1
|
Wu Y, Du Y, Zhang Y, Ye M, Wang D, Zhou L. Transcriptome-derived evidence reveals the regulatory network in the skeletal muscle of the fast-growth mstnb -/- male tilapia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101405. [PMID: 39729946 DOI: 10.1016/j.cbd.2024.101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Myostatin (Mstn) negatively regulates muscle growth and Mstn deficiency induced "double-skeletal muscle" development in vertebrates, including tilapias. In this study, we performed a transcriptomic analysis of skeletal muscle from both wild-type and mstnb-/- males to investigate the molecular mechanisms underlying skeletal muscle hypertrophy in mstnb-/- mutants. We identified 4697 differentially expressed genes (DEGs), 113 differentially expressed long non-coding RNAs (DE lncRNAs), 211 differentially expressed circular RNAs (DE circRNAs), and 98 differentially expressed microRNAs (DE miRNAs). The DEGs were significantly enriched in proteasome and ubiquitin-mediated proteolysis pathways. Cis- and trans-targeting genes of DE lncRNAs were also notably enriched in the above two pathways. The putative host genes of DE circRNAs linked to myofibrils, contractile fibers, and so on. Additionally, DE miRNAs were associated with ubiquitin-mediated proteolysis and key signaling pathways, including AMPK, FoxO, and mTOR. Furthermore, the core competing endogenous RNA (ceRNA) network was constructed comprising 31 DEGs, 37 DE miRNAs, 14 DE circRNAs, and 45 DE lncRNAs. The key roles of ubiquitin-proteasome system were highlighted in the ceRNA network. Taken together, this study provides a novel perspective on muscle mass increase in Mstn mutants through the repression of protein degradation and facilitates our understanding of the molecular mechanisms of skeletal muscle hypertrophy in fish.
Collapse
Affiliation(s)
- You Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China
| | - Yiyun Du
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China
| | - Yanbin Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China
| | - Maolin Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China.
| | - Linyan Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Grieb A, Schmitt A, Fragasso A, Widmann M, Mattioni Maturana F, Burgstahler C, Erz G, Schellhorn P, Nieß AM, Munz B. Skeletal Muscle MicroRNA Patterns in Response to a Single Bout of Exercise in Females: Biomarkers for Subsequent Training Adaptation? Biomolecules 2023; 13:884. [PMID: 37371465 DOI: 10.3390/biom13060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
microRNAs (miRs) have been proposed as a promising new class of biomarkers in the context of training adaptation. Using microarray analysis, we studied skeletal muscle miR patterns in sedentary young healthy females (n = 6) before and after a single submaximal bout of endurance exercise ('reference training'). Subsequently, participants were subjected to a structured training program, consisting of six weeks of moderate-intensity continuous endurance training (MICT) and six weeks of high-intensity interval training (HIIT) in randomized order. In vastus lateralis muscle, we found significant downregulation of myomiRs, specifically miR-1, 133a-3p, and -5p, -133b, and -499a-5p. Similarly, exercise-associated miRs-23a-3p, -378a-5p, -128-3p, -21-5p, -107, -27a-3p, -126-3p, and -152-3p were significantly downregulated, whereas miR-23a-5p was upregulated. Furthermore, in an untargeted approach for differential expression in response to acute exercise, we identified n = 35 miRs that were downregulated and n = 20 miRs that were upregulated by factor 4.5 or more. Remarkably, KEGG pathway analysis indicated central involvement of this set of miRs in fatty acid metabolism. To reproduce these data in a larger cohort of all-female subjects (n = 29), qPCR analysis was carried out on n = 15 miRs selected from the microarray, which confirmed their differential expression. Furthermore, the acute response, i.e., the difference between miR concentrations before and after the reference training, was correlated with changes in maximum oxygen uptake (V̇O2max) in response to the training program. Here, we found that miRs-199a-3p and -19b-3p might be suitable acute-response candidates that correlate with individual degrees of training adaptation in females.
Collapse
Affiliation(s)
- Alexandra Grieb
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Angelika Schmitt
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Annunziata Fragasso
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Manuel Widmann
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Felipe Mattioni Maturana
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Christof Burgstahler
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Gunnar Erz
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Philipp Schellhorn
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Andreas M Nieß
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Barbara Munz
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| |
Collapse
|
3
|
Manaig YJY, Criado-Mesas L, Esteve-Codina A, Mármol-Sánchez E, Castelló A, Sánchez A, Folch JM. Identifying miRNA-mRNA regulatory networks on extreme n-6/n-3 polyunsaturated fatty acid ratio expression profiles in porcine skeletal muscle. PLoS One 2023; 18:e0283231. [PMID: 37141193 PMCID: PMC10159129 DOI: 10.1371/journal.pone.0283231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/06/2023] [Indexed: 05/05/2023] Open
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) are essential fatty acids with antagonistic inflammatory functions that play vital roles in metabolic health and immune response. Current commercial swine diets tend to over-supplement with n-6 PUFAs, which may increase the likelihood of developing inflammatory diseases and affect the overall well-being of the animals. However, it is still poorly understood how n-6/n-3 PUFA ratios affect the porcine transcriptome expression and how messenger RNAs (mRNAs) and microRNAs (miRNAs) might regulate biological processes related to PUFA metabolism. On account of this, we selected a total of 20 Iberian × Duroc crossbred pigs with extreme values for n-6/n-3 FA ratio (10 high vs 10 low), and longissimus dorsi muscle samples were used to identify differentially expressed mRNAs and miRNAs. The observed differentially expressed mRNAs were associated to biological pathways related to muscle growth and immunomodulation, while the differentially expressed microRNAs (ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-15b and ssc-miR-7142-3p) were correlated to adipogenesis and immunity. Relevant miRNA-to-mRNA regulatory networks were also predicted (i.e., mir15b to ARRDC3; mir-7142-3p to METTL21C), and linked to lipolysis, obesity, myogenesis, and protein degradation. The n-6/n-3 PUFA ratio differences in pig skeletal muscle revealed genes, miRNAs and enriched pathways involved in lipid metabolism, cell proliferation and inflammation.
Collapse
Affiliation(s)
- Yron Joseph Yabut Manaig
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, Italy
| | - Lourdes Criado-Mesas
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Emilio Mármol-Sánchez
- Department of Molecular Biosciences, Science for Life Laboratory, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Anna Castelló
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| | - Armand Sánchez
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| | - Josep M Folch
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| |
Collapse
|
4
|
Wang X, Wei Z, Gu M, Zhu L, Hai C, Di A, Wu D, Bai C, Su G, Liu X, Yang L, Li G. Loss of Myostatin Alters Mitochondrial Oxidative Phosphorylation, TCA Cycle Activity, and ATP Production in Skeletal Muscle. Int J Mol Sci 2022; 23:ijms232415707. [PMID: 36555347 PMCID: PMC9779574 DOI: 10.3390/ijms232415707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Myostatin (MSTN) is an important negative regulator of skeletal muscle growth in animals. A lack of MSTN promotes lipolysis and glucose metabolism but inhibits oxidative phosphorylation (OXPHOS). Here, we aimed to investigate the possible mechanism of MSTN regulating the mitochondrial energy homeostasis of skeletal muscle. To this end, MSTN knockout mice were generated by the CRISPR/Cas9 technique. Expectedly, the MSTN null (Mstn-/-) mouse has a hypermuscular phenotype. The muscle metabolism of the Mstn-/- mice was detected by an enzyme-linked immunosorbent assay, indirect calorimetry, ChIP-qPCR, and RT-qPCR. The resting metabolic rate and body temperature of the Mstn-/- mice were significantly reduced. The loss of MSTN not only significantly inhibited the production of ATP by OXPHOS and decreased the activity of respiratory chain complexes, but also inhibited key rate-limiting enzymes related to the TCA cycle and significantly reduced the ratio of NADH/NAD+ in the Mstn-/- mice, which then greatly reduced the total amount of ATP. Further ChIP-qPCR results confirmed that the lack of MSTN inhibited both the TCA cycle and OXPHOS, resulting in decreased ATP production. The reason may be that Smad2/3 is not sufficiently bound to the promoter region of the rate-limiting enzymes Idh2 and Idh3a of the TCA cycle, thus affecting their transcription.
Collapse
Affiliation(s)
- Xueqiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Zhuying Wei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Mingjuan Gu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Zhu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Anqi Di
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Di Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
- Correspondence: (L.Y.); (G.L.)
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
- Correspondence: (L.Y.); (G.L.)
| |
Collapse
|
5
|
Han SZ, Gao K, Chang SY, Choe HM, Paek HJ, Quan BH, Liu XY, Yang LH, Lv ST, Yin XJ, Quan LH, Kang JD. miR-455-3p Is Negatively Regulated by Myostatin in Skeletal Muscle and Promotes Myoblast Differentiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10121-10133. [PMID: 35960196 DOI: 10.1021/acs.jafc.2c02474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Myostatin (MSTN) is a growth and differentiation factor that regulates proliferation and differentiation of myoblasts, which in turn controls skeletal muscle growth. It may regulate myoblast differentiation by influencing miRNA expression, and the present study aimed to clarify its precise mechanism of action. Here, we found that MSTN-/- pigs showed an overgrowth of skeletal muscle and upregulated miR-455-3p level. Intervention of MSTN expression using siMSTN in C2C12 myoblasts also showed that siMSTN significantly increased the expression of miR-455-3p. It was found that miR-455-3p directly targeted the 3'-untranslated region of Smad2 by dual-luciferase assay. qRT-PCR, Western blotting, and immunofluorescence analyses indicated that miR-455-3p overexpression or Smad2 silencing in C2C12 myoblasts significantly promoted myoblast differentiation. Furthermore, siMSTN significantly increased the expression of GATA3. The levels of miR-455-3p were considerably reduced in C2C12 myoblasts following GATA3 knockdown. Consistently, GATA3 knockdown also reduced the enhanced miR-455-3p expression caused by siMSTN. Finally, we illustrated that GATA3 has a role in myoblast differentiation regulation. Taken together, we identified the expression profiles of miRNAs in MSTN-/- pigs and found that miR-455-3p positively regulates myoblast differentiation. In addition, we revealed that MSTN acts through the GATA3/miR-455-3p/Smad2 cascade to regulate muscle development.
Collapse
Affiliation(s)
- Sheng-Zhong Han
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Kai Gao
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Shuang-Yan Chang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Hak-Myong Choe
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Hyo-Jin Paek
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Biao-Hu Quan
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Xin-Yue Liu
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Liu-Hui Yang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Si-Tong Lv
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Xi-Jun Yin
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Lin-Hu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Jin-Dan Kang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| |
Collapse
|
6
|
Krammer UDB, Sommer A, Tschida S, Mayer A, Lilja SV, Switzeny OJ, Hippe B, Rust P, Haslberger AG. PGC-1α Methylation, miR-23a, and miR-30e Expression as Biomarkers for Exercise- and Diet-Induced Mitochondrial Biogenesis in Capillary Blood from Healthy Individuals: A Single-Arm Intervention. Sports (Basel) 2022; 10:73. [PMID: 35622482 PMCID: PMC9143572 DOI: 10.3390/sports10050073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
Healthy mitochondria and their epigenetic control are essential to maintaining health, extending life expectancy, and improving cardiovascular performance. Strategies to maintain functional mitochondria during aging include training; cardiovascular exercise has been suggested as the best method, but strength training has also been identified as essential to health and healthy aging. We therefore investigated the effects of concurrent exercise training and dietary habits on epigenetic mechanisms involved in mitochondrial (mt) functions and biogenesis. We analyzed epigenetic biomarkers that directly target the key regulator of mitochondrial biogenesis, PGC-1α, and mtDNA content. Thirty-six healthy, sedentary participants completed a 12-week concurrent training program. Before and after the intervention, dried blood spot samples and data on eating habits, lifestyle, and body composition were collected. MiR-23a, miR-30e expression, and mtDNA content were analyzed using real-time quantitative polymerase chain reaction (qPCR) analysis. PGC-1α methylation was analyzed using bisulfite pyrosequencing. MiR-23a, miR-30e expression, and PGC-1α methylation decreased after the intervention (p < 0.05). PGC-1α methylation increased with the consumption of red and processed meat, and mtDNA content increased with the ingestion of cruciferous vegetables (p < 0.05). Our results indicate that concurrent training could improve mitochondrial biogenesis and functions by altering the epigenetic regulation. These alterations can also be detected outside of the skeletal muscle and could potentially affect athletic performance.
Collapse
Affiliation(s)
- Ulrike D. B. Krammer
- Department of Nutritional Science, University of Vienna, A-1090 Vienna, Austria; (U.D.B.K.); (S.T.); (A.M.); (S.V.L.); (B.H.); (P.R.)
- HealthBioCare GmbH, A-1090 Vienna, Austria;
| | - Alexandra Sommer
- Center for Molecular Biology, University of Vienna, A-1030 Vienna, Austria;
| | - Sylvia Tschida
- Department of Nutritional Science, University of Vienna, A-1090 Vienna, Austria; (U.D.B.K.); (S.T.); (A.M.); (S.V.L.); (B.H.); (P.R.)
| | - Anna Mayer
- Department of Nutritional Science, University of Vienna, A-1090 Vienna, Austria; (U.D.B.K.); (S.T.); (A.M.); (S.V.L.); (B.H.); (P.R.)
| | - Stephanie V. Lilja
- Department of Nutritional Science, University of Vienna, A-1090 Vienna, Austria; (U.D.B.K.); (S.T.); (A.M.); (S.V.L.); (B.H.); (P.R.)
| | | | - Berit Hippe
- Department of Nutritional Science, University of Vienna, A-1090 Vienna, Austria; (U.D.B.K.); (S.T.); (A.M.); (S.V.L.); (B.H.); (P.R.)
- HealthBioCare GmbH, A-1090 Vienna, Austria;
| | - Petra Rust
- Department of Nutritional Science, University of Vienna, A-1090 Vienna, Austria; (U.D.B.K.); (S.T.); (A.M.); (S.V.L.); (B.H.); (P.R.)
| | - Alexander G. Haslberger
- Department of Nutritional Science, University of Vienna, A-1090 Vienna, Austria; (U.D.B.K.); (S.T.); (A.M.); (S.V.L.); (B.H.); (P.R.)
| |
Collapse
|
7
|
Patra K, Rajaswini R, Murmu B, Rasal KD, Sahoo L, Saha A, Saha N, Koner D, Barman HK. Identifying miRNAs in the modulation of gene regulation associated with ammonia toxicity in catfish, Clarias magur (Linnaeus, 1758). Mol Biol Rep 2022; 49:6249-6259. [PMID: 35399140 DOI: 10.1007/s11033-022-07424-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
|
8
|
Chen MM, Zhao YP, Zhao Y, Deng SL, Yu K. Regulation of Myostatin on the Growth and Development of Skeletal Muscle. Front Cell Dev Biol 2022; 9:785712. [PMID: 35004684 PMCID: PMC8740192 DOI: 10.3389/fcell.2021.785712] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 01/01/2023] Open
Abstract
Myostatin (MSTN), a member of the transforming growth factor-β superfamily, can negatively regulate the growth and development of skeletal muscle by autocrine or paracrine signaling. Mutation of the myostatin gene under artificial or natural conditions can lead to a significant increase in muscle quality and produce a double-muscle phenotype. Here, we review the similarities and differences between myostatin and other members of the transforming growth factor-β superfamily and the mechanisms of myostatin self-regulation. In addition, we focus extensively on the regulation of myostatin functions involved in myogenic differentiation, myofiber type conversion, and skeletal muscle protein synthesis and degradation. Also, we summarize the induction of reactive oxygen species generation and oxidative stress by myostatin in skeletal muscle. This review of recent insights into the function of myostatin will provide reference information for future studies of myostatin-regulated skeletal muscle formation and may have relevance to agricultural fields of study.
Collapse
Affiliation(s)
- Ming-Ming Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yi-Ping Zhao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Yue Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Tewari RS, Ala U, Accornero P, Baratta M, Miretti S. Circulating skeletal muscle related microRNAs profile in Piedmontese cattle during different age. Sci Rep 2021; 11:15815. [PMID: 34349188 PMCID: PMC8339070 DOI: 10.1038/s41598-021-95137-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Piedmontese cattle is known for double-muscle phenotype. MicroRNAs (miRNAs) play important role as regulators in skeletal muscle physiological processes, and we hypothesize that plasma miRNAs expression profiles could be affected by skeletal muscle growth status related to age. Plasma samples of cattle were collected during four different ages from first week of life until the time of commercial end of the fattening period before slaughter. Small-RNA sequencing data analysis revealed the presence of 40% of muscle-related miRNAs among the top 25 highly expressed miRNAs and, 19 miRNAs showed differential expression too. Using qRT-PCR, we validated in a larger bovine population, miRNAs involved in skeletal muscle physiology pathways. Comparing new-born with the other age groups, miR-10b, miR-126-5p, miR-143 and miR-146b were significantly up-regulated, whereas miR-21-5p, miR-221, miR-223 and miR-30b-5p were significantly down-regulated. High expression levels of miR-23a in all the groups were found. Myostatin, a negative regulator of skeletal muscle hypertrophy, was predicted as the target gene for miR-23a and miR-126-5p and we demonstrated their direct binding. Correlation analysis revealed association between miRNAs expression profiles and animals’ weights along the age. Circulating miRNAs could be promising for future studies on their biomarker potentialities to beef cattle selection.
Collapse
Affiliation(s)
- Rupal S Tewari
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Paolo Accornero
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Mario Baratta
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Silvia Miretti
- Department of Veterinary Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
10
|
Uray K, Major E, Lontay B. MicroRNA Regulatory Pathways in the Control of the Actin-Myosin Cytoskeleton. Cells 2020; 9:E1649. [PMID: 32660059 PMCID: PMC7408560 DOI: 10.3390/cells9071649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are key modulators of post-transcriptional gene regulation in a plethora of processes, including actin-myosin cytoskeleton dynamics. Recent evidence points to the widespread effects of miRNAs on actin-myosin cytoskeleton dynamics, either directly on the expression of actin and myosin genes or indirectly on the diverse signaling cascades modulating cytoskeletal arrangement. Furthermore, studies from various human models indicate that miRNAs contribute to the development of various human disorders. The potentially huge impact of miRNA-based mechanisms on cytoskeletal elements is just starting to be recognized. In this review, we summarize recent knowledge about the importance of microRNA modulation of the actin-myosin cytoskeleton affecting physiological processes, including cardiovascular function, hematopoiesis, podocyte physiology, and osteogenesis.
Collapse
Affiliation(s)
- Karen Uray
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| | | | - Beata Lontay
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| |
Collapse
|
11
|
Mármol-Sánchez E, Ramayo-Caldas Y, Quintanilla R, Cardoso TF, González-Prendes R, Tibau J, Amills M. Co-expression network analysis predicts a key role of microRNAs in the adaptation of the porcine skeletal muscle to nutrient supply. J Anim Sci Biotechnol 2020; 11:10. [PMID: 31969983 PMCID: PMC6966835 DOI: 10.1186/s40104-019-0412-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The role of non-coding RNAs in the porcine muscle metabolism is poorly understood, with few studies investigating their expression patterns in response to nutrient supply. Therefore, we aimed to investigate the changes in microRNAs (miRNAs), long intergenic non-coding RNAs (lincRNAs) and mRNAs muscle expression before and after food intake. RESULTS We measured the miRNA, lincRNA and mRNA expression levels in the gluteus medius muscle of 12 gilts in a fasting condition (AL-T0) and 24 gilts fed ad libitum during either 5 h. (AL-T1, N = 12) or 7 h. (AL-T2, N = 12) prior to slaughter. The small RNA fraction was extracted from muscle samples retrieved from the 36 gilts and sequenced, whereas lincRNA and mRNA expression data were already available. In terms of mean and variance, the expression profiles of miRNAs and lincRNAs in the porcine muscle were quite different than those of mRNAs. Food intake induced the differential expression of 149 (AL-T0/AL-T1) and 435 (AL-T0/AL-T2) mRNAs, 6 (AL-T0/AL-T1) and 28 (AL-T0/AL-T2) miRNAs and none lincRNAs, while the number of differentially dispersed genes was much lower. Among the set of differentially expressed miRNAs, we identified ssc-miR-148a-3p, ssc-miR-22-3p and ssc-miR-1, which play key roles in the regulation of glucose and lipid metabolism. Besides, co-expression network analyses revealed several miRNAs that putatively interact with mRNAs playing key metabolic roles and that also showed differential expression before and after feeding. One case example was represented by seven miRNAs (ssc-miR-148a-3p, ssc-miR-151-3p, ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-421-5p, ssc-miR-493-5p and ssc-miR-503) which putatively interact with the PDK4 mRNA, one of the master regulators of glucose utilization and fatty acid oxidation. CONCLUSIONS As a whole, our results evidence that microRNAs are likely to play an important role in the porcine skeletal muscle metabolic adaptation to nutrient availability.
Collapse
Affiliation(s)
- Emilio Mármol-Sánchez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Tainã Figueiredo Cardoso
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Present address: Embrapa Pecuária Sudeste, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), São Carlos, SP 13560-970 Brazil
| | - Rayner González-Prendes
- Department of Animal Science, Universitat de Lleida - Agrotecnio Center, 25198 Lleida, Spain
| | - Joan Tibau
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
12
|
Zhang Y, Yang M, Zhou P, Yan H, Zhang Z, Zhang H, Qi R, Liu J. β-Hydroxy-β-methylbutyrate-Induced Upregulation of miR-199a-3p Contributes to Slow-To-Fast Muscle Fiber Type Conversion in Mice and C2C12 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:530-540. [PMID: 31891490 DOI: 10.1021/acs.jafc.9b05104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The influence of β-hydroxy-β-methylbutyrate (HMB) on proliferation and differentiation of myogenic cells has been well-studied. However, the role of HMB in myofiber specification and potential mechanisms is largely unknown. Thus, the objective of this research was to explore the role of HMB supplementation in myofiber specification. Results showed that HMB treatment significantly increased the fast MyHC protein level (mice: 1.59 ± 0.08, P < 0.01; C2C12: 2.26 ± 0.11, P < 0.001), decreased the slow MyHC protein level (mice: 0.76 ± 0.05, P < 0.05; C2C12: 0.52 ± 0.02, P < 0.001), and increased the miR-199a-3p level (mice: 4.93 ± 0.37, P < 0.001; C2C12: 11.25 ± 0.57, P < 0.001). Besides, we also observed that HMB promoted the activity of glycolysis-related enzymes and reduced the activities of oxidation-related enzymes in mice and C2C12 cells. Overexpression of miR-199a-3p downregulated the slow MyHC protein level (0.71 ± 0.02, P < 0.01) and upregulated the fast MyHC protein level (2.13 ± 0.09, P < 0.001), while repression of miR-199a-3p exhibited the opposite effect. Target identification results verified that miR-199a-3p targets the 3'UTR of the TEA domain family member 1 (TEAD1) to cause its post-transcriptional inhibition (0.41 ± 0.07, P < 0.01). Knockdown of TEAD1 exhibited a similar effect with miR-199a-3p on myofiber specification. Moreover, suppression of miR-199a-3p blocked slow-to-fast myofiber type transition induced by HMB. Together, our finding revealed that miR-199-3p is induced by HMB and contributes to the action of HMB on slow-to-fast myofiber type conversion via targeting TEAD1.
Collapse
Affiliation(s)
- Yong Zhang
- School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , China
| | - Min Yang
- Chengdu Agricultural College , Chengdu 611130 , China
| | - Pan Zhou
- School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , China
| | - Honglin Yan
- School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , China
| | - Zhenzhen Zhang
- School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , China
| | - Hongfu Zhang
- School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , China
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , Beijing 100000 , China
| | - Renli Qi
- Chongqing Academy of Animal Science , Rongchang 402460 , China
| | - Jingbo Liu
- School of Life Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , China
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , Beijing 100000 , China
| |
Collapse
|
13
|
Xu M, Chen X, Chen D, Yu B, Li M, He J, Huang Z. Regulation of skeletal myogenesis by microRNAs. J Cell Physiol 2019; 235:87-104. [DOI: 10.1002/jcp.28986] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Meng Xu
- Key Laboratory for Animal Disease‐Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition Sichuan Agricultural University Chengdu Sichuan China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease‐Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition Sichuan Agricultural University Chengdu Sichuan China
| | - Daiwen Chen
- Key Laboratory for Animal Disease‐Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition Sichuan Agricultural University Chengdu Sichuan China
| | - Bing Yu
- Key Laboratory for Animal Disease‐Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition Sichuan Agricultural University Chengdu Sichuan China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology Sichuan Agricultural University Chengdu Sichuan China
| | - Jun He
- Key Laboratory for Animal Disease‐Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition Sichuan Agricultural University Chengdu Sichuan China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease‐Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition Sichuan Agricultural University Chengdu Sichuan China
| |
Collapse
|
14
|
Freire PP, Fernandez GJ, Cury SS, de Moraes D, Oliveira JS, de Oliveira G, Dal-Pai-Silva M, Dos Reis PP, Carvalho RF. The Pathway to Cancer Cachexia: MicroRNA-Regulated Networks in Muscle Wasting Based on Integrative Meta-Analysis. Int J Mol Sci 2019; 20:E1962. [PMID: 31013615 PMCID: PMC6515458 DOI: 10.3390/ijms20081962] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer cachexia is a multifactorial syndrome that leads to significant weight loss. Cachexia affects 50%-80% of cancer patients, depending on the tumor type, and is associated with 20%-40% of cancer patient deaths. Besides the efforts to identify molecular mechanisms of skeletal muscle atrophy-a key feature in cancer cachexia-no effective therapy for the syndrome is currently available. MicroRNAs are regulators of gene expression, with therapeutic potential in several muscle wasting disorders. We performed a meta-analysis of previously published gene expression data to reveal new potential microRNA-mRNA networks associated with muscle atrophy in cancer cachexia. We retrieved 52 differentially expressed genes in nine studies of muscle tissue from patients and rodent models of cancer cachexia. Next, we predicted microRNAs targeting these differentially expressed genes. We also include global microRNA expression data surveyed in atrophying skeletal muscles from previous studies as background information. We identified deregulated genes involved in the regulation of apoptosis, muscle hypertrophy, catabolism, and acute phase response. We further predicted new microRNA-mRNA interactions, such as miR-27a/Foxo1, miR-27a/Mef2c, miR-27b/Cxcl12, miR-27b/Mef2c, miR-140/Cxcl12, miR-199a/Cav1, and miR-199a/Junb, which may contribute to muscle wasting in cancer cachexia. Finally, we found drugs targeting MSTN, CXCL12, and CAMK2B, which may be considered for the development of novel therapeutic strategies for cancer cachexia. Our study has broadened the knowledge of microRNA-regulated networks that are likely associated with muscle atrophy in cancer cachexia, pointing to their involvement as potential targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Paula Paccielli Freire
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Geysson Javier Fernandez
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Sarah Santiloni Cury
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Diogo de Moraes
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Jakeline Santos Oliveira
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Grasieli de Oliveira
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Patrícia Pintor Dos Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-687, Brazil.
- Experimental Research Unity, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-687, Brazil.
| | - Robson Francisco Carvalho
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| |
Collapse
|
15
|
Masouminia M, Gelfand R, Kovanecz I, Vernet D, Tsao J, Salas R, Castro K, Loni L, Rajfer J, Gonzalez-Cadavid NF. Dyslipidemia Is a Major Factor in Stem Cell Damage Induced by Uncontrolled Long-Term Type 2 Diabetes and Obesity in the Rat, as Suggested by the Effects on Stem Cell Culture. J Sex Med 2018; 15:1678-1697. [PMID: 30527052 PMCID: PMC6645779 DOI: 10.1016/j.jsxm.2018.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/04/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Previous work showed that muscle-derived stem cells (MDSCs) exposed long-term to the milieu of uncontrolled type 2 diabetes (UC-T2D) in male obese Zucker (OZ) rats, were unable to correct the associated erectile dysfunction and the underlying histopathology when implanted into the corpora cavernosa, and were also imprinted with a noxious gene global transcriptional signature (gene-GTS), suggesting that this may interfere with their use as autografts in stem cell therapy. AIM To ascertain the respective contributions of dyslipidemia and hyperglycemia to this MDSC damage, clarify its mechanism, and design a bioassay to identify the damaged stem cells. METHODS Early diabetes MDSCs and late diabetes MDSCs were respectively isolated from nearly normal young OZ rats and moderately hyperglycemic and severely dyslipidemic/obese aged rats with erectile dysfunction. Monolayer cultures of early diabetic MDSCs were incubated 4 days in DMEM/10% fetal calf serum + or - aged OZ or lean Zucker serum from non-diabetic lean Zucker rats (0.5-5%) or with soluble palmitic acid (PA) (0.5-2 mM), cholesterol (CHOL) (50-400 mg/dL), or glucose (10-25 mM). MAIN OUTCOME MEASURE Fat infiltration was estimated by Oil red O, apoptosis by TUNEL, protein expression by Western blots, and gene-GTS and microRNA (miR)-GTS were determined in these stem cells' RNA. RESULTS Aged OZ serum caused fat infiltration, apoptosis, myostatin overexpression, and impaired differentiation. Some of these changes, and also a proliferation decrease occurred with PA and CHOL. The gene-GTS changes by OZ serum did not resemble the in vivo changes, but some occurred with PA and CHOL. The miR-GTS changes by OZ serum, PA, and CHOL resembled most of the in vivo changes. Hyperglycemia did not replicate most alterations. CLINICAL IMPLICATIONS MDSCs may be damaged in long-term UC-T2D/obese patients and be ineffective in autologous human stem cell therapy, which may be prevented by excluding the damaged MDSCs. STRENGTH & LIMITATIONS The in vitro test of MDSCs is innovative and fast to define dyslipidemic factors inducing stem cell damage, its mechanism, prevention, and counteraction. Confirmation is required in other T2D/obesity rat models and stem cells (including human), as well as miR-GTS biomarker validation as a stem cell damage biomarker. CONCLUSION Serum from long-term UC-T2D/obese rats or dyslipidemic factors induces a noxious phenotype and miR-GTS on normal MDSCs, which may lead in vivo to the repair inefficacy of late diabetic MDSCs. This suggests that autograft therapy with MDSCs in long-term UT-T2D obese patients may be ineffective, albeit this may be predictable by prior stem cell miR-GTS tests. Masouminia M, Gelfand R, Kovanecz I, et al. Dyslipidemia Is a Major Factor in Stem Cell Damage Induced by Uncontrolled Long-Term Type 2 Diabetes and Obesity in the Rat, as Suggested by the Effects on Stem Cell Culture. J Sex Med 2018;15:1678-1697.
Collapse
Affiliation(s)
- Maryam Masouminia
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Robert Gelfand
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Istvan Kovanecz
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dolores Vernet
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - James Tsao
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Ruben Salas
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Kenny Castro
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Leila Loni
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Jacob Rajfer
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Nestor F Gonzalez-Cadavid
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA.
| |
Collapse
|