear cells previously formed by fusion of somatic cells with one or more nuclei disposed. The later process can introduce mutations that promote viral diversification, cancer, and tissue senescence. Less obvious the potential benefits of cell fusion. Recent work in cell biology, immunology, and genomic analysis however makes it possible to postulate benefits and potentially arrive at novel therapeutic agents and approaches that replicate or enhance these benefits.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Departments of Surgery and Microbiology & Immunology University of Michigan, Ann Arbor, MI, USA.
| | - Marilia Cascalho
- Departments of Surgery and Microbiology & Immunology University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Sper RB, Proctor J, Lascina O, Guo L, Polkoff K, Kaeser T, Simpson S, Borst L, Gleason K, Zhang X, Collins B, Murphy Y, Platt JL, Piedrahita JA. Allogeneic and xenogeneic lymphoid reconstitution in a RAG2 -/- IL2RG y/- severe combined immunodeficient pig: A preclinical model for intrauterine hematopoietic transplantation. Front Vet Sci 2022; 9:965316. [PMID: 36311661 PMCID: PMC9614384 DOI: 10.3389/fvets.2022.965316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022] Open
Abstract
Mice with severe combined immunodeficiency are commonly used as hosts of human cells. Size, longevity, and physiology, however, limit the extent to which immunodeficient mice can model human systems. To address these limitations, we generated RAG2−/−IL2RGy/− immunodeficient pigs and demonstrate successful engraftment of SLA mismatched allogeneic D42 fetal liver cells, tagged with pH2B-eGFP, and human CD34+ hematopoietic stem cells after in utero cell transplantation. Following intrauterine injection at day 42–45 of gestation, fetuses were allowed to gestate to term and analyzed postnatally for the presence of pig (allogeneic) and human (xenogeneic) B cells, T-cells and NK cells in peripheral blood and other lymphoid tissues. Engraftment of allogeneic hematopoietic cells was detected based on co-expression of pH2B-eGFP and various markers of differentiation. Analysis of spleen revealed robust generation and engraftment of pH2B-eGFP mature B cells (and IgH recombination) and mature T-cells (and TCR-β recombination), T helper (CD3+CD4+) and T cytotoxic (CD3+CD8+) cells. The thymus revealed engraftment of pH2B-eGFP double negative precursors (CD4−CD8−) as well as double positive (CD4+, CD8+) precursors and single positive T-cells. After intrauterine administration of human CD34+ hematopoietic stem cells, analysis of peripheral blood and lymphoid tissues revealed the presence of human T-cells (CD3+CD4+ and CD3+CD8+) but no detectable B cells or NK cells. The frequency of human CD45+ cells in the circulation decreased rapidly and were undetectable within 2 weeks of age. The frequency of human CD45+ cells in the spleen also decreased rapidly, becoming undetectable at 3 weeks. In contrast, human CD45+CD3+T-cells comprised >70% of cells in the pig thymus at birth and persisted at the same frequency at 3 weeks. Most human CD3+ cells in the pig's thymus expressed CD4 or CD8, but few cells were double positive (CD4+ CD8+). In addition, human CD3+ cells in the pig thymus contained human T-cell excision circles (TREC), suggesting de novo development. Our data shows that the pig thymus provides a microenvironment conducive to engraftment, survival and development of human T-cells and provide evidence that the developing T-cell compartment can be populated to a significant extent by human cells in large animals.
Collapse
Affiliation(s)
- Renan B. Sper
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Jessica Proctor
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Odessa Lascina
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Ling Guo
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Kathryn Polkoff
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Tobias Kaeser
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Sean Simpson
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Luke Borst
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Katherine Gleason
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Xia Zhang
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Bruce Collins
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Yanet Murphy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Jeffrey L. Platt
- Department of Surgery and Microbiology and Immunology, University of Michigan Health System, Ann Arbor, MI, United States
| | - Jorge A. Piedrahita
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States,*Correspondence: Jorge A. Piedrahita
| |
Collapse
|
3
|
Nelson ED, Larson E, Joo DJ, Mao S, Glorioso J, Abu Rmilah A, Zhou W, Jia Y, Mounajjed T, Shi M, Bois M, Wood A, Jin F, Whitworth K, Wells K, Spate A, Samuel M, Minshew A, Walters E, Rinaldo P, Lillegard J, Johnson A, Amiot B, Hickey R, Prather R, Platt JL, Nyberg SL. Limited Expansion of Human Hepatocytes in FAH/RAG2-Deficient Swine. Tissue Eng Part A 2021; 28:150-160. [PMID: 34309416 PMCID: PMC8892989 DOI: 10.1089/ten.tea.2021.0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The mammalian liver's regenerative ability has led researchers to engineer animals as incubators for expansion of human hepatocytes. The expansion properties of human hepatocytes in immunodeficient mice are well known. However, little has been reported about larger animals that are more scalable and practical for clinical purposes. Therefore, we engineered immunodeficient swine to support expansion of human hepatocytes and identify barriers to their clinical application. METHODS Immunodeficient swine were engineered by knockout of recombinase activating gene 2 (RAG2) and fumarylacetoacetate hydrolase (FAH). Immature human hepatocytes (ihHCs) were injected into fetal swine by intrauterine cell transplantation (IUCT) at day 40 of gestation. Human albumin was measured as a marker of engraftment. Cytotoxicity against ihHCs was measured in transplanted piglets and control swine. RESULTS Higher levels of human albumin were detected in cord blood of newborn FAH/RAG2-deficient (FR) pigs compared to immunocompetent controls (196.26 ng/dL vs 39.29 ng/dL, p = 0.008), indicating successful engraftment of ihHC after IUCT and adaptive immunity in the fetus. Although rare hepatocytes staining positively for human albumin were observed, levels of human albumin did not rise after birth but declined suggesting rejection of xenografted ihHCs. Cytotoxicity against ihHCs increased after birth 3.8% (95% CI: [2.1%, 5.4%], p < 0.001) and correlated inversely to declining levels of human albumin (p = 2.1 x 10-5, R2 = 0.17). Circulating numbers of T-cells and B-cells were negligible in FR pigs. However, circulating natural killer (NK) cells exerted cytotoxicity against ihHCs. NK cell activity was lower in immunodeficient piglets after IUCT than naive controls (30.4% vs 40.1% (p = 0.011, 95% CI for difference [2.7%, 16.7%]). CONCLUSION Immature human hepatocytes successfully engrafted in FR swine after IUCT. NK cells were a significant barrier to expansion of hepatocytes. New approaches are needed to overcome this hurdle and allow large scale expansion of human hepatocytes in immunodeficient swine.
Collapse
Affiliation(s)
- Erek David Nelson
- Mayo Clinic Minnesota, 4352, Surgery, 100 First St NW, Rochester, Rochester, Minnesota, United States, 55905-0002;
| | - Ellen Larson
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Dong Jin Joo
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Shennen Mao
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Jaime Glorioso
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Anan Abu Rmilah
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Wei Zhou
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Yao Jia
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Taofic Mounajjed
- Mayo Clinic Minnesota, 4352, Laboratory Medicine and Pathology, Rochester, Minnesota, United States;
| | - Min Shi
- Mayo Clinic Minnesota, 4352, Laboratory Medicine and Pathology, Rochester, Minnesota, United States;
| | - Melanie Bois
- Mayo Clinic Minnesota, 4352, Laboratory Medicine and Pathology, Rochester, Minnesota, United States;
| | - Adam Wood
- Mayo Clinic Minnesota, 4352, Laboratory Medicine and Pathology, Rochester, Minnesota, United States;
| | - Fang Jin
- Mayo Clinic Minnesota, 4352, Immunology, Rochester, Minnesota, United States;
| | - Kristin Whitworth
- University of Missouri, 14716, National Swine Resource and Research Center, Division of Animal Sciences, Columbia, Missouri, United States;
| | - Kevin Wells
- University of Missouri, 14716, National Swine Resource and Research Center, Division of Animal Sciences, Columbia, Missouri, United States;
| | - Anna Spate
- University of Missouri, 14716, National Swine Resource and Research Center, Division of Animal Sciences, Columbia, Missouri, United States;
| | - Melissa Samuel
- University of Missouri, 14716, National Swine Resource and Research Center, Division of Animal Sciences, Columbia, Missouri, United States;
| | - Anna Minshew
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Eric Walters
- University of Missouri, 14716, National Swine Resource and Research Center, Division of Animal Sciences, Columbia, Missouri, United States;
| | - Piero Rinaldo
- Mayo Clinic Minnesota, 4352, Laboratory Medicine and Pathology, Rochester, Minnesota, United States;
| | - Joeseph Lillegard
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Aaron Johnson
- Mayo Clinic Minnesota, 4352, Immunology, Rochester, Minnesota, United States;
| | - Bruce Amiot
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Raymond Hickey
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| | - Randall Prather
- University of Missouri, 14716, National Swine Resource and Research Center, Division of Animal Sciences, Columbia, Missouri, United States;
| | - Jeffrey L Platt
- University of Michigan Michigan Medicine, 21614, Surgery, Ann Arbor, Michigan, United States;
| | - Scott Lyle Nyberg
- Mayo Clinic Minnesota, 4352, Surgery, Rochester, Minnesota, United States;
| |
Collapse
|
4
|
Boettcher AN, Li Y, Ahrens AP, Kiupel M, Byrne KA, Loving CL, Cino-Ozuna AG, Wiarda JE, Adur M, Schultz B, Swanson JJ, Snella EM, Ho CS(S, Charley SE, Kiefer ZE, Cunnick JE, Putz EJ, Dell'Anna G, Jens J, Sathe S, Goldman F, Westin ER, Dekkers JCM, Ross JW, Tuggle CK. Novel Engraftment and T Cell Differentiation of Human Hematopoietic Cells in ART-/-IL2RG-/Y SCID Pigs. Front Immunol 2020; 11:100. [PMID: 32117254 PMCID: PMC7017803 DOI: 10.3389/fimmu.2020.00100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/15/2020] [Indexed: 01/08/2023] Open
Abstract
Pigs with severe combined immunodeficiency (SCID) are an emerging biomedical animal model. Swine are anatomically and physiologically more similar to humans than mice, making them an invaluable tool for preclinical regenerative medicine and cancer research. One essential step in further developing this model is the immunological humanization of SCID pigs. In this work we have generated T- B- NK- SCID pigs through site directed CRISPR/Cas9 mutagenesis of IL2RG within a naturally occurring DCLRE1C (ARTEMIS)-/- genetic background. We confirmed ART-/-IL2RG-/Y pigs lacked T, B, and NK cells in both peripheral blood and lymphoid tissues. Additionally, we successfully performed a bone marrow transplant on one ART-/-IL2RG-/Y male SCID pig with bone marrow from a complete swine leukocyte antigen (SLA) matched donor without conditioning to reconstitute porcine T and NK cells. Next, we performed in utero injections of cultured human CD34+ selected cord blood cells into the fetal ART-/-IL2RG-/Y SCID pigs. At birth, human CD45+ CD3ε+ cells were detected in cord and peripheral blood of in utero injected SCID piglets. Human leukocytes were also detected within the bone marrow, spleen, liver, thymus, and mesenteric lymph nodes of these animals. Taken together, we describe critical steps forwards the development of an immunologically humanized SCID pig model.
Collapse
Affiliation(s)
| | - Yunsheng Li
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Amanda P. Ahrens
- Laboratory Animal Resources, Iowa State University, Ames, IA, United States
| | - Matti Kiupel
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Kristen A. Byrne
- Food Safety and Enteric Pathogen Unit, National Animal Disease Center, US Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Crystal L. Loving
- Food Safety and Enteric Pathogen Unit, National Animal Disease Center, US Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - A. Giselle Cino-Ozuna
- Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States
| | - Jayne E. Wiarda
- Food Safety and Enteric Pathogen Unit, National Animal Disease Center, US Department of Agriculture, Agricultural Research Service, Ames, IA, United States
- Immunobiology Graduate Program, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, United States
| | - Malavika Adur
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Blythe Schultz
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | - Elizabeth M. Snella
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Chak-Sum (Sam) Ho
- Gift of Hope Organ and Tissue Donor Network, Itasca, IL, United States
| | - Sara E. Charley
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Zoe E. Kiefer
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Joan E. Cunnick
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Ellie J. Putz
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Giuseppe Dell'Anna
- Laboratory Animal Resources, Iowa State University, Ames, IA, United States
| | - Jackie Jens
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Swanand Sathe
- Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
| | - Frederick Goldman
- Department of Pediatrics, University of Alabama, Birmingham, AL, United States
| | - Erik R. Westin
- Department of Pediatrics, University of Alabama, Birmingham, AL, United States
| | - Jack C. M. Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Jason W. Ross
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
5
|
Platt JL, Cascalho M, Piedrahita JA. Xenotransplantation: Progress Along Paths Uncertain from Models to Application. ILAR J 2019; 59:286-308. [PMID: 30541147 DOI: 10.1093/ilar/ily015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/23/2018] [Indexed: 12/18/2022] Open
Abstract
For more than a century, transplantation of tissues and organs from animals into man, xenotransplantation, has been viewed as a potential way to treat disease. Ironically, interest in xenotransplantation was fueled especially by successful application of allotransplantation, that is, transplantation of human tissue and organs, as a treatment for a variety of diseases, especially organ failure because scarcity of human tissues limited allotransplantation to a fraction of those who could benefit. In principle, use of animals such as pigs as a source of transplants would allow transplantation to exert a vastly greater impact than allotransplantation on medicine and public health. However, biological barriers to xenotransplantation, including immunity of the recipient, incompatibility of biological systems, and transmission of novel infectious agents, are believed to exceed the barriers to allotransplantation and presently to hinder clinical applications. One way potentially to address the barriers to xenotransplantation is by genetic engineering animal sources. The last 2 decades have brought progressive advances in approaches that can be applied to genetic modification of large animals. Application of these approaches to genetic engineering of pigs has contributed to dramatic improvement in the outcome of experimental xenografts in nonhuman primates and have encouraged the development of a new type of xenograft, a reverse xenograft, in which human stem cells are introduced into pigs under conditions that support differentiation and expansion into functional tissues and potentially organs. These advances make it appropriate to consider the potential limitation of genetic engineering and of current models for advancing the clinical applications of xenotransplantation and reverse xenotransplantation.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Surgery, Microbiology & Immunology, and Transplantation Biology, University of Michigan, Ann Arbor, Michigan
| | - Marilia Cascalho
- Surgery, Microbiology & Immunology, and Transplantation Biology, University of Michigan, Ann Arbor, Michigan
| | - Jorge A Piedrahita
- Translational Medicine and The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
6
|
Hosny N, Burlak C. Xenotransplantation literature update, March/April 2019. Xenotransplantation 2019; 26:e12538. [DOI: 10.1111/xen.12538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Nora Hosny
- Department of Surgery University of Minnesota Medical School Minneapolis Minnesota
- Department of Medical Biochemistry and Molecular Biology Suez Canal University Faculty of Medicine Ismailia Egypt
| | - Christopher Burlak
- Department of Surgery University of Minnesota Medical School Minneapolis Minnesota
| |
Collapse
|
7
|
Boettcher AN, Ahrens AP, Charley SE, Tuggle CK. A Comprehensive Protocol for Laparotomy in Swine to Facilitate Ultrasound-Guided Injection into the Fetal Intraperitoneal Space. Comp Med 2019; 69:123-129. [PMID: 30755290 DOI: 10.30802/aalas-cm-18-000098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Swine are a commonly used animal model for biomedical research. One research application of swine models is the in utero injection of human or pig cells into the fetal liver (FL) or intraperitoneal space. In utero injections can be accomplished through laparotomy procedures in pregnant swine. In this study, we aimed to establish comprehensive laparotomy protocols for ultrasound-guided injections into fetuses. Two pregnant gilts, with a total of 16 fetuses, underwent laparotomy at 41 and 42 d of gestation. During surgery, we attempted to inject half of the fetuses in the FL or intraperitoneal space with saline and titanium wire for radiographic imaging after birth. After the laparotomy and fetal injections, both gilts maintained pregnancy throughout gestation and initiated labor at full term. Of the 16 fetuses present at the time of laparotomy, 12 were liveborn, 2 were stillborn, and the remaining 2 were mummies. A total of 7 fetuses from the 2 litters were known to have been injected with a wire during the surgery. After farrowing, piglets were radiographed, and 6 piglets were identified to have wire within the abdominal space. Livers were dissected, and additional radiographs were obtained. It was determined that one piglet had wire within the liver, whereas the other 5 had wire within the intraperitoneal space. Overall, we describe in-depth laparotomy surgery protocols, ultrasound-guided injection of saline and titanium wire into the FL or intraperitoneal space, postoperative monitoring protocols, and information on radiographic detection of titanium wire after piglet birth. These protocols can be followed by other research groups intending to inject cells of interest into either the intraperitoneal space or FL of fetal piglets.
Collapse
Affiliation(s)
| | - Amanda P Ahrens
- Laboratory Animal Resources, Iowa State University, Ames, Iowa
| | - Sara E Charley
- Department of Animal Science, Iowa State University, Ames, Iowa
| | | |
Collapse
|
8
|
Platt JL, West LJ, Chinnock RE, Cascalho M. Toward a solution for cardiac failure in the newborn. Xenotransplantation 2018; 25:e12479. [PMID: 30537350 DOI: 10.1111/xen.12479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 01/14/2023]
Abstract
The newborn infant with severe cardiac failure owed to congenital structural heart disease or cardiomyopathy poses a daunting therapeutic challenge. The ideal solution for both might be cardiac transplantation if availability of hearts was not limiting and if tolerance could be induced, obviating toxicity of immunosuppressive therapy. If one could safely and effectively exploit neonatal tolerance for successful xenotransplantation of the heart, the challenge of severe cardiac failure in the newborn infant might be met. We discuss the need, the potential for applying neonatal tolerance in the setting of xenotransplantation and the possibility that other approaches to this problem might emerge.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Department of Surgery and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan
| | - Lori J West
- Department of Pediatrics, Department of Surgery, Department of Immunology, Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Richard E Chinnock
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Marilia Cascalho
- Department of Surgery and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
9
|
Boettcher AN, Loving CL, Cunnick JE, Tuggle CK. Development of Severe Combined Immunodeficient (SCID) Pig Models for Translational Cancer Modeling: Future Insights on How Humanized SCID Pigs Can Improve Preclinical Cancer Research. Front Oncol 2018; 8:559. [PMID: 30560086 PMCID: PMC6284365 DOI: 10.3389/fonc.2018.00559] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Within the last decade there have been several severe combined immunodeficient (SCID) pig models discovered or genetically engineered. The animals have mutations in ARTEMIS, IL2RG, or RAG1/2 genes, or combinations thereof, providing SCID pigs with NK cells, but deficient in T and B cells, or deficient in NK, T, and B cells for research studies. Biocontainment facilities and positive pressure isolators are developed to limit pathogen exposure and prolong the life of SCID pigs. Raising SCID pigs in such facilities allows for completion of long-term studies such as xenotransplantation of human cells. Ectopically injected human cancer cell lines develop into tumors in SCID pigs, thus providing a human-sized in vivo model for evaluating imaging methods to improve cancer detection and therapeutic research and development. Immunocompromised pigs have the potential to be immunologically humanized by xenotransplantation with human hematopoietic stem cells, peripheral blood leukocytes, or fetal tissue. These cells can be introduced through various routes including injection into fetal liver or the intraperitoneal (IP) space, or into piglets by intravenous, IP, and intraosseous administration. The development and maintenance of transplanted human immune cells would be initially (at least) dependent on immune signaling from swine cells. Compared to mice, swine share higher homology in immune related genes with humans. We hypothesize that the SCID pig may be able to support improved engraftment and differentiation of a wide range of human immune cells as compared to equivalent mouse models. Humanization of SCID pigs would thus provide a valuable model system for researchers to study interactions between human tumor and human immune cells. Additionally, as the SCID pig model is further developed, it may be possible to develop patient-derived xenograft models for individualized therapy and drug testing. We thus theorize that the individualized therapeutic approach would be significantly improved with a humanized SCID pig due to similarities in size, metabolism, and physiology. In all, porcine SCID models have significant potential as an excellent preclinical animal model for therapeutic testing.
Collapse
Affiliation(s)
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Joan E. Cunnick
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
10
|
Boettcher AN, Cunnick JE, Powell EJ, Egner TK, Charley SE, Loving CL, Tuggle CK. Porcine signal regulatory protein alpha binds to human CD47 to inhibit phagocytosis: Implications for human hematopoietic stem cell transplantation into severe combined immunodeficient pigs. Xenotransplantation 2018; 26:e12466. [PMID: 30311702 DOI: 10.1111/xen.12466] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/10/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Severe combined immunodeficient (SCID) pigs are an emerging animal model being developed for biomedical and regenerative medicine research. SCID pigs can successfully engraft human-induced pluripotent stem cells and cancer cell lines. The development of a humanized SCID pig through xenotransplantation of human hematopoietic stem cells (HSCs) would be a further demonstration of the value of such a large animal SCID model. Xenotransplantation success with HSCs into non-obese diabetic (NOD)-derived SCID mice is dependent on the ability of NOD mouse signal regulatory protein alpha (SIRPA) to bind human CD47, inducing higher phagocytic tolerance than other mouse strains. Therefore, we investigated whether porcine SIRPA binds human CD47 in the context of developing a humanized SCID pig. METHODS Peripheral blood mononuclear cells (PBMCs) were collected from SCID and non-SCID pigs. Flow cytometry was used to assess whether porcine monocytes could bind to human CD47. Porcine monocytes were isolated from PBMCs and were subjected to phagocytosis assays with pig, human, and mouse red blood cell (RBC) targets. Blocking phagocytosis assays were performed by incubating human RBCs with anti-human CD47 blocking antibody B6H12, non-blocking antibody 2D3, and nonspecific IgG1 antibody and exposing to human or porcine monocytes. RESULTS We found that porcine SIRPA binds to human CD47 in vitro by flow cytometric assays. Additionally, phagocytosis assays were performed, and we found that porcine monocytes phagocytose human and porcine RBCs at significantly lower levels than mouse RBCs. When human RBCs were preincubated with CD47 antibodies B6H12 or 2D3, phagocytosis was induced only after B6H12 incubation, indicating the lower phagocytic activity of porcine monocytes with human cells requires interaction between porcine SIRPA and human CD47. CONCLUSIONS We have shown the first evidence that porcine monocytes can bind to human CD47 and are phagocytically tolerant to human cells, suggesting that porcine SCID models have the potential to support engraftment of human HSCs.
Collapse
Affiliation(s)
| | - Joan E Cunnick
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Ellis J Powell
- Department of Animal Science, Iowa State University, Ames, Iowa.,National Animal Disease Center, Ruminant Diseases and Immunology Unit, US Department of Agriculture, Agricultural Research Service, Ames, Iowa
| | | | - Sara E Charley
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Crystal L Loving
- National Animal Disease Center, Food Safety and Enteric Pathogens Unit, US Department of Agriculture, Agricultural Research Service, Ames, Iowa
| | | |
Collapse
|
11
|
Platt JL, Zhou X, Lefferts AR, Cascalho M. Cell Fusion in the War on Cancer: A Perspective on the Inception of Malignancy. Int J Mol Sci 2016; 17:E1118. [PMID: 27420051 PMCID: PMC4964493 DOI: 10.3390/ijms17071118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022] Open
Abstract
Cell fusion occurs in development and in physiology and rarely in those settings is it associated with malignancy. However, deliberate fusion of cells and possibly untoward fusion of cells not suitably poised can eventuate in aneuploidy, DNA damage and malignant transformation. How often cell fusion may initiate malignancy is unknown. However, cell fusion could explain the high frequency of cancers in tissues with low underlying rates of cell proliferation and mutation. On the other hand, cell fusion might also engage innate and adaptive immune surveillance, thus helping to eliminate or retard malignancies. Here we consider whether and how cell fusion might weigh on the overall burden of cancer in modern societies.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, A520B Medical Sciences Research Building I, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5656, USA.
| | - Xiaofeng Zhou
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, A520B Medical Sciences Research Building I, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5656, USA.
| | - Adam R Lefferts
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, A520B Medical Sciences Research Building I, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5656, USA.
| | - Marilia Cascalho
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, A520B Medical Sciences Research Building I, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5656, USA.
| |
Collapse
|
12
|
Zhou X, Merchak K, Lee W, Grande JP, Cascalho M, Platt JL. Cell Fusion Connects Oncogenesis with Tumor Evolution. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2049-60. [PMID: 26066710 DOI: 10.1016/j.ajpath.2015.03.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/08/2015] [Accepted: 03/02/2015] [Indexed: 12/30/2022]
Abstract
Cell fusion likely drives tumor evolution by undermining chromosomal and DNA stability and/or by generating phenotypic diversity; however, whether a cell fusion event can initiate malignancy and direct tumor evolution is unknown. We report that a fusion event involving normal, nontransformed, cytogenetically stable epithelial cells can initiate chromosomal instability, DNA damage, cell transformation, and malignancy. Clonal analysis of fused cells reveals that the karyotypic and phenotypic potential of tumors formed by cell fusion is established immediately or within a few cell divisions after the fusion event, without further ongoing genetic and phenotypic plasticity, and that subsequent evolution of such tumors reflects selection from the initial diverse population rather than ongoing plasticity of the progeny. Thus, one cell fusion event can both initiate malignancy and fuel evolution of the tumor that ensues.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Departments of Microbiology and Immunology and Surgery, University of Michigan, Ann Arbor, Michigan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kevin Merchak
- Departments of Microbiology and Immunology and Surgery, University of Michigan, Ann Arbor, Michigan
| | - Woojin Lee
- Departments of Microbiology and Immunology and Surgery, University of Michigan, Ann Arbor, Michigan
| | - Joseph P Grande
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Marilia Cascalho
- Departments of Microbiology and Immunology and Surgery, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey L Platt
- Departments of Microbiology and Immunology and Surgery, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The demand for organ transplantation has increased over time, increasingly exceeding the supply of organs. Whether and how new or old technologies separately or together could be applied to replacing organs will thus remain a question of importance. RECENT FINDINGS Estimating how the demand for organ transplantation will evolve over the decades and the need to bring forward and test new technologies will help establish the dimensions of the problem and the priorities for investigation. Pluripotent stem cells can in principle expand to sufficient numbers, differentiate, and assemble complex and functional organs. However, the devising of effective and reliable means to coax the stem cells to do so remains beyond the current grasp. SUMMARY Given the time during which novel therapies are devised and applied, which organ transplantation reaches to 2-3 decades, one can anticipate the need for organ replacement will grow dramatically, but advances in science and technology will overcome the hurdles in generating new organs. Whether these advances will address the needs and priorities of society, however, is unclear.
Collapse
|
14
|
McConico A, Butters K, Lien K, Knudsen B, Wu X, Platt JL, Ogle BM. In utero cell transfer between porcine littermates. Reprod Fertil Dev 2011; 23:297-302. [PMID: 21211462 DOI: 10.1071/rd10165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 07/05/2010] [Indexed: 12/18/2022] Open
Abstract
Trafficking of cells between mother and fetus during the course of normal pregnancy is well documented. Similarly, cells are known to travel between twins that share either a placenta (i.e. monozygotic) or associated chorion (i.e. monochorionic). Transferred cells are thought to be channelled via the vessels of the placenta or vascular connections established via the chorion and the long-term presence of these cells (i.e. microchimerism) can have important consequences for immune system function and reparative capacity of the host. Whether cells can be transferred between twins with separate placentas and separate chorions (i.e. no vascular connections between placentas) has not been investigated nor have the biological consequences of such a transfer. In the present study, we tested the possibility of this type of cell transfer by injecting human cord blood-derived cells into a portion of the littermates of swine and probing for human cells in the blood and tissues of unmanipulated littermates. Human cells were detected in the blood of 78% of unmanipulated littermates. Human cells were also detected in various tissues of the unmanipulated littermates, including kidney (56%), spleen (33%), thymus (11%) and heart (22%). Human cells were maintained in the blood until the piglets were sacrificed (8 months after birth), suggesting the establishment of long-term microchimerism. Our findings show that the transfer of cells between fetuses with separate placentas and separate chorions is significant and thus such twins may be subject to the same consequences of microchimerism as monozygotic or monochorionic counterparts.
Collapse
Affiliation(s)
- Andrea McConico
- Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | | | | | | | | | | | | |
Collapse
|