1
|
Lee YJ, Kim M, Kim HS, Kang JL. Administration of Gas6 attenuates lung fibrosis via inhibition of the epithelial-mesenchymal transition and fibroblast activation. Cell Biol Toxicol 2024; 40:20. [PMID: 38578518 PMCID: PMC10997547 DOI: 10.1007/s10565-024-09858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
The epithelial-mesenchymal transition (EMT) and fibroblast activation are major events in idiopathic pulmonary fibrosis pathogenesis. Here, we investigated whether growth arrest-specific protein 6 (Gas6) plays a protective role in lung fibrosis via suppression of the EMT and fibroblast activation. rGas6 administration inhibited the EMT in isolated mouse ATII cells 14 days post-BLM treatment based on morphologic cellular alterations, changes in mRNA and protein expression profiles of EMT markers, and induction of EMT-activating transcription factors. BLM-induced increases in gene expression of fibroblast activation-related markers and the invasive capacity of primary lung fibroblasts in primary lung fibroblasts were reversed by rGas6 administration. Furthermore, the hydroxyproline content and collagen accumulation in interstitial areas with damaged alveolar structures in lung tissue were reduced by rGas6 administration. Targeting Gas6/Axl signaling events with specific inhibitors of Axl (BGB324), COX-2 (NS-398), EP1/EP2 receptor (AH-6809), or PGD2 DP2 receptor (BAY-u3405) reversed the inhibitory effects of rGas6 on EMT and fibroblast activation. Finally, we confirmed the antifibrotic effects of Gas6 using Gas6-/- mice. Therefore, Gas6/Axl signaling events play a potential role in inhibition of EMT process and fibroblast activation via COX-2-derived PGE2 and PGD2 production, ultimately preventing the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ye-Ji Lee
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
| | - Minsuk Kim
- Department of Pharmacology, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea.
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea.
| |
Collapse
|
2
|
Tutusaus A, Morales A, García de Frutos P, Marí M. GAS6/TAM Axis as Therapeutic Target in Liver Diseases. Semin Liver Dis 2024; 44:99-114. [PMID: 38395061 PMCID: PMC11027478 DOI: 10.1055/a-2275-0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
TAM (TYRO3, AXL, and MERTK) protein tyrosine kinase membrane receptors and their vitamin K-dependent ligands GAS6 and protein S (PROS) are well-known players in tumor biology and autoimmune diseases. In contrast, TAM regulation of fibrogenesis and the inflammation mechanisms underlying metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and, ultimately, liver cancer has recently been revealed. GAS6 and PROS binding to phosphatidylserine exposed in outer membranes of apoptotic cells links TAMs, particularly MERTK, with hepatocellular damage. In addition, AXL and MERTK regulate the development of liver fibrosis and inflammation in chronic liver diseases. Acute hepatic injury is also mediated by the TAM system, as recent data regarding acetaminophen toxicity and acute-on-chronic liver failure have uncovered. Soluble TAM-related proteins, mainly released from activated macrophages and hepatic stellate cells after hepatic deterioration, are proposed as early serum markers for disease progression. In conclusion, the TAM system is becoming an interesting pharmacological target in liver pathology and a focus of future biomedical research in this field.
Collapse
Affiliation(s)
- Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Cardiovasculares (CIBERCV), Barcelona, Comunidad de Madrid, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| |
Collapse
|
3
|
Kim BM, Lee YJ, Choi YH, Park EM, Kang JL. Gas6 Ameliorates Inflammatory Response and Apoptosis in Bleomycin-Induced Acute Lung Injury. Biomedicines 2021; 9:1674. [PMID: 34829903 PMCID: PMC8615678 DOI: 10.3390/biomedicines9111674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Acute lung injury (ALI) is characterized by alveolar damage, lung edema, and exacerbated inflammatory response. Growth arrest-specific protein 6 (Gas6) mediates many different functions, including cell survival, proliferation, inflammatory signaling, and apoptotic cell clearance (efferocytosis). The role of Gas6 in bleomycin (BLM)-induced ALI is unknown. We investigated whether exogenous administration of mouse recombinant Gas6 (rGas6) has anti-inflammatory and anti-apoptotic effects on BLM-induced ALI. Compared to mice treated with only BLM, the administration of rGas6 reduced the secretion of proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-2, and increased the secretion of hepatocyte growth factor in bronchoalveolar lavage (BAL) fluid. rGas6 administration also reduced BLM-induced inflammation and apoptosis as evidenced by reduced neutrophil recruitment into the lungs, total protein levels in BAL fluid, caspase-3 activity, and TUNEL-positive lung cells in lung tissue. Apoptotic cell clearance by alveolar macrophages was also enhanced in mice treated with both BLM and rGas6 compared with mice treated with only BLM. rGas6 also had pro-resolving and anti-apoptotic effects in mouse bone marrow-derived macrophages and alveolar epithelial cell lines stimulated with BLM in vitro. These findings indicate that rGas6 may play a protective role in BLM-induced ALI.
Collapse
Affiliation(s)
- Bo-Min Kim
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (B.-M.K.); (Y.-J.L.); (Y.-H.C.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Ye-Ji Lee
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (B.-M.K.); (Y.-J.L.); (Y.-H.C.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Youn-Hee Choi
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (B.-M.K.); (Y.-J.L.); (Y.-H.C.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07804, Korea;
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (B.-M.K.); (Y.-J.L.); (Y.-H.C.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| |
Collapse
|
4
|
Geng K. Post-translational modifications of the ligands: Requirement for TAM receptor activation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 357:35-55. [PMID: 33234244 DOI: 10.1016/bs.ircmb.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Tyro3, Axl, and MerTK (TAM) receptors are three homologous Type I Receptor Tyrosine Kinases that have important homeostatic functions in multicellular organisms by regulating the clearance of apoptotic cells (efferocytosis). Pathologically, TAM receptors are overexpressed in a wide array of human cancers, and often associated with aggressive tumor grade and poor overall survival. In addition to their expression on tumor cells, TAMs are also expressed on infiltrating myeloid-derived cells in the tumor microenvironment, where they appear to act akin to negative immune checkpoints that impair host anti-tumor immunity. The ligands for TAMs are two endogenous proteins, Growth Arrest-Specific 6 (Gas6) and Protein S (Pros1), that function as bridging molecules between externalized phosphatidylserine (PtdSer) on apoptotic cells and the TAM ectodomains. One interesting feature of TAMs biology is that their ligand proteins require specific post-translational modifications to acquire activities. This chapter summarized these important modifications and explained the molecular mechanisms behind such phenomenon. Current evidences suggest that these modifications help Gas6/Pros1 to achieve optimal PtdSer-binding capacities. In addition, this chapter included recent discovery of regulating machineries of PtdSer dynamic across the plasma membrane, as well as their potential impacts in the tumor microenvironment. Taken together, this review highlights the importance of the upstream PtdSer and Gas6 in regulating TAMs' function and hope to provide researchers with new perspectives to inspire future studies of TAM receptors in human disease models.
Collapse
Affiliation(s)
- Ke Geng
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, United States.
| |
Collapse
|
5
|
Zheng DJ, Abou Taka M, Heit B. Role of Apoptotic Cell Clearance in Pneumonia and Inflammatory Lung Disease. Pathogens 2021; 10:134. [PMID: 33572846 PMCID: PMC7912081 DOI: 10.3390/pathogens10020134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Pneumonia and inflammatory diseases of the pulmonary system such as chronic obstructive pulmonary disease and asthma continue to cause significant morbidity and mortality globally. While the etiology of these diseases is highly different, they share a number of similarities in the underlying inflammatory processes driving disease pathology. Multiple recent studies have identified failures in efferocytosis-the phagocytic clearance of apoptotic cells-as a common driver of inflammation and tissue destruction in these diseases. Effective efferocytosis has been shown to be important for resolving inflammatory diseases of the lung and the subsequent restoration of normal lung function, while many pneumonia-causing pathogens manipulate the efferocytic system to enhance their growth and avoid immunity. Moreover, some treatments used to manage these patients, such as inhaled corticosteroids for chronic obstructive pulmonary disease and the prevalent use of statins for cardiovascular disease, have been found to beneficially alter efferocytic activity in these patients. In this review, we provide an overview of the efferocytic process and its role in the pathophysiology and resolution of pneumonia and other inflammatory diseases of the lungs, and discuss the utility of existing and emerging therapies for modulating efferocytosis as potential treatments for these diseases.
Collapse
Affiliation(s)
- David Jiao Zheng
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
| | - Maria Abou Taka
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
- Robarts Research Institute, London, ON N6A 5K8, Canada
| |
Collapse
|
6
|
Jiang L, Mu H, Xu F, Xie D, Su W, Xu J, Sun Z, Liu S, Luo J, Shi Y, Leak RK, Wechsler LR, Chen J, Hu X. Transcriptomic and functional studies reveal undermined chemotactic and angiostimulatory properties of aged microglia during stroke recovery. J Cereb Blood Flow Metab 2020; 40:S81-S97. [PMID: 32065074 PMCID: PMC7687033 DOI: 10.1177/0271678x20902542] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
Age-dependent alterations in microglia behavior have been implicated in neurodegeneration and CNS injuries. Here, we compared the transcriptional profiles of young versus aged microglia during stroke recovery. CD45intermediateCD11b+ microglia were FACS-isolated from the brains of young (10-week-old) and aged (18-month-old) male mice with sham operation or 14 days after distal middle cerebral artery occlusion and subjected to RNA-sequencing analysis. Functional groups enriched in young microglia are indicative of upregulation in cell movement, cell interactions, inflammatory responses and angiogenesis, while aged microglia exhibited a reduction or no change in these features. We confirmed reduced chemoattractive capacities of aged microglia toward ischemic brain tissue in organotypic slide co-cultures, and delayed accumulation of aged microglia around dead neurons injected into the striatum in vivo. In addition, aging is associated with an overall failure to increase the expression of microglial genes involved in cell-cell interactions, such as CXCL10. Finally, impaired upregulation of pro-angiogenic genes in aged microglia was associated with a decline in neovascularization in aged mice compared to young mice after distal middle cerebral artery occlusion. This study provides a new resource to understand the mechanisms underlying microglial alterations in the aged brain milieu and sheds light on new strategies to improve microglial functions in aged stroke victims.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hongfeng Mu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fei Xu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Di Xie
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wei Su
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jing Xu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zeyu Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianhua Luo
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yejie Shi
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Lawrence R Wechsler
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Tutusaus A, Marí M, Ortiz-Pérez JT, Nicolaes GAF, Morales A, García de Frutos P. Role of Vitamin K-Dependent Factors Protein S and GAS6 and TAM Receptors in SARS-CoV-2 Infection and COVID-19-Associated Immunothrombosis. Cells 2020; 9:E2186. [PMID: 32998369 PMCID: PMC7601762 DOI: 10.3390/cells9102186] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
The vitamin K-dependent factors protein S (PROS1) and growth-arrest-specific gene 6 (GAS6) and their tyrosine kinase receptors TYRO3, AXL, and MERTK, the TAM subfamily of receptor tyrosine kinases (RTK), are key regulators of inflammation and vascular response to damage. TAM signaling, which has largely studied in the immune system and in cancer, has been involved in coagulation-related pathologies. Because of these established biological functions, the GAS6-PROS1/TAM system is postulated to play an important role in SARS-CoV-2 infection and progression complications. The participation of the TAM system in vascular function and pathology has been previously reported. However, in the context of COVID-19, the role of TAMs could provide new clues in virus-host interplay with important consequences in the way that we understand this pathology. From the viral mimicry used by SARS-CoV-2 to infect cells, to the immunothrombosis that is associated with respiratory failure in COVID-19 patients, TAM signaling seems to be involved at different stages of the disease. TAM targeting is becoming an interesting biomedical strategy, which is useful for COVID-19 treatment now, but also for other viral and inflammatory diseases in the future.
Collapse
Affiliation(s)
- Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (A.T.); (M.M.)
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (A.T.); (M.M.)
| | - José T. Ortiz-Pérez
- Clinic Cardiovascular Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red sobre Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Gerry A. F. Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (A.T.); (M.M.)
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic, CIBEREHD, 08036 Barcelona, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (A.T.); (M.M.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
8
|
Huelse J, Fridlyand D, Earp S, DeRyckere D, Graham DK. MERTK in cancer therapy: Targeting the receptor tyrosine kinase in tumor cells and the immune system. Pharmacol Ther 2020; 213:107577. [PMID: 32417270 PMCID: PMC9847360 DOI: 10.1016/j.pharmthera.2020.107577] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The receptor tyrosine kinase MERTK is aberrantly expressed in numerous human malignancies, and is a novel target in cancer therapeutics. Physiologic roles of MERTK include regulation of tissue homeostasis and repair, innate immune control, and platelet aggregation. However, aberrant expression in a wide range of liquid and solid malignancies promotes neoplasia via growth factor independence, cell cycle progression, proliferation and tumor growth, resistance to apoptosis, and promotion of tumor metastases. Additionally, MERTK signaling contributes to an immunosuppressive tumor microenvironment via induction of an anti-inflammatory cytokine profile and regulation of the PD-1 axis, as well as regulation of macrophage, myeloid-derived suppressor cell, natural killer cell and T cell functions. Various MERTK-directed therapies are in preclinical development, and clinical trials are underway. In this review we discuss MERTK inhibition as an emerging strategy for cancer therapy, focusing on MERTK expression and function in neoplasia and its role in mediating resistance to cytotoxic and targeted therapies as well as in suppressing anti-tumor immunity. Additionally, we review preclinical and clinical pharmacological strategies to target MERTK.
Collapse
Affiliation(s)
- Justus Huelse
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Diana Fridlyand
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
9
|
Huelse JM, Fridlyand DM, Earp S, DeRyckere D, Graham DK. MERTK in cancer therapy: Targeting the receptor tyrosine kinase in tumor cells and the immune system. Pharmacol Ther 2020. [PMID: 32417270 DOI: 10.1016/j.pharmthera.2020.107577107577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The receptor tyrosine kinase MERTK is aberrantly expressed in numerous human malignancies, and is a novel target in cancer therapeutics. Physiologic roles of MERTK include regulation of tissue homeostasis and repair, innate immune control, and platelet aggregation. However, aberrant expression in a wide range of liquid and solid malignancies promotes neoplasia via growth factor independence, cell cycle progression, proliferation and tumor growth, resistance to apoptosis, and promotion of tumor metastases. Additionally, MERTK signaling contributes to an immunosuppressive tumor microenvironment via induction of an anti-inflammatory cytokine profile and regulation of the PD-1 axis, as well as regulation of macrophage, myeloid-derived suppressor cell, natural killer cell and T cell functions. Various MERTK-directed therapies are in preclinical development, and clinical trials are underway. In this review we discuss MERTK inhibition as an emerging strategy for cancer therapy, focusing on MERTK expression and function in neoplasia and its role in mediating resistance to cytotoxic and targeted therapies as well as in suppressing anti-tumor immunity. Additionally, we review preclinical and clinical pharmacological strategies to target MERTK.
Collapse
Affiliation(s)
- Justus M Huelse
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Diana M Fridlyand
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
10
|
Rocha-Brito KJP, Fonseca EMB, Oliveira BGDF, Fátima ÂD, Ferreira-Halder CV. Calix[6]arene diminishes receptor tyrosine kinase lifespan in pancreatic cancer cells and inhibits their migration and invasion efficiency. Bioorg Chem 2020; 100:103881. [PMID: 32388429 DOI: 10.1016/j.bioorg.2020.103881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/07/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer is a challenging malignancy, mainly due to aggressive regional involvement, early systemic dissemination, high recurrence rate, and subsequent low patient survival. Scientific advances have contributed in particular by identification of molecular targets as well as the definition of the mechanism of action of the drug candidate in the cellular microenvironment. Previously, we have reported the identification of the molecular mechanisms by which calix[6]arene (CLX6) reduces the viability and proliferation of pancreatic cancer cells. Now, we show the biochemical mechanisms by which CLX6 decreases the aggressiveness of Panc-1 cells, focusing specifically on receptor tyrosine kinases (RTK). The results show that clathrin-mediated endocytosis is involved in CLX6-induced AXL receptor tyrosine kinase degradation in Panc-1 cells. This response may be related to the interaction of CLX6 with the tyrosine kinase receptor binding site (such as AXL). As a result, RTK is internalized and degraded by endocytosis, a condition that negatively impacts events dependent on its signaling. Additionally, CLX6 inhibits migration and invasion of Panc-1 cells by downregulating FAK (downstream mediator of AXL) activity and reducing expression levels of MMP2 and MMP9, directly related to the metastatic profile of these cells. It is noteworthy that according to the mechanism proposed here, CLX6 appears as a candidate to be used in therapeutic protocols of patients that display high expression of AXL and consequently, poor diagnosis.
Collapse
Affiliation(s)
- Karin Juliane Pelizzaro Rocha-Brito
- Department of Biochemistry and Tissue Biology, Biology Institute, University of Campinas, Campinas, São Paulo, Brazil; Department of Medicine, Health Sciences Center, University Center of Maringá, Maringá, Paraná, Brazil
| | - Emanuella Maria Barreto Fonseca
- Department of Biochemistry and Tissue Biology, Biology Institute, University of Campinas, Campinas, São Paulo, Brazil; Federal Institute of Education, Science and Technology of São Paulo, São Roque, São Paulo, Brazil
| | | | - Ângelo de Fátima
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
11
|
Macrophage Polarization Favors Epithelial Repair During Acute Respiratory Distress Syndrome. Crit Care Med 2019; 46:e692-e701. [PMID: 29649066 DOI: 10.1097/ccm.0000000000003150] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Alveolar macrophage polarization and role on alveolar repair during human acute respiratory distress syndrome remain unclear. This study aimed to determine during human acute respiratory distress syndrome: the alveolar macrophage polarization, the effect of alveolar environment on macrophage polarization, and the role of polarized macrophages on epithelial repair. DESIGN Experimental ex vivo and in vitro investigations. SETTING Four ICUs in three teaching hospitals. PATIENTS Thirty-three patients with early moderate-to-severe acute respiratory distress syndrome were enrolled for assessment of the polarization of alveolar macrophages. INTERVENTIONS Polarization of acute respiratory distress syndrome macrophages was studied by flow cytometry and quantitative polymerase chain reaction. Modulation of macrophage polarization was studied in vitro using phenotypic and functional readouts. Macrophage effect on repair was studied using alveolar epithelial cells in wound healing models. MEASUREMENTS AND MAIN RESULTS Ex vivo, alveolar macrophages from early acute respiratory distress syndrome patients exhibited anti-inflammatory characteristics with high CD163 expression and interleukin-10 production. Accordingly, early acute respiratory distress syndrome-bronchoalveolar lavage fluid drives an acute respiratory distress syndrome-specific anti-inflammatory macrophage polarization in vitro, close to that induced by recombinant interleukin-10. Culture supernatants from macrophages polarized in vitro with acute respiratory distress syndrome-bronchoalveolar lavage fluid or interleukin-10 and ex vivo acute respiratory distress syndrome alveolar macrophages specifically promoted lung epithelial repair. Inhibition of the hepatocyte growth factor pathway in epithelial cells and hepatocyte growth factor production in macrophages both reversed this effect. Finally, hepatocyte growth factor and soluble form of CD163 concentrations expressed relatively to macrophage count were higher in bronchoalveolar lavage fluid from acute respiratory distress syndrome survivors. CONCLUSIONS Early acute respiratory distress syndrome alveolar environment drives an anti-inflammatory macrophage polarization favoring epithelial repair through activation of the hepatocyte growth factor pathway. These results suggest that macrophage polarization may be an important step for epithelial repair and acute respiratory distress syndrome recovery.
Collapse
|
12
|
Wong JP, Stuhlmiller TJ, Giffin LC, Lin C, Bigi R, Zhao J, Zhang W, Bravo Cruz AG, Park SI, Earp HS, Dittmer DP, Frye SV, Wang X, Johnson GL, Damania B. Kinome profiling of non-Hodgkin lymphoma identifies Tyro3 as a therapeutic target in primary effusion lymphoma. Proc Natl Acad Sci U S A 2019; 116:16541-16550. [PMID: 31346082 PMCID: PMC6697815 DOI: 10.1073/pnas.1903991116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Non-Hodgkin lymphomas (NHLs) make up the majority of lymphoma diagnoses and represent a very diverse set of malignancies. We sought to identify kinases uniquely up-regulated in different NHL subtypes. Using multiplexed inhibitor bead-mass spectrometry (MIB/MS), we found Tyro3 was uniquely up-regulated and important for cell survival in primary effusion lymphoma (PEL), which is a viral lymphoma infected with Kaposi's sarcoma-associated herpesvirus (KSHV). Tyro3 was also highly expressed in PEL cell lines as well as in primary PEL exudates. Based on this discovery, we developed an inhibitor against Tyro3 named UNC3810A, which hindered cell growth in PEL, but not in other NHL subtypes where Tyro3 was not highly expressed. UNC3810A also significantly inhibited tumor progression in a PEL xenograft mouse model that was not seen in a non-PEL NHL model. Taken together, our data suggest Tyro3 is a therapeutic target for PEL.
Collapse
Affiliation(s)
- Jason P Wong
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Timothy J Stuhlmiller
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Louise C Giffin
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Carolina Lin
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Rachele Bigi
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Microbiology and Immunology and Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jichen Zhao
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Weihe Zhang
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ariana G Bravo Cruz
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Steven I Park
- Department of Medicine and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - H Shelton Earp
- Department of Medicine and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Dirk P Dittmer
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Microbiology and Immunology and Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Gary L Johnson
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599;
| | - Blossom Damania
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
| |
Collapse
|
13
|
Myers KV, Amend SR, Pienta KJ. Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment. Mol Cancer 2019; 18:94. [PMID: 31088471 PMCID: PMC6515593 DOI: 10.1186/s12943-019-1022-2] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor-associated macrophages are an abundant cell type in the tumor microenvironment. These macrophages serve as a promising target for treatment of cancer due to their roles in promoting cancer progression and simultaneous immunosuppression. The TAM receptors (Tyro3, Axl and MerTK) are promising therapeutic targets on tumor-associated macrophages. The TAM receptors are a family of receptor tyrosine kinases with shared ligands Gas6 and Protein S that skew macrophage polarization towards a pro-tumor M2-like phenotype. In macrophages, the TAM receptors also promote apoptotic cell clearance, a tumor-promoting process called efferocytosis. The TAM receptors bind the "eat-me" signal phosphatidylserine on apoptotic cell membranes using Gas6 and Protein S as bridging ligands. Post-efferocytosis, macrophages are further polarized to a pro-tumor M2-like phenotype and secrete increased levels of immunosuppressive cytokines. Since M2 polarization and efferocytosis are tumor-promoting processes, the TAM receptors on macrophages serve as exciting targets for cancer therapy. Current TAM receptor-directed therapies in preclinical development and clinical trials may have anti-cancer effects though impacting macrophage phenotype and function in addition to the cancer cells.
Collapse
Affiliation(s)
- Kayla V. Myers
- 0000 0001 2171 9311grid.21107.35Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Sarah R. Amend
- 0000 0001 2171 9311grid.21107.35The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Kenneth J. Pienta
- 0000 0001 2171 9311grid.21107.35Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
14
|
Zhang B, Lu H, Jiang A, Wu H, Fang L, Lv Y. MerTK Downregulates Lipopolysaccharide-Induced Inflammation Through SOCS1 Protein but Does Not Affect Phagocytosis of Escherichia coli in Macrophages. Inflammation 2018; 42:113-123. [DOI: 10.1007/s10753-018-0877-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Wang J, Pan W, Wang Y, Lei W, Feng B, Du C, Wang XJ. Enhanced efficacy of curcumin with phosphatidylserine-decorated nanoparticles in the treatment of hepatic fibrosis. Drug Deliv 2018; 25:1-11. [PMID: 29214887 PMCID: PMC6058669 DOI: 10.1080/10717544.2017.1399301] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic macrophages have been considered as a therapeutic target for liver fibrosis treatment, and phosphatidylserine (PS)-containing nanoparticles are commonly used to mimic apoptotic cells that can specifically regulate macrophage functions, resulting in anti-inflammatory effects. This study was designed to test the efficacy of PS-modified nanostructured lipid carriers (mNLCs) containing curcumin (Cur) (Cur-mNLCs) in the treatment of liver fibrosis in a rat model. Carbon tetrachloride-induced liver fibrosis in rats was used as an experimental model, and the severity of the disease was examined by both biochemical and histological methods. Here, we showed that mNLCs were spherical nanoparticles with decreased negative zeta potentials due to PS decoration, and significantly increased both mean residence time and area under the curve of Cur. In the rats with liver fibrosis, PS-modification of NLCs enhanced the nanoparticles targeting to the diseased liver, which was evidenced by their highest accumulation in the liver. As compared to all the controls, Cur-mNLCs were significantly more effective at reducing the liver damage and fibrosis, which were indicated by in Cur-mNLCs-treated rats the least increase in liver enzymes and pro-inflammatory cytokines in the circulation, along with the least increase in collagen fibers and alpha smooth muscle actin and the most increased hepatocyte growth factors (HGF) and matrix metalloprotease (MMP) two in the livers. In conclusion, PS-modified NLCs nanoparticles prolonged the retention time of Cur, and enhanced its bioavailability and delivery efficiency to the livers, resulting in reduced liver fibrosis and up-regulating hepatic expression of HGF and MMP-2.
Collapse
Affiliation(s)
- Ji Wang
- a State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy , School of Stomatology, The Fourth Military Medical University , Xi'an , PR China
| | - Wen Pan
- a State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy , School of Stomatology, The Fourth Military Medical University , Xi'an , PR China
| | - Ying Wang
- a State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy , School of Stomatology, The Fourth Military Medical University , Xi'an , PR China
| | - Wan Lei
- a State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy , School of Stomatology, The Fourth Military Medical University , Xi'an , PR China
| | - Bin Feng
- a State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy , School of Stomatology, The Fourth Military Medical University , Xi'an , PR China
| | - Caigan Du
- b Department of Urologic Sciences , University of British Columbia, Jack Bell Research Centre , Vancouver , BC , Canada
| | - Xiao-Juan Wang
- a State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy , School of Stomatology, The Fourth Military Medical University , Xi'an , PR China
| |
Collapse
|
16
|
Wang X, Malawista A, Qian F, Ramsey C, Allore HG, Montgomery RR. Age-related changes in expression and signaling of TAM receptor inflammatory regulators in monocytes. Oncotarget 2018. [PMID: 29515754 PMCID: PMC5839385 DOI: 10.18632/oncotarget.23851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The multifactorial immune deterioration in aging--termed “inflamm-aging”--is comprised of a state of low-grade, chronic inflammation and complex dysregulation of responses to immune stimulation. The TAM family (Tyro 3, Axl, and Mer) of receptor tyrosine kinases are negative regulators of Toll like receptor-mediated immune responses that broadly inhibit cytokine receptor cascades to inhibit inflammation. Here we demonstrate elevated expression of TAM receptors in monocytes of older adults, and an age-dependent difference in signaling mediator AKT resulting in dysregulated responses to signaling though Mer. Our results may be especially significant in tissue, where levels of Mer are highest, and may present avenues for modulation of chronic tissue inflammation noted in aging.
Collapse
Affiliation(s)
- Xiaomei Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Anna Malawista
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Feng Qian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut.,State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Christine Ramsey
- Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, Connecticut
| | - Heather G Allore
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut.,Human Translational Immunology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
17
|
Voronova A, Yuzwa SA, Wang BS, Zahr S, Syal C, Wang J, Kaplan DR, Miller FD. Migrating Interneurons Secrete Fractalkine to Promote Oligodendrocyte Formation in the Developing Mammalian Brain. Neuron 2017; 94:500-516.e9. [PMID: 28472653 DOI: 10.1016/j.neuron.2017.04.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/08/2017] [Accepted: 04/12/2017] [Indexed: 12/22/2022]
Abstract
During development, newborn interneurons migrate throughout the embryonic brain. Here, we provide evidence that these interneurons act in a paracrine fashion to regulate developmental oligodendrocyte formation. Specifically, we show that medial ganglionic eminence (MGE) interneurons secrete factors that promote genesis of oligodendrocytes from glially biased cortical precursors in culture. Moreover, when MGE interneurons are genetically ablated in vivo prior to their migration, this causes a deficit in cortical oligodendrogenesis. Modeling of the interneuron-precursor paracrine interaction using transcriptome data identifies the cytokine fractalkine as responsible for the pro-oligodendrocyte effect in culture. This paracrine interaction is important in vivo, since knockdown of the fractalkine receptor CX3CR1 in embryonic cortical precursors, or constitutive knockout of CX3CR1, causes decreased numbers of oligodendrocyte progenitor cells (OPCs) and oligodendrocytes in the postnatal cortex. Thus, in addition to their role in regulating neuronal excitability, interneurons act in a paracrine fashion to promote the developmental genesis of oligodendrocytes.
Collapse
Affiliation(s)
- Anastassia Voronova
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Scott A Yuzwa
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Beatrix S Wang
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Siraj Zahr
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Charvi Syal
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1A8, Canada.
| |
Collapse
|
18
|
Growth Arrest-Specific 6 Enhances the Suppressive Function of CD4 +CD25 + Regulatory T Cells Mainly through Axl Receptor. Mediators Inflamm 2017; 2017:6848430. [PMID: 28270700 PMCID: PMC5320320 DOI: 10.1155/2017/6848430] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/07/2016] [Accepted: 12/05/2016] [Indexed: 11/17/2022] Open
Abstract
Background. Growth arrest-specific (Gas) 6 is one of the endogenous ligands of TAM receptors (Tyro3, Axl, and Mertk), and its role as an immune modulator has been recently emphasized. Naturally occurring CD4+CD25+ regulatory T cells (Tregs) are essential for the active suppression of autoimmunity. The present study was designed to investigate whether Tregs express TAM receptors and the potential role of Gas6-TAM signal in regulating the suppressive function of Tregs. Methods. The protein and mRNA levels of TAM receptors were determined by using Western blot, immunofluorescence, flow cytometry, and RT-PCR. Then, TAM receptors were silenced using targeted siRNA or blocked with specific antibody. The suppressive function of Tregs was assessed by using a CFSE-based T cell proliferation assay. Flow cytometry was used to determine the expression of Foxp3 and CTLA4 whereas cytokines secretion levels were measured by ELISA assay. Results. Tregs express both Axl and Mertk receptors. Gas6 increases the suppressive function of Tregs in vitro and in mice. Both Foxp3 and CTLA-4 expression on Tregs are enhanced after Gas6 stimulation. Gas6 enhances the suppressive activity of Tregs mainly through Axl receptor. Conclusion. Gas6 has a direct effect on the functions of CD4+CD25+Tregs mainly through its interaction with Axl receptor.
Collapse
|
19
|
The Role of TAM Family Receptors in Immune Cell Function: Implications for Cancer Therapy. Cancers (Basel) 2016; 8:cancers8100097. [PMID: 27775650 PMCID: PMC5082387 DOI: 10.3390/cancers8100097] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 01/30/2023] Open
Abstract
The TAM receptor protein tyrosine kinases-Tyro3, Axl, and Mer-are essential regulators of immune homeostasis. Guided by their cognate ligands Growth arrest-specific gene 6 (Gas6) and Protein S (Pros1), these receptors ensure the resolution of inflammation by dampening the activation of innate cells as well as by restoring tissue function through promotion of tissue repair and clearance of apoptotic cells. Their central role as negative immune regulators is highlighted by the fact that deregulation of TAM signaling has been linked to the pathogenesis of autoimmune, inflammatory, and infectious diseases. Importantly, TAM receptors have also been associated with cancer development and progression. In a cancer setting, TAM receptors have a dual regulatory role, controlling the initiation and progression of tumor development and, at the same time, the associated anti-tumor responses of diverse immune cells. Thus, modulation of TAM receptors has emerged as a potential novel strategy for cancer treatment. In this review, we discuss our current understanding of how TAM receptors control immunity, with a particular focus on the regulation of anti-tumor responses and its implications for cancer immunotherapy.
Collapse
|
20
|
Mer receptor tyrosine kinase negatively regulates lipoteichoic acid-induced inflammatory response via PI3K/Akt and SOCS3. Mol Immunol 2016; 76:98-107. [PMID: 27419619 DOI: 10.1016/j.molimm.2016.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 05/24/2016] [Accepted: 06/27/2016] [Indexed: 01/22/2023]
Abstract
Activation of toll-like receptor (TLR) signaling that initiates an innate immune response to pathogens must be strictly regulated to prevent excessive inflammatory damage in the host. Here, we demonstrate that Mer receptor tyrosine kinase (MerTK) is a negative regulatory molecule in the lipoteichoic acid (LTA)-induced inflammatory response. LTA that activated TLR2 signaling concomitantly induced activation of MerTK signaling in RAW264.7 macrophages, including phosphoinositide 3-kinase (PI3K)/Akt and suppressor of cytokine signaling 3 (SOCS3). Moreover, LTA induced MerTK activation in a time-dependent manner, and LTA-induced MerTK activation was dependent on the ligand Gas6. Additionally, pretreatment with a specific Mer-blocking antibody significantly inhibited LTA-induced phosphorylation of MerTK, while further enhancing LTA-induced phosphorylation of IκB-α and NF-κBp65 as well as production of TNF-α and IL-6. Meanwhile, the antibody blockade of MerTK markedly prevented LTA-induced Akt phosphorylation and SOCS3 expression, both of which were crucial for the inhibition of TLR2-mediated immune response. Collectively, these results suggest, for the first time, that MerTK is an intracellular negative feedback regulator that inhibits the inflammatory response of LTA-stimulated macrophages through the PI3K/Akt pathway and SOCS3 protein.
Collapse
|
21
|
Choi JY, Seo JY, Yoon YS, Lee YJ, Kim HS, Kang JL. Mer signaling increases the abundance of the transcription factor LXR to promote the resolution of acute sterile inflammation. Sci Signal 2015; 8:ra21. [PMID: 25714463 DOI: 10.1126/scisignal.2005864] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The receptor tyrosine kinase Mer plays a central role in inhibiting the inflammatory response of immune cells to pathogens. We aimed to understand the function of Mer signaling in the resolution of sterile inflammation in experiments with a Mer-neutralizing antibody or with Mer-deficient (Mer-/-) mice in a model of sterile, zymosan-induced acute inflammation. We found that inhibition or deficiency of Mer enhanced local and systemic inflammatory responses. The exacerbated inflammatory responses induced by the lack of Mer signaling were associated with reduced abundance of the transcription factors liver X receptor α (LXRα) and LXRβ and decreased expression of their target genes in peritoneal macrophages, spleens, and lungs. Similarly, treatment of mice with a Mer/Fc fusion protein, which prevents the Mer ligand Gas6 (growth arrest-specific protein 6) from binding to Mer, exacerbated the inflammatory response and decreased the abundance of LXR. Coadministration of the LXR agonist T0901317 with the Mer-neutralizing antibody inhibited the aggravating effects of the antibody on inflammation in mice. In vitro exposure of RAW264.7 cells or primary peritoneal macrophages to Gas6 increased LXR abundance in an Akt-dependent manner. Thus, we have elucidated a previously uncharacterized pathway involved in the resolution of acute sterile inflammation: Enhanced Mer signaling during the recovery phase increases the abundance and activity of LXR to inactivate the inflammatory response in macrophages.
Collapse
Affiliation(s)
- Ji-Yeon Choi
- Department of Physiology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-056, Korea
| | - Jeong Yeon Seo
- Department of Physiology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-056, Korea
| | - Young-So Yoon
- Department of Physiology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-056, Korea
| | - Ye-Ji Lee
- Department of Physiology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-056, Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-056, Korea
| | - Jihee Lee Kang
- Department of Physiology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-056, Korea.
| |
Collapse
|
22
|
Graham DK, DeRyckere D, Davies KD, Earp HS. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nat Rev Cancer 2014; 14:769-85. [PMID: 25568918 DOI: 10.1038/nrc3847] [Citation(s) in RCA: 553] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The TYRO3, AXL (also known as UFO) and MERTK (TAM) family of receptor tyrosine kinases (RTKs) are aberrantly expressed in multiple haematological and epithelial malignancies. Rather than functioning as oncogenic drivers, their induction in tumour cells predominately promotes survival, chemoresistance and motility. The unique mode of maximal activation of this RTK family requires an extracellular lipid–protein complex. For example, the protein ligand, growth arrest-specific protein 6 (GAS6), binds to phosphatidylserine (PtdSer) that is externalized on apoptotic cell membranes, which activates MERTK on macrophages. This triggers engulfment of apoptotic material and subsequent anti-inflammatory macrophage polarization. In tumours, autocrine and paracrine ligands and apoptotic cells are abundant, which provide a survival signal to the tumour cell and favour an anti-inflammatory, immunosuppressive microenvironment. Thus, TAM kinase inhibition could stimulate antitumour immunity, reduce tumour cell survival, enhance chemosensitivity and diminish metastatic potential.
Collapse
|
23
|
Hong S, Tian H, Lu Y, Laborde JM, Muhale FA, Wang Q, Alapure BV, Serhan CN, Bazan NG. Neuroprotectin/protectin D1: endogenous biosynthesis and actions on diabetic macrophages in promoting wound healing and innervation impaired by diabetes. Am J Physiol Cell Physiol 2014; 307:C1058-67. [PMID: 25273880 DOI: 10.1152/ajpcell.00270.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dysfunction of macrophages (MΦs) in diabetic wounds impairs the healing. MΦs produce anti-inflammatory and pro-resolving neuroprotectin/protectin D1 (NPD1/PD1, 10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid); however, little is known about endogenous NPD1 biosynthesis by MΦs and the actions of NPD1 on diabetic MΦ functions in diabetic wound healing. We used an excisional skin wound model of diabetic mice, MΦ depletion, MΦs isolated from diabetic mice, and mass spectrometry-based targeted lipidomics to study the time course progression of NPD1 levels in wounds, the roles of MΦs in NPD1 biosynthesis, and NPD1 action on diabetic MΦ inflammatory activities. We also investigated the healing, innervation, chronic inflammation, and oxidative stress in diabetic wounds treated with NPD1 or NPD1-modulated MΦs from diabetic mice. Injury induced endogenous NPD1 biosynthesis in wounds, but diabetes impeded NPD1 formation. NPD1 was mainly produced by MΦs. NPD1 enhanced wound healing and innervation in diabetic mice and promoted MΦs functions that accelerated these processes. The underlying mechanisms for these actions of NPD1 or NPD1-modulated MΦs involved 1) attenuating MΦ inflammatory activities and chronic inflammation and oxidative stress after acute inflammation in diabetic wound, and 2) increasing MΦ production of IL10 and hepatocyte growth factor. Taken together, NPD1 appears to be a MΦs-produced factor that accelerates diabetic wound healing and promotes MΦ pro-healing functions in diabetic wounds. Decreased NPD1 production in diabetic wound is associated with impaired healing. This study identifies a new molecular target that might be useful in development of more effective therapeutics based on NPD1 and syngeneic diabetic MΦs for treatment of diabetic wounds.
Collapse
Affiliation(s)
- Song Hong
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana; Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana;
| | - Haibin Tian
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Yan Lu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - James Monroe Laborde
- Department of Orthopedic Surgery, Louisiana State University Health Sciences Center, New Orleans, Louisiana; and
| | - Filipe A Muhale
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Quansheng Wang
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Bhagwat V Alapure
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital; Department of Anaesthesia (Biochemistry and Molecular Pharmacology), Harvard Medical School; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana; Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
24
|
Stanford JC, Young C, Hicks D, Owens P, Williams A, Vaught DB, Morrison MM, Lim J, Williams M, Brantley-Sieders DM, Balko JM, Tonetti D, Earp HS, Cook RS. Efferocytosis produces a prometastatic landscape during postpartum mammary gland involution. J Clin Invest 2014; 124:4737-52. [PMID: 25250573 DOI: 10.1172/jci76375] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/13/2014] [Indexed: 12/27/2022] Open
Abstract
Breast cancers that occur in women 2-5 years postpartum are more frequently diagnosed at metastatic stages and correlate with poorer outcomes compared with breast cancers diagnosed in young, premenopausal women. The molecular mechanisms underlying the malignant severity associated with postpartum breast cancers (ppBCs) are unclear but relate to stromal wound-healing events during postpartum involution, a dynamic process characterized by widespread cell death in milk-producing mammary epithelial cells (MECs). Using both spontaneous and allografted mammary tumors in fully immune-competent mice, we discovered that postpartum involution increases mammary tumor metastasis. Cell death was widespread, not only occurring in MECs but also in tumor epithelium. Dying tumor cells were cleared through receptor tyrosine kinase MerTK-dependent efferocytosis, which robustly induced the transcription of genes encoding wound-healing cytokines, including IL-4, IL-10, IL-13, and TGF-β. Animals lacking MerTK and animals treated with a MerTK inhibitor exhibited impaired efferocytosis in postpartum tumors, a reduction of M2-like macrophages but no change in total macrophage levels, decreased TGF-β expression, and a reduction of postpartum tumor metastasis that was similar to the metastasis frequencies observed in nulliparous mice. Moreover, TGF-β blockade reduced postpartum tumor metastasis. These data suggest that widespread cell death during postpartum involution triggers efferocytosis-induced wound-healing cytokines in the tumor microenvironment that promote metastatic tumor progression.
Collapse
|
25
|
Li M, Lu J, Zhang F, Li H, Zhang B, Wu X, Tan Z, Zhang L, Gao G, Mu J, Shu Y, Bao R, Ding Q, Wu W, Dong P, Gu J, Liu Y. Yes-associated protein 1 (YAP1) promotes human gallbladder tumor growth via activation of the AXL/MAPK pathway. Cancer Lett 2014; 355:201-9. [PMID: 25218593 DOI: 10.1016/j.canlet.2014.08.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 08/07/2014] [Accepted: 08/21/2014] [Indexed: 11/15/2022]
Abstract
The transcriptional coactivator Yes-associated protein 1 (YAP1), a key regulator of cell proliferation and organ size in vertebrates, has been implicated in various malignancies. However, little is known about the expression and biological function of YAP1 in human gallbladder cancer (GBC). In this study we examined the clinical significance and biological functions of YAP1 in GBC and found that nuclear YAP1 and its target gene AXL were overexpressed in GBC tissues. We also observed a significant correlation between high YAP1 and AXL expression levels and worse prognosis. The depletion of YAP1 using lentivirus shRNAs significantly inhibited cell proliferation by inducing cell cycle arrest in S phase in concordance with the decrease of CDK2, CDC25A, and cyclin A, and resulted in increased cell apoptosis and invasive repression in GBC cell lines in vitro. Furthermore, knockdown of YAP1 also inhibited tumor growth in vivo. Additionally, we demonstrated that the activation of the AXL/MAPK pathway was involved in the oncogenic functions of YAP1 in GBC. These results demonstrated that YAP1 is a putative oncogene and represents a prognostic marker and potentially a novel therapeutic target for GBC.
Collapse
Affiliation(s)
- Maolan Li
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianhua Lu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaifeng Li
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingtai Zhang
- Department of General Surgery, Shanxi Medical University Second Hospital, Taiyuan, China
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhujun Tan
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guofeng Gao
- Department of General Surgery, Shanxi Medical University Second Hospital, Taiyuan, China
| | - Jiasheng Mu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijun Shu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runfa Bao
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qichen Ding
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenguang Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Gu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Lee YJ, Park HJ, Woo SY, Park EM, Kang JL. RhoA/phosphatidylinositol 3-kinase/protein kinase B/mitogen-activated protein kinase signaling after growth arrest-specific protein 6/mer receptor tyrosine kinase engagement promotes epithelial cell growth and wound repair via upregulation of hepatocyte growth factor in macrophages. J Pharmacol Exp Ther 2014; 350:563-77. [PMID: 24939420 DOI: 10.1124/jpet.114.215673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Growth arrest-specific protein 6 (Gas6)/Mer receptor tyrosine kinase (Mer) signaling modulates cytokine secretion and helps to regulate the immune response and apoptotic cell clearance. Signaling pathways that activate an epithelial growth program in macrophages are still poorly defined. We report that Gas6/Mer/RhoA signaling can induce the production of epithelial growth factor hepatic growth factor (HGF) in macrophages, which ultimately promotes epithelial cell proliferation and wound repair. The RhoA/protein kinase B (Akt)/mitogen-activated protein (MAP) kinases, including p38 MAP kinase, extracellular signal-regulated protein kinase, and Jun NH2-terminal kinase axis in RAW 264.7 cells, was identified as Gas6/Mer downstream signaling pathway for the upregulation of HGF mRNA and protein. Conditioned medium from RAW 264.7 cells that had been exposed to Gas6 or apoptotic cells enhanced epithelial cell proliferation of the epithelial cell line LA-4 and wound closure. Cotreatment with an HGF receptor-blocking antibody or c-Met antagonist downregulated this enhancement. Inhibition of Mer with small interfering RNA (siRNA) or the RhoA/Rho kinase pathway by RhoA siRNA or Rho kinase pharmacologic inhibitor suppressed Gas6-induced HGF mRNA and protein expression in macrophages and blocked epithelial cell proliferation and wound closure induced by the conditioned medium. Our data provide evidence that macrophages can be reprogrammed by Gas6 to promote epithelial proliferation and wound repair via HGF, which is induced by the Mer/RhoA/Akt/MAP kinase pathway. Thus, defects in Gas6/Mer/RhoA signaling in macrophages may delay tissue repair after injury to the alveolar epithelium.
Collapse
Affiliation(s)
- Ye-Ji Lee
- Department of Physiology (Y.-J.L., H.-J.P, S.-Y.W., J.L.K.), Department of Pharmacology (E.-M.P.), Department of Microbiology A (S.-Y.W.), and Tissue Injury Defense Research Center (H.-J.P., S.-Y.W., E.-M.P., J.L.K.), Global Top5 Research Program (J.L.K.), School of Medicine, Ewha Womans University, Seoul, Korea
| | - Hyun-Jung Park
- Department of Physiology (Y.-J.L., H.-J.P, S.-Y.W., J.L.K.), Department of Pharmacology (E.-M.P.), Department of Microbiology A (S.-Y.W.), and Tissue Injury Defense Research Center (H.-J.P., S.-Y.W., E.-M.P., J.L.K.), Global Top5 Research Program (J.L.K.), School of Medicine, Ewha Womans University, Seoul, Korea
| | - So-Youn Woo
- Department of Physiology (Y.-J.L., H.-J.P, S.-Y.W., J.L.K.), Department of Pharmacology (E.-M.P.), Department of Microbiology A (S.-Y.W.), and Tissue Injury Defense Research Center (H.-J.P., S.-Y.W., E.-M.P., J.L.K.), Global Top5 Research Program (J.L.K.), School of Medicine, Ewha Womans University, Seoul, Korea
| | - Eun-Mi Park
- Department of Physiology (Y.-J.L., H.-J.P, S.-Y.W., J.L.K.), Department of Pharmacology (E.-M.P.), Department of Microbiology A (S.-Y.W.), and Tissue Injury Defense Research Center (H.-J.P., S.-Y.W., E.-M.P., J.L.K.), Global Top5 Research Program (J.L.K.), School of Medicine, Ewha Womans University, Seoul, Korea
| | - Jihee Lee Kang
- Department of Physiology (Y.-J.L., H.-J.P, S.-Y.W., J.L.K.), Department of Pharmacology (E.-M.P.), Department of Microbiology A (S.-Y.W.), and Tissue Injury Defense Research Center (H.-J.P., S.-Y.W., E.-M.P., J.L.K.), Global Top5 Research Program (J.L.K.), School of Medicine, Ewha Womans University, Seoul, Korea
| |
Collapse
|