1
|
Gonçalves A, Machado R, Gomes AC. Self-assembled nanoparticles of hybrid elastin-like and Oncostatin M polymers for improved wound healing. BIOMATERIALS ADVANCES 2025; 169:214150. [PMID: 39693870 DOI: 10.1016/j.bioadv.2024.214150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine that can significantly enhance wound healing. Here, we report on the use of nanoparticles (NPs) formulated from a genetically engineered A200_hOSM protein polymer, which combines an elastin-like recombinamer (A200) with human OSM (hOSM) in the same molecule, aiming at enhancing wound healing processes. A200_hOSM NPs were obtained by self-assembly and evaluated for their bioactivity in human keratinocytes and fibroblasts. The NPs demonstrated superior efficacy in promoting cell proliferation in a dose-dependent manner, exhibiting nearly threefold greater proliferation at 48 and 72 h, compared to cells treated with commercial hOSM. Moreover, the NPs stimulated cell migration and collagen production through activation of JAK/STAT3 signaling. They also promoted the production of IL-6 and IL-8, pro-inflammatory cytokines with a critical role for wound healing. Promotion of keratinocyte proliferation and differentiation were further validated in non-commercial 3D skin equivalents. The A200_hOSM NPs revealed potential in accelerating wound healing, evidenced by reduced wound size and a thicker epidermal layer. This system represents a significant advancement in the field of bioinspired biomaterials by improving cytokine bioavailability, allowing for localized therapy and offering a cost-effective strategy for employing hOSM in wound healing management.
Collapse
Affiliation(s)
- Anabela Gonçalves
- CBMA (Centre of Molecular and Environmental Biology)/ Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Raul Machado
- CBMA (Centre of Molecular and Environmental Biology)/ Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology)/ Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
2
|
Hara R, Saito-Sasaki N, Sawada Y. Maresin-1 impairs cutaneous wound healing response. Immunohorizons 2025; 9:vlaf010. [PMID: 40175080 PMCID: PMC11964490 DOI: 10.1093/immhor/vlaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/05/2025] [Indexed: 04/04/2025] Open
Abstract
Maresin-1 is a derivative of docosahexaenoic acid with strong anti-inflammatory action in various disease models. However, these effects may not always be beneficial. In instances like cutaneous diseases in which wound healing is important, inflammation is required. In this study, we investigated the effects of maresin-1 on cutaneous wound healing and found that wound healing was significantly delayed in maresin-1-treated mouse skin in the early phase of wound healing on days 1 to 3. Histological analyses revealed that maresin-1 suppressed re-epithelization in the wounded skin. Despite the direct influence of maresin-1 on keratinocyte migration, a comprehensive quantitative polymerase chain reaction analysis revealed that maresin-1-treated wound skin showed a decrease in tumor necrosis factor α, indicating that maresin-1 indirectly suppresses keratinocyte migration mediated by reduced tumor necrosis factor α derived from wounded skin, leading to delayed wound healing.
Collapse
Affiliation(s)
- Reiko Hara
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Natsuko Saito-Sasaki
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
3
|
Liu Z, Bian X, Luo L, Björklund ÅK, Li L, Zhang L, Chen Y, Guo L, Gao J, Cao C, Wang J, He W, Xiao Y, Zhu L, Annusver K, Gopee NH, Basurto-Lozada D, Horsfall D, Bennett CL, Kasper M, Haniffa M, Sommar P, Li D, Landén NX. Spatiotemporal single-cell roadmap of human skin wound healing. Cell Stem Cell 2025; 32:479-498.e8. [PMID: 39729995 DOI: 10.1016/j.stem.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/24/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Wound healing is vital for human health, yet the details of cellular dynamics and coordination in human wound repair remain largely unexplored. To address this, we conducted single-cell multi-omics analyses on human skin wound tissues through inflammation, proliferation, and remodeling phases of wound repair from the same individuals, monitoring the cellular and molecular dynamics of human skin wound healing at an unprecedented spatiotemporal resolution. This singular roadmap reveals the cellular architecture of the wound margin and identifies FOSL1 as a critical driver of re-epithelialization. It shows that pro-inflammatory macrophages and fibroblasts sequentially support keratinocyte migration like a relay race across different healing stages. Comparison with single-cell data from venous and diabetic foot ulcers uncovers a link between failed keratinocyte migration and impaired inflammatory response in chronic wounds. Additionally, comparing human and mouse acute wound transcriptomes underscores the indispensable value of this roadmap in bridging basic research with clinical innovations.
Collapse
Affiliation(s)
- Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Lihua Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Åsa K Björklund
- Department of Life Science, National Bioinformatics Infrastructure Sweden, Göteborg, Sweden; Science for Life Laboratory, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Li Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Lei Guo
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Juan Gao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Chunyan Cao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Jiating Wang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Wenjun He
- The first affiliated hospital of Soochow University, Department of Plastic and Burn Surgery. NO.188, Shizi Street, Suzhou, Jiangsu, China
| | - Yunting Xiao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Liping Zhu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Daniela Basurto-Lozada
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Horsfall
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Clare L Bennett
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China.
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden.
| |
Collapse
|
4
|
Deng Z, Iwasaki K, Peng Y, Honda Y. Mesenchymal Stem Cell Extract Promotes Skin Wound Healing. Int J Mol Sci 2024; 25:13745. [PMID: 39769505 PMCID: PMC11679360 DOI: 10.3390/ijms252413745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Recently, it has been reported that mesenchymal stem cell (MSC)-derived humoral factors promote skin wound healing. As these humoral factors are transiently stored in cytoplasm, we collected them as part of the cell extracts from MSCs (MSC-ext). This study aimed to investigate the effects of MSC-ext on skin wound healing. We examined the effects of MSC-ext on cell proliferation and migration. Additionally, the effect of MSC-ext on skin wound healing was evaluated using a mouse skin defect model. The MSC-ext enhanced the proliferation of dermal fibroblasts, epithelial cells, and endothelial cells. It also increased the number of migrating fibroblasts and epithelial cells. The skin defects treated with MSC-ext demonstrated rapid wound closure compared to those treated with phosphate-buffered saline. The MSC-ext group exhibited a thicker dermis, larger Picrosirius red-positive areas, and a higher number of Ki67-positive cells. Our results indicate that MSC-ext promotes the proliferation and/or migration of fibroblasts, epithelial cells, and endothelial cells, and enhances skin wound healing. This suggests the therapeutic potential of MSC-ext in treating skin defects as a novel cell-free treatment modality.
Collapse
Affiliation(s)
- Zi Deng
- Department of Oral Anatomy, Osaka Dental University, Osaka 573-1121, Japan; (Z.D.); (Y.H.)
| | - Kengo Iwasaki
- Advanced Medicine Research Center, Translational Research Institute for Medical Innovation (TRIMI), Osaka Dental University, Osaka 573-1121, Japan
| | - Yihao Peng
- Department of Periodontology, Osaka Dental University, Osaka 573-1121, Japan;
| | - Yoshitomo Honda
- Department of Oral Anatomy, Osaka Dental University, Osaka 573-1121, Japan; (Z.D.); (Y.H.)
| |
Collapse
|
5
|
Mansour F, Parisi L, Rihs S, Schnyder I, La Scala GC, Aliu N, Katsaros C, Degen M. Immortalization of patient-derived lip cells for establishing 3D lip models. Front Cell Dev Biol 2024; 12:1449224. [PMID: 39559739 PMCID: PMC11570282 DOI: 10.3389/fcell.2024.1449224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/29/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction The lips fulfill various critical physiological roles besides being viewed as a fundamental aesthetic feature contributing to the perception of health and beauty. Therefore, any lip injury, abnormality, or congenital malformation, such as cleft lip, needs special attention in order to restore proper lip function and aesthetics. To achieve this goal, a better understanding of the complex lip anatomy, function, and biology is required, which can only be provided by basic research endeavors. However, the current lack of clinically relevant human lip cells and three-dimensional in vitro lip models, capable of replacing ethically questionable animal experimentations, represents a significant limitation in this area of research. Methods To address these limitations, we aimed to pioneer the introduction of immortalized healthy lip- and cleft lip-derived keratinocytes. Primary keratinocytes were isolated from patients' samples and immortalized by introducing the catalytic domain of telomerase, combined with the targeted knockdown of the cell cycle inhibitor gene, p16 INK4A . We then focused on validating the newly established cell lines by comparing their genetic stability and key phenotypic features with their primary keratinocyte counterparts. Results The newly established immortalized keratinocyte cell lines demonstrated genetic stability and preserved the main phenotypic characteristics of primary keratinocytes, such as cellular morphology and differentiation capacity. Three-dimensional lip models, generated using these cell lines, proved to be effective and convenient platforms for screening applications, including wound healing and microbial infection of the lip epithelium. Discussion The establishment of immortalized keratinocytes derived from healthy and cleft lips represents a significant achievement in lip research. These cell lines and the associated three-dimensional lip models are valuable tools that can be used as convenient screening platforms for various assays in a multitude of lip-related research areas, including dermatology, skin care, wound healing, tissue engineering, and craniofacial anomalies. This work opens new avenues in studying lip abnormalities and provides unique tools for personalized medicine approaches beneficial to patients.
Collapse
Affiliation(s)
- Farah Mansour
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ludovica Parisi
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Silvia Rihs
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Isabelle Schnyder
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - Giorgio C. La Scala
- Division of Pediatric Surgery, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - Nijas Aliu
- Department of Human Genetics, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Mottaghitalab F, Farokhi M. Stimulus-responsive biomacromolecule wound dressings for enhanced drug delivery in chronic wound healing: A review. Int J Biol Macromol 2024; 281:136496. [PMID: 39419149 DOI: 10.1016/j.ijbiomac.2024.136496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Addressing the challenge of poor wound healing in chronic wounds remains complex, as the underlying physiological mechanisms are still not fully understood. Traditional wound dressings often fail to meet the specific needs of the chronic wound healing process. Recently, considerable interest has shifted toward employing biomacromolecule-based smart wound dressings to facilitate wound healing. These stimuli-responsive dressings have undergone substantial development to manage local drug delivery, demonstrating promising therapeutic effects in treating chronic wound defects. They have displayed improved drug release profiles both in vitro and in vivo. Recently, there have been advancements in the development of innovative dual and multi-stimuli responsive dressings that react to combinations of signals including pH-temperature, pH-enzyme, pH-ROS, pH-glucose, pH-NIR, and multiple stimuli. This paper offers an in-depth review of recent progress in responsive wound dressings based on biomacromolecules, with a specific focus on their design, drug release capabilities, and therapeutic advantages.
Collapse
Affiliation(s)
- Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Ramires Júnior OV, Silveira JS, Gusso D, Krupp Prauchner GR, Ferrary Deniz B, Almeida WD, Pereira LO, Wyse AT. Homocysteine decreases VEGF, EGF, and TrkB levels and increases CCL5/RANTES in the hippocampus: Neuroprotective effects of rivastigmine and ibuprofen. Chem Biol Interact 2024; 403:111260. [PMID: 39357784 DOI: 10.1016/j.cbi.2024.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Homocysteine (Hcy) is produced through methionine transmethylation. Elevated Hcy levels are termed Hyperhomocysteinemia (HHcy) and represent a risk factor for neurodegenerative conditions such as Alzheimer's disease. This study aimed to explore the impact of mild HHcy and the neuroprotective effects of ibuprofen and rivastigmine via immunohistochemical analysis of glial markers (Iba-1 and GFAP). Additionally, we assessed levels of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), chemokine ligand 5 (CCL5/RANTES), CX3C chemokine ligand 1 (CX3CL1), and the NGF/p75NTR/tropomyosin kinase B (TrkB) pathway in the hippocampus of adult rats. Mild chronic HHcy was induced chemically in Wistar rats by subcutaneous administration of Hcy (4 mg/kg body weight) twice daily for 30 days. Rivastigmine (0.5 mg/kg) and ibuprofen (40 mg/kg) were administered intraperitoneally once daily. Results revealed elevated levels of CCL5/RANTES and reduced levels of VEGF, EGF, and TrkB in the hippocampus of HHcy-exposed rats. Rivastigmine mitigated the neurotoxic effects of HHcy by increasing TrkB and VEGF levels. Conversely, ibuprofen attenuated CCL5/RANTES levels against the neurotoxicity of HHcy, significantly reducing this chemokine's levels. HHcy-induced neurochemical impairment in the hippocampus may jeopardize neurogenesis, synapse formation, axonal transport, and inflammatory balance, leading to neurodegeneration. Treatments with rivastigmine and ibuprofen alleviated some of these detrimental effects. Reversing HHcy-induced damage through these compounds could serve as a potential neuroprotective strategy against brain damage.
Collapse
Affiliation(s)
- Osmar Vieira Ramires Júnior
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Josiane Silva Silveira
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Darlan Gusso
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Gustavo Ricardo Krupp Prauchner
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Bruna Ferrary Deniz
- Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Fisiologia e Farmacologia, Instiruto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wellington de Almeida
- Program in Neurosciences, ICBS, Federal Universityof Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Program in Neurosciences, ICBS, Federal Universityof Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Ts Wyse
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Marneros AG. Aplasia Cutis Congenita Pathomechanisms Reveal Key Regulators of Skin and Skin Appendage Morphogenesis. J Invest Dermatol 2024; 144:2399-2405. [PMID: 39023472 PMCID: PMC11891745 DOI: 10.1016/j.jid.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/03/2024] [Accepted: 05/18/2024] [Indexed: 07/20/2024]
Abstract
Aplasia cutis congenita (ACC) manifests at birth as a defect of the scalp skin. New findings answer 2 longstanding questions: why ACC forms and why it affects mainly the midline scalp skin. Dominant-negative mutations in the genes KCTD1 or KCTD15 cause ACC owing to loss of function of KCTD1/KCTD15 complexes in cranial neural crest cells (NCCs), which normally form midline cranial suture mesenchymal cells that express keratinocyte growth factors. Loss of KCTD1/KCTD15 function in NCCs impairs the formation of normal midline cranial sutures and, consequently, the overlying skin, resulting in ACC. Moreover, KCTD1/KCTD15 complexes in keratinocytes regulate skin appendage morphogenesis.
Collapse
Affiliation(s)
- Alexander G Marneros
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
| |
Collapse
|
9
|
Yao Z, Chen L, Liu Y, Feng B, Liu C, Chen Y, He S. Exploration of N6-methyladenosine modification in ascorbic acid 2-glucoside constructed stem cell sheets. J Mol Histol 2024; 55:909-925. [PMID: 39133390 DOI: 10.1007/s10735-024-10240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
The aim of this study was to explore the mechanism of bone marrow stem cells (BMSCs) sheets constructed with different doses of Ascorbic acid 2-glucoside (AA-2G) in conjunction with N6-methyladenosine (m6A)-associated epigenetic genes analysing transcriptome sequencing data. Experimental groups of BMSCs induced by different AA-2G concentrations were set up, and the tissue structures were observed by histological staining of cell slices and scanning electron microscopy. Expression patterns of DEGs were analysed using short-time sequence expression mining software, and DEGs associated with m6A were selected for gene ontology analysis and pathway analysis. The protein-protein interaction (PPI) network of DEGs was analysed and gene functions were predicted using the search tool of the Retrieve Interacting Genes database. There were 464 up-regulated DEGs and 303 down-regulated DEGs between the control and high-dose AA-2G treatment groups, and 175 up-regulated DEGs and 37 down-regulated DEGs between the low and high-dose AA-2G treatment groups. The profile 7 exhibited a gradual increase in gene expression levels over AA-2G concentration. In contrast, profile 0 exhibited a gradual decrease in gene expression levels over AA-2G concentration. In the PPI network of m6A-related DEGs in profile 7, the cluster of metallopeptidase inhibitor 1 (Timp1), intercellular adhesion molecule 1 (Icam1), insulin-like growth factor 1 (Igf1), matrix metallopeptidase 2 (Mmp2), serpin family E member 1 (Serpine1), C-X-C motif chemokine ligand 2 (Cxcl2), galectin 3 (Lgals3) and angiopoietin-1 (Angpt1) was the top hub gene cluster. The expression of all hub genes was significantly increased after AA-2G intervention (P < 0.05), and the expression of Igf1 and Timp1 increased with increasing intervention concentration. The m6A epigenetic modifications were involved in the AA-2G-induced formation of BMSCs. Igf1, Serpine1 and Cxcl2 in DEGs were enriched for tissue repair, promotion of endothelial and epithelial proliferation and regulation of apoptosis.
Collapse
Affiliation(s)
- Zhiye Yao
- Department of Neonatal Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 of Zhongshan Er Road, Yuexiu District, Guangzhou, 510080, China
| | - Liang Chen
- Department of Neonatal Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 of Zhongshan Er Road, Yuexiu District, Guangzhou, 510080, China
| | - Yumei Liu
- Department of Neonatal Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 of Zhongshan Er Road, Yuexiu District, Guangzhou, 510080, China
| | - Bowen Feng
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Caisheng Liu
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanling Chen
- Department of Neonatal Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 of Zhongshan Er Road, Yuexiu District, Guangzhou, 510080, China
| | - Shaoru He
- Department of Neonatal Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 of Zhongshan Er Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Smith J, Rai V. Novel Factors Regulating Proliferation, Migration, and Differentiation of Fibroblasts, Keratinocytes, and Vascular Smooth Muscle Cells during Wound Healing. Biomedicines 2024; 12:1939. [PMID: 39335453 PMCID: PMC11429312 DOI: 10.3390/biomedicines12091939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic diabetic foot ulcers (DFUs) are a significant complication of diabetes mellitus, often leading to amputation, increased morbidity, and a substantial financial burden. Even with the advancements in the treatment of DFU, the risk of amputation still exists, and this occurs due to the presence of gangrene and osteomyelitis. Nonhealing in a chronic DFU is due to decreased angiogenesis, granulation tissue formation, and extracellular matrix remodeling in the presence of persistent inflammation. During wound healing, the proliferation and migration of fibroblasts, smooth muscle cells, and keratinocytes play a critical role in extracellular matrix (ECM) remodeling, angiogenesis, and epithelialization. The molecular factors regulating the migration, proliferation, and differentiation of these cells are scarcely discussed in the literature. The literature review identifies the key factors influencing the proliferation, migration, and differentiation of fibroblasts, keratinocytes, and vascular smooth muscle cells (VSMCs), which are critical in wound healing. This is followed by a discussion on the various novel factors regulating the migration, proliferation, and differentiation of these cells but not in the context of wound healing; however, they may play a role. Using a network analysis, we examined the interactions between various factors, and the findings suggest that the novel factors identified may play a significant role in promoting angiogenesis, granulation tissue formation, and extracellular matrix remodeling during wound healing or DFU healing. However, these interactions warrant further investigation to establish their role alone or synergistically.
Collapse
Affiliation(s)
- Jacob Smith
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
11
|
Manole CG, Voiculescu VM, Soare C, Ceafalan LC, Gherghiceanu M, Hinescu ME. Skin Telocytes Could Fundament the Cellular Mechanisms of Wound Healing in Platelet-Rich Plasma Administration. Cells 2024; 13:1321. [PMID: 39195210 PMCID: PMC11353115 DOI: 10.3390/cells13161321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
For more than 40 years, autologous platelet concentrates have been used in clinical medicine. Since the first formula used, namely platelet-rich plasma (PRP), other platelet concentrates have been experimented with, including platelet-rich fibrin and concentrated growth factor. Platelet concentrates have three standard characteristics: they act as scaffolds, they serve as a source of growth factors and cytokines, and they contain live cells. PRP has become extensively used in regenerative medicine for the successful treatment of a variety of clinical (non-)dermatological conditions like alopecies, acne scars, skin burns, skin ulcers, muscle, cartilage, and bone repair, and as an adjuvant in post-surgery wound healing, with obvious benefits in terms of functionality and aesthetic recovery of affected tissues/organs. These indications were well documented, and a large amount of evidence has already been published supporting the efficacy of this method. The primordial principle behind minimally invasive PRP treatments is the usage of the patient's own platelets. The benefits of the autologous transplantation of thrombocytes are significant, representing a fast and economic method that requires only basic equipment and training, and it is biocompatible, thus being a low risk for the patient (infection and immunological reactions can be virtually disregarded). Usually, the structural benefits of applying PRP are attributed to fibroblasts only, as they are considered the most numerous cell population within the interstitium. However, this apparent simplistic explanation is still eluding those different types of interstitial cells (distinct from fibroblasts) that are residing within stromal tissue, e.g., telocytes (TCs). Moreover, dermal TCs have an already documented potential in angiogenesis (extra-cutaneous, but also within skin), and their implication in skin recovery in a few dermatological conditions was attested and described ultrastructurally and immunophenotypically. Interestingly, PRP biochemically consists of a series of growth factors, cytokines, and other molecules, to which TCs have also proven to have a positive expression. Thus, it is attractive to hypothesize and to document any tissular collaboration between cutaneous administered PRP and local dermal TCs in skin recovery/repair/regeneration. Therefore, TCs could be perceived as the missing link necessary to provide a solid explanation of the good results achieved by administering PRP in skin-repairing processes.
Collapse
Affiliation(s)
- Catalin G. Manole
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M. Voiculescu
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihail E. Hinescu
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
12
|
Yadav JP, Verma A, Pathak P, Dwivedi AR, Singh AK, Kumar P, Khalilullah H, Jaremko M, Emwas AH, Patel DK. Phytoconstituents as modulators of NF-κB signalling: Investigating therapeutic potential for diabetic wound healing. Biomed Pharmacother 2024; 177:117058. [PMID: 38968797 DOI: 10.1016/j.biopha.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
The NF-κB pathway plays a pivotal role in impeding the diabetic wound healing process, contributing to prolonged inflammation, diminished angiogenesis, and reduced proliferation. In contrast to modern synthetic therapies, naturally occurring phytoconstituents are well-studied inhibitors of the NF-κB pathway that are now attracting increased attention in the context of diabetic wound healing because of lower toxicity, better safety and efficacy, and cost-effectiveness. This study explores recent research on phytoconstituent-based therapies and delve into their action mechanisms targeting the NF-κB pathway and potential for assisting effective healing of diabetic wounds. For this purpose, we have carried out surveys of recent literature and analyzed studies from prominent databases such as Science Direct, Scopus, PubMed, Google Scholar, EMBASE, and Web of Science. The classification of phytoconstituents into various categorie such as: alkaloids, triterpenoids, phenolics, polyphenols, flavonoids, monoterpene glycosides, naphthoquinones and tocopherols. Noteworthy phytoconstituents, including Neferine, Plumbagin, Boswellic acid, Genistein, Luteolin, Kirenol, Rutin, Vicenin-2, Gamma-tocopherol, Icariin, Resveratrol, Mangiferin, Betulinic acid, Berberine, Syringic acid, Gallocatechin, Curcumin, Loureirin-A, Loureirin-B, Lupeol, Paeoniflorin, and Puerarin emerge from these studies as promising agents for diabetic wound healing through the inhibition of the NF-κB pathway. Extensive research on various phytoconstituents has revealed how they modulate signalling pathways, including NF-κB, studies that demonstrate the potential for development of therapeutic phytoconstituents to assist healing of chronic diabetic wounds.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India; Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur 209217, India; Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India.
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, 502329, India
| | - Ashish R Dwivedi
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, 502329, India
| | - Ankit Kumar Singh
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India; Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India.
| |
Collapse
|
13
|
Zhou S, Guo L, Cui X, Zhang X, Yang Y, Zhang M, Zhang P. Inhibition of Let-7b-5p maturation by LIN28A promotes thermal skin damage repair after burn injury. Cell Signal 2024; 120:111217. [PMID: 38729326 DOI: 10.1016/j.cellsig.2024.111217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Burn injuries, especially severe ones, result in direct and indirect thermal damage to skin tissues, with a complex and slow wound healing process. Improper treatment can induce sustained inflammatory responses, causing systemic damage. Lin28A, a highly conserved RNA binding protein, was found to exert a significant effect on cell proliferation and wound repair. Lin28A exerts the functions through inhibiting the maturation of the let-7 family miRNAs. Herein, the roles of Lin28A and let-7b in thermal injury repair were investigated using a mouse thermal injury model and a human skin fibroblast (HSF) model for thermal injuries. Lin28A could inhibit the maturation of let-7b, thus participating in skin repair after burns. In the animal model, Lin28A was highly expressed after thermal injury. In the HSF model for thermal injuries, downregulation of Lin28A inhibited the proliferation, migration, and extracellular matrix (ECM) generation of fibroblasts. When let-7b was knocked down in HSFs, the impacts on fibroblast functions caused by downregulation of Lin28A were partially reversed. Moreover, let-7b overexpression might significantly attenuate the promotive effects of Lin28A upon thermal injury repair. Finally, AKT2 and IGF1R were the let-7b target genes within cells. These findings reveal that Lin28A might promote thermal injury repair in burn-injured skin by inhibiting the maturation of let-7b and improving HSF viability and functions, thus illustrating the critical effect of let-7b on burn wound healing and providing new therapeutic targets and strategies for burn treatment.
Collapse
Affiliation(s)
- Sitou Zhou
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Le Guo
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| | - Xu Cui
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiangjun Zhang
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yan Yang
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Minghua Zhang
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Pihong Zhang
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
14
|
Guo L, Xiao D, Xing H, Yang G, Yang X. Engineered exosomes as a prospective therapy for diabetic foot ulcers. BURNS & TRAUMA 2024; 12:tkae023. [PMID: 39026930 PMCID: PMC11255484 DOI: 10.1093/burnst/tkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Indexed: 07/20/2024]
Abstract
Diabetic foot ulcer (DFU), characterized by high recurrence rate, amputations and mortality, poses a significant challenge in diabetes management. The complex pathology involves dysregulated glucose homeostasis leading to systemic and local microenvironmental complications, including peripheral neuropathy, micro- and macro-angiopathy, recurrent infection, persistent inflammation and dysregulated re-epithelialization. Novel approaches to accelerate DFU healing are actively pursued, with a focus on utilizing exosomes. Exosomes are natural nanovesicles mediating cellular communication and containing diverse functional molecular cargos, including DNA, mRNA, microRNA (miRNA), lncRNA, proteins, lipids and metabolites. While some exosomes show promise in modulating cellular function and promoting ulcer healing, their efficacy is limited by low yield, impurities, low loading content and inadequate targeting. Engineering exosomes to enhance their curative activity represents a potentially more efficient approach for DFUs. This could facilitate focused repair and regeneration of nerves, blood vessels and soft tissue after ulcer development. This review provides an overview of DFU pathogenesis, strategies for exosome engineering and the targeted therapeutic application of engineered exosomes in addressing critical pathological changes associated with DFUs.
Collapse
Affiliation(s)
- Lifei Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- Cadet Team 6 of School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Dan Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Tiantanxili Street #4, Dongcheng District, Beijing 100050, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| |
Collapse
|
15
|
Karam M, Faraj M, Jaffa MA, Jelwan J, Aldeen KS, Hassan N, Mhanna R, Jaffa AA. Development of alginate and alginate sulfate/polycaprolactone nanoparticles for growth factor delivery in wound healing therapy. Biomed Pharmacother 2024; 175:116750. [PMID: 38749174 DOI: 10.1016/j.biopha.2024.116750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024] Open
Abstract
Connective tissue growth factor (CTGF) holds great promise for enhancing the wound healing process; however, its clinical application is hindered by its low stability and the challenge of maintaining its effective concentration at the wound site. Herein, we developed novel double-emulsion alginate (Alg) and heparin-mimetic alginate sulfate (AlgSulf)/polycaprolactone (PCL) nanoparticles (NPs) for controlled CTGF delivery to promote accelerated wound healing. The NPs' physicochemical properties, cytocompatibility, and wound healing activity were assessed on immortalized human keratinocytes (HaCaT), primary human dermal fibroblasts (HDF), and a murine cutaneous wound model. The synthesized NPs had a minimum hydrodynamic size of 200.25 nm. Treatment of HaCaT and HDF cells with Alg and AlgSulf2.0/PCL NPs did not show any toxicity when used at concentrations <50 µg/mL for up to 72 h. Moreover, the NPs' size was not affected by elevated temperatures, acidic pH, or the presence of a protein-rich medium. The NPs have slow lysozyme-mediated degradation implying that they have an extended tissue retention time. Furthermore, we found that treatment of HaCaT and HDF cells with CTGF-loaded Alg and AlgSulf2.0/PCL NPs, respectively, induced rapid cell migration (76.12% and 79.49%, P<0.05). Finally, in vivo studies showed that CTGF-loaded Alg and AlgSulf2.0/PCL NPs result in the fastest and highest wound closure at the early and late stages of wound healing, respectively (36.49%, P<0.001 on day 1; 90.45%, P<0.05 on day 10), outperforming free CTGF. Double-emulsion NPs based on Alg or AlgSulf represent a viable strategy for delivering heparin-binding GF and other therapeutics, potentially aiding various disease treatments.
Collapse
Affiliation(s)
- Mia Karam
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut Lebanon
| | - Marwa Faraj
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut Lebanon
| | - Miran A Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Joseph Jelwan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut Lebanon
| | - Kawthar Sharaf Aldeen
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut Lebanon
| | - Nadine Hassan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut Lebanon
| | - Rami Mhanna
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut Lebanon.
| |
Collapse
|
16
|
Berger M, Rosa da Mata S, Pizzolatti NM, Parizi LF, Konnai S, da Silva Vaz I, Seixas A, Tirloni L. An Ixodes persulcatus Inhibitor of Plasmin and Thrombin Hinders Keratinocyte Migration, Blood Coagulation, and Endothelial Permeability. J Invest Dermatol 2024; 144:1112-1123.e7. [PMID: 37996063 PMCID: PMC11034719 DOI: 10.1016/j.jid.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 11/25/2023]
Abstract
The skin is the first host tissue that the tick mouthparts, tick saliva, and a tick-borne pathogen contact during feeding. Tick salivary glands have evolved a complex and sophisticated pharmacological arsenal, consisting of bioactive molecules, to assist blood feeding and pathogen transmission. In this work, persulcatin, a multifunctional molecule that targets keratinocyte function and hemostasis, was identified from Ixodes persulcatus female ticks. The recombinant persulcatin was expressed and purified and is a 25-kDa acidic protein with 2 Kunitz-type domains. Persulcatin is a classical tight-binding competitive inhibitor of proteases, targeting plasmin (Ki: 28 nM) and thrombin (Ki: 115 nM). It blocks plasmin generation on keratinocytes and inhibits their migration and matrix protein degradation; downregulates matrix metalloproteinase 2 and matrix metalloproteinase 9; and causes a delay in blood coagulation, endothelial cell activation, and thrombin-induced fibrinocoagulation. It interacts with exosite I of thrombin and reduces thrombin-induced endothelial cell permeability by inhibiting vascular endothelial-cadherin disruption. The multifaceted roles of persulcatin as an inhibitor and modulator within the plasminogen-plasmin system and thrombin not only unveil further insights into the intricate mechanisms governing wound healing but also provide a fresh perspective on the intricate interactions between ticks and their host organisms.
Collapse
Affiliation(s)
- Markus Berger
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Sheila Rosa da Mata
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | | | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Instituto Nacional de Ciência e Tecnologia-Entomologia Molecular, Rio de Janeiro, Brazil
| | - Adriana Seixas
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; Instituto Nacional de Ciência e Tecnologia-Entomologia Molecular, Rio de Janeiro, Brazil.
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA.
| |
Collapse
|
17
|
Xu X, Fan S, Ji W, Qi S, Liu L, Cao Z, Bao Q, Zhang Y, Xu Q, Chen G. Transcriptome Profiling Unveils Key Genes Regulating the Growth and Development of Yangzhou Goose Knob. Int J Mol Sci 2024; 25:4166. [PMID: 38673752 PMCID: PMC11050116 DOI: 10.3390/ijms25084166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Goose is one of the most economically valuable poultry species and has a distinct appearance due to its possession of a knob. A knob is a hallmark of sexual maturity in goose (Anser cygnoides) and plays crucial roles in artificial selection, health status, social signaling, and body temperature regulation. However, the genetic mechanisms influencing the growth and development of goose knobs remain completely unclear. In this study, histomorphological and transcriptomic analyses of goose knobs in D70, D120, and D300 Yangzhou geese revealed differential changes in tissue morphology during the growth and development of goose knobs and the key core genes that regulate goose knob traits. Observation of tissue sections revealed that as age increased, the thickness of the knob epidermis, cuticle, and spinous cells gradually decreased. Additionally, fat cells in the dermis and subcutaneous connective tissue transitioned from loose to dense. Transcriptome sequencing results, analyzed through differential expression, Weighted Gene Co-expression Network Analysis (WGCNA), and pattern expression analysis methods, showed D70-vs.-D120 (up-regulated: 192; down-regulated: 423), D70-vs.-D300 (up-regulated: 1394; down-regulated: 1893), and D120-vs.-D300 (up-regulated: 1017; down-regulated: 1324). A total of 6243 differentially expressed genes (DEGs) were identified, indicating varied expression levels across the three groups in the knob tissues of D70, D120, and D300 Yangzhou geese. These DEGs are significantly enriched in biological processes (BP) such as skin morphogenesis, the regulation of keratinocyte proliferation, and epidermal cell differentiation. Furthermore, they demonstrate enrichment in pathways related to goose knob development, including ECM-receptor interaction, NF-kappa B, and PPAR signaling. Through pattern expression analysis, three gene expression clusters related to goose knob traits were identified. The joint analysis of candidate genes associated with goose knob development and WGCNA led to the identification of key core genes influencing goose knob development. These core genes comprise WNT4, WNT10A, TCF7L2, GATA3, ADRA2A, CASP3, SFN, KDF1, ERRFI1, SPRY1, and EVPL. In summary, this study provides a reference for understanding the molecular mechanisms of goose knob growth and development and provides effective ideas and methods for the genetic improvement of goose knob traits.
Collapse
Affiliation(s)
- Xinlei Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Suyu Fan
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Wangyang Ji
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Shangzong Qi
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Linyu Liu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Zhi Cao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Qiang Bao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Yang Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
| | - Guohong Chen
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (X.X.); (S.F.); (W.J.); (S.Q.); (L.L.); (Z.C.); (Q.B.); (Q.X.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
18
|
Liu W, Wang Y, Zhang Y, Zhou M, Gu H, Lu M, Xia Y. Rh family C glycoprotein contributes to psoriatic inflammation through regulating the dysdifferentiation and cytokine secretion of keratinocytes. J Dermatol Sci 2024; 114:2-12. [PMID: 38514279 DOI: 10.1016/j.jdermsci.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Keratinocyte dysdifferentiation and proinflammatory cytokine production play a central role in psoriatic inflammation. According to recent studies, the Rh family C glycoprotein (RHCG) enhances cell proliferation and disrupts cell differentiation. However, the specific role of RHCG psoriasis development remains unclear. OBJECTIVE We here explored the effect of RHCG on keratinocytes under psoriatic inflammation. METHODS The cell counting kit‑8 assay was conducted to assess proliferation. RHCG protein expression was assessed through western blotting and enzyme-linked immunosorbent assays. The expression of proinflammatory cytokines and differentiation markers was analyzed through a quantitative reverse-transcription polymerase chain reaction. RESULTS Both RHCG mRNA and protein levels increased in psoriatic skin. Notably, cultured keratinocytes treated with an M5 cocktail, which mimics psoriatic inflammation, exhibited higher RHCG expression. Furthermore, RHCG overexpression promoted keratinocyte proliferation, accompanied by an increase in the production of interleukin (IL)-1β, IL-6, and IL-8, and tumor necrosis factor-α. RHCG overexpression also resulted in higher expression of keratin 17, a differentiation marker. Conversely, RHCG gene knockdown reduced keratinocyte proliferation and cytokine secretion. RHCG inhibition in cells recovered both keratin 1 and loricrin expression. Additionally, RHCG overexpression facilitated the phosphorylation of nuclear factor-kappa B and extracellular signal-regulated protein kinase signaling pathways. Importantly, when these signaling pathways were inhibited, the effect of RHCG on keratinocytes was attenuated. CONCLUSION These findings support the substantial role of RHCG in psoriatic inflammation development and suggest that RHCG serves as a potential target for psoriasis treatment.
Collapse
Affiliation(s)
- Wei Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yaqi Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yitian Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mingzhu Zhou
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hanjiang Gu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mei Lu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
19
|
Josh F, Soekamto T, Windura C, Lumalessil D. The Combination of Stromal Vascular Fraction Cells and Platelet-Rich Plasma Increases Fibroblast Growth Factor 2 and Insulin-Like Growth Factor 1 in Full-Thickness Burns in Animal Model. ANNALS OF BURNS AND FIRE DISASTERS 2024; 37:35-44. [PMID: 38680831 PMCID: PMC11041884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/10/2023] [Indexed: 05/01/2024]
Abstract
The previous study on the injection of SVFs in combination with PRP showed positive effect on the healing of deep dermal burns. We now seek to understand the effect on full thickness burns, as assessed by changes in serum FGF2, IGF1, epithelialization, and fibroblast count. Forty-eight Wistar rats were randomly divided into four groups: (1) rats with full thickness burns given a local injection of combined SVFs and PRP; (2) rats with burns given topical Vaseline; (3) rats with burns given a local injection of placebo; and (4) rats without burns. Primary data were measured according to the time of euthanasia (at the 8th hour, 4th day, 7th day, 14th day or 21st day). One-way ANOVA test followed by post hoc test were used. Epithelialization in rats who received SVFs and PRP was superior on days 7, 14 and 21 when compared to the other groups. The fibroblast count in rats who received SVFs and PRP showed significant difference on days 7 (p=0.022). Significant differences in serum FGF2 were observed on days 4, 7, 14 and 21 (p=0.003, p=0.001, p=0.024, p=0.038, respectively). A significant difference was also observed in serum IGF1 levels on days 7, 14 and 21 (p=0.043, p=0.003, p=0.045, respectively), and the combination of SVFs and PRP showed superior results compared to other groups. Injection of combined SVFs and PRP increases FGF2, IGF1, fibroblast count, and epithelialization.
Collapse
Affiliation(s)
- F. Josh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - T.H. Soekamto
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - C.A. Windura
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - D.G. Lumalessil
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
20
|
Yang J, Dong X, Wen H, Li Y, Wang X, Yan S, Zuo C, Lyu L, Zhang K, Qi X. FGFs function in regulating myoblasts differentiation in spotted sea bass (Lateolabrax maculatus). Gen Comp Endocrinol 2024; 347:114426. [PMID: 38103843 DOI: 10.1016/j.ygcen.2023.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Fibroblast growth factors (FGFs) are a family of structurally related peptides that regulate processes such as cell proliferation, differentiation, and damage repair. In our previous study, fibroblast growth factor receptor 4 (fgfr4) was detected in the most significant quantitative trait loci (QTL), when identified of QTLs and genetic markers for growth-related traits in spotted sea bass. However, knowledge of the function of fgfr4 is lacking, even the legends to activate the receptor is unknown in fish. To remedy this problem, in the present study, a total of 33 fgfs were identified from the genomic and transcriptomic databases of spotted sea bass, of which 10 were expressed in the myoblasts. According to the expression pattern during myoblasts proliferation and differentiation, fgf6a, fgf6b and fgf18 were selected for further prokaryotic expression and purification. The recombinant proteins FGF6a, FGF6b and FGF18 were found to inhibit myoblast differentiation. Overall, our results provide a theoretical basis for the molecular mechanisms of growth regulation in economic fish such as spotted sea bass.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Ximeng Dong
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Shaojing Yan
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003.
| |
Collapse
|
21
|
Raymundo JR, Zhang H, Smaldone G, Zhu W, Daly KE, Glennon BJ, Pecoraro G, Salvatore M, Devine WA, Lo CW, Vitagliano L, Marneros AG. KCTD1/KCTD15 complexes control ectodermal and neural crest cell functions, and their impairment causes aplasia cutis. J Clin Invest 2023; 134:e174138. [PMID: 38113115 PMCID: PMC10866662 DOI: 10.1172/jci174138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Aplasia cutis congenita (ACC) is a congenital epidermal defect of the midline scalp and has been proposed to be due to a primary keratinocyte abnormality. Why it forms mainly at this anatomic site has remained a long-standing enigma. KCTD1 mutations cause ACC, ectodermal abnormalities, and kidney fibrosis, whereas KCTD15 mutations cause ACC and cardiac outflow tract abnormalities. Here, we found that KCTD1 and KCTD15 can form multimeric complexes and can compensate for each other's loss and that disease mutations are dominant negative, resulting in lack of KCTD1/KCTD15 function. We demonstrated that KCTD15 is critical for cardiac outflow tract development, whereas KCTD1 regulates distal nephron function. Combined inactivation of KCTD1/KCTD15 in keratinocytes resulted in abnormal skin appendages but not in ACC. Instead, KCTD1/KCTD15 inactivation in neural crest cells resulted in ACC linked to midline skull defects, demonstrating that ACC is not caused by a primary defect in keratinocytes but is a secondary consequence of impaired cranial neural crest cells, giving rise to midline cranial suture cells that express keratinocyte-promoting growth factors. Our findings explain the clinical observations in patients with KCTD1 versus KCTD15 mutations, establish KCTD1/KCTD15 complexes as critical regulators of ectodermal and neural crest cell functions, and define ACC as a neurocristopathy.
Collapse
Affiliation(s)
- Jackelyn R. Raymundo
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Hui Zhang
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | | | - Wenjuan Zhu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Kathleen E. Daly
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Benjamin J. Glennon
- Developmental Biology Department, John G. Rangos Sr. Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - William A. Devine
- Developmental Biology Department, John G. Rangos Sr. Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cecilia W. Lo
- Developmental Biology Department, John G. Rangos Sr. Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Alexander G. Marneros
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
22
|
Chen YJ, Hsu CY, Lin CH. Chronic Leg Ulcer Associated with Cutaneous IgG4-Related Disease. INT J LOW EXTR WOUND 2023; 22:792-797. [PMID: 35068233 DOI: 10.1177/15347346221075873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Chronic leg ulcer occurs in up to 13% of the general population and leads to economic and health care burdens. Approximately 20% of chronic nonhealing wounds are related to autoimmune diseases or vasculitis. Of these, chronic wounds associated with IgG4-related disease, a group of fibroinflammatory disorders that can have cutaneous and systemic involvement, are rarely reported. This case report describes a chronic leg ulcer associated with cutaneous IgG4-related disease. In addition to disease control with anti-inflammatory agents, following the principles of wound management and providing adjuvant wound treatment (eg, debridement, dressing, photobiomodulation therapy, or hyperbaric oxygen therapy) can promote the wound healing process.
Collapse
Affiliation(s)
- Yi-Jye Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Yi Hsu
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- College of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Chih-Hsun Lin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
23
|
Chang H, Chen J, Ding K, Cheng T, Tang S. Highly-expressed lncRNA FOXD2-AS1 in adipose mesenchymal stem cell derived exosomes affects HaCaT cells via regulating miR-185-5p/ROCK2 axis. Adipocyte 2023; 12:2173513. [PMID: 36775902 PMCID: PMC9928455 DOI: 10.1080/21623945.2023.2173513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
The healing of skin wounds is a highly coordinated multi-step process that occurs after trauma including surgical incisions, thermal burns, and chronic ulcers. In this study, the authors investigated lncRNA FOXD2-AS1 function in adipose mesenchymal exosomes from ADMSCs that were successfully extracted. Highly expressed lncRNA FOXD2-AS1 in ADMSCs-exosomes accelerated HaCaT cell migration and proliferation. LncRNA FOXD2-AS1 negatively targeted miR-185-5p, and miR-185-5p negatively targeted ROCK2. Highly expressed lncRNA FOXD2-AS1 in ADMSCs-exosomes promoted HaCaT cell migration and proliferation via down-regulating miR-185-5p and further up-regulating ROCK2. In conclusion, LncRNA FOXD2-AS1 overexpression in ADMSCs derived exosomes might accelerate HaCaT cell migration and proliferation via modulating the miR-185-5p/ROCK2 axis.
Collapse
Affiliation(s)
- Huanchao Chang
- Plastic Surgery of Plastic Surgery Hospital, Weifang Medical University, Weifang, China
| | - Junliang Chen
- Vascular surgery department, Affiliated Hospital of Weifang Medical College, Weifang, China
| | - Kun Ding
- Plastic Surgery of Plastic Surgery Hospital, Weifang Medical University, Weifang, China
| | - Tianling Cheng
- Burn plastic surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Shengjian Tang
- Plastic Surgery of Plastic Surgery Hospital, Weifang Medical University, Weifang, China,CONTACT Shengjian Tang Plastic Surgery Institute, Weifang Medical University, 4948 Shengli East Street, Kuiwen District, Weifang, 261041, China
| |
Collapse
|
24
|
Michalak M. Plant Extracts as Skin Care and Therapeutic Agents. Int J Mol Sci 2023; 24:15444. [PMID: 37895122 PMCID: PMC10607442 DOI: 10.3390/ijms242015444] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Natural ingredients have been used for centuries for skin treatment and care. Interest in the health effects of plants has recently increased due to their safety and applicability in the formulation of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered ones are increasingly being used in natural products of plant origin. This review highlights the beneficial effects of plants and plant constituents on the skin, including moisturizing (e.g., Cannabis sativa, Hydrangea serrata, Pradosia mutisii and Carthamus tinctorius), anti-aging (e.g., Aegopodium podagraria, Euphorbia characias, Premna odorata and Warburgia salutaris), antimicrobial (e.g., Betula pendula and Epilobium angustifolium), antioxidant (e.g., Kadsura coccinea, Rosmarinus officinalis, Rubus idaeus and Spatholobus suberectus), anti-inflammatory (e.g., Antidesma thwaitesianum, Helianthus annuus, Oenanthe javanica, Penthorum chinense, Ranunculus bulumei and Zanthoxylum bungeanum), regenerative (e.g., Aloe vera, Angelica polymorpha, Digitaria ciliaris, Glycyrrihza glabra and Marantodes pumilum), wound healing (e.g., Agrimonia eupatoria, Astragalus floccosus, Bursera morelensis, Jatropha neopauciflora and Sapindus mukorossi), photoprotective (e.g., Astragalus gombiformis, Calea fruticose, Euphorbia characias and Posoqueria latifolia) and anti-tyrosinase activity (e.g., Aerva lanata, Bruguiera gymnorhiza, Dodonaea viscosa, Lonicera japonica and Schisandra chinensis), as well as their role as excipients in cosmetics (coloring (e.g., Beta vulgaris, Centaurea cyanus, Hibiscus sabdariffa and Rubia tinctiorum), protective and aromatic agents (e.g., Hyssopus officinalis, Melaleuca alternifolia, Pelargonium graveolens and Verbena officinalis)).
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, 35-317 Kielce, Poland
| |
Collapse
|
25
|
Ademi H, Michalak-Micka K, Moehrlen U, Biedermann T, Klar AS. Effects of an Adipose Mesenchymal Stem Cell-Derived Conditioned medium and TGF-β1 on Human Keratinocytes In Vitro. Int J Mol Sci 2023; 24:14726. [PMID: 37834173 PMCID: PMC10572767 DOI: 10.3390/ijms241914726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Human keratinocytes play a crucial role during skin wound healing and in skin replacement therapies. The secretome of adipose-derived stem cells (ASCs) has been shown to secrete pro-healing factors, among which include TGF-β1, which is essential for keratinocyte migration and the re-epithelialization of cutaneous wounds during skin wound healing. The benefits of an ASC conditioned medium (ASC-CM) are primarily orchestrated by trophic factors that mediate autocrine and paracrine effects in keratinocytes. Here, we evaluated the composition and the innate characteristics of the ASC secretome and its biological effects on keratinocyte maturation and wound healing in vitro. In particular, we detected high levels of different growth factors, such as HGF, FGFb, and VEGF, and other factors, such as TIMP1 and 4, IL8, PAI-1, uPA, and IGFBP-3, in the ASC-CM. Further, we investigated, using immunofluorescence and flow cytometry, the distinct effects of a human ASC-CM and/or synthetic TGF-β1 on human keratinocyte proliferation, migration, and cell apoptosis suppression. We demonstrated that the ASC-CM increased keratinocyte proliferation as compared to TGF-β1 treatment. Further, we found that the ASC-CM exerted cell cycle progression in keratinocytes via regulating the phases G1, S, and G2/M. In particular, cells subjected to the ASC-CM demonstrated increased DNA synthesis (S phase) compared to the TGF-β1-treated KCs, which showed a pronounced G0/G1 phase. Furthermore, both the ASC-CM and TGF-β1 conditions resulted in a decreased expression of the late differentiation marker CK10 in human keratinocytes in vitro, whereas both treatments enhanced transglutaminase 3 and loricrin expression. Interestingly, the ASC-CM promoted significantly increased numbers of keratinocytes expressing epidermal basal keratinocyte markers, such DLL1 and Jagged2 Notch ligands, whereas those ligands were significantly decreased in TGF-β1-treated keratinocytes. In conclusion, our findings suggest that the ASC-CM is a potent stimulator of human keratinocyte proliferation in vitro, particularly supporting basal keratinocytes, which are crucial for a successful skin coverage after transplantation. In contrast, TGF-β1 treatment decreased keratinocyte proliferation and specifically increased the expression of differentiation markers in vitro.
Collapse
Affiliation(s)
- Hyrije Ademi
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Katarzyna Michalak-Micka
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
- Department of Surgery, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Agnes S. Klar
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
26
|
Won KJ, Lee R, Choi SH, Kim JH, Hwang SH, Nah SY. Gintonin-Induced Wound-Healing-Related Responses Involve Epidermal-Growth-Factor-like Effects in Keratinocytes. Int J Mol Sci 2023; 24:14094. [PMID: 37762395 PMCID: PMC10531430 DOI: 10.3390/ijms241814094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Epidermal growth factor (EGF) receptor activation and related downstream signaling pathways are known to be one of the major mechanisms of the proliferation and migration of keratinocytes. The heparin-binding EGF-like growth factor (HB-EGF) binds to EGF receptors and stimulates keratinocyte proliferation and migration. Gintonin, a novel ginseng compound, is a lysophosphatidic acid (LPA) receptor ligand. Gintonin has skin-wound-healing effects. However, the underlying mechanisms for these gintonin actions remain unclear. In this study, we aimed to elucidate the involvement of EGFRs in gintonin-induced wound repair in HaCaT keratinocytes. In this study, a water-soluble tetrazolium salt-based assay, a modified Boyden chamber migration assay, and immunoblotting were performed. Gintonin increased EGF receptor activation in HaCaT cells. However, the gintonin-induced phosphorylation of the EGF receptor was markedly reduced via treatment with the LPA inhibitor Ki16425 or the EGF receptor inhibitor erlotinib. Gintonin-enhanced proliferation and migration were blocked by the EGF receptor inhibitors (erlotinib and AG1478). Additionally, gintonin stimulated the expression and release of HB-EGF in HaCaT cells. EGF receptor inhibitors blocked gintonin-enhanced HB-EGF expression. These results indicate that the wound-healing effects of gintonin are closely related to the collaboration between EGF receptor activation and HB-EGF release-mediated downstream signaling pathways.
Collapse
Affiliation(s)
- Kyung-Jong Won
- Department of Physiology and Medical Science, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea;
| | - Rami Lee
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (R.L.); (J.-H.K.)
| | - Sun-Hye Choi
- Department of Animal Health, College of Health and Medical Services, Osan University, Osan 18119, Republic of Korea;
| | - Ji-Hun Kim
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (R.L.); (J.-H.K.)
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (R.L.); (J.-H.K.)
| |
Collapse
|
27
|
Josh F, Soekamto T, Windura C. The Combination of Stromal Vascular Fraction Cells and Platelet-Rich Plasma Increases Fibroblast Growth Factor 7 and Promotes Angiogenesis in Full Thickness Burn Injury: Rat Experimental Study. ANNALS OF BURNS AND FIRE DISASTERS 2023; 36:234-242. [PMID: 38680441 PMCID: PMC11042045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/22/2022] [Indexed: 05/01/2024]
Abstract
Our previous study on how the combination of stromal vascular fraction cells (SVFs) and platelet-rich plasma (PRP) affect deep dermal burn healing showed promising results. In this study, we assessed the effect on full-thickness burns by evaluating FGF7 serum level and capillary count. Forty-eight Wistar rats were divided into four major groups: (1) locally injected with combined SVFs and PRP; (2) topically applied Vaseline; (3) locally injected with placebo; (4) and rats without burns. These groups were divided further into smaller groups based on the day of euthanasia (8th hour, 4th day, 7th day, 14th day, and 21st day). FGF7 serum level was measured using ELISA, and capillaries were counted using a microscope. A one-way ANOVA test, post hoc, and regression tests were used. On day 4, both FGF7 and capillary counts showed significant differences between groups (p=0.000 and 0.048, respectively). On day 7, only FGF7 result showed a significant difference (p=0.000). On day 14, FGF7 and capillary counts showed significant differences (p=0.000, 0.018 respectively). The SVFs and PRP-treated groups showed superior results compared to other groups. The injection of combined SVFs and PRP increased FGF7 and capillary counts.
Collapse
Affiliation(s)
- F. Josh
- Divison of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - T.H. Soekamto
- Divison of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - C.A. Windura
- Divison of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
28
|
Soundrarajan N, Somasundaram P, Kim D, Cho HS, Jeon H, Ahn B, Kang M, Song H, Park C. Effective Healing of Staphylococcus aureus-Infected Wounds in Pig Cathelicidin Protegrin-1-Overexpressing Transgenic Mice. Int J Mol Sci 2023; 24:11658. [PMID: 37511418 PMCID: PMC10380341 DOI: 10.3390/ijms241411658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial peptides (AMPs) are promising alternatives to existing treatments for multidrug-resistant bacteria-infected wounds. Therefore, the effect of protegrin-1 (PG1), a potent porcine AMP with broad-spectrum activity, on wound healing was evaluated. PG1-overexpressing transgenic mice were used as an in vivo model to evaluate its healing efficiency against Staphylococcus aureus-infected (106 colony forming units) wounds. We analyzed the wounds under four specific conditions in the presence or absence of antibiotic treatment. We observed the resolution of bacterial infection and formation of neo-epithelium in S. aureus-infected wounds of the mice, even without antibiotic treatment, whereas all wild-type mice with bacterial infection died within 8 to 10 days due to uncontrolled bacterial proliferation. Interestingly, the wound area on day 7 was smaller (p < 0.01) in PG1 transgenic mice than that in the other groups, including antibiotic-treated mice, suggesting that PG1 exerts biological effects other than bactericidal effect. Additionally, we observed that the treatment of primary epidermal keratinocytes with recombinant PG1 enhanced cell migration in in vitro scratch and cell migration assays. This study contributes to the understanding of broad-spectrum endogenous cathelicidins with potent antimicrobial activities, such as PG1, on wound healing. Furthermore, our findings suggest that PG1 is a potent therapeutic candidate for wound healing.
Collapse
Affiliation(s)
| | - Prathap Somasundaram
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Dohun Kim
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Hye-Sun Cho
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Hyoim Jeon
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Byeonyong Ahn
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Mingue Kang
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| | - Chankyu Park
- Department of Stem Cells and Regenerative Biology, Konkuk University, Hwayang-dong, Seoul 05029, Republic of Korea
| |
Collapse
|
29
|
Panagiotou D, Filidou E, Gaitanidou M, Tarapatzi G, Spathakis M, Kandilogiannakis L, Stavrou G, Arvanitidis K, Tsetis JK, Gionga P, Shrewsbury AD, Manolopoulos VG, Kapoukranidou D, Lasithiotakis K, Kolios G, Kotzampassi K. Role of Lactiplantibacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58 and Bifidobacterium longum UBBL-64 in the Wound Healing Process of the Excisional Skin. Nutrients 2023; 15:1822. [PMID: 37111041 PMCID: PMC10141733 DOI: 10.3390/nu15081822] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The probiotics Lactiplantibacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58 and Bifidobacterium longum UBBL-64 seem to promote wound healing when applied topically. Our aim was to investigate their effect on the mRNA expression of pro-inflammatory, healing and angiogenetic factors during the healing process of a standardized excisional wound model in rats. Rats subjected to six dorsal skin wounds were allocated to Control; L. plantarum; combined formula of L. rhamnosus plus B. longum; L. rhamnosus; and B. longum treatments, applied every two days, along with tissue collection. The pro-inflammatory, wound-healing, and angiogenetic factors of mRNA expression were assessed by qRT-PCR. We found that L. plantarum exerts a strong anti-inflammatory effect in relation to L. rhamnosus-B. longum, given alone or in combination; the combined regime of L. rhamnosus-B. longum, works better, greatly promoting the expression of healing and angiogenic factors than L. plantarum. When separately tested, L. rhamnosus was found to work better than B. longum in promoting the expression of healing factors, while B. longum seems stronger than L. rhamnosus in the expression of angiogenic factors. We, therefore, suggest that an ideal probiotic treatment should definitively contain more than one probiotic strain to speed up all three healing phases.
Collapse
Affiliation(s)
- Dimitrios Panagiotou
- Department of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece; (D.P.); (K.L.)
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.G.); (G.T.); (M.S.); (L.K.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Maria Gaitanidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.G.); (G.T.); (M.S.); (L.K.); (K.A.); (V.G.M.); (G.K.)
| | - Gesthimani Tarapatzi
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.G.); (G.T.); (M.S.); (L.K.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Michail Spathakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.G.); (G.T.); (M.S.); (L.K.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Leonidas Kandilogiannakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.G.); (G.T.); (M.S.); (L.K.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - George Stavrou
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.S.); (P.G.); (A.D.S.)
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.G.); (G.T.); (M.S.); (L.K.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | | | - Persefoni Gionga
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.S.); (P.G.); (A.D.S.)
| | - Anne D. Shrewsbury
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.S.); (P.G.); (A.D.S.)
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.G.); (G.T.); (M.S.); (L.K.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Dora Kapoukranidou
- Department of Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.G.); (G.T.); (M.S.); (L.K.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.S.); (P.G.); (A.D.S.)
| |
Collapse
|
30
|
Asasutjarit R, Leenabanchong C, Theeramunkong S, Fristiohady A, Yimsoo T, Payuhakrit W, Sukatta U, Fuongfuchat A. Formulation optimization of sterilized xanthones-loaded nanoemulgels and evaluation of their wound healing activities. Int J Pharm 2023; 636:122812. [PMID: 36894040 DOI: 10.1016/j.ijpharm.2023.122812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
Xanthones (XTs) are bioactive compounds found in mangosteen trees (Garcinia mangostana Linn.). They are used as an active ingredient in various health products. However, there is a lack of data of their application in wound healing. In particular, the topical products of XTs for wound healing; they should be sterilized to minimize the risks of wound infection from contaminated microorganisms. This study thus aimed to optimize the formulation of sterilized XTs-loaded nanoemulgel (XTs-NE-G) and to investigate their wound healing activities. The XTs-NE-Gs were prepared by mixing various gels containing sodium alginate (Alg) and Pluronic F127 (F127) into a XTs-nanoemulsion (NE) concentrate according to the face-centered central composite design. The results showed that the optimized XTs-NE-G was A5-F3 containing 5% w/w Alg and 3% w/w F127. It enhanced the proliferation-, migration rates of skin fibroblasts (HFF-1 cells) with an optimal viscosity. After blending the XTs-NE concentrate and the gel that was previously sterilized by a membrane filtration and an autoclaving technique, respectively, the sterilized A5-F3 was obtained. The sterilized A5-F3 still had effective bioactivities towards the HFF-1 cells. It promoted re-epithelialization, collagen deposition and inflammation suppression in the mice' wounds. It could thus be accepted for further investigation in clinical studies.
Collapse
Affiliation(s)
- Rathapon Asasutjarit
- Thammasat University Research Unit in Drug, Health Product Development and Application (DHP-DA), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani 12120, Thailand.
| | - Chawisa Leenabanchong
- Thammasat University Research Unit in Drug, Health Product Development and Application (DHP-DA), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani 12120, Thailand
| | - Sewan Theeramunkong
- Thammasat University Research Unit in Drug, Health Product Development and Application (DHP-DA), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani 12120, Thailand
| | - Adryan Fristiohady
- Thammasat University Research Unit in Drug, Health Product Development and Application (DHP-DA), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani 12120, Thailand; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Halu Oleo, Kendari 93132, Indonesia
| | - Thunyathorn Yimsoo
- Laboratory Animal Center, Thammasat University, Pathum Thani 12120, Thailand
| | - Witchuda Payuhakrit
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Udomluk Sukatta
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok 10900, Thailand
| | - Asira Fuongfuchat
- National Metal and Materials Technology Center, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand
| |
Collapse
|
31
|
Li X, Xu M, Bi R, Tan LW, Yao YG, Zhang DF. Common and rare variants of EGF increase the genetic risk of Alzheimer's disease as revealed by targeted sequencing of growth factors in Han Chinese. Neurobiol Aging 2023; 123:170-181. [PMID: 36437134 DOI: 10.1016/j.neurobiolaging.2022.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease with high heritability. Growth factors (GFs) might contribute to the development of AD due to their broad effects on neuronal system. We herein aimed to investigate the role of rare and common variants of GFs in genetic susceptibility of AD. We screened 23 GFs in 6324 individuals using targeted sequencing. A rare-variant-based burden test and common-variant-based single-site association analyses were performed to identify AD-associated GF genes and variants. The burden test showed an enrichment of rare missense variants (p = 6.08 × 10-4) in GF gene-set in AD patients. Among the GFs, EGF showed the strongest signal of enrichment, especially for loss-of-function variants (p = 0.0019). A common variant rs4698800 of EGF showed significant associations with AD risk (p = 3.24 × 10-5, OR = 1.26). The risk allele of rs4698800 was associated with an increased EGF expression, whereas EGF was indeed upregulated in AD brain. These findings suggested EGF as a novel risk gene for AD.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Wen Tan
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
32
|
Li Q, Wang D, Jiang Z, Li R, Xue T, Lin C, Deng Y, Jin Y, Sun B. Advances of hydrogel combined with stem cells in promoting chronic wound healing. Front Chem 2022; 10:1038839. [PMID: 36518979 PMCID: PMC9742286 DOI: 10.3389/fchem.2022.1038839] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 08/15/2023] Open
Abstract
Wounds can be divided into two categories, acute and chronic. Acute wounds heal through the normal wound healing process. However, chronic wounds take longer to heal, leading to inflammation, pain, serious complications, and an economic burden of treatment costs. In addition, diabetes and burns are common causes of chronic wounds that are difficult to treat. The rapid and thorough treatment of chronic wounds, including diabetes wounds and burns, represents a significant unmet medical need. Wound dressings play an essential role in chronic wound treatment. Various biomaterials for wound healing have been developed. Among these, hydrogels are widely used as wound care materials due to their good biocompatibility, moisturizing effect, adhesion, and ductility. Wound healing is a complex process influenced by multiple factors and regulatory mechanisms in which stem cells play an important role. With the deepening of stem cell and regenerative medicine research, chronic wound treatment using stem cells has become an important field in medical research. More importantly, the combination of stem cells and stem cell derivatives with hydrogel is an attractive research topic in hydrogel preparation that offers great potential in chronic wound treatment. This review will illustrate the development and application of advanced stem cell therapy-based hydrogels in chronic wound healing, especially in diabetic wounds and burns.
Collapse
Affiliation(s)
- Qirong Li
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tianyi Xue
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Yongzhi Deng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Cellular and Molecular Events of Wound Healing and the Potential of Silver Based Nanoformulations as Wound Healing Agents. Bioengineering (Basel) 2022; 9:bioengineering9110712. [PMID: 36421113 PMCID: PMC9687874 DOI: 10.3390/bioengineering9110712] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic wounds are a silent epidemic threatening the lives of many people worldwide. They are associated with social, health care and economic burdens and can lead to death if left untreated. The treatment of chronic wounds is very challenging as it may not be fully effective and may be associated with various adverse effects. New wound healing agents that are potentially more effective are being discovered continuously to combat these chronic wounds. These agents include silver nanoformulations which can contain nanoparticles or nanocomposites. To be effective, the discovered agents need to have good wound healing properties which will enhance their effectiveness in the different stages of wound healing. This review will focus on the process of wound healing and describe the properties of silver nanoformulations that contribute to wound healing.
Collapse
|
34
|
Lian AA, Yamaji Y, Kajiwara K, Takaki K, Mori H, Liew MWO, Kotani E, Maruta R. A Bioengineering Approach for the Development of Fibroblast Growth Factor-7-Functionalized Sericin Biomaterial Applicable for the Cultivation of Keratinocytes. Int J Mol Sci 2022; 23:ijms23179953. [PMID: 36077351 PMCID: PMC9456417 DOI: 10.3390/ijms23179953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Growth factors, including fibroblast growth factor-7 (FGF-7), are a group of proteins that stimulate various cellular processes and are often used with carriers to prevent the rapid loss of their activities. Sericin with great biocompatibility has been investigated as a proteinaceous carrier to enhance the stability of incorporated proteins. The difficulties in obtaining intact sericin from silkworm cocoons and the handling of growth factors with poor stability necessitate an efficient technique to incorporate the protein into a sericin-based biomaterial. Here, we report the generation of a transgenic silkworm line simultaneously expressing and incorporating FGF-7 into cocoon shells containing almost exclusively sericin. Growth-factor-functionalized sericin cocoon shells requiring simple lyophilization and pulverization processes were successfully used to induce the proliferation and migration of keratinocytes. Moreover, FGF-7 incorporated into sericin-cocoon powder exhibited remarkable stability, with more than 70% of bioactivity being retained after being stored as a suspension at 25 °C for 3 months. Transgenic sericin-cocoon powder was used to continuously supply biologically active FGF-7 to generate a three-dimensionally cultured keratinocyte model in vitro. The outcomes of this study propound a feasible approach to producing cytokine-functionalized sericin materials that are ready to use for cell cultivation.
Collapse
Affiliation(s)
- Ai Ai Lian
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuka Yamaji
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kazuki Kajiwara
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Keiko Takaki
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hajime Mori
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mervyn Wing On Liew
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Eiji Kotani
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Correspondence: (E.K.); (R.M.); Tel.: +81-75-724-7774 (E.K. & R.M.)
| | - Rina Maruta
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Correspondence: (E.K.); (R.M.); Tel.: +81-75-724-7774 (E.K. & R.M.)
| |
Collapse
|
35
|
Bibby G, Krasniqi B, Reddy I, Sekar D, Ross K. Capturing the RNA castle: Exploiting MicroRNA inhibition for wound healing. FEBS J 2022; 289:5137-5151. [PMID: 34403569 DOI: 10.1111/febs.16160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023]
Abstract
The growing pipelines of RNA-based therapies herald new opportunities to deliver better patient outcomes for complex disorders such as chronic nonhealing wounds associated with diabetes. Members of the microRNA (miRNA) family of small noncoding RNAs have emerged as targets for diverse elements of cutaneous wound repair, and both miRNA enhancement with mimics or inhibition with antisense oligonucleotides represent tractable approaches for miRNA-directed wound healing. In this review, we focus on miRNA inhibition strategies to stimulate skin repair given advances in chemical modifications to enhance the performance of antisense miRNA (anti-miRs). We first explore miRNAs whose inhibition in keratinocytes promotes keratinocyte migration, an essential part of re-epithelialisation during wound repair. We then focus on miRNAs that can be targeted for inhibition in endothelial cells to promote neovascularisation for wound healing in the context of diabetic mouse models. The picture that emerges is that direct comparisons of different anti-miRNAs modifications are required to establish the most translationally viable options in the chronic wound environment, that direct comparisons of the impact of inhibition of different miRNAs are needed to quantify and rank their relative efficacies in promoting wound repair, and that a standardised human ex vivo model of the diabetic wound is needed to reduce reliance on mouse models that do not necessarily enhance mechanistic understanding of miRNA-targeted wound healing.
Collapse
Affiliation(s)
- George Bibby
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | - Blerta Krasniqi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | - Izaak Reddy
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | - Durairaj Sekar
- Dental Research Cell and Biomedical Research Unit (DRC-BRULAC), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, India
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| |
Collapse
|
36
|
Maier M, Olthoff S, Hill K, Zosel C, Magauer T, Wein LA, Schaefer M. KS0365, a novel activator of the transient receptor potential vanilloid 3 (TRPV3) channel, accelerates keratinocyte migration. Br J Pharmacol 2022; 179:5290-5304. [PMID: 35916168 DOI: 10.1111/bph.15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/09/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Ca2+ signalling mediated by the thermosensitive, non-selective, Ca2+ -permeable transient receptor potential channel TRPV3 is assumed to play a critical role in regulating several aspects of skin functions, such as keratinocyte proliferation, differentiation, skin barrier formation and wound healing. Studying the function of TRPV3 in skin homeostasis, however, is still constrained by a lack of potent and selective pharmacological modulators of TRPV3. EXPERIMENTAL APPROACH By screening an in-house compound library using fluorometric intracellular Ca2+ assays, we identified two chemically related hits. The more potent and efficient TRPV3 activator KS0365 was further evaluated in fluo-4-assisted Ca2+ assays, different Ca2+ imaging approaches, electrophysiological studies, cytotoxicity and migration assays. KEY RESULTS KS0365 activated recombinant and native mouse TRPV3 more potently and with a higher efficacy compared to 2-APB and did not activate TRPV1, TRPV2 or TRPV4 channels. The activation of TRPV3 by KS0365 super-additively accelerated the EGF-induced keratinocyte migration, which was inhibited by the TRP channel blocker ruthenium red or by siRNA-mediated TRPV3 knockdown. Moreover, KS0365 induced strong Ca2+ responses in migrating front cells and in leading edges of keratinocytes. CONCLUSIONS AND IMPLICATIONS The selective TRPV3 activator KS0365 triggers increases in [Ca2+ ]i with most prominent signals in the leading edge, and accelerates migration of keratinocytes. TRPV3 activators may promote reepithelialization upon skin wounding.
Collapse
Affiliation(s)
- Marion Maier
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Stefan Olthoff
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Kerstin Hill
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Carolin Zosel
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Thomas Magauer
- Leopold-Franzens-University Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences, Innsbruck, Austria
| | - Lukas Anton Wein
- Leopold-Franzens-University Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences, Innsbruck, Austria
| | - Michael Schaefer
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| |
Collapse
|
37
|
Lin YJ, Chang Chien BY, Lee YH. Injectable and thermoresponsive hybrid hydrogel with Antibacterial, Anti-inflammatory, oxygen Transport, and enhanced cell growth activities for improved diabetic wound healing. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
38
|
Nicotine Affects Multiple Biological Processes in EpiDermTM Organotypic Tissues and Keratinocyte Monolayers. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dermal exposure to nicotine is common due to the widespread use of tobacco products. Here, we assessed the effects of nicotine at concentrations found in thirdhand smoke (THS) contaminated environments and electronic cigarette (EC) spills or leaks on a 3D human skin model (EpiDermTM) and on submerged keratinocyte cultures. Air liquid interface treatment of EpiDermTM with 10 or 400 μg/mL of nicotine for 24 h followed by proteomics analysis showed altered pathways related to inflammation, protein synthesis, cell–cell adhesion, apoptosis, and mitochondrial function. Submerged cultured keratinocytes were used to validate the proteomics data and further characterize the response of skin cells to nicotine. Mitochondrial phenotype changed from networked to punctate in keratinocytes treated with 10 or 400 μg/mL of nicotine for 48 h and 24 h, respectively. After 72 h, all concentrations of nicotine caused a significant decrease in the networked phenotype. In Western blots, keratinocytes exposed to 400 μg/mL of nicotine had a significant decrease in mitofusin 2, while mitofusin 1 decreased after 72 h. The shift from networked to punctate mitochondria correlated with a decrease in mitofusin 1/2, a protein needed to establish and maintain the networked phenotype. Mitochondrial changes were reversible after a 24 h recovery period. Peroxisomes exposed to 400 μg/mL of nicotine for 24 h became enlarged and were fewer in number. Nicotine concentrations in THS and EC spills altered the proteome profile in EpiDermTM and damaged organelles including mitochondria and peroxisomes, which are involved in ROS homeostasis. These changes may exacerbate skin infections, inhibit wound healing, and cause oxidative damage to cells in the skin.
Collapse
|
39
|
Fu YN, Li Y, Deng B, Yu Y, Liu F, Wang L, Chen G, Tao L, Wei Y, Wang X. Spatiotemporally dynamic therapy with shape-adaptive drug-gel for the improvement of tissue regeneration with ordered structure. Bioact Mater 2022; 8:165-176. [PMID: 34541394 PMCID: PMC8424390 DOI: 10.1016/j.bioactmat.2021.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
A spatiotemporally dynamic therapy (SDT) is proposed as a powerful therapeutic modality that provides spatially dynamic responses of drug-carriers for adapting to the wound microenvironment. Herein, dynamic chitosan-poly (ethylene glycol) (CP) Schiff-base linkages are employed to perform SDT by directly converting a liquid drug Kangfuxin (KFX) into a gel formation. The obtained KFX-CP drug-gel with shape-adaptive property is used to treat a representative oral mucositis (OM) model in a spatiotemporally dynamic manner. The KFX-CP drug-gel creates an instructive microenvironment to regulate signaling biomolecules and endogenous cells behavior, thereby promoting OM healing by the rule of dynamically adjusting shape to fit the irregular OM regions first, and then provides space for tissue regeneration, over KFX potion control and the general hydrogel group of CP hydrogel and KFX-F127. Most interestingly, the regenerated tissue has ordered structure like healthy tissue. Therefore, the SDT provides a new approach for the design of next generation of wound dressing and tissue engineering materials.
Collapse
Affiliation(s)
- Ya-nan Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongsan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bo Deng
- Department of Oncology of Integrative Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yingjie Yu
- Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, China
| | - Fang Liu
- Department of Oncology of Integrative Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Lei Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guang Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xing Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
40
|
Nikolskiy VI, Sergatskiy KI, Sheremet DP, Shabrov AV. [Scaffold technologies in regenerative medicine: history of the issue, current state and prospects of application]. Khirurgiia (Mosk) 2022:36-41. [PMID: 36398953 DOI: 10.17116/hirurgia202211136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Development of methods for replacing human tissue defects based on scaffold technologies in regenerative surgery proves the prospects of this industry. High-tech manufacturing of scaffold matrices suggests complete replacement of obsolete methods of treatment with new developments in the near future. At the same time, additional studies devoted to these methods and their results are needed. One of the promising goals for development of scaffold technologies is creation of versatile materials used in various fields of regenerative medicine.
Collapse
|
41
|
Amiri N, Golin AP, Jalili RB, Ghahary A. Roles of cutaneous cell-cell communication in wound healing outcome: An emphasis on keratinocyte-fibroblast crosstalk. Exp Dermatol 2021; 31:475-484. [PMID: 34932841 DOI: 10.1111/exd.14516] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/28/2021] [Accepted: 12/19/2021] [Indexed: 01/13/2023]
Abstract
Tissue repair is a very complex event and involves a continuously orchestrated sequence of signals and responses from platelets, fibroblasts, epithelial, endothelial and immune cells. The details of interaction between these signals, which are mainly growth factors and cytokines, have been widely discussed. However, it is still not clear how activated cells at wound sites lessen their activities after epithelialization is completed. Termination of the wound healing process requires a fine balance between extracellular matrix (ECM) deposition and degradation. Maintaining this balance requires highly accurate epithelial-mesenchymal communication and correct information exchange between keratinocytes and fibroblasts. As it has been reported in the literature, a disruption in epithelialization during the process of wound healing increases the frequency of developing chronic wounds or fibrotic conditions, as seen in a variety of clinical cases. Conversely, the potential stop signal for wound healing should have a regulatory role on both ECM synthesis and degradation to reach a successful wound healing outcome. This review briefly describes the potential roles of growth factors and cytokines in controlling the early phase of wound healing and predominantly explores the role of releasable factors from epithelial-mesenchymal interaction in controlling during and the late stage of the healing process. Emphasis will be given on the crosstalk between keratinocytes and fibroblasts in ECM modulation and the healing outcome following a brief discussion of the wound healing initiation mechanism. In particular, we will review the termination of acute dermal wound healing, which frequently leads to the development of hypertrophic scarring.
Collapse
Affiliation(s)
- Nafise Amiri
- Department of Surgery, International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew P Golin
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Reza B Jalili
- Department of Surgery, International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Aziz Ghahary
- Department of Surgery, International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
42
|
Bhatnagar P, Law JX, Ng SF. Chitosan Reinforced with Kenaf Nanocrystalline Cellulose as an Effective Carrier for the Delivery of Platelet Lysate in the Acceleration of Wound Healing. Polymers (Basel) 2021; 13:4392. [PMID: 34960943 PMCID: PMC8707177 DOI: 10.3390/polym13244392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
The clinical use of platelet lysate (PL) in the treatment of wounds is limited by its rapid degradation by proteases at the tissue site. This research aims to develop a chitosan (CS) and kenaf nanocrystalline cellulose (NCC) hydrogel composite, which intend to stabilize PL and control its release onto the wound site for prolonged action. NCC was synthesized from raw kenaf bast fibers and incorporated into the CS hydrogel. The physicochemical properties, in vitro cytocompatibility, cell proliferation, wound scratch assay, PL release, and CS stabilizing effect of the hydrogel composites were analyzed. The study of swelling ratio (>1000%) and moisture loss (60-90%) showed the excellent water retention capacity of the CS-NCC-PL hydrogels as compared with the commercial product. In vitro release PL study (flux = 0.165 mg/cm2/h) indicated that NCC act as a nanofiller and provided the sustained release of PL compared with the CS hydrogel alone. The CS also showed the protective effect of growth factor (GF) present in PL, thereby promoting fast wound healing via the formulation. The CS-NCC hydrogels also augmented fibroblast proliferation in vitro and enhanced wound closures over 72 h. This study provides a new insight on CS with renewable source kenaf NCC as a nanofiller as a potential autologous PL wound therapy.
Collapse
Affiliation(s)
- Payal Bhatnagar
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering & Regenerative Medicine, 12th Floor, Clinical Block, UKM Medical Centre, Jalan Yaa’cob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Shiow-Fern Ng
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
43
|
Kotronoulas A, de Lomana ALG, Karvelsson ST, Heijink M, Stone Ii R, Giera M, Rolfsson O. Lipid mediator profiles of burn wound healing: Acellular cod fish skin grafts promote the formation of EPA and DHA derived lipid mediators following seven days of treatment. Prostaglandins Leukot Essent Fatty Acids 2021; 175:102358. [PMID: 34753002 DOI: 10.1016/j.plefa.2021.102358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/16/2021] [Accepted: 10/20/2021] [Indexed: 12/09/2022]
Abstract
The use of acellular fish skin grafts (FSG) for the treatment of burn wounds is becoming more common due to its beneficial wound healing properties. In our previous study we demonstarted that FSG is a scaffold biomaterial that is rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) conjugated to phosphatidylcholines. Here we investigated whether EPA and DHA derived lipid mediators are influenced during the healing of burn wounds treated with FSG. Deep partial and full thickness burn wounds (DPT and FT, respectively) were created on Yorkshire pigs (n = 4). DPT were treated with either FSG or fetal bovine dermis while FT were treated either with FSG or cadaver skin initially and followed by a split thickness skin graft. Punch biopsies were collected on days 7, 14, 21, 28 and 60 and analyzed in respect of changes to approximately 45 derivatives of EPA, DHA, arachidonic acid (AA), and linoleic acid (LA) employing UPLC-MS/MS methodology. Nine EPA and DHA lipid mediators, principally mono-hydroxylated derivatives such as 18-HEPE and 17-HDHA, were significantly higher on day 7 in the DPT when treated with FSG. A similar but non-significant trend was observed for the FT. The results suggest that the use of FSG in burn wound treatment can alter the formation of EPA and DHA mono hydroxylated lipid mediators in comparison to other grafts of mammalian origin. The differences observed during the first seven days after treatment indicates that FSG affects the early stages of wound healing.
Collapse
Affiliation(s)
| | | | | | - Marieke Heijink
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), the Netherlands
| | - Randolph Stone Ii
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), the Netherlands
| | - Ottar Rolfsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
44
|
Merecz-Sadowska A, Sitarek P, Zajdel K, Kucharska E, Kowalczyk T, Zajdel R. The Modulatory Influence of Plant-Derived Compounds on Human Keratinocyte Function. Int J Mol Sci 2021; 22:12488. [PMID: 34830374 PMCID: PMC8618348 DOI: 10.3390/ijms222212488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The plant kingdom is a rich source of secondary metabolites with numerous properties, including the potential to modify keratinocyte biology. Keratinocytes are important epithelial cells that play a protective role against various chemical, physical and biological stimuli, and participate in reactive oxygen scavenging and inflammation and wound healing processes. The epidermal cell response may be modulated by phytochemicals via changes in signal transduction pathways. Plant extracts and single secondary compounds can possess a high antioxidant capacity and may suppress reactive oxygen species release, inhibit pro-apoptotic proteins and apoptosis and activate antioxidant enzymes in keratinocytes. Moreover, selected plant extracts and single compounds also exhibit anti-inflammatory properties and exposure may result in limited production of adhesion molecules, pro-inflammatory cytokines and chemokines in keratinocytes. In addition, plant extracts and single compounds may promote keratinocyte motility and proliferation via the regulation of growth factor production and enhance wound healing. While such plant compounds may modulate keratinocyte functions, further in vitro and in vivo studies are needed on their mechanisms of action, and more specific toxicity and clinical studies are needed to ensure their effectiveness and safety for use on human skin.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Ewa Kucharska
- Chair of Gerontology, Geriatrics and Social Work at the Faculty of Pedagogy, Ignatianum Academy in Cracow, 31-501 Cracow, Poland;
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Radosław Zajdel
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| |
Collapse
|
45
|
Evtushenko NA, Beilin AK, Kosykh AV, Vorotelyak EA, Gurskaya NG. Keratins as an Inflammation Trigger Point in Epidermolysis Bullosa Simplex. Int J Mol Sci 2021; 22:ijms222212446. [PMID: 34830328 PMCID: PMC8624175 DOI: 10.3390/ijms222212446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
Epidermolysis bullosa simplex (EBS) is a group of inherited keratinopathies that, in most cases, arise due to mutations in keratins and lead to intraepidermal ruptures. The cellular pathology of most EBS subtypes is associated with the fragility of the intermediate filament network, cytolysis of the basal layer of the epidermis, or attenuation of hemidesmosomal/desmosomal components. Mutations in keratins 5/14 or in other genes that encode associated proteins induce structural disarrangements of different strengths depending on their locations in the genes. Keratin aggregates display impaired dynamics of assembly and diminished solubility and appear to be the trigger for endoplasmic reticulum (ER) stress upon being phosphorylated by MAPKs. Global changes in cellular signaling mainly occur in cases of severe dominant EBS mutations. The spectrum of changes initiated by phosphorylation includes the inhibition of proteasome degradation, TNF-α signaling activation, deregulated proliferation, abnormal cell migration, and impaired adherence of keratinocytes. ER stress also leads to the release of proinflammatory danger-associated molecular pattern (DAMP) molecules, which enhance avalanche-like inflammation. Many instances of positive feedback in the course of cellular stress and the development of sterile inflammation led to systemic chronic inflammation in EBS. This highlights the role of keratin in the maintenance of epidermal and immune homeostasis.
Collapse
Affiliation(s)
- Nadezhda A. Evtushenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
| | - Arkadii K. Beilin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia;
| | - Anastasiya V. Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
| | - Ekaterina A. Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia;
| | - Nadya G. Gurskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence:
| |
Collapse
|
46
|
A Beginner's Introduction to Skin Stem Cells and Wound Healing. Int J Mol Sci 2021; 22:ijms222011030. [PMID: 34681688 PMCID: PMC8538579 DOI: 10.3390/ijms222011030] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
The primary function of the skin is that of a physical barrier against the environment and diverse pathogens; therefore, its integrity is essential for survival. Skin regeneration depends on multiple stem cell compartments within the epidermis, which, despite their different transcriptional and proliferative capacity, as well as different anatomical location, fall under the general term of skin stem cells (SSCs). Skin wounds can normally heal without problem; however, some diseases or extensive damage may delay or prevent healing. Non-healing wounds represent a serious and life-threatening scenario that may require advanced therapeutic strategies. In this regard, increased focus has been directed at SSCs and their role in wound healing, although emerging therapeutical approaches are considering the use of other stem cells instead, such as mesenchymal stem cells (MSCs). Given its extensive and broad nature, this review supplies newcomers with an introduction to SSCs, wound healing, and therapeutic strategies for skin regeneration, thus familiarizing the reader with the subject in preparation for future in depth reading.
Collapse
|
47
|
Cutaneous innervation in impaired diabetic wound healing. Transl Res 2021; 236:87-108. [PMID: 34029747 PMCID: PMC8380642 DOI: 10.1016/j.trsl.2021.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is associated with several potential comorbidities, among them impaired wound healing, chronic ulcerations, and the requirement for lower extremity amputation. Disease-associated abnormal cellular responses, infection, immunological and microvascular dysfunction, and peripheral neuropathy are implicated in the pathogenesis of the wound healing impairment and the diabetic foot ulcer. The skin houses a dense network of sensory nerve afferents and nerve-derived modulators, which communicate with epidermal keratinocytes and dermal fibroblasts bidirectionally to effect normal wound healing after trauma. However, the mechanisms through which cutaneous innervation modulates wound healing are poorly understood, especially in humans. Better understanding of these mechanisms may provide the basis for targeted treatments for chronic diabetic wounds. This review provides an overview of wound healing pathophysiology with a focus on neural involvement in normal and diabetic wound healing, as well as future therapeutic perspectives to address the unmet needs of diabetic patients with chronic wounds.
Collapse
|
48
|
Gera S, Kankuri E, Kogermann K. Antimicrobial peptides - Unleashing their therapeutic potential using nanotechnology. Pharmacol Ther 2021; 232:107990. [PMID: 34592202 DOI: 10.1016/j.pharmthera.2021.107990] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
Antimicrobial peptides (AMPs) are potent, mostly cationic, and amphiphilic broad-spectrum host defense antimicrobials that are produced by all organisms ranging from prokaryotes to humans. In addition to their antimicrobial actions, they modulate inflammatory and immune responses and promote wound healing. Although they have clear benefits over traditional antibiotic drugs, their wide therapeutic utilization is compromised by concerns of toxicity, stability, and production costs. Recent advances in nanotechnology have attracted increasing interest to unleash the AMPs' immense potential as broad-spectrum antibiotics and anti-biofilm agents, against which the bacteria have less chances to develop resistance. Topical application of AMPs promotes migration of keratinocytes and fibroblasts, and contributes significantly to an accelerated wound healing process. Delivery of AMPs by employing nanotechnological approaches avoids the major disadvantages of AMPs, such as instability and toxicity, and provides a controlled delivery profile together with prolonged activity. In this review, we provide an overview of the key properties of AMPs and discuss the latest developments in topical AMP therapy using nanocarriers. We use chronic hard-to-heal wounds-complicated by infections, inflammation, and stagnated healing-as an example of an unmet medical need for which the AMPs' wide range of therapeutic actions could provide the most potential benefit. The use of innovative materials and sophisticated nanotechnological approaches offering various possibilities are discussed in more depth.
Collapse
Affiliation(s)
- Sonia Gera
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| | - Karin Kogermann
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| |
Collapse
|
49
|
Sharma S, Madhyastha H, Laxmi Swetha K, Maravajjala KS, Singh A, Madhyastha R, Nakajima Y, Roy A. Development of an in-situ forming, self-healing scaffold for dermal wound healing: in-vitro and in-vivo studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112263. [PMID: 34474822 DOI: 10.1016/j.msec.2021.112263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 12/11/2022]
Abstract
The importance of the extra-cellular matrix (ECM) for wound healing has been extensively researched. Understanding its importance, multiple ECM mimetic scaffolds have been developed. However, the majority of such scaffolds are prefabricated. Due to their stiffness, prefabricated scaffolds cannot come into direct contact with the basal skin cells at the wound bed, limiting their efficacy. We have developed a unique wound dressing, using chitosan (CH) and chondroitin sulfate (CS), that can form a porous scaffold (CH-CS PEC) in-situ, at the wound site, by simple mixing of the polymer solutions. As CH is positively and CS is negatively charged, mixing these two polymer solutions would lead to electrostatic cross-linking between the polymers, converting them to a porous, viscoelastic scaffold. Owing to the in-situ formation, the scaffold can come in direct contact with the cells at the wound bed, supporting their proliferation and biofunction. In the present study, we confirmed the cross-linked scaffold formation by solid-state NMR, XRD, and TGA analysis. We have demonstrated that the scaffold had a high viscoelastic property, with self-healing capability. Both keratinocyte and fibroblast cells exhibited significantly increased migration and functional markers expression when grown on this scaffold. In the rat skin-excisional wound model, treatment with the in-situ forming CH-CS PEC exhibited enhanced wound healing efficacy. Altogether, this study demonstrated that mixing CH and CS solutions lead to the spontaneous formation of a highly viscoelastic, porous scaffold, which can support epidermal and dermal cell proliferation and bio-function, with an enhanced in-vivo wound healing efficacy.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Rajasthan 333031, India
| | - Harishkumar Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, 8891692 Miyazaki, Japan.
| | - K Laxmi Swetha
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Rajasthan 333031, India
| | - Kavya Sree Maravajjala
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Rajasthan 333031, India
| | - Archana Singh
- CSIR Institute of Genomics and Integrative Biology (IGIB), New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Radha Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, 8891692 Miyazaki, Japan
| | - Yuichi Nakajima
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, 8891692 Miyazaki, Japan
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Rajasthan 333031, India.
| |
Collapse
|
50
|
Sadgrove NJ, Simmonds MSJ. Pharmacodynamics of Aloe vera and acemannan in therapeutic applications for skin, digestion, and immunomodulation. Phytother Res 2021; 35:6572-6584. [PMID: 34427371 DOI: 10.1002/ptr.7242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
Scientific studies of Aloe vera have tentatively explained therapeutic claims from a mechanistic perspective. Furthermore, in vitro outcomes demonstrate that the breakage of acemannan chains into smaller fragments enhances biological effects. These fragments can intravenously boost vaccine efficacy or entrain the immune system to attack cancer cells by mannose receptor agonism of macrophage or dendritic cells. With oral consumption, epithelialisation also occurs at injured sites in the small intestine or colon. The main advantage of dietary acemannan is the attenuation of the digestive process, increasing satiety, and slowing the release of sugars from starches. In the colon, acemannan is digested by microbes into short-chain fatty acids that are absorbed and augment the sensation of satiety and confer a host of other health benefits. In topical applications, an acemannan/chitosan combination accelerates the closure of wounds by promoting granular tissue formation, which creates a barrier between macrophages or neutrophils and the wound dressing. This causes M2 polarisation, reversal of inflammation, and acceleration of the re-epithelialisation process. This review summarises and explains the current pharmacodynamic paradigm in the context of acemannan in topical, oral, and intravenous applications. However, due to contradictory results in the literature, further research is required to provide scientific evidence to confirm or nullify these claims.
Collapse
|