1
|
Kim P. Understanding the Unfolded Protein Response (UPR) Pathway: Insights into Neuropsychiatric Disorders and Therapeutic Potentials. Biomol Ther (Seoul) 2024; 32:183-191. [PMID: 38410073 PMCID: PMC10902702 DOI: 10.4062/biomolther.2023.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 02/28/2024] Open
Abstract
The Unfolded Protein Response (UPR) serves as a critical cellular mechanism dedicated to maintaining protein homeostasis, primarily within the endoplasmic reticulum (ER). This pathway diligently responds to a variety of intracellular indicators of ER stress with the objective of reinstating balance by diminishing the accumulation of unfolded proteins, amplifying the ER's folding capacity, and eliminating slow-folding proteins. Prolonged ER stress and UPR irregularities have been linked to a range of neuropsychiatric disorders, including major depressive disorder, bipolar disorder, and schizophrenia. This review offers a comprehensive overview of the UPR pathway, delineating its activation mechanisms and its role in the pathophysiology of neuropsychiatric disorders. It highlights the intricate interplay within the UPR and its profound influence on brain function, synaptic perturbations, and neural developmental processes. Additionally, it explores evolving therapeutic strategies targeting the UPR within the context of these disorders, underscoring the necessity for precision and further research to effective treatments. The research findings presented in this work underscore the promising potential of UPR-focused therapeutic approaches to address the complex landscape of neuropsychiatric disorders, giving rise to optimism for improving outcomes for individuals facing these complex conditions.
Collapse
Affiliation(s)
- Pitna Kim
- Department of Cell, Developmental, and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Mattson MP, Leak RK. The hormesis principle of neuroplasticity and neuroprotection. Cell Metab 2024; 36:315-337. [PMID: 38211591 DOI: 10.1016/j.cmet.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Animals live in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems have evolved stress-responsive signaling pathways that enable them to not only withstand environmental challenges but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle, in which single or repeated exposures to low levels of environmental challenges improve cellular and organismal fitness and raise the probability of survival. Hormetic principles have been most intensively studied in physical exercise but apply to numerous other challenges known to improve human health (e.g., intermittent fasting, cognitive stimulation, and dietary phytochemicals). Here we review the physiological mechanisms underlying hormesis-based neuroplasticity and neuroprotection. Approaching natural resilience from the lens of hormesis may reveal novel methods for optimizing brain function and lowering the burden of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Wang Z, Li Q, Kolls BJ, Mace B, Yu S, Li X, Liu W, Chaparro E, Shen Y, Dang L, Del Águila Á, Bernstock JD, Johnson KR, Yao J, Wetsel WC, Moore SD, Turner DA, Yang W. Sustained overexpression of spliced X-box-binding protein-1 in neurons leads to spontaneous seizures and sudden death in mice. Commun Biol 2023; 6:252. [PMID: 36894627 PMCID: PMC9998612 DOI: 10.1038/s42003-023-04594-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
The underlying etiologies of seizures are highly heterogeneous and remain incompletely understood. While studying the unfolded protein response (UPR) pathways in the brain, we unexpectedly discovered that transgenic mice (XBP1s-TG) expressing spliced X-box-binding protein-1 (Xbp1s), a key effector of UPR signaling, in forebrain excitatory neurons, rapidly develop neurologic deficits, most notably recurrent spontaneous seizures. This seizure phenotype begins around 8 days after Xbp1s transgene expression is induced in XBP1s-TG mice, and by approximately 14 days post induction, the seizures evolve into status epilepticus with nearly continuous seizure activity followed by sudden death. Animal death is likely due to severe seizures because the anticonvulsant valproic acid could significantly prolong the lives of XBP1s-TG mice. Mechanistically, our gene profiling analysis indicates that compared to control mice, XBP1s-TG mice exhibit 591 differentially regulated genes (mostly upregulated) in the brain, including several GABAA receptor genes that are notably downregulated. Finally, whole-cell patch clamp analysis reveals a significant reduction in both spontaneous and tonic GABAergic inhibitory responses in Xbp1s-expressing neurons. Taken together, our findings unravel a link between XBP1s signaling and seizure occurrence.
Collapse
Affiliation(s)
- Zhuoran Wang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Qiang Li
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Brad J Kolls
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Brian Mace
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Shu Yu
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Xuan Li
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wei Liu
- Department of Bioengineering, Duke University, Durham, NC, USA
| | - Eduardo Chaparro
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Yuntian Shen
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Lihong Dang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Ángela Del Águila
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Joshua D Bernstock
- National Institute of Neurological Disorders and Stroke, NINDS/NIH, Bethesda, MD, USA
| | - Kory R Johnson
- National Institute of Neurological Disorders and Stroke, NINDS/NIH, Bethesda, MD, USA
| | - Junjie Yao
- Department of Bioengineering, Duke University, Durham, NC, USA
| | - William C Wetsel
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Departments of Neurobiology and Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Scott D Moore
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Dennis A Turner
- Departments of Neurosurgery, Neurobiology and Biomedical Engineering, Duke University Medical Center, Durham, NC, USA
| | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
- Department of Neurology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
4
|
Chen HS, Wang J, Li HH, Wang X, Zhang SQ, Deng T, Li YK, Zou RS, Wang HJ, Zhu R, Xie WL, Zhao G, Wang F, Chen JG. Long noncoding RNA Gm2694 drives depressive-like behaviors in male mice by interacting with GRP78 to disrupt endoplasmic reticulum homeostasis. SCIENCE ADVANCES 2022; 8:eabn2496. [PMID: 36459549 PMCID: PMC10936050 DOI: 10.1126/sciadv.abn2496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Long noncoding RNAs (lncRNAs) are involved in various biological processes and implicated in the regulation of neuronal activity, but the potential role of lncRNAs in depression remains largely unknown. Here, we identified that lncRNA Gm2694 was increased in the medial prefrontal cortex (mPFC) of male mice subjected to chronic social defeat stress (CSDS). The down-regulation of Gm2694 in the mPFC alleviated CSDS-induced depressive-like behaviors through enhanced excitatory synaptic transmission. Furthermore, we found that Gm2694 preferentially interacted with the carboxyl-terminal domain of 78-kilodalton glucose-regulated protein (GRP78), which abrogated GRP78 function and disrupted endoplasmic reticulum homeostasis, resulting in a reduction of the surface expression of AMPA receptors (AMPARs). Overexpression of GRP78 in the mPFC promoted the surface expression of AMPARs and attenuated the CSDS-induced depressive-like behaviors of mice. Together, our results unraveled a previously unknown role of Gm2694 in regulating endoplasmic reticulum homeostasis and excitatory synaptic transmission in depression.
Collapse
Affiliation(s)
- Hong-Sheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030 Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China
| | - Ji Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Hou-Hong Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Xiao Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Shao-Qi Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Tan Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Yu-Ke Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Ruo-Si Zou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Hua-Jie Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Rui Zhu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Wen-Long Xie
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Gang Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030 Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, 430030 Wuhan, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030 Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, 430030 Wuhan, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China
| |
Collapse
|
5
|
Casas BS, Arancibia-Altamirano D, Acevedo-La Rosa F, Garrido-Jara D, Maksaev V, Pérez-Monje D, Palma V. It takes two to tango: Widening our understanding of the onset of schizophrenia from a neuro-angiogenic perspective. Front Cell Dev Biol 2022; 10:946706. [PMID: 36092733 PMCID: PMC9448889 DOI: 10.3389/fcell.2022.946706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a chronic debilitating mental disorder characterized by perturbations in thinking, perception, and behavior, along with brain connectivity deficiencies, neurotransmitter dysfunctions, and loss of gray brain matter. To date, schizophrenia has no cure and pharmacological treatments are only partially efficacious, with about 30% of patients describing little to no improvement after treatment. As in most neurological disorders, the main descriptions of schizophrenia physiopathology have been focused on neural network deficiencies. However, to sustain proper neural activity in the brain, another, no less important network is operating: the vast, complex and fascinating vascular network. Increasing research has characterized schizophrenia as a systemic disease where vascular involvement is important. Several neuro-angiogenic pathway disturbances have been related to schizophrenia. Alterations, ranging from genetic polymorphisms, mRNA, and protein alterations to microRNA and abnormal metabolite processing, have been evaluated in plasma, post-mortem brain, animal models, and patient-derived induced pluripotent stem cell (hiPSC) models. During embryonic brain development, the coordinated formation of blood vessels parallels neuro/gliogenesis and results in the structuration of the neurovascular niche, which brings together physical and molecular signals from both systems conforming to the Blood-Brain barrier. In this review, we offer an upfront perspective on distinctive angiogenic and neurogenic signaling pathways that might be involved in the biological causality of schizophrenia. We analyze the role of pivotal angiogenic-related pathways such as Vascular Endothelial Growth Factor and HIF signaling related to hypoxia and oxidative stress events; classic developmental pathways such as the NOTCH pathway, metabolic pathways such as the mTOR/AKT cascade; emerging neuroinflammation, and neurodegenerative processes such as UPR, and also discuss non-canonic angiogenic/axonal guidance factor signaling. Considering that all of the mentioned above pathways converge at the Blood-Brain barrier, reported neurovascular alterations could have deleterious repercussions on overall brain functioning in schizophrenia.
Collapse
|
6
|
Proulx J, Stacy S, Park IW, Borgmann K. A Non-Canonical Role for IRE1α Links ER and Mitochondria as Key Regulators of Astrocyte Dysfunction: Implications in Methamphetamine use and HIV-Associated Neurocognitive Disorders. Front Neurosci 2022; 16:906651. [PMID: 35784841 PMCID: PMC9247407 DOI: 10.3389/fnins.2022.906651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes are one of the most numerous glial cells in the central nervous system (CNS) and provide essential support to neurons to ensure CNS health and function. During a neuropathological challenge, such as during human immunodeficiency virus (HIV)-1 infection or (METH)amphetamine exposure, astrocytes shift their neuroprotective functions and can become neurotoxic. Identifying cellular and molecular mechanisms underlying astrocyte dysfunction are of heightened importance to optimize the coupling between astrocytes and neurons and ensure neuronal fitness against CNS pathology, including HIV-1-associated neurocognitive disorders (HAND) and METH use disorder. Mitochondria are essential organelles for regulating metabolic, antioxidant, and inflammatory profiles. Moreover, endoplasmic reticulum (ER)-associated signaling pathways, such as calcium and the unfolded protein response (UPR), are important messengers for cellular fate and function, including inflammation and mitochondrial homeostasis. Increasing evidence supports that the three arms of the UPR are involved in the direct contact and communication between ER and mitochondria through mitochondria-associated ER membranes (MAMs). The current study investigated the effects of HIV-1 infection and chronic METH exposure on astrocyte ER and mitochondrial homeostasis and then examined the three UPR messengers as potential regulators of astrocyte mitochondrial dysfunction. Using primary human astrocytes infected with pseudotyped HIV-1 or exposed to low doses of METH for 7 days, astrocytes had increased mitochondrial oxygen consumption rate (OCR), cytosolic calcium flux and protein expression of UPR mediators. Notably, inositol-requiring protein 1α (IRE1α) was most prominently upregulated following both HIV-1 infection and chronic METH exposure. Moreover, pharmacological inhibition of the three UPR arms highlighted IRE1α as a key regulator of astrocyte metabolic function. To further explore the regulatory role of astrocyte IRE1α, astrocytes were transfected with an IRE1α overexpression vector followed by activation with the proinflammatory cytokine interleukin 1β. Overall, our findings confirm IRE1α modulates astrocyte mitochondrial respiration, glycolytic function, morphological activation, inflammation, and glutamate uptake, highlighting a novel potential target for regulating astrocyte dysfunction. Finally, these findings suggest both canonical and non-canonical UPR mechanisms of astrocyte IRE1α. Thus, additional studies are needed to determine how to best balance astrocyte IRE1α functions to both promote astrocyte neuroprotective properties while preventing neurotoxic properties during CNS pathologies.
Collapse
|
7
|
The regulation of animal behavior by cellular stress responses. Exp Cell Res 2021; 405:112720. [PMID: 34217715 PMCID: PMC8363813 DOI: 10.1016/j.yexcr.2021.112720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/18/2021] [Accepted: 06/27/2021] [Indexed: 01/18/2023]
Abstract
Cellular stress responses exist to detect the effects of stress on cells, and to activate protective mechanisms that promote resilience. As well as acting at the cellular level, stress response pathways can also regulate whole organism responses to stress. One way in which animals facilitate their survival in stressful environments is through behavioral adaptation; this review considers the evidence that activation of cellular stress responses plays an important role in mediating the changes to behavior that promote organismal survival upon stress.
Collapse
|
8
|
Kim P, Scott MR, Meador-Woodruff JH. Dysregulation of the unfolded protein response (UPR) in the dorsolateral prefrontal cortex in elderly patients with schizophrenia. Mol Psychiatry 2021; 26:1321-1331. [PMID: 31578497 PMCID: PMC7113111 DOI: 10.1038/s41380-019-0537-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
Abnormalities in protein localization, function, and posttranslational modifications are targets of schizophrenia (SCZ) research. As a major contributor to the synthesis, folding, trafficking, and modification of proteins, the endoplasmic reticulum (ER) is well-positioned to sense cellular stress. The unfolded protein response (UPR) is an evolutionarily conserved adaptive reaction to environmental and pathological perturbation in ER function. The UPR is a highly orchestrated and complex cellular response, which is mediated through the ER chaperone protein, BiP, three known ER transmembrane stress sensors, protein kinase RNA-like ER kinase (PERK), activating transcription factor-6 (ATF6), inositol requiring enzyme 1α (IRE1α), and their downstream effectors. In this study, we measured protein expression and phosphorylation states of UPR sensor pathway proteins in the dorsolateral prefrontal cortex (DLPFC) of 22 matched pairs of elderly SCZ and comparison subjects. We observed increased protein expression of BiP, decreased PERK, and decreased phosphorylation of IRE1α. We also observed decreased p-JNK2 and increased sXBP1, downstream targets of the IRE1α arm of the UPR. The disconnect between decreased p-IRE1α and increased sXBP1 protein expression led us to measure sXbp1 mRNA. We observed increased expression of the ratio of sXbp1/uXbp1 transcripts, suggesting that splicing of Xbp1 mRNA by IRE1α is increased and drives upregulation of sXBP1 protein expression. These findings suggest an abnormal pattern of UPR activity in SCZ, with specific dysregulation of the IRE1α arm. Dysfunction of this system may lead to abnormal responses to cellular stressors and contribute to protein processing abnormalities previously observed in SCZ.
Collapse
Affiliation(s)
- Pitna Kim
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Madeline R. Scott
- grid.265892.20000000106344187Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - James H. Meador-Woodruff
- grid.265892.20000000106344187Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
9
|
Lee SK. Endoplasmic Reticulum Homeostasis and Stress Responses in Caenorhabditis elegans. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:279-303. [PMID: 34050871 DOI: 10.1007/978-3-030-67696-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved adaptive regulatory pathway that alleviates protein-folding defects in the endoplasmic reticulum (ER). Physiological demands, environmental perturbations and pathological conditions can cause accumulation of unfolded proteins in the ER and the stress signal is transmitted to the nucleus to turn on a series of genes to respond the challenge. In metazoan, the UPR pathways consisted of IRE1/XBP1, PEK-1 and ATF6, which function in parallel and downstream transcriptional activation triggers the proteostasis networks consisting of molecular chaperones, protein degradation machinery and other stress response pathways ((Labbadia J, Morimoto RI, F1000Prime Rep 6:7, 2014); (Shen X, Ellis RE, Lee K, Annu Rev Biochem 28:893-903, 2014)). The integrated responses act on to resolve the ER stress by increasing protein folding capacity, attenuating ER-loading translation, activating ER-associated proteasomal degradation (ERAD), and regulating IRE1-dependent decay of mRNA (RIDD). Therefore, the effective UPR to internal and external causes is linked to the multiple pathophysiological conditions such as aging, immunity, and neurodegenerative diseases. Recent development in the research of the UPR includes cell-nonautonomous features of the UPR, interplay between the UPR and other stress response pathways, unconventional UPR inducers, and noncanonical UPR independent of the three major branches, originated from multiple cellular and molecular machineries in addition to ER. Caenorhabditis elegans model system has critically contributed to these unprecedented aspects of the ER UPR and broadens the possible therapeutic targets to treat the ER-stress associated human disorders and time-dependent physiological deterioration of aging.
Collapse
Affiliation(s)
- Sun-Kyung Lee
- Department of Life Science, Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Özbey NP, Imanikia S, Krueger C, Hardege I, Morud J, Sheng M, Schafer WR, Casanueva MO, Taylor RC. Tyramine Acts Downstream of Neuronal XBP-1s to Coordinate Inter-tissue UPR ER Activation and Behavior in C. elegans. Dev Cell 2020; 55:754-770.e6. [PMID: 33232669 PMCID: PMC7758879 DOI: 10.1016/j.devcel.2020.10.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/17/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
In C. elegans, expression of the UPRER transcription factor xbp-1s in neurons cell non-autonomously activates the UPRER in the intestine, leading to enhanced proteostasis and lifespan. To better understand this signaling pathway, we isolated neurons from animals expressing neuronal xbp-1s for transcriptomic analysis, revealing a striking remodeling of transcripts involved in neuronal signaling. We then identified signaling molecules required for cell non-autonomous intestinal UPRER activation, including the biogenic amine tyramine. Expression of xbp-1s in just two pairs of neurons that synthesize tyramine, the RIM and RIC interneurons, induced intestinal UPRER activation and extended longevity, and exposure to stress led to splicing and activation of xbp-1 in these neurons. In addition, we found that neuronal xbp-1s modulates feeding behavior and reproduction, dependent upon tyramine synthesis. XBP-1s therefore remodels neuronal signaling to coordinately modulate intestinal physiology and stress-responsive behavior, functioning as a global regulator of organismal responses to stress.
Collapse
Affiliation(s)
- Neşem P Özbey
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Soudabeh Imanikia
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Christel Krueger
- Epigenetics Programme, The Babraham Institute, Babraham CB22 3AT, UK
| | - Iris Hardege
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Julia Morud
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ming Sheng
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Rebecca C Taylor
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
11
|
Guan L, Zhan Z, Yang Y, Miao Y, Huang X, Ding M. Alleviating chronic ER stress by p38-Ire1-Xbp1 pathway and insulin-associated autophagy in C. elegans neurons. PLoS Genet 2020; 16:e1008704. [PMID: 32986702 PMCID: PMC7544145 DOI: 10.1371/journal.pgen.1008704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/08/2020] [Accepted: 08/11/2020] [Indexed: 01/07/2023] Open
Abstract
ER stress occurs in many physiological and pathological conditions. However, how chronic ER stress is alleviated in specific cells in an intact organism is an outstanding question. Here, overexpressing the gap junction protein UNC-9 (Uncoordinated) in C. elegans neurons triggers the Ire1-Xbp1-mediated stress response in an age-dependent and cell-autonomous manner. The p38 MAPK PMK-3 regulates the chronic stress through IRE-1 phosphorylation. Overexpressing gap junction protein also activates autophagy. The insulin pathway functions through autophagy, but not the transcription of genes encoding ER chaperones, to counteract the p38-Ire1-Xbp1-mediated stress response. Together, these results reveal an intricate cellular regulatory network in response to chronic stress in a subset of cells in multicellular organism. The accumulation of unfolded proteins triggers the ER stress response (UPR), which allows cells to fight against fluctuations in protein expression under both physiological and pathological conditions. Severe acute ER stress responses can be induced by drug treatment. However, such intense ER stress rarely occurs ubiquitously in every cell type in vivo. Here, we designed a genetic system in the nematode C. elegans, which allows us to induce ER stress in specific cells, without drug treatment or any other external stimuli, and then to monitor the stress response. The p38 MAPK directly acts on the phosphorylation of IRE-1 to promote the stress response. Meanwhile, the insulin receptor function through autophagy activation to counteract the p38-IRE-1-XBP-1 pathway. Together, these results reveal an intricate cellular regulatory network in response to chronic stress in multicellular organism.
Collapse
Affiliation(s)
- Liying Guan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (LG); (MD)
| | - Zhigao Zhan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongzhi Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Miao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (LG); (MD)
| |
Collapse
|
12
|
Mou Z, Yuan YH, Zhang Z, Song LK, Chen NH. Endoplasmic reticulum stress, an important factor in the development of Parkinson’s disease. Toxicol Lett 2020; 324:20-29. [DOI: 10.1016/j.toxlet.2020.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
|
13
|
Trobiani L, Favaloro FL, Di Castro MA, Di Mattia M, Cariello M, Miranda E, Canterini S, De Stefano ME, Comoletti D, Limatola C, De Jaco A. UPR activation specifically modulates glutamate neurotransmission in the cerebellum of a mouse model of autism. Neurobiol Dis 2018; 120:139-150. [PMID: 30201312 DOI: 10.1016/j.nbd.2018.08.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/01/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
An increasing number of rare mutations linked to autism spectrum disorders have been reported in genes encoding for proteins involved in synapse formation and maintenance, such as the post-synaptic cell adhesion proteins neuroligins. Most of the autism-linked mutations in the neuroligin genes map on the extracellular protein domain. The autism-linked substitution R451C in Neuroligin3 (NLGN3) induces a local misfolding of the extracellular domain, causing defective trafficking and retention of the mutant protein in the endoplasmic reticulum (ER). The activation of the unfolded protein response (UPR), due to misfolded proteins accumulating in the ER, has been implicated in pathological and physiological conditions of the nervous system. It was previously shown that the over-expression of R451C NLGN3 in a cellular system leads to the activation of the UPR. Here, we have investigated whether this protective cellular response is detectable in the knock-in mouse model of autism endogenously expressing R451C NLGN3. Our data showed up-regulation of UPR markers uniquely in the cerebellum of the R451C mice compared to WT littermates, at both embryonic and adult stages, but not in other brain regions. Miniature excitatory currents in the Purkinje cells of the R451C mice showed higher frequency than in the WT, which was rescued inhibiting the PERK branch of UPR. Taken together, our data indicate that the R451C mutation in neuroligin3 elicits UPR in vivo, which appears to trigger alterations of synaptic function in the cerebellum of a mouse model expressing the R451C autism-linked mutation.
Collapse
Affiliation(s)
- L Trobiani
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - F L Favaloro
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - M A Di Castro
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - M Di Mattia
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - M Cariello
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - E Miranda
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy.; Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Italy
| | - S Canterini
- Department of Psychology, Section of Neuroscience, Center for Research in Neurobiology 'Daniel Bovet', Sapienza University of Rome, 00185 Rome, Italy
| | - M E De Stefano
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - D Comoletti
- Department of Neuroscience and Cell Biology, Department of Pediatrics, Child Health Institute of New Jersey, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - C Limatola
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy.; Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Italy.; IRCCS Neuromed, Pozzilli (IS), Italy
| | - A De Jaco
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy..
| |
Collapse
|
14
|
Martínez G, Khatiwada S, Costa-Mattioli M, Hetz C. ER Proteostasis Control of Neuronal Physiology and Synaptic Function. Trends Neurosci 2018; 41:610-624. [PMID: 29945734 PMCID: PMC7268632 DOI: 10.1016/j.tins.2018.05.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Neuronal proteostasis is maintained by the dynamic integration of different processes that regulate the synthesis, folding, quality control, and localization of proteins. The endoplasmic reticulum (ER) serves as a fundamental pillar of the proteostasis network, and is emerging as a key compartment to sustain normal brain function. The unfolded protein response (UPR), the main mechanism that copes with ER stress, plays a central role in the quality control of many ion channels and receptors, in addition to crosstalk with signaling pathways that regulate connectivity, synapse formation, and neuronal plasticity. We provide here an overview of recent advances in the involvement of the UPR in maintaining neuronal proteostasis, and discuss its emerging role in brain development, neuronal physiology, and behavior, as well as the implications for neurodegenerative diseases involving cognitive decline.
Collapse
Affiliation(s)
- Gabriela Martínez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Sanjeev Khatiwada
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Uzquiano A, Gladwyn-Ng I, Nguyen L, Reiner O, Götz M, Matsuzaki F, Francis F. Cortical progenitor biology: key features mediating proliferation versus differentiation. J Neurochem 2018; 146:500-525. [PMID: 29570795 DOI: 10.1111/jnc.14338] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/26/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
The cerebral cortex is a highly organized structure whose development depends on diverse progenitor cell types, namely apical radial glia, intermediate progenitors, and basal radial glia cells, which are responsible for the production of the correct neuronal output. In recent years, these progenitor cell types have been deeply studied, particularly basal radial glia and their role in cortical expansion and gyrification. We review here a broad series of factors that regulate progenitor behavior and daughter cell fate. We first describe the different neuronal progenitor types, emphasizing the differences between lissencephalic and gyrencephalic species. We then review key factors shown to influence progenitor proliferation versus differentiation, discussing their roles in progenitor dynamics, neuronal production, and potentially brain size and complexity. Although spindle orientation has been considered a critical factor for mode of division and daughter cell output, we discuss other features that are emerging as crucial for these processes such as organelle and cell cycle dynamics. Additionally, we highlight the importance of adhesion molecules and the polarity complex for correct cortical development. Finally, we briefly discuss studies assessing progenitor multipotency and its possible contribution to the production of specific neuronal populations. This review hence summarizes recent aspects of cortical progenitor cell biology, and pinpoints emerging features critical for their behavior.
Collapse
Affiliation(s)
- Ana Uzquiano
- INSERM, UMR-S 839, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Ivan Gladwyn-Ng
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilian University Munich, Planegg/Munich, Germany
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN Kobe Institute, Kobe, Hyogo, Japan
| | - Fiona Francis
- INSERM, UMR-S 839, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
16
|
Luarte A, Cornejo VH, Bertin F, Gallardo J, Couve A. The axonal endoplasmic reticulum: One organelle-many functions in development, maintenance, and plasticity. Dev Neurobiol 2017; 78:181-208. [PMID: 29134778 DOI: 10.1002/dneu.22560] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is highly conserved in eukaryotes and neurons. Indeed, the localization of the organelle in axons has been known for nearly half a century. However, the relevance of the axonal ER is only beginning to emerge. In this review, we discuss the structure of the ER in axons, examining the role of ER-shaping proteins and highlighting reticulons. We analyze the multiple functions of the ER and their potential contribution to axonal physiology. First, we examine the emerging roles of the axonal ER in lipid synthesis, protein translation, processing, quality control, and secretory trafficking of transmembrane proteins. We also review the impact of the ER on calcium dynamics, focusing on intracellular mechanisms and functions. We describe the interactions between the ER and endosomes, mitochondria, and synaptic vesicles. Finally, we analyze available proteomic data of axonal preparations to reveal the dynamic functionality of the ER in axons during development. We suggest that the dynamic proteome and a validated axonal interactome, together with state-of-the-art methodologies, may provide interesting research avenues in axon physiology that may extend to pathology and regeneration. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 181-208, 2018.
Collapse
Affiliation(s)
- Alejandro Luarte
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Víctor Hugo Cornejo
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisca Bertin
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Javiera Gallardo
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrés Couve
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Salzberg Y, Coleman AJ, Celestrin K, Cohen-Berkman M, Biederer T, Henis-Korenblit S, Bülow HE. Reduced Insulin/Insulin-Like Growth Factor Receptor Signaling Mitigates Defective Dendrite Morphogenesis in Mutants of the ER Stress Sensor IRE-1. PLoS Genet 2017; 13:e1006579. [PMID: 28114319 PMCID: PMC5293268 DOI: 10.1371/journal.pgen.1006579] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/06/2017] [Accepted: 01/11/2017] [Indexed: 11/18/2022] Open
Abstract
Neurons receive excitatory or sensory inputs through their dendrites, which often branch extensively to form unique neuron-specific structures. How neurons regulate the formation of their particular arbor is only partially understood. In genetic screens using the multidendritic arbor of PVD somatosensory neurons in the nematode Caenorhabditis elegans, we identified a mutation in the ER stress sensor IRE-1/Ire1 (inositol requiring enzyme 1) as crucial for proper PVD dendrite arborization in vivo. We further found that regulation of dendrite growth in cultured rat hippocampal neurons depends on Ire1 function, showing an evolutionarily conserved role for IRE-1/Ire1 in dendrite patterning. PVD neurons of nematodes lacking ire-1 display reduced arbor complexity, whereas mutations in genes encoding other ER stress sensors displayed normal PVD dendrites, specifying IRE-1 as a selective ER stress sensor that is essential for PVD dendrite morphogenesis. Although structure function analyses indicated that IRE-1's nuclease activity is necessary for its role in dendrite morphogenesis, mutations in xbp-1, the best-known target of non-canonical splicing by IRE-1/Ire1, do not exhibit PVD phenotypes. We further determined that secretion and distal localization to dendrites of the DMA-1/leucine rich transmembrane receptor (DMA-1/LRR-TM) is defective in ire-1 but not xbp-1 mutants, suggesting a block in the secretory pathway. Interestingly, reducing Insulin/IGF1 signaling can bypass the secretory block and restore normal targeting of DMA-1, and consequently normal PVD arborization even in the complete absence of functional IRE-1. This bypass of ire-1 requires the DAF-16/FOXO transcription factor. In sum, our work identifies a conserved role for ire-1 in neuronal branching, which is independent of xbp-1, and suggests that arborization defects associated with neuronal pathologies may be overcome by reducing Insulin/IGF signaling and improving ER homeostasis and function.
Collapse
Affiliation(s)
- Yehuda Salzberg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Andrew J. Coleman
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States of America
| | - Kevin Celestrin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Moran Cohen-Berkman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States of America
| | - Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
18
|
Godin JD, Creppe C, Laguesse S, Nguyen L. Emerging Roles for the Unfolded Protein Response in the Developing Nervous System. Trends Neurosci 2016; 39:394-404. [PMID: 27130659 DOI: 10.1016/j.tins.2016.04.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/23/2016] [Accepted: 04/04/2016] [Indexed: 01/04/2023]
Abstract
The unfolded protein response (UPR) is a homeostatic signaling pathway triggered by protein misfolding in the endoplasmic reticulum (ER). Beyond its protective role, it plays important functions during normal development in response to elevated demand for protein folding. Several UPR effectors show dynamic temporal and spatial expression patterns that correlate with milestones of the central nervous system (CNS) development. Here, we discuss recent studies suggesting that a dynamic regulation of UPR supports generation, maturation, and maintenance of differentiated neurons in the CNS. We further highlight studies supporting a developmental vulnerability of CNS to UPR dysregulation, which underlies neurodevelopmental disorders. We believe that a better understanding of UPR functions may provide novel opportunities for therapeutic strategies to fight ER/UPR-associated human neurological disorders.
Collapse
Affiliation(s)
- Juliette D Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, Illkirch, France.
| | - Catherine Creppe
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Sophie Laguesse
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium.
| |
Collapse
|
19
|
Chen Y, Bharill S, Altun Z, O'Hagan R, Coblitz B, Isacoff EY, Chalfie M. Caenorhabditis elegans paraoxonase-like proteins control the functional expression of DEG/ENaC mechanosensory proteins. Mol Biol Cell 2016; 27:1272-85. [PMID: 26941331 PMCID: PMC4831881 DOI: 10.1091/mbc.e15-08-0561] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/23/2016] [Indexed: 12/22/2022] Open
Abstract
MEC-6 and POML-1 are similar proteins needed for touch sensitivity in Caenorhabditis elegans. These proteins reside primarily in the ER and affect the amount and localization of MEC-4, the DEG/ENaC mechanotransduction channel protein. MEC-6 also accelerates MEC-4 transport to the cell surface in vitro. Thus these proteins appear to act as MEC-4 chaperones. Caenorhabditis elegans senses gentle touch via a mechanotransduction channel formed from the DEG/ENaC proteins MEC-4 and MEC-10. An additional protein, the paraoxonase-like protein MEC-6, is essential for transduction, and previous work suggested that MEC-6 was part of the transduction complex. We found that MEC-6 and a similar protein, POML-1, reside primarily in the endoplasmic reticulum and do not colocalize with MEC-4 on the plasma membrane in vivo. As with MEC-6, POML-1 is needed for touch sensitivity, the neurodegeneration caused by the mec-4(d) mutation, and the expression and distribution of MEC-4 in vivo. Both proteins are likely needed for the proper folding or assembly of MEC-4 channels in vivo as measured by FRET. MEC-6 detectably increases the rate of MEC-4 accumulation on the Xenopus oocyte plasma membrane. These results suggest that MEC-6 and POML-1 interact with MEC-4 to facilitate expression and localization of MEC-4 on the cell surface. Thus MEC-6 and POML-1 act more like chaperones for MEC-4 than channel components.
Collapse
Affiliation(s)
- Yushu Chen
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Shashank Bharill
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Zeynep Altun
- Department of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Robert O'Hagan
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Brian Coblitz
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
20
|
Zhang D, Dubey J, Koushika SP, Rongo C. RAB-6.1 and RAB-6.2 Promote Retrograde Transport in C. elegans. PLoS One 2016; 11:e0149314. [PMID: 26891225 PMCID: PMC4758642 DOI: 10.1371/journal.pone.0149314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/30/2016] [Indexed: 12/25/2022] Open
Abstract
Retrograde transport is a critical mechanism for recycling certain membrane cargo. Following endocytosis from the plasma membrane, retrograde cargo is moved from early endosomes to Golgi followed by transport (recycling) back to the plasma membrane. The complete molecular and cellular mechanisms of retrograde transport remain unclear. The small GTPase RAB-6.2 mediates the retrograde recycling of the AMPA-type glutamate receptor (AMPAR) subunit GLR-1 in C. elegans neurons. Here we show that RAB-6.2 and a close paralog, RAB-6.1, together regulate retrograde transport in both neurons and non-neuronal tissue. Mutants for rab-6.1 or rab-6.2 fail to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. Loss of both rab-6.1 and rab-6.2 results in an additive effect on GLR-1 retrograde recycling, indicating that these two C. elegans Rab6 isoforms have overlapping functions. MIG-14 (Wntless) protein, which undergoes retrograde recycling, undergoes a similar degradation in intestinal epithelia in both rab-6.1 and rab-6.2 mutants, suggesting a broader role for these proteins in retrograde transport. Surprisingly, MIG-14 is localized to separate, spatially segregated endosomal compartments in rab-6.1 mutants compared to rab-6.2 mutants. Our results indicate that RAB-6.1 and RAB-6.2 have partially redundant functions in overall retrograde transport, but also have their own unique cellular- and subcellular functions.
Collapse
Affiliation(s)
- Donglei Zhang
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Jyoti Dubey
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
- Institute for Stem Cell Biology and Regenerative Medicine (InStem), Bangalore, India
- Manipal University, Karnataka, India
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Christopher Rongo
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
21
|
Park EC, Rongo C. The p38 MAP kinase pathway modulates the hypoxia response and glutamate receptor trafficking in aging neurons. eLife 2016; 5. [PMID: 26731517 PMCID: PMC4775213 DOI: 10.7554/elife.12010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/04/2016] [Indexed: 01/07/2023] Open
Abstract
Neurons are sensitive to low oxygen (hypoxia) and employ a conserved pathway to combat its effects. Here, we show that p38 MAP Kinase (MAPK) modulates this hypoxia response pathway in C. elegans. Mutants lacking p38 MAPK components pmk-1 or sek-1 resemble mutants lacking the hypoxia response component and prolyl hydroxylase egl-9, with impaired subcellular localization of Mint orthologue LIN-10, internalization of glutamate receptor GLR-1, and depression of GLR-1-mediated behaviors. Loss of p38 MAPK impairs EGL-9 protein localization in neurons and activates the hypoxia-inducible transcription factor HIF-1, suggesting that p38 MAPK inhibits the hypoxia response pathway through EGL-9. As animals age, p38 MAPK levels decrease, resulting in GLR-1 internalization; this age-dependent downregulation can be prevented through either p38 MAPK overexpression or removal of CDK-5, an antagonizing kinase. Our findings demonstrate that p38 MAPK inhibits the hypoxia response pathway and determines how aging neurons respond to hypoxia through a novel mechanism. DOI:http://dx.doi.org/10.7554/eLife.12010.001 The brain accounts for 2% of our body weight, but consumes about 20% of our oxygen intake. This oxygen gluttony is due to the tremendous appetite of brain cells for energy, which neurons satisfy through oxygen-dependent (aerobic) metabolism. As a result, the loss of oxygen to the brain during a stroke, heart attack, or due to another medical condition can be very damaging to cells in the brain. Human and other animal cells use a communication system called the hypoxia response pathway to sense oxygen and trigger a protective response when oxygen is low. This pathway includes an enzyme called prolyl hydroxylase, which senses oxygen and modifies another protein in the pathway that regulates the production of enzymes involved in metabolism. This alters the balance of enzymes involved in aerobic and oxygen-independent (anaerobic) metabolism in the cell. However, it is not clear how the activity of the prolyl hydroxylase is regulated. Much of our knowledge about the hypoxia response pathway has been gained from studies using a small worm called C. elegans. This worm uses the pathway to cope with hypoxia in the harsh environment of the soil. Mutant worms that lack the prolyl hydroxylase have several abnormalities including higher levels of anaerobic metabolism even in the presence of oxygen, and defects in the connections between neurons. Park and Rongo used C. elegans to study the pathway in more detail. The experiments show that another enzyme called p38 MAPK activates the prolyl hydroxylase. Mutant worms that lack this enzyme have similar abnormalities in the hypoxia response pathway as animals that lack the prolyl hydroxylase. In normal worms, decreasing levels of p38 MAPK as the animals grow older contribute to the decline in the nervous system. The p38 MAPK enzyme appears to work by regulating the activity of the prolyl hydroxylase and its location inside neurons. These findings provide a new target for the development of drugs that may help to protect us from tissue damage caused by hypoxia. Future challenges are to find out what activates p38 MAPK, and how it influences the location of prolyl hydroxylase in neurons. DOI:http://dx.doi.org/10.7554/eLife.12010.002
Collapse
Affiliation(s)
- Eun Chan Park
- The Waksman Institute, Rutgers The State University of New Jersey, New Jersey, United States.,Department of Genetics, Rutgers The State University of New Jersey, New Jersey, United States
| | - Christopher Rongo
- The Waksman Institute, Rutgers The State University of New Jersey, New Jersey, United States.,Department of Genetics, Rutgers The State University of New Jersey, New Jersey, United States
| |
Collapse
|
22
|
Choveau FS, Zhang J, Bierbower SM, Sharma R, Shapiro MS. The Role of the Carboxyl Terminus Helix C-D Linker in Regulating KCNQ3 K+ Current Amplitudes by Controlling Channel Trafficking. PLoS One 2015; 10:e0145367. [PMID: 26692086 PMCID: PMC4687061 DOI: 10.1371/journal.pone.0145367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/01/2015] [Indexed: 12/18/2022] Open
Abstract
In the central and peripheral nervous system, the assembly of KCNQ3 with KCNQ2 as mostly heteromers, but also homomers, underlies “M-type” currents, a slowly-activating voltage-gated K+ current that plays a dominant role in neuronal excitability. KCNQ3 homomers yield much smaller currents compared to KCNQ2 or KCNQ4 homomers and KCNQ2/3 heteromers. This smaller current has been suggested to result either from divergent channel surface expression or from a pore that is more unstable in KCNQ3. Channel surface expression has been shown to be governed by the distal part of the C-terminus in which helices C and D are critical for channel trafficking and assembly. A sequence alignment of this region in KCNQ channels shows that KCNQ3 possesses a longer linker between helix C and D compared to the other KCNQ subunits. Here, we investigate the role of the extra residues of this linker on KCNQ channel expression. Deletion of these residues increased KCNQ3 current amplitudes. Total internal reflection fluorescence imaging and plasma membrane protein assays suggest that the increase in current is due to a higher surface expression of the channels. Conversely, introduction of the extra residues into the linker between helices C and D of KCNQ4 reduced current amplitudes by decreasing the number of KCNQ4 channels at the plasma membrane. Confocal imaging suggests a higher fraction of channels, which possess the extra residues of helix C-D linker, were retained within the endoplasmic reticulum. Such retention does not appear to lead to protein accumulation and activation of the unfolded protein response that regulates protein folding and maintains endoplasmic reticulum homeostasis. Taken together, we conclude that extra helix C-D linker residues play a role in KCNQ3 current amplitudes by controlling the exit of the channel from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Frank S. Choveau
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jie Zhang
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Sonya M. Bierbower
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Ramaswamy Sharma
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Mark S. Shapiro
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Wei X, Howell AS, Dong X, Taylor CA, Cooper RC, Zhang J, Zou W, Sherwood DR, Shen K. The unfolded protein response is required for dendrite morphogenesis. eLife 2015; 4:e06963. [PMID: 26052671 PMCID: PMC4484204 DOI: 10.7554/elife.06963] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/07/2015] [Indexed: 11/13/2022] Open
Abstract
Precise patterning of dendritic fields is essential for the formation and function of neuronal circuits. During development, dendrites acquire their morphology by exuberant branching. How neurons cope with the increased load of protein production required for this rapid growth is poorly understood. Here we show that the physiological unfolded protein response (UPR) is induced in the highly branched Caenorhabditis elegans sensory neuron PVD during dendrite morphogenesis. Perturbation of the IRE1 arm of the UPR pathway causes loss of dendritic branches, a phenotype that can be rescued by overexpression of the ER chaperone HSP-4 (a homolog of mammalian BiP/ grp78). Surprisingly, a single transmembrane leucine-rich repeat protein, DMA-1, plays a major role in the induction of the UPR and the dendritic phenotype in the UPR mutants. These findings reveal a significant role for the physiological UPR in the maintenance of ER homeostasis during morphogenesis of large dendritic arbors. DOI:http://dx.doi.org/10.7554/eLife.06963.001 The brain consists of billions of cells called neurons that can rapidly send and receive information. At one end of the neuron, branched structures called dendrites receive signals from other cells. The number of dendrites and the amount of branching vary in different types of neurons. These patterns are crucial for each neuron to receive the information it needs. Abnormalities in dendrites affect brain activity and are associated with several diseases in humans. To make dendrites, the neuron needs to increase the amount of protein and other cell materials it produces. New proteins are made in a compartment called the endoplasmic reticulum and are folded into particular three-dimensional shapes with the help of chaperone proteins. These chaperones may be overwhelmed if protein production increases, leading to some proteins being folded incorrectly. This can activate a system called the unfolded protein response, which increases the number of chaperone proteins so that the proteins can be refolded correctly. However, it was not clear if neurons rely on the unfolded protein response, or another system, to cope with the increased levels of protein production needed to form complicated dendrite structures. Wei et al. studied a type of neuron called PVD—which has an elaborate network of dendrites—in nematode worms. The experiments show that the unfolded protein response is activated in these neurons as the dendrites form. Mutant worms that were missing a protein called IRE1, which can activate the unfolded protein response, had dendrites with fewer branches than normal worms. The experiments also show that a protein called DMA-1—which is required for dendrites to form—was not able to fold correctly in the mutant worms. As a result, this protein remained in the endoplasmic reticulum instead of moving to the surface of the cell where it is usually found. Wei et al.'s findings reveal that the unfolded protein response plays a major role in allowing cells to increase protein production as the dendrites form. The next challenge is to understand how neurons coordinate transcription and activation of the unfolded protein response. DOI:http://dx.doi.org/10.7554/eLife.06963.002
Collapse
Affiliation(s)
- Xing Wei
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Audrey S Howell
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Xintong Dong
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Caitlin A Taylor
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Roshni C Cooper
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Jianqi Zhang
- Division of Biostatistics, Department of Preventive Medicine, University of Southern California, Los Angeles, United States
| | - Wei Zou
- Department of Biology, Duke University, Durham, United States
| | | | - Kang Shen
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
24
|
Li J, Chen Z, Gao LY, Colorni A, Ucko M, Fang S, Du SJ. A transgenic zebrafish model for monitoring xbp1 splicing and endoplasmic reticulum stress in vivo. Mech Dev 2015; 137:33-44. [PMID: 25892297 DOI: 10.1016/j.mod.2015.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/26/2022]
Abstract
Accumulation of misfolded or unfolded proteins in the endoplasmic reticulum (ER) triggers ER stress that initiates unfolded protein response (UPR). XBP1 is a transcription factor that mediates one of the key signaling pathways of UPR to cope with ER stress through regulating gene expression. Activation of XBP1 involves an unconventional mRNA splicing catalyzed by IRE1 endonuclease that removes an internal 26 nucleotides from xbp1 mRNA transcripts in the cytoplasm. Researchers have taken advantage of this unique activation mechanism to monitor XBP1 activation, thereby UPR, in cell culture and transgenic models. Here we report a Tg(ef1α:xbp1δ-gfp) transgenic zebrafish line to monitor XBP1 activation using GFP as a reporter especially in zebrafish oocytes and developing embryos. The Tg(ef1α:xbp1δ-gfp) transgene was constructed using part of the zebrafish xbp1 cDNA containing the splicing element. ER stress induced splicing results in the cDNA encoding a GFP-tagged partial XBP1 without the transactivation activation domain (XBP1Δ-GFP). The results showed that xbp1 transcripts mainly exist as the spliced active isoform in unfertilized oocytes and zebrafish embryos prior to zygotic gene activation at 3 hours post fertilization. A strong GFP expression was observed in unfertilized oocytes, eyes, brain and skeletal muscle in addition to a weak expression in the hatching gland. Incubation of transgenic zebrafish embryos with (dithiothreitol) DTT significantly induced XBP1Δ-GFP expression. Collectively, these studies unveil the presence of maternal xbp1 splicing in zebrafish oocytes, fertilized eggs and early stage embryos. The Tg(ef1α:xbp1δ-gfp) transgenic zebrafish provides a useful model for in vivo monitoring xbp1 splicing during development and under ER stress conditions.
Collapse
Affiliation(s)
- Junling Li
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Shandong Medicinal and Biotechnology Center, Shandong Academy of Medical Sciences, Jinan 250062, Shandong Province, China
| | - Zhiliang Chen
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lian-Yong Gao
- Department of cell Biology and Molecular genetics, University of Maryland, College Park, MD 20742, USA
| | - Angelo Colorni
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat 88112, Israel
| | - Michal Ucko
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat 88112, Israel
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Shao Jun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
25
|
Asakura T, Ogura KI, Goshima Y. IRE-1/XBP-1 pathway of the unfolded protein response is required for properly localizing neuronal UNC-6/Netrin for axon guidance in C. elegans. Genes Cells 2014; 20:153-9. [PMID: 25469499 DOI: 10.1111/gtc.12206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/23/2014] [Indexed: 01/05/2023]
Abstract
During developing nervous system, neurons project axons to their targets precisely. In this process, axon guidance molecules provide positional information to the axons. Therefore, the spatially and temporally controlled localization of the axon guidance molecules is required for the proper structure formation of the complex nervous system. In C. elegans, UNC-6/Netrin is a secreted protein that elicits both attractive and repulsive response in axon guidance. UNC-6/Netrin secreted from ventral cells may establish a concentration gradient from the ventral to the dorsal side of the animal, thus providing dorso-ventral positional information. However, the mechanisms specifying positional information of UNC-6/Netrin are largely unknown. Here, we show that the ire-1/xbp-1 pathway of the unfolded protein response (UPR) is required for axonal distribution of UNC-6/Netrin in the ventral neurons. In addition, the ire-1/xbp-1 pathway is also required for dorso-ventral axon guidance mediated by UNC-6/Netrin. Our results suggest that the ire-1/xbp-1 pathway of the UPR is crucial for establishing positional information of UNC-6/Netrin. We propose that the proper secretion of UNC-6/Netrin from the ventral neurons requires the activity of IRE-1.
Collapse
Affiliation(s)
- Taro Asakura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | | | | |
Collapse
|
26
|
VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans. Nat Commun 2014; 5:5579. [PMID: 25412913 PMCID: PMC4241504 DOI: 10.1038/ncomms6579] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/15/2014] [Indexed: 11/09/2022] Open
Abstract
The complex molecular and cellular mechanisms underlying neuronal control of animal movement are not well understood. Locomotion of Caenorhabditis elegans is mediated by a neuronal circuit that produces coordinated sinusoidal movement. Here we utilize this simple, yet elegant, behaviour to show that VAV-1, a conserved guanine nucleotide exchange factor for Rho-family GTPases, negatively regulates motor circuit activity and the rate of locomotion. While vav-1 is expressed in a small subset of neurons, we find that VAV-1 function is required in a single interneuron, ALA, to regulate motor neuron circuit activity. Furthermore, we show by genetic and optogenetic manipulation of ALA that VAV-1 is required for the excitation and activation of this neuron. We find that ALA signalling inhibits command interneuron activity by abrogating excitatory signalling in the command interneurons, which is responsible for promoting motor neuron circuit activity. Together, our data describe a novel neuromodulatory role for VAV-1-dependent signalling in the regulation of motor circuit activity and locomotion.
Collapse
|
27
|
Sato K, Norris A, Sato M, Grant BD. C. elegans as a model for membrane traffic. WORMBOOK : THE ONLINE REVIEW OF C. ELEGANS BIOLOGY 2014:1-47. [PMID: 24778088 PMCID: PMC4096984 DOI: 10.1895/wormbook.1.77.2] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The counterbalancing action of the endocytosis and secretory pathways maintains a dynamic equilibrium that regulates the composition of the plasma membrane, allowing it to maintain homeostasis and to change rapidly in response to alterations in the extracellular environment and/or intracellular metabolism. These pathways are intimately integrated with intercellular signaling systems and play critical roles in all cells. Studies in Caenorhabditis elegans have revealed diverse roles of membrane trafficking in physiology and development and have also provided molecular insight into the fundamental mechanisms that direct cargo sorting, vesicle budding, and membrane fisson and fusion. In this review, we summarize progress in understanding membrane trafficking mechanisms derived from work in C. elegans, focusing mainly on work done in non-neuronal cell-types, especially the germline, early embryo, coelomocytes, and intestine.
Collapse
Affiliation(s)
- Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan. ;
| | | | | | | |
Collapse
|
28
|
Hetz C, Mollereau B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 2014; 15:233-49. [PMID: 24619348 DOI: 10.1038/nrn3689] [Citation(s) in RCA: 534] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) is a homeostatic mechanism by which cells regulate levels of misfolded proteins in the endoplasmic reticulum (ER). Although it is well characterized in non-neuronal cells, a proliferation of papers over the past few years has revealed a key role for the UPR in normal neuronal function and as an important driver of neurodegenerative diseases. A complex scenario is emerging in which distinct UPR signalling modules have specific and even opposite effects on neurodegeneration depending on the disease context. Here, we provide an overview of the most recent findings addressing the biological relevance of ER stress in the nervous system.
Collapse
Affiliation(s)
- Claudio Hetz
- 1] Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. [2] Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, University of Chile, Santiago, Chile. [3] Neurounion Biomedical Foundation, Santiago, Chile. [4] Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Bertrand Mollereau
- Laboratory of Molecular Biology of the Cell, CNRS UMR5239, Ecole Normale Supérieure de Lyon, UMS3444 Biosciences Lyon Gerland, University of Lyon, Lyon 69364, France
| |
Collapse
|
29
|
Rachalski A, Freyburger M, Mongrain V. Contribution of transcriptional and translational mechanisms to the recovery aspect of sleep regulation. Ann Med 2014; 46:62-72. [PMID: 24428734 DOI: 10.3109/07853890.2013.866439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sleep parallels brain functioning and mental health. Neuronal activity during wakefulness leads to a subsequent increase in sleep intensity as measured using electroencephalographic slow-wave activity (SWA; index of neuronal synchrony in the low-frequency range). Wakefulness, and particularly prolonged wakefulness, also drives important changes in brain gene expression and changes in protein regulation. The role of these two cellular mechanisms in sleep-wake regulation has typically been studied independently, and their exact contribution to SWA remains poorly defined. In this review, we highlight that many transcriptional pathways driven by sleep deprivation are associated to protein regulation. We first describe the relationship between cytokines, clock genes, and markers of sleep need with an emphasis on transcriptional processes. Observations regarding the role of protein metabolism in sleep-wake regulation are then depicted while presenting interconnections between transcriptional and translational responses driven by sleep loss. Lastly, a manner by which this integrated response can feed back on neuronal network activity to determine sleep intensity is proposed. Overall, the literature supports that a complex cross-talk between transcriptional and translational regulation during prolonged wakefulness drives the changes in sleep intensity as a function of the sleep/wake history.
Collapse
Affiliation(s)
- Adeline Rachalski
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal , Montréal, QC , Canada
| | | | | |
Collapse
|
30
|
Approaches to imaging unfolded secretory protein stress in living cells. ENDOPLASMIC RETICULUM STRESS IN DISEASES 2014; 1:27-39. [PMID: 25419521 DOI: 10.2478/ersc-2014-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The endoplasmic reticulum (ER) is the point of entry of proteins into the secretory pathway. Nascent peptides interact with the ER quality control machinery that ensures correct folding of the nascent proteins. Failure to properly fold proteins can lead to loss of protein function and cytotoxic aggregation of misfolded proteins that can lead to cell death. To cope with increases in the ER unfolded secretory protein burden, cells have evolved the Unfolded Protein Response (UPR). The UPR is the primary signaling pathway that monitors the state of the ER folding environment. When the unfolded protein burden overwhelms the capacity of the ER quality control machinery, a state termed ER stress, sensor proteins detect accumulation of misfolded peptides and trigger the UPR transcriptional response. The UPR, which is conserved from yeast to mammals, consists of an ensemble of complex signaling pathways that aims at adapting the ER to the new misfolded protein load. To determine how different factors impact the ER folding environment, various tools and assays have been developed. In this review, we discuss recent advances in live cell imaging reporters and model systems that enable researchers to monitor changes in the unfolded secretory protein burden and activation of the UPR and its associated signaling pathways.
Collapse
|
31
|
Taylor RC, Dillin A. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 2013; 153:1435-47. [PMID: 23791175 DOI: 10.1016/j.cell.2013.05.042] [Citation(s) in RCA: 450] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 01/04/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
The ability to ensure proteostasis is critical for maintaining proper cell function and organismal viability but is mitigated by aging. We analyzed the role of the endoplasmic reticulum unfolded protein response (UPR(ER)) in aging of C. elegans and found that age-onset loss of ER proteostasis could be reversed by expression of a constitutively active form of XBP-1, XBP-1s. Neuronally derived XBP-1s was sufficient to rescue stress resistance, increase longevity, and activate the UPR(ER) in distal, non-neuronal cell types through a cell-nonautonomous mechanism. Loss of UPR(ER) signaling components in distal cells blocked cell-nonautonomous signaling from the nervous system, thereby blocking increased longevity of the entire animal. Reduction of small clear vesicle (SCV) release blocked nonautonomous signaling downstream of xbp-1s, suggesting that the release of neurotransmitters is required for this intertissue signaling event. Our findings point toward a secreted ER stress signal (SERSS) that promotes ER stress resistance and longevity.
Collapse
Affiliation(s)
- Rebecca C Taylor
- The Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
32
|
Safra M, Ben-Hamo S, Kenyon C, Henis-Korenblit S. The ire-1 ER stress-response pathway is required for normal secretory-protein metabolism in C. elegans. J Cell Sci 2013; 126:4136-46. [PMID: 23843615 DOI: 10.1242/jcs.123000] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The unfolded protein response (UPR) allows cells to cope with endoplasmic reticulum (ER) stress by adjusting the capacity of the ER to the load of ER-associated tasks. The UPR is important for maintaining ER homeostasis under extreme ER stress. UPR genes are important under normal growth conditions as well, but what they are required for under these conditions is less clear. Using C. elegans, we show that the ire-1/xbp-1 arm of the UPR plays a crucial role in maintaining ER plasticity and function also in the absence of external ER stress. We find that during unstressed growth conditions, loss of ire-1 or xbp-1 compromises basic ER functions required for the metabolism of secreted proteins, including translation, folding and secretion. Notably, by compromising ER-associated degradation (ERAD) and phagocytosis, loss of ire-1 hinders the clearance of misfolded proteins from the ER as well as the clearance of proteins that were secreted into the pseudocoleom. Whereas the basal activity of the UPR is beneficial under normal conditions, it accelerates the pathology caused by toxic Aβ protein in a C. elegans model of Alzheimer's disease. Taken together, our findings indicate that UPR genes are critical for maintaining secretory protein metabolism under normal growth conditions.
Collapse
Affiliation(s)
- Modi Safra
- The Mina and Everard Goodman Faculty of Life Sciences, Life Sciences Building 212, Room 408, Bar-Ilan University, Ramat Gan, Israel
| | | | | | | |
Collapse
|
33
|
Sone M, Zeng X, Larese J, Ryoo HD. A modified UPR stress sensing system reveals a novel tissue distribution of IRE1/XBP1 activity during normal Drosophila development. Cell Stress Chaperones 2013; 18:307-19. [PMID: 23160805 PMCID: PMC3631089 DOI: 10.1007/s12192-012-0383-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 10/24/2012] [Accepted: 10/30/2012] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic cells respond to stress caused by the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum by activating the intracellular signaling pathways referred to as the unfolded protein response (UPR). In metazoans, UPR consists of three parallel branches, each characterized by its stress sensor protein, IRE1, ATF6, and PERK, respectively. In Drosophila, IRE1/XBP1 pathway is considered to function as a major branch of UPR; however, its physiological roles during the normal development and homeostasis remain poorly understood. To visualize IRE1/XBP1 activity in fly tissues under normal physiological conditions, we modified previously reported XBP1 stress sensing systems (Souid et al., Dev Genes Evol 217: 159-167, 2007; Ryoo et al., EMBO J 26: 242-252, 2007), based on the recent reports regarding the unconventional splicing of XBP1/HAC1 mRNA (Aragon et al., Nature 457: 736-740, 2009; Yanagitani et al., Mol Cell 34: 191-200, 2009; Science 331: 586-589, 2011). The improved XBP1 stress sensing system allowed us to detect new IRE1/XBP1 activities in the brain, gut, Malpighian tubules, and trachea of third instar larvae and in the adult male reproductive organ. Specifically, in the larval brain, IRE1/XBP1 activity was detected exclusively in glia, although previous reports have largely focused on IRE1/XBP1 activity in neurons. Unexpected glial IRE1/XBP1 activity may provide us with novel insights into the brain homeostasis regulated by the UPR.
Collapse
Affiliation(s)
- Michio Sone
- Department of Cell Biology, New York University School of Medicine, 560 First Avenue, New York, NY 10016 USA
| | - Xiaomei Zeng
- Department of Cell Biology, New York University School of Medicine, 560 First Avenue, New York, NY 10016 USA
| | - Joseph Larese
- Department of Cell Biology, New York University School of Medicine, 560 First Avenue, New York, NY 10016 USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, 560 First Avenue, New York, NY 10016 USA
| |
Collapse
|
34
|
Hypoxia regulates glutamate receptor trafficking through an HIF-independent mechanism. EMBO J 2012; 31:1379-93. [PMID: 22252129 DOI: 10.1038/emboj.2011.499] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 12/23/2011] [Indexed: 12/14/2022] Open
Abstract
Oxygen influences behaviour in many organisms, with low levels (hypoxia) having devastating consequences for neuron survival. How neurons respond physiologically to counter the effects of hypoxia is not fully understood. Here, we show that hypoxia regulates the trafficking of the glutamate receptor GLR-1 in C. elegans neurons. Either hypoxia or mutations in egl-9, a prolyl hydroxylase cellular oxygen sensor, result in the internalization of GLR-1, the reduction of glutamate-activated currents, and the depression of GLR-1-mediated behaviours. Surprisingly, hypoxia-inducible factor (HIF)-1, the canonical substrate of EGL-9, is not required for this effect. Instead, EGL-9 interacts with the Mint orthologue LIN-10, a mediator of GLR-1 membrane recycling, to promote LIN-10 subcellular localization in an oxygen-dependent manner. The observed effects of hypoxia and egl-9 mutations require the activity of the proline-directed CDK-5 kinase and the CDK-5 phosphorylation sites on LIN-10, suggesting that EGL-9 and CDK-5 compete in an oxygen-dependent manner to regulate LIN-10 activity and thus GLR-1 trafficking. Our findings demonstrate a novel mechanism by which neurons sense and respond to hypoxia.
Collapse
|
35
|
Zhang D, Isack NR, Glodowski DR, Liu J, Chen CCH, Xu XZS, Grant BD, Rongo C. RAB-6.2 and the retromer regulate glutamate receptor recycling through a retrograde pathway. ACTA ACUST UNITED AC 2012; 196:85-101. [PMID: 22213799 PMCID: PMC3255976 DOI: 10.1083/jcb.201104141] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RAB-6.2, its effector LIN-10, and the retromer complex maintain synaptic strength by recycling postsynaptic glutamate receptors along the retrograde transport pathway. Regulated membrane trafficking of AMPA-type glutamate receptors (AMPARs) is a key mechanism underlying synaptic plasticity, yet the pathways used by AMPARs are not well understood. In this paper, we show that the AMPAR subunit GLR-1 in Caenorhabditis elegans utilizes the retrograde transport pathway to regulate AMPAR synaptic abundance. Mutants for rab-6.2, the retromer genes vps-35 and snx-1, and rme-8 failed to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. In contrast, expression of constitutively active RAB-6.2 drove the retrograde transport of GLR-1 from dendrites back to cell body Golgi. We also find that activated RAB-6.2 bound to and colocalized with the PDZ/phosphotyrosine binding domain protein LIN-10. RAB-6.2 recruited LIN-10. Moreover, the regulation of GLR-1 transport by RAB-6.2 required LIN-10 activity. Our results demonstrate a novel role for RAB-6.2, its effector LIN-10, and the retromer complex in maintaining synaptic strength by recycling AMPARs along the retrograde transport pathway.
Collapse
Affiliation(s)
- Donglei Zhang
- The Waksman Institute, Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Neurotoxic injury pathways in differentiated mouse motor neuron-neuroblastoma hybrid (NSC-34D) cells in vitro--limited effect of riluzole on thapsigargin, but not staurosporine, hydrogen peroxide and homocysteine neurotoxicity. Toxicol Appl Pharmacol 2011; 258:208-15. [PMID: 22108590 DOI: 10.1016/j.taap.2011.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 10/28/2011] [Accepted: 10/30/2011] [Indexed: 12/11/2022]
Abstract
The neuroblastoma-spinal motor neuron fusion cell line, NSC-34, in its differentiated form, NSC-34D, permits examining the effects of riluzole, a proven treatment for amyotrophic lateral sclerosis (ALS) on cell death induction by staurosporine (STS), thapsigargin (Thaps), hydrogen peroxide (H(2)O(2)) and homocysteine (HCy). These neurotoxins, applied exogenously, have mechanisms of action related to the various proposed molecular pathogenetic pathways in ALS and are differentiated from endogenous cell death that is associated with cytoplasmic aggregate formation in motor neurons. Nuclear morphology, caspase-3/7 activation and high content imaging were used to assess toxicity of these neurotoxins with and without co-treatment with riluzole, a benzothiazole compound with multiple pharmacological actions. STS was the most potent neurotoxin at killing NSC-34D cells with a toxic concentration at which 50% of maximal cell death is achieved (TC(50)=0.01μM), followed by Thaps (TC(50)=0.9μM) and H(2)O(2) (TC(50)=15μM) with HCy requiring higher concentrations to kill at the same level (TC(50)=2200μM). Riluzole provided neurorescue with a 20% absolute reduction (47.6% relative reduction) in apoptotic cell death against Thaps-induced NSC-34D cell (p≤0.05), but had no effect on STS-, H(2)O(2)- and HCy-induced NSC-34D cell death. This effect of riluzole on Thaps induction of cell death was independent of caspase-3/7 activation. Riluzole mitigated a toxin that can cause intracellular calcium dysregulation associated with endoplasmic reticulum (ER) stress but not toxins associated with other cell death mechanisms.
Collapse
|
37
|
Dong L, Guarino BB, Jordan-Sciutto KL, Winkelstein BA. Activating transcription factor 4, a mediator of the integrated stress response, is increased in the dorsal root ganglia following painful facet joint distraction. Neuroscience 2011; 193:377-86. [PMID: 21821103 PMCID: PMC3171593 DOI: 10.1016/j.neuroscience.2011.07.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/01/2011] [Accepted: 07/24/2011] [Indexed: 02/06/2023]
Abstract
Chronic neck pain is one of the most common musculoskeletal disorders in the US. Although biomechanical and clinical studies have implicated the facet joint as a primary source of neck pain, specific cellular mechanisms still remain speculative. The purpose of this study was to investigate whether a mediator (activating transcription factor; 4ATF4) of the integrated stress response (ISR) is involved in facet-mediated pain. Holtzman rats underwent C6/C7 facet joint loading that produces either painful (n=16) or nonpainful (n=8) responses. A sham group (n=9) was also included as surgical controls. Behavioral sensitivity was measured and the C6 dorsal root ganglia (DRGs) were harvested on day 7 to evaluate the total and neuronal ATF4 expression. In separate groups, an intra-articular ketorolac injection was administered either immediately (D0 ketorolac) or 1 day (D1 ketorolac) after painful facet joint loading. Allodynia was measured at days 1 and 7 after injury to assess the effects on behavioral responses. ATF4 and BiP (an indicator of ISR activation) were separately quantified at day 7. Facet joint loading sufficient to elicit behavioral hypersensitivity produced a threefold increase in total and neuronal ATF4 expression in the DRG. After ketorolac treatment at the time of injury, ATF4 expression was significantly (P<0.01) reduced despite not producing any attenuation of behavioral responses. Interestingly, ketorolac treatment at day 1 significantly (P<0.001) alleviated behavioral sensitivity at day 7, but did not modify ATF4 expression. BiP expression was unchanged after either intervention time. Results suggest that ATF4-dependent activation of the ISR does not directly contribute to persistent pain, but it may sensitize neurons responsible for pain initiation. These behavioral and immunohistochemical findings imply that facet-mediated pain may be sustained through other pathways of the ISR.
Collapse
Affiliation(s)
- Ling Dong
- Department of Bioengineering University of Pennsylvania Philadelphia, PA 19104, USA
| | - Benjamin B. Guarino
- Department of Bioengineering University of Pennsylvania Philadelphia, PA 19104, USA
| | | | - Beth A. Winkelstein
- Department of Bioengineering University of Pennsylvania Philadelphia, PA 19104, USA
- Department of Neurosurgery University of Pennsylvania Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Matus S, Glimcher LH, Hetz C. Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr Opin Cell Biol 2011; 23:239-52. [PMID: 21288706 DOI: 10.1016/j.ceb.2011.01.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/05/2011] [Accepted: 01/11/2011] [Indexed: 01/19/2023]
Abstract
Several neurodegenerative diseases share common neuropathology, primarily featuring the presence in the brain of abnormal protein inclusions containing specific misfolded proteins. Recent evidence indicates that alteration in organelle function is a common pathological feature of protein misfolding disorders, highlighting perturbations in the homeostasis of the endoplasmic reticulum (ER). Signs of ER stress have been detected in most experimental models of neurological disorders and more recently in brain samples from human patients with neurodegenerative disease. To cope with ER stress, cells activate an integrated signaling response termed the unfolded protein response (UPR), which aims to reestablish homeostasis in part through regulation of genes involved in protein folding, quality control and degradation pathways. Here we discuss the particular mechanisms currently proposed to be involved in the generation of protein folding stress in different neurodegenerative conditions and speculate about possible therapeutic interventions.
Collapse
Affiliation(s)
- Soledad Matus
- Center for Molecular Studies of Cell, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
39
|
Kramer LB, Shim J, Previtera ML, Isack NR, Lee MC, Firestein BL, Rongo C. UEV-1 is an ubiquitin-conjugating enzyme variant that regulates glutamate receptor trafficking in C. elegans neurons. PLoS One 2010; 5:e14291. [PMID: 21179194 PMCID: PMC3001443 DOI: 10.1371/journal.pone.0014291] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 11/18/2010] [Indexed: 11/18/2022] Open
Abstract
The regulation of AMPA-type glutamate receptor (AMPAR) membrane trafficking is a key mechanism by which neurons regulate synaptic strength and plasticity. AMPAR trafficking is modulated through a combination of receptor phosphorylation, ubiquitination, endocytosis, and recycling, yet the factors that mediate these processes are just beginning to be uncovered. Here we identify the ubiquitin-conjugating enzyme variant UEV-1 as a regulator of AMPAR trafficking in vivo. We identified mutations in uev-1 in a genetic screen for mutants with altered trafficking of the AMPAR subunit GLR-1 in C. elegans interneurons. Loss of uev-1 activity results in the accumulation of GLR-1 in elongated accretions in neuron cell bodies and along the ventral cord neurites. Mutants also have a corresponding behavioral defect--a decrease in spontaneous reversals in locomotion--consistent with diminished GLR-1 function. The localization of other synaptic proteins in uev-1-mutant interneurons appears normal, indicating that the GLR-1 trafficking defects are not due to gross deficiencies in synapse formation or overall protein trafficking. We provide evidence that GLR-1 accumulates at RAB-10-containing endosomes in uev-1 mutants, and that receptors arrive at these endosomes independent of clathrin-mediated endocytosis. UEV-1 homologs in other species bind to the ubiquitin-conjugating enzyme Ubc13 to create K63-linked polyubiquitin chains on substrate proteins. We find that whereas UEV-1 can interact with C. elegans UBC-13, global levels of K63-linked ubiquitination throughout nematodes appear to be unaffected in uev-1 mutants, even though UEV-1 is broadly expressed in most tissues. Nevertheless, ubc-13 mutants are similar in phenotype to uev-1 mutants, suggesting that the two proteins do work together to regulate GLR-1 trafficking. Our results suggest that UEV-1 could regulate a small subset of K63-linked ubiquitination events in nematodes, at least one of which is critical in regulating GLR-1 trafficking.
Collapse
Affiliation(s)
- Lawrence B Kramer
- The Waksman Institute, Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | | | | | | | | | | | | |
Collapse
|
40
|
Protein misfolding induces hypoxic preconditioning via a subset of the unfolded protein response machinery. Mol Cell Biol 2010; 30:5033-42. [PMID: 20733002 DOI: 10.1128/mcb.00922-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prolonged cellular hypoxia results in energy failure and ultimately cell death. However, less-severe hypoxia can induce a cytoprotective response termed hypoxic preconditioning (HP). The unfolded protein response pathway (UPR) has been known for some time to respond to hypoxia and regulate hypoxic sensitivity; however, the role of the UPR, if any, in HP essentially has been unexplored. We have shown previously that a sublethal hypoxic exposure of the nematode Caenorhabditis elegans induces a protein chaperone component of the UPR (L. L. Anderson, X. Mao, B. A. Scott, and C. M. Crowder, Science 323:630-633, 2009). Here, we show that HP induces the UPR and that the pharmacological induction of misfolded proteins is itself sufficient to stimulate a delayed protective response to hypoxic injury that requires the UPR pathway proteins IRE-1, XBP-1, and ATF-6. HP also required IRE-1 but not XBP-1 or ATF-6; instead, GCN-2, which is known to suppress translation and induce an adaptive transcriptional response under conditions of UPR activation or amino acid deprivation, was required for HP. The phosphorylation of the translation factor eIF2α, an established mechanism of GCN-2-mediated translational suppression, was not necessary for HP. These data suggest a model where hypoxia-induced misfolded proteins trigger the activation of IRE-1, which along with GCN-2 controls an adaptive response that is essential to HP.
Collapse
|
41
|
Cao P, Yuan Y, Pehek EA, Moise AR, Huang Y, Palczewski K, Feng Z. Alpha-synuclein disrupted dopamine homeostasis leads to dopaminergic neuron degeneration in Caenorhabditis elegans. PLoS One 2010; 5:e9312. [PMID: 20174477 PMCID: PMC2824852 DOI: 10.1371/journal.pone.0009312] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 01/28/2010] [Indexed: 12/01/2022] Open
Abstract
Disruption of dopamine homeostasis may lead to dopaminergic neuron degeneration, a proposed explanation for the specific vulnerability of dopaminergic neurons in Parkinson's disease. While expression of human α-synuclein in C. elegans results in dopaminergic neuron degeneration, the effects of α-synuclein on dopamine homeostasis and its contribution to dopaminergic neuron degeneration in C. elegans have not been reported. Here, we examined the effects of α-synuclein overexpression on worm dopamine homeostasis. We found that α-synuclein expression results in upregulation of dopamine synthesis and content, and redistribution of dopaminergic synaptic vesicles, which significantly contribute to dopaminergic neuron degeneration. These results provide in vivo evidence supporting a critical role for dopamine homeostasis in supporting dopaminergic neuron integrity.
Collapse
Affiliation(s)
- Pengxiu Cao
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yiyuan Yuan
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Elizabeth A. Pehek
- Departments of Psychiatry and Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Veterans Affairs, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Alex R. Moise
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ying Huang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Zhaoyang Feng
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Physiology, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- * E-mail:
| |
Collapse
|
42
|
Dejima K, Murata D, Mizuguchi S, Nomura KH, Gengyo-Ando K, Mitani S, Kamiyama S, Nishihara S, Nomura K. The ortholog of human solute carrier family 35 member B1 (UDP-galactose transporter-related protein 1) is involved in maintenance of ER homeostasis and essential for larval development in Caenorhabditis elegans. FASEB J 2009; 23:2215-25. [PMID: 19270184 DOI: 10.1096/fj.08-123737] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although the solute carrier 35B1 (SLC35B1) is evolutionarily conserved, its functions in metazoans remain unknown. To elucidate its function, we examined developmental roles of an SLC35B1 family gene (HUT-1: homolog of UDP-Gal transporter) in Caenorhabditis elegans. We isolated a deletion mutant of the gene and characterized phenotypes of the mutant and hut-1 RNAi-treated worms. GFP-HUT-1 reporter analysis was performed to examine gene expression patterns. We also tested whether several nucleotide sugar transporters can compensate for hut-1 deficiency. The hut-1 deletion mutant and RNAi worms showed larval growth defect and lethality with disrupted intestinal morphology. Inactivation of hut-1 induced chronic endoplasmic reticulum (ER) stress, and hut-1 showed genetic interactions with the atf-6, pek-1, and ire-1 genes involved in unfolded protein response signaling. ER ultrastructure and ER marker distribution in hut-1-deficient animals showed that HUT-1 is required for maintenance of ER structure. Reporter analysis revealed that HUT-1 is an ER protein ubiquitously expressed in tissues, including the intestine. Lethality and the ER stress phenotype of the mutant were rescued with the human hut-1 ortholog UGTrel1. These results indicate important roles for hut-1 in development and maintenance of ER homeostasis in C. elegans.
Collapse
Affiliation(s)
- Katsufumi Dejima
- Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Emtage L, Chang H, Tiver R, Rongo C. MAGI-1 modulates AMPA receptor synaptic localization and behavioral plasticity in response to prior experience. PLoS One 2009; 4:e4613. [PMID: 19242552 PMCID: PMC2645691 DOI: 10.1371/journal.pone.0004613] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 01/19/2009] [Indexed: 12/04/2022] Open
Abstract
It is well established that the efficacy of synaptic connections can be rapidly modified by neural activity, yet how the environment and prior experience modulate such synaptic and behavioral plasticity is only beginning to be understood. Here we show in C. elegans that the broadly conserved scaffolding molecule MAGI-1 is required for the plasticity observed in a glutamatergic circuit. This mechanosensory circuit mediates reversals in locomotion in response to touch stimulation, and the AMPA-type receptor (AMPAR) subunits GLR-1 and GLR-2, which are required for reversal behavior, are localized to ventral cord synapses in this circuit. We find that animals modulate GLR-1 and GLR-2 localization in response to prior mechanosensory stimulation; a specific isoform of MAGI-1 (MAGI-1L) is critical for this modulation. We show that MAGI-1L interacts with AMPARs through the intracellular domain of the GLR-2 subunit, which is required for the modulation of AMPAR synaptic localization by mechanical stimulation. In addition, mutations that prevent the ubiquitination of GLR-1 prevent the decrease in AMPAR localization observed in previously stimulated magi-1 mutants. Finally, we find that previously-stimulated animals later habituate to subsequent mechanostimulation more rapidly compared to animals initially reared without mechanical stimulation; MAGI-1L, GLR-1, and GLR-2 are required for this change in habituation kinetics. Our findings demonstrate that prior experience can cause long-term alterations in both behavioral plasticity and AMPAR localization at synapses in an intact animal, and indicate a new, direct role for MAGI/S-SCAM proteins in modulating AMPAR localization and function in the wake of variable sensory experience.
Collapse
Affiliation(s)
- Lesley Emtage
- The Waksman Institute, Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Howard Chang
- The Waksman Institute, Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Rebecca Tiver
- The Waksman Institute, Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Christopher Rongo
- The Waksman Institute, Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
44
|
Aberrant endoplasmic reticulum stress response in lymphoblastoid cells from patients with bipolar disorder. Int J Neuropsychopharmacol 2009; 12:33-43. [PMID: 18771604 DOI: 10.1017/s1461145708009358] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Impaired endoplasmic reticulum (ER) stress response has been suggested as a possible pathophysiological mechanism of bipolar disorder (BD). The expression of ER stress-related genes, spliced form or unspliced form of XBP1, GRP78 (HSPA5), GRP94 (HSP90B1), CHOP (DDIT3), and calreticulin (CALR), were examined in lymphoblastoid cells derived from 59 patients with BD and 59 age- and sex-matched control subjects. Basal mRNA levels and induction by 4 h or 12 h of treatment with two ER stressors, thapsigargin or tunicamycin, were examined using real-time quantitative reverse transcription-polymerase chain reaction. Induction of the spliced form of XBP1 as well as total XBP1 by thapsigargin was significantly attenuated in patients with BD. Induction of GRP94 by thapsigargin was also decreased in the BD group. A haplotype of GRP94, protective against BD, exhibited significantly higher GRP94 expression upon ER stress. This report confirms and extends earlier observations of impaired ER stress response in larger samples of lymphoblastoid cell lines derived from BD patients. Altered ER stress response may play a role in the pathophysiology of BD by altering neural development and plasticity.
Collapse
|
45
|
Kato T. Molecular neurobiology of bipolar disorder: a disease of 'mood-stabilizing neurons'? Trends Neurosci 2008; 31:495-503. [PMID: 18774185 DOI: 10.1016/j.tins.2008.07.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/30/2008] [Accepted: 07/30/2008] [Indexed: 01/07/2023]
Abstract
Although the role of a genetic factor is established in bipolar disorder, causative genes or robust genetic risk factors have not been identified. Increased incidence of subcortical hyperintensity, altered calcium levels in cells derived from patients and neuroprotective effects of mood stabilizers suggest vulnerability or impaired resilience of neurons in bipolar disorder. Mitochondrial dysfunction or impaired endoplasmic reticulum stress response is suggested to play a role in the neurons' vulnerability. Progressive loss or dysfunction of 'mood-stabilizing neurons' might account for the characteristic course of the illness. The important next step in the neurobiological study of bipolar disorder is identification of the neural systems that are responsible for this disorder.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
46
|
Hetz C, Lee AH, Gonzalez-Romero D, Thielen P, Castilla J, Soto C, Glimcher LH. Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proc Natl Acad Sci U S A 2008; 105:757-62. [PMID: 18178615 PMCID: PMC2206609 DOI: 10.1073/pnas.0711094105] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Indexed: 01/08/2023] Open
Abstract
The unfolded protein response (UPR) is a conserved adaptive reaction that increases cell survival under endoplasmic reticulum (ER) stress conditions. X-box-binding protein-1 (XBP-1) is a key transcriptional regulator of the UPR that activates genes involved in protein folding, secretion, and degradation to restore ER function. The occurrence of chronic ER stress has been extensively described in neurodegenerative conditions linked to protein misfolding and aggregation. However, the role of the UPR in the CNS has not been addressed directly. Here we describe the generation of a brain-specific XBP-1 conditional KO strain (XBP-1(Nes-/-)). XBP-1(Nes-/-) mice are viable and do not develop any spontaneous neurological dysfunction, although ER stress signaling in XBP-1(Nes-/-) primary neuronal cell cultures was impaired. To assess the function of XBP-1 in pathological conditions involving protein misfolding and ER stress, we infected XBP-1(Nes-/-) mice with murine prions. To our surprise, the activation of stress responses triggered by prion replication was not influenced by XBP-1 deficiency. Neither prion aggregation, neuronal loss, nor animal survival was affected. Hence, this most highly conserved arm of the UPR may not contribute to the occurrence or pathology of neurodegenerative conditions associated with prion protein misfolding despite predictions that such diseases are related to ER stress and irreversible neuronal damage.
Collapse
Affiliation(s)
- Claudio Hetz
- *Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, and Fondo de Areas Priaritarias Center for Molecular Studies of the Cell, University of Chile, Casilla 70086, Santiago 838-0453, Chile
| | - Ann-Hwee Lee
- *Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115
| | | | - Peter Thielen
- *Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115
| | - Joaquín Castilla
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Claudio Soto
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Laurie H. Glimcher
- *Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
47
|
Glodowski DR, Chen CCH, Schaefer H, Grant BD, Rongo C. RAB-10 regulates glutamate receptor recycling in a cholesterol-dependent endocytosis pathway. Mol Biol Cell 2007; 18:4387-96. [PMID: 17761527 PMCID: PMC2043545 DOI: 10.1091/mbc.e07-05-0486] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 08/06/2007] [Accepted: 08/20/2007] [Indexed: 12/26/2022] Open
Abstract
Regulated endocytosis of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) is critical for synaptic plasticity. However, the specific combination of clathrin-dependent and -independent mechanisms that mediate AMPAR trafficking in vivo have not been fully characterized. Here, we examine the trafficking of the AMPAR subunit GLR-1 in Caenorhabditis elegans. GLR-1 is localized on synaptic membranes, where it regulates reversals of locomotion in a simple behavioral circuit. Animals lacking RAB-10, a small GTPase required for endocytic recycling of intestinal cargo, are similar in phenotype to animals lacking LIN-10, a postsynaptic density 95/disc-large/zona occludens-domain containing protein: GLR-1 accumulates in large accretions and animals display a decreased frequency of reversals. Mutations in unc-11 (AP180) or itsn-1 (Intersectin 1), which reduce clathrin-dependent endocytosis, suppress the lin-10 but not rab-10 mutant phenotype, suggesting that LIN-10 functions after clathrin-mediated endocytosis. By contrast, cholesterol depletion, which impairs lipid raft formation and clathrin-independent endocytosis, suppresses the rab-10 but not the lin-10 phenotype, suggesting that RAB-10 functions after clathrin-independent endocytosis. Animals lacking both genes display additive GLR-1 trafficking defects. We propose that RAB-10 and LIN-10 recycle AMPARs from intracellular endosomal compartments to synapses along distinct pathways, each with distinct sensitivities to cholesterol and the clathrin-mediated endocytosis machinery.
Collapse
Affiliation(s)
| | | | | | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | | |
Collapse
|
48
|
So J, Warsh JJ, Li PP. Impaired endoplasmic reticulum stress response in B-lymphoblasts from patients with bipolar-I disorder. Biol Psychiatry 2007; 62:141-7. [PMID: 17217928 DOI: 10.1016/j.biopsych.2006.10.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/11/2006] [Accepted: 10/12/2006] [Indexed: 01/19/2023]
Abstract
BACKGROUND Aberrant intracellular calcium (Ca2+) signaling in patients with bipolar-I disorder (BD-I) suggests disturbed endoplasmic reticulum (ER) function in BD. We examined whether the ER stress response is altered in BD-I patients and the relationship to basal intracellular Ca2+ levels ([Ca2+]B), in B lymphoblasts (BLCLs) from BD-I patients. METHODS Endoplasmic reticulum stress-induced X-box binding protein 1 (XBP1), C/EBP homologous protein (CHOP), and GRP78 expression in BLCLs from BD-I subjects stratified on elevated or normal [Ca2+]B and control subjects were determined by real-time quantitative reverse transcription polymerase chain reaction. The XBP1 -116C/G polymorphism, which impairs the XBP1 loop in the ER stress response, were genotyped with a TaqMan-based assay. RESULTS Compared with control subjects, thapsigargin- and tunicamycin-induced increases in XBP1 and CHOP but not GRP78 messenger RNA levels were significantly lower in BD-I patients. However, induction of these genes did not differ significantly in the two BD-I subgroups stratified on [Ca2+]B. Furthermore, the attenuated XBP1 induction cannot be explained solely by differences of XBP1 -116C/G genotype frequency. CONCLUSIONS Our findings suggest that the ER stress response is impaired in BD-I patients but irrespective of altered intracellular Ca2+ homeostasis as reflected in elevated [Ca2+]B. Moreover, an effect of XBP1 -116C/G polymorphism could not account for the attenuated XBP1 induction in bipolar-I disorder observed in this study.
Collapse
Affiliation(s)
- Jonathan So
- Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
49
|
Murakami T, Hino SI, Saito A, Imaizumi K. Endoplasmic reticulum stress response in dendrites of cultured primary neurons. Neuroscience 2007; 146:1-8. [PMID: 17367944 DOI: 10.1016/j.neuroscience.2007.01.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/09/2007] [Accepted: 01/10/2007] [Indexed: 01/21/2023]
Abstract
The endoplasmic reticulum (ER) is an organelle in which secretory and transmembrane proteins are folded or processed, and is susceptible to various stresses that provoke the accumulation of unfolded proteins in the ER lumen. Recently, ER stress has been reported to be linked to neuronal death in various neurodegenerative diseases. Neurons contain the ER not only in the soma, but also in the dendrites, thus presenting a different case to non-neuronal cells. The ER in the dendrites has potential functions in local protein synthesis and sorting of synthesized proteins to postsynaptic membranes. It raises the possibility that ER stress could occur locally in the dendrites. Here we showed that ER stress sensors, inositol-requiring 1 (IRE1), PKR-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6) exist in the ER of both soma and dendrites in primary mouse neurons, and that under ER stress conditions, GRP78/BiP and phosphorylated eIF2alpha are induced. Furthermore, XBP1 mRNA was localized in the proximal dendrites where IRE1 was rapidly phosphorylated in response to ER stress. These results indicate that the ER in dendrites could respond to ER stress and retain the capacity of protein quality control.
Collapse
Affiliation(s)
- T Murakami
- Division of Molecular and Cellular Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | |
Collapse
|
50
|
Ryoo HD, Domingos PM, Kang MJ, Steller H. Unfolded protein response in a Drosophila model for retinal degeneration. EMBO J 2007; 26:242-52. [PMID: 17170705 PMCID: PMC1782370 DOI: 10.1038/sj.emboj.7601477] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 11/06/2006] [Indexed: 12/15/2022] Open
Abstract
Stress in the endoplasmic reticulum (ER stress) and its cellular response, the unfolded protein response (UPR), are implicated in a wide variety of diseases, but its significance in many disorders remains to be validated in vivo. Here, we analyzed a branch of the UPR mediated by xbp1 in Drosophila to establish its role in neurodegenerative diseases. The Drosophila xbp1 mRNA undergoes ire-1-mediated unconventional splicing in response to ER stress, and this property was used to develop a specific UPR marker, xbp1-EGFP, in which EGFP is expressed in frame only after ER stress. xbp1-EGFP responds specifically to ER stress, but not to proteins that form cytoplasmic aggregates. The ire-1/xbp1 pathway regulates heat shock cognate protein 3 (hsc3), an ER chaperone. xbp1 splicing and hsc3 induction occur in the retina of ninaE(G69D)-/+, a Drosophila model for autosomal dominant retinitis pigmentosa (ADRP), and reduction of xbp1 gene dosage accelerates retinal degeneration of these animals. These results demonstrate the role of the UPR in the Drosophila ADRP model and open new opportunities for examining the UPR in other Drosophila disease models.
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Department of Cell Biology, NYU School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Pedro M Domingos
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Min-Ji Kang
- Department of Cell Biology, NYU School of Medicine, New York, NY, USA
| | - Hermann Steller
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|