1
|
Asim MN, Ibrahim MA, Asif T, Dengel A. RNA sequence analysis landscape: A comprehensive review of task types, databases, datasets, word embedding methods, and language models. Heliyon 2025; 11:e41488. [PMID: 39897847 PMCID: PMC11783440 DOI: 10.1016/j.heliyon.2024.e41488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
Deciphering information of RNA sequences reveals their diverse roles in living organisms, including gene regulation and protein synthesis. Aberrations in RNA sequence such as dysregulation and mutations can drive a diverse spectrum of diseases including cancers, genetic disorders, and neurodegenerative conditions. Furthermore, researchers are harnessing RNA's therapeutic potential for transforming traditional treatment paradigms into personalized therapies through the development of RNA-based drugs and gene therapies. To gain insights of biological functions and to detect diseases at early stages and develop potent therapeutics, researchers are performing diverse types RNA sequence analysis tasks. RNA sequence analysis through conventional wet-lab methods is expensive, time-consuming and error prone. To enable large-scale RNA sequence analysis, empowerment of wet-lab experimental methods with Artificial Intelligence (AI) applications necessitates scientists to have a comprehensive knowledge of both DNA and AI fields. While molecular biologists encounter challenges in understanding AI methods, computer scientists often lack basic foundations of RNA sequence analysis tasks. Considering the absence of a comprehensive literature that bridges this research gap and promotes the development of AI-driven RNA sequence analysis applications, the contributions of this manuscript are manifold: It equips AI researchers with biological foundations of 47 distinct RNA sequence analysis tasks. It sets a stage for development of benchmark datasets related to 47 distinct RNA sequence analysis tasks by facilitating cruxes of 64 different biological databases. It presents word embeddings and language models applications across 47 distinct RNA sequence analysis tasks. It streamlines the development of new predictors by providing a comprehensive survey of 58 word embeddings and 70 language models based predictive pipelines performance values as well as top performing traditional sequence encoding based predictors and their performances across 47 RNA sequence analysis tasks.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, 67663, Germany
| | - Muhammad Ali Ibrahim
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, 67663, Germany
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany
| | - Tayyaba Asif
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany
| | - Andreas Dengel
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, 67663, Germany
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany
| |
Collapse
|
2
|
Bereczki Z, Benczik B, Balogh OM, Marton S, Puhl E, Pétervári M, Váczy-Földi M, Papp ZT, Makkos A, Glass K, Locquet F, Euler G, Schulz R, Ferdinandy P, Ágg B. Mitigating off-target effects of small RNAs: conventional approaches, network theory and artificial intelligence. Br J Pharmacol 2025; 182:340-379. [PMID: 39293936 DOI: 10.1111/bph.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 09/20/2024] Open
Abstract
Three types of highly promising small RNA therapeutics, namely, small interfering RNAs (siRNAs), microRNAs (miRNAs) and the RNA subtype of antisense oligonucleotides (ASOs), offer advantages over small-molecule drugs. These small RNAs can target any gene product, opening up new avenues of effective and safe therapeutic approaches for a wide range of diseases. In preclinical research, synthetic small RNAs play an essential role in the investigation of physiological and pathological pathways as silencers of specific genes, facilitating discovery and validation of drug targets in different conditions. Off-target effects of small RNAs, however, could make it difficult to interpret experimental results in the preclinical phase and may contribute to adverse events of small RNA therapeutics. Out of the two major types of off-target effects we focused on the hybridization-dependent, especially on the miRNA-like off-target effects. Our main aim was to discuss several approaches, including sequence design, chemical modifications and target prediction, to reduce hybridization-dependent off-target effects that should be considered even at the early development phase of small RNA therapy. Because there is no standard way of predicting hybridization-dependent off-target effects, this review provides an overview of all major state-of-the-art computational methods and proposes new approaches, such as the possible inclusion of network theory and artificial intelligence (AI) in the prediction workflows. Case studies and a concise survey of experimental methods for validating in silico predictions are also presented. These methods could contribute to interpret experimental results, to minimize off-target effects and hopefully to avoid off-target-related adverse events of small RNA therapeutics. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Zoltán Bereczki
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bettina Benczik
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Olivér M Balogh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Szandra Marton
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Eszter Puhl
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Mátyás Pétervári
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Sanovigado Kft, Budapest, Hungary
| | - Máté Váczy-Földi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zsolt Tamás Papp
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Fabian Locquet
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Gerhild Euler
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
3
|
Yoon S, Yoon H, Cho J, Lee K. AEmiGAP: AutoEncoder-Based miRNA-Gene Association Prediction Using Deep Learning Method. Int J Mol Sci 2024; 25:13075. [PMID: 39684787 DOI: 10.3390/ijms252313075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
MicroRNAs (miRNAs) play a crucial role in gene regulation and are strongly linked to various diseases, including cancer. This study presents AEmiGAP, an advanced deep learning model that integrates autoencoders with long short-term memory (LSTM) networks to predict miRNA-gene associations. By enhancing feature extraction through autoencoders, AEmiGAP captures intricate, latent relationships between miRNAs and genes with unprecedented accuracy, outperforming all existing models in miRNA-gene association prediction. A thoroughly curated dataset of positive and negative miRNA-gene pairs was generated using distance-based filtering methods, significantly improving the model's AUC and overall predictive accuracy. Additionally, this study proposes two case studies to highlight AEmiGAP's application: first, a top 30 list of miRNA-gene pairs with the highest predicted association scores among previously unknown pairs, and second, a list of the top 10 miRNAs strongly associated with each of five key oncogenes. These findings establish AEmiGAP as a new benchmark in miRNA-gene association prediction, with considerable potential to advance both cancer research and precision medicine.
Collapse
Affiliation(s)
- Seungwon Yoon
- Department of Computer Science & Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Hyewon Yoon
- Department of Computer Science & Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Jaeeun Cho
- Department of Computer Science & Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Kyuchul Lee
- Department of Computer Science & Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| |
Collapse
|
4
|
Agrawal M, Mani A. Integrative in silico approaches to analyse microRNA-mediated responses in human diseases. J Gene Med 2024; 26:e3734. [PMID: 39197943 DOI: 10.1002/jgm.3734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Advancements in sequencing technologies have facilitated omics level information generation for various diseases in human. High-throughput technologies have become a powerful tool to understand differential expression studies and transcriptional network analysis. An understanding of complex transcriptional networks in human diseases requires integration of datasets representing different RNA species including microRNA (miRNA) and messenger RNA (mRNA). This review emphasises on conceptual explanation of generalized workflow and methodologies to the miRNA mediated responses in human diseases by using different in silico analysis. Although, there have been many prior explorations in miRNA-mediated responses in human diseases, the advantages, limitations and overcoming the limitation through different statistical techniques have not yet been discussed. This review focuses on miRNAs as important gene regulators in human diseases, methodologies for miRNA-target gene prediction and data driven methods for enrichment and network analysis for miRnome-targetome interactions. Additionally, it proposes an integrative workflow to analyse structural components of networks obtained from high-throughput data. This review explains how to apply the existing methods to analyse miRNA-mediated responses in human diseases. It addresses unique characteristics of different analysis, its limitations and its statistical solutions influencing the choice of methods for the analysis through a workflow. Moreover, it provides an overview of promising common integrative approaches to comprehend miRNA-mediated gene regulatory events in biological processes in humans. The proposed methodologies and workflow shall help in the analysis of multi-source data to identify molecular signatures of various human diseases.
Collapse
Affiliation(s)
- Meghna Agrawal
- Department of Biotechnology, Motilal Nehru Institute of Technology Allahabad, Prayagraj, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
5
|
Si Y, Huang Z, Fang Z, Yuan Z, Huang Z, Li Y, Wei Y, Wu F, Yao YF. Global-local aware Heterogeneous Graph Contrastive Learning for multifaceted association prediction in miRNA-gene-disease networks. Brief Bioinform 2024; 25:bbae443. [PMID: 39256197 PMCID: PMC11387071 DOI: 10.1093/bib/bbae443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/11/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Unraveling the intricate network of associations among microRNAs (miRNAs), genes, and diseases is pivotal for deciphering molecular mechanisms, refining disease diagnosis, and crafting targeted therapies. Computational strategies, leveraging link prediction within biological graphs, present a cost-efficient alternative to high-cost empirical assays. However, while plenty of methods excel at predicting specific associations, such as miRNA-disease associations (MDAs), miRNA-target interactions (MTIs), and disease-gene associations (DGAs), a holistic approach harnessing diverse data sources for multifaceted association prediction remains largely unexplored. The limited availability of high-quality data, as vitro experiments to comprehensively confirm associations are often expensive and time-consuming, results in a sparse and noisy heterogeneous graph, hindering an accurate prediction of these complex associations. To address this challenge, we propose a novel framework called Global-local aware Heterogeneous Graph Contrastive Learning (GlaHGCL). GlaHGCL combines global and local contrastive learning to improve node embeddings in the heterogeneous graph. In particular, global contrastive learning enhances the robustness of node embeddings against noise by aligning global representations of the original graph and its augmented counterpart. Local contrastive learning enforces representation consistency between functionally similar or connected nodes across diverse data sources, effectively leveraging data heterogeneity and mitigating the issue of data scarcity. The refined node representations are applied to downstream tasks, such as MDA, MTI, and DGA prediction. Experiments show GlaHGCL outperforming state-of-the-art methods, and case studies further demonstrate its ability to accurately uncover new associations among miRNAs, genes, and diseases. We have made the datasets and source code publicly available at https://github.com/Sue-syx/GlaHGCL.
Collapse
Affiliation(s)
- Yuxuan Si
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road, 310016 Zhejiang, China
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China
| | - Zihan Huang
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China
| | - Zhengqing Fang
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road, 310016 Zhejiang, China
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China
| | - Zhouhang Yuan
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road, 310016 Zhejiang, China
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China
| | - Zhengxing Huang
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China
| | - Yingming Li
- College of Information Science and Electronic Engineering, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China
| | - Ying Wei
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China
| | - Fei Wu
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China
| | - Yu-Feng Yao
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road, 310016 Zhejiang, China
- Department of Ophthalmology, The Fourth Affiliated Hospital of Soochow University, 215000 Suzhou, China
| |
Collapse
|
6
|
Hwang H, Jeon H, Yeo N, Baek D. Big data and deep learning for RNA biology. Exp Mol Med 2024; 56:1293-1321. [PMID: 38871816 PMCID: PMC11263376 DOI: 10.1038/s12276-024-01243-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 06/15/2024] Open
Abstract
The exponential growth of big data in RNA biology (RB) has led to the development of deep learning (DL) models that have driven crucial discoveries. As constantly evidenced by DL studies in other fields, the successful implementation of DL in RB depends heavily on the effective utilization of large-scale datasets from public databases. In achieving this goal, data encoding methods, learning algorithms, and techniques that align well with biological domain knowledge have played pivotal roles. In this review, we provide guiding principles for applying these DL concepts to various problems in RB by demonstrating successful examples and associated methodologies. We also discuss the remaining challenges in developing DL models for RB and suggest strategies to overcome these challenges. Overall, this review aims to illuminate the compelling potential of DL for RB and ways to apply this powerful technology to investigate the intriguing biology of RNA more effectively.
Collapse
Affiliation(s)
- Hyeonseo Hwang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyeonseong Jeon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- Genome4me Inc., Seoul, Republic of Korea
| | - Nagyeong Yeo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
- Genome4me Inc., Seoul, Republic of Korea.
| |
Collapse
|
7
|
Zhang W, Zhang P, Sun W, Xu J, Liao L, Cao Y, Han Y. Improving plant miRNA-target prediction with self-supervised k-mer embedding and spectral graph convolutional neural network. PeerJ 2024; 12:e17396. [PMID: 38799058 PMCID: PMC11122044 DOI: 10.7717/peerj.17396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Deciphering the targets of microRNAs (miRNAs) in plants is crucial for comprehending their function and the variation in phenotype that they cause. As the highly cell-specific nature of miRNA regulation, recent computational approaches usually utilize expression data to identify the most physiologically relevant targets. Although these methods are effective, they typically require a large sample size and high-depth sequencing to detect potential miRNA-target pairs, thereby limiting their applicability in improving plant breeding. In this study, we propose a novel miRNA-target prediction framework named kmerPMTF (k-mer-based prediction framework for plant miRNA-target). Our framework effectively extracts the latent semantic embeddings of sequences by utilizing k-mer splitting and a deep self-supervised neural network. We construct multiple similarity networks based on k-mer embeddings and employ graph convolutional networks to derive deep representations of miRNAs and targets and calculate the probabilities of potential associations. We evaluated the performance of kmerPMTF on four typical plant datasets: Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, and Prunus persica. The results demonstrate its ability to achieve AUPRC values of 84.9%, 91.0%, 80.1%, and 82.1% in 5-fold cross-validation, respectively. Compared with several state-of-the-art existing methods, our framework achieves better performance on threshold-independent evaluation metrics. Overall, our study provides an efficient and simplified methodology for identifying plant miRNA-target associations, which will contribute to a deeper comprehension of miRNA regulatory mechanisms in plants.
Collapse
Affiliation(s)
- Weihan Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Ping Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Weicheng Sun
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jinsheng Xu
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| |
Collapse
|
8
|
Xie W, Chen X, Zheng Z, Wang F, Zhu X, Lin Q, Sun Y, Wong KC. LncRNA-Top: Controlled deep learning approaches for lncRNA gene regulatory relationship annotations across different platforms. iScience 2023; 26:108197. [PMID: 37965148 PMCID: PMC10641498 DOI: 10.1016/j.isci.2023.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
By soaking microRNAs (miRNAs), long non-coding RNAs (lncRNAs) have the potential to regulate gene expression. Few methods have been created based on this mechanism to anticipate the lncRNA-gene relationship prediction. Hence, we present lncRNA-Top to forecast potential lncRNA-gene regulation relationships. Specifically, we constructed controlled deep-learning methods using 12417 lncRNAs and 16127 genes. We have provided retrospective and innovative views among negative sampling, random seeds, cross-validation, metrics, and independent datasets. The AUC, AUPR, and our defined precision@k were leveraged to evaluate performance. In-depth case studies demonstrate that 47 out of 100 projected top unknown pairings were recorded in publications, supporting the predictive power. Our additional software can annotate the scores with target candidates. The lncRNA-Top will be a helpful tool to uncover prospective lncRNA targets and better comprehend the regulatory processes of lncRNAs.
Collapse
Affiliation(s)
- Weidun Xie
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Xingjian Chen
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Zetian Zheng
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Fuzhou Wang
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Xiaowei Zhu
- Department of Neuroscience, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Qiuzhen Lin
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
- Hong Kong Institute for Data Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| |
Collapse
|
9
|
Small RNA Targets: Advances in Prediction Tools and High-Throughput Profiling. BIOLOGY 2022; 11:biology11121798. [PMID: 36552307 PMCID: PMC9775672 DOI: 10.3390/biology11121798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are an abundant class of small non-coding RNAs that regulate gene expression at the post-transcriptional level. They are suggested to be involved in most biological processes of the cell primarily by targeting messenger RNAs (mRNAs) for cleavage or translational repression. Their binding to their target sites is mediated by the Argonaute (AGO) family of proteins. Thus, miRNA target prediction is pivotal for research and clinical applications. Moreover, transfer-RNA-derived fragments (tRFs) and other types of small RNAs have been found to be potent regulators of Ago-mediated gene expression. Their role in mRNA regulation is still to be fully elucidated, and advancements in the computational prediction of their targets are in their infancy. To shed light on these complex RNA-RNA interactions, the availability of good quality high-throughput data and reliable computational methods is of utmost importance. Even though the arsenal of computational approaches in the field has been enriched in the last decade, there is still a degree of discrepancy between the results they yield. This review offers an overview of the relevant advancements in the field of bioinformatics and machine learning and summarizes the key strategies utilized for small RNA target prediction. Furthermore, we report the recent development of high-throughput sequencing technologies, and explore the role of non-miRNA AGO driver sequences.
Collapse
|
10
|
Feitosa RM, Prieto-Oliveira P, Brentani H, Machado-Lima A. MicroRNA target prediction tools for animals: Where we are at and where we are going to - A systematic review. Comput Biol Chem 2022; 100:107729. [DOI: 10.1016/j.compbiolchem.2022.107729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/26/2022]
|
11
|
Asim MN, Ibrahim MA, Zehe C, Trygg J, Dengel A, Ahmed S. BoT-Net: a lightweight bag of tricks-based neural network for efficient LncRNA–miRNA interaction prediction. Interdiscip Sci 2022; 14:841-862. [PMID: 35947255 PMCID: PMC9581873 DOI: 10.1007/s12539-022-00535-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/16/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Background and objective: Interactions of long non-coding ribonucleic acids (lncRNAs) with micro-ribonucleic acids (miRNAs) play an essential role in gene regulation, cellular metabolic, and pathological processes. Existing purely sequence based computational approaches lack robustness and efficiency mainly due to the high length variability of lncRNA sequences. Hence, the prime focus of the current study is to find optimal length trade-offs between highly flexible length lncRNA sequences. Method The paper at hand performs in-depth exploration of diverse copy padding, sequence truncation approaches, and presents a novel idea of utilizing only subregions of lncRNA sequences to generate fixed-length lncRNA sequences. Furthermore, it presents a novel bag of tricks-based deep learning approach “Bot-Net” which leverages a single layer long-short-term memory network regularized through DropConnect to capture higher order residue dependencies, pooling to retain most salient features, normalization to prevent exploding and vanishing gradient issues, learning rate decay, and dropout to regularize precise neural network for lncRNA–miRNA interaction prediction. Results BoT-Net outperforms the state-of-the-art lncRNA–miRNA interaction prediction approach by 2%, 8%, and 4% in terms of accuracy, specificity, and matthews correlation coefficient. Furthermore, a case study analysis indicates that BoT-Net also outperforms state-of-the-art lncRNA–protein interaction predictor on a benchmark dataset by accuracy of 10%, sensitivity of 19%, specificity of 6%, precision of 14%, and matthews correlation coefficient of 26%. Conclusion In the benchmark lncRNA–miRNA interaction prediction dataset, the length of the lncRNA sequence varies from 213 residues to 22,743 residues and in the benchmark lncRNA–protein interaction prediction dataset, lncRNA sequences vary from 15 residues to 1504 residues. For such highly flexible length sequences, fixed length generation using copy padding introduces a significant level of bias which makes a large number of lncRNA sequences very much identical to each other and eventually derail classifier generalizeability. Empirical evaluation reveals that within 50 residues of only the starting region of long lncRNA sequences, a highly informative distribution for lncRNA–miRNA interaction prediction is contained, a crucial finding exploited by the proposed BoT-Net approach to optimize the lncRNA fixed length generation process. Availability: BoT-Net web server can be accessed at https://sds_genetic_analysis.opendfki.de/lncmiRNA/. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- Department of Computer Science, Technical University of Kaiserslautern, 67663, Kaiserslautern, Rhineland-Palatinate, Germany.
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Rhineland-Palatinate, Germany.
| | - Muhammad Ali Ibrahim
- Department of Computer Science, Technical University of Kaiserslautern, 67663, Kaiserslautern, Rhineland-Palatinate, Germany
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Rhineland-Palatinate, Germany
| | - Christoph Zehe
- Sartorius Stedim Cellca GmbH, 88471, Laupheim, Baden-Wurttemberg, Germany
| | - Johan Trygg
- Sartorius Stedim Cellca GmbH, 88471, Laupheim, Baden-Wurttemberg, Germany
- Computational Life Science Cluster (CLiC), Umea University, 90187, Umea, Sweden
| | - Andreas Dengel
- Department of Computer Science, Technical University of Kaiserslautern, 67663, Kaiserslautern, Rhineland-Palatinate, Germany
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Rhineland-Palatinate, Germany
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Rhineland-Palatinate, Germany
- Computational Life Science Cluster (CLiC), Umea University, 90187, Umea, Sweden
| |
Collapse
|
12
|
Zhou Y, Jia E, Shi H, Liu Z, Sheng Y, Pan M, Tu J, Ge Q, Lu Z. Prediction of Time-Series Transcriptomic Gene Expression Based on Long Short-Term Memory with Empirical Mode Decomposition. Int J Mol Sci 2022; 23:7532. [PMID: 35886880 PMCID: PMC9322773 DOI: 10.3390/ijms23147532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
RNA degradation can significantly affect the results of gene expression profiling, with subsequent analysis failing to faithfully represent the initial gene expression level. It is urgent to have an artificial intelligence approach to better utilize the limited data to obtain meaningful and reliable analysis results in the case of data with missing destination time. In this study, we propose a method based on the signal decomposition technique and deep learning, named Multi-LSTM. It is divided into two main modules: One decomposes the collected gene expression data by an empirical mode decomposition (EMD) algorithm to obtain a series of sub-modules with different frequencies to improve data stability and reduce modeling complexity. The other is based on long short-term memory (LSTM) as the core predictor, aiming to deeply explore the temporal nonlinear relationships embedded in the sub-modules. Finally, the prediction results of sub-modules are reconstructed to obtain the final prediction results of time-series transcriptomic gene expression. The results show that EMD can efficiently reduce the nonlinearity of the original data, which provides reliable theoretical support to reduce the complexity and improve the robustness of LSTM models. Overall, the decomposition-combination prediction framework can effectively predict gene expression levels at unknown time points.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Z.); (E.J.); (H.S.); (Z.L.); (Y.S.); (J.T.); (Z.L.)
| | - Erteng Jia
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Z.); (E.J.); (H.S.); (Z.L.); (Y.S.); (J.T.); (Z.L.)
| | - Huajuan Shi
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Z.); (E.J.); (H.S.); (Z.L.); (Y.S.); (J.T.); (Z.L.)
| | - Zhiyu Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Z.); (E.J.); (H.S.); (Z.L.); (Y.S.); (J.T.); (Z.L.)
| | - Yuqi Sheng
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Z.); (E.J.); (H.S.); (Z.L.); (Y.S.); (J.T.); (Z.L.)
| | - Min Pan
- School of Medicine, Southeast University, Nanjing 210097, China;
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Z.); (E.J.); (H.S.); (Z.L.); (Y.S.); (J.T.); (Z.L.)
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Z.); (E.J.); (H.S.); (Z.L.); (Y.S.); (J.T.); (Z.L.)
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Z.); (E.J.); (H.S.); (Z.L.); (Y.S.); (J.T.); (Z.L.)
| |
Collapse
|
13
|
Xie W, Zheng Z, Zhang W, Huang L, Lin Q, Wong KC. SRG-vote: Predicting miRNA-gene relationships via embedding and LSTM ensemble. IEEE J Biomed Health Inform 2022; 26:4335-4344. [PMID: 35471879 DOI: 10.1109/jbhi.2022.3169542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractTargeted therapy for one for a set of genes has made it possible to apply precision medicine for different patients due to the existence of tumor heterogeneity. However, how to regulate those genes are still problematic. One of the natural regulators of genes is microRNAs. Thus, a better understanding of the miRNA-gene interaction mechanism might contribute to future diagnosis, prevention, and cancer therapy. The interactions between microRNA and genes play an essential role in molecular genetics. The in-vivo experiments validating the relationships between them are time-consuming, money-costly, and labor-intensive. With the development of high-throughput technology, we dealt with tons of biological data. However, extracting features from tremendous raw data and making a mathematical model is still a challenging topic. Machine learning and deep learning algorithms have become powerful tools in dealing with biological data. Inspired by this, in this paper, we propose a model that combines features/embedding extraction methods, deep learning algorithms, and a voting system. We leverage doc2vec to generate sequential embedding from molecular sequences. The role2vec, GCN, and GMM for geometrical embedding were generated from the complex network from similarity and pair-wise datasets. For the deep learning algorithms, we leveraged LSTM and Bi-LSTM according to different embedding and features. Finally, we adopted a voting system to balance results from different data sources. The results have shown that our voting system could achieve a higher AUC than the existing benchmark. The case studies demonstrate that our model could reveal potential relationships between miRNAs and genes. The source code, features, and predictive results can be downloaded at https://github.com/Xshelton/SRG-vote.
Collapse
|
14
|
Luo J, Ouyang W, Shen C, Cai J. Multi-relation graph embedding for predicting miRNA-target gene interactions by integrating gene sequence information. IEEE J Biomed Health Inform 2022; 26:4345-4353. [PMID: 35439150 DOI: 10.1109/jbhi.2022.3168008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Accumulated studies have found that miRNAs are in charge of many complex diseases such as cancers by modulating gene expression. Predicting miRNA-target interactions is beneficial for uncovering the crucial roles of miRNAs in regulating target genes and the progression of diseases. The emergence of large-scale genomic and biological data as well as the recent development in heterogeneous networks provides new opportunities for miRNA target identification. Compared with conventional methods, computational methods become a decent solution for high efficiency. Thus, designing a method that could excavate valid information from the heterogeneous network and gene sequences is in great demand for improving the prediction accuracy. In this study, we proposed a graph-based model named MRMTI for the prediction of miRNA-target interactions. MRMTI utilized the multi-relation graph convolution module and the Bi-LSTM module to incorporate both network topology and sequential information. The learned embeddings of miRNAs and genes were then used to calculate the prediction scores of miRNA-target pairs. Comparisons with other state-of-the-art graph embedding methods and existing bioinformatic tools illustrated the superiority of MRMTI under multiple criteria metrics. Three variants of MRMTI implied the positive effect of multi-relation. The experimental results of case studies further demonstrated the prominent ability of MRMTI in predicting novel associations.
Collapse
|
15
|
Luo J, Bao Y, Chen X, Shen C. Metapath-Based Deep Convolutional Neural Network for Predicting miRNA-Target Association on Heterogeneous Network. Interdiscip Sci 2021; 13:547-558. [PMID: 34170473 DOI: 10.1007/s12539-021-00454-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Predicting the interactions between microRNAs (miRNAs) and target genes is of great significance for understanding the regulatory mechanism of miRNA and treating complex diseases. The emergence of large-scale, heterogeneous biological networks has offered unprecedented opportunities for revealing miRNA-associated target genes. However, there are still some limitations about automatically learn the feature information of the network in the existing methods. Since network representation learning can self-adaptively capture structure information of the network, we propose a framework based on heterogeneous network representation, MDCNN (Metapath-Based Deep Convolutional Neural Network), to predict the associations between miRNAs and target genes. MDCNN samples the paths between the node pairs in the form of meta-path based on the heterogeneous information network (HIN) about miRNAs and target genes. Then the node feature and the path feature which is learned by the Deep Convolutional Neural Network (DCNN) are spliced together as the representation of the miRNA-target gene, to predict the miRNA-target gene interactions. The experiment results indicate that the performance of MDCNN outperforms other methods in multiple validation metrics by fivefold cross validation. We set an ablation study to identify the necessity of miRNA similarity and target gene similarity for improving the prediction ability of MDCNN. The case studies on hsa-miR-26b-5p and CDKN1A further demonstrates that MDCNN can successfully predict potential miRNA-target gene interactions.
Collapse
Affiliation(s)
- Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, China
| | - Yaoting Bao
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, China
| | - Xiangtao Chen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, China.
| | - Cong Shen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, China
| |
Collapse
|
16
|
Long Y, Luo J. Association Mining to Identify Microbe Drug Interactions Based on Heterogeneous Network Embedding Representation. IEEE J Biomed Health Inform 2021; 25:266-275. [PMID: 32750918 DOI: 10.1109/jbhi.2020.2998906] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Accurately identifying microbe-drug associations plays a critical role in drug development and precision medicine. Considering that the conventional wet-lab method is time-consuming, labor-intensive and expensive, computational approach is an alternative choice. The increasing availability of numerous biological data provides a great opportunity to systematically understand complex interaction mechanisms between microbes and drugs. However, few computational methods have been developed for microbe drug prediction. In this work, we leverage multiple sources of biomedical data to construct a heterogeneous network for microbes and drugs, including drug-drug interactions, microbe-microbe interactions and microbe-drug associations. And then we propose a novel Heterogeneous Network Embedding Representation framework for Microbe-Drug Association prediction, named (HNERMDA), by combining metapath2vec with bipartite network recommendation. In this framework, we introduce metapath2vec, a heterogeneous network representation learning method, to learn low-dimensional embedding representations for microbes and drugs. Following that, we further design a bias bipartite network projection recommendation algorithm to improve prediction accuracy. Comprehensive experiments on two datasets, named MDAD and aBiofilm, demonstrated that our model consistently outperformed five baseline methods in three types of cross-validations. Case study on two popular drugs (i.e., Ciprofloxacin and Pefloxacin) further validated the effectiveness of our HNERMDA model in inferring potential target microbes for drugs.
Collapse
|
17
|
Yang S, Wang Y, Lin Y, Shao D, He K, Huang L. LncMirNet: Predicting LncRNA-miRNA Interaction Based on Deep Learning of Ribonucleic Acid Sequences. Molecules 2020; 25:E4372. [PMID: 32977679 PMCID: PMC7583909 DOI: 10.3390/molecules25194372] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNA (LncRNA) and microRNA (miRNA) are both non-coding RNAs that play significant regulatory roles in many life processes. There is cumulating evidence showing that the interaction patterns between lncRNAs and miRNAs are highly related to cancer development, gene regulation, cellular metabolic process, etc. Contemporaneously, with the rapid development of RNA sequence technology, numerous novel lncRNAs and miRNAs have been found, which might help to explore novel regulated patterns. However, the increasing unknown interactions between lncRNAs and miRNAs may hinder finding the novel regulated pattern, and wet experiments to identify the potential interaction are costly and time-consuming. Furthermore, few computational tools are available for predicting lncRNA-miRNA interaction based on a sequential level. In this paper, we propose a hybrid sequence feature-based model, LncMirNet (lncRNA-miRNA interactions network), to predict lncRNA-miRNA interactions via deep convolutional neural networks (CNN). First, four categories of sequence-based features are introduced to encode lncRNA/miRNA sequences including k-mer (k = 1, 2, 3, 4), composition transition distribution (CTD), doc2vec, and graph embedding features. Then, to fit the CNN learning pattern, a histogram-dd method is incorporated to fuse multiple types of features into a matrix. Finally, LncMirNet attained excellent performance in comparison with six other state-of-the-art methods on a real dataset collected from lncRNASNP2 via five-fold cross validation. LncMirNet increased accuracy and area under curve (AUC) by more than 3%, respectively, over that of the other tools, and improved the Matthews correlation coefficient (MCC) by more than 6%. These results show that LncMirNet can obtain high confidence in predicting potential interactions between lncRNAs and miRNAs.
Collapse
Affiliation(s)
- Sen Yang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (S.Y.); (D.S.); (K.H.); (L.H.)
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (S.Y.); (D.S.); (K.H.); (L.H.)
- School of Artificial Intelligence, Jilin University, Changchun 130012, China;
| | - Yu Lin
- School of Artificial Intelligence, Jilin University, Changchun 130012, China;
| | - Dan Shao
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (S.Y.); (D.S.); (K.H.); (L.H.)
| | - Kai He
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (S.Y.); (D.S.); (K.H.); (L.H.)
| | - Lan Huang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China; (S.Y.); (D.S.); (K.H.); (L.H.)
| |
Collapse
|
18
|
Shen C, Luo J, Lai Z, Ding P. Multiview Joint Learning-Based Method for Identifying Small-Molecule-Associated MiRNAs by Integrating Pharmacological, Genomics, and Network Knowledge. J Chem Inf Model 2020; 60:4085-4097. [DOI: 10.1021/acs.jcim.0c00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cong Shen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Zihan Lai
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Pingjian Ding
- School of Computer Science, University of South China, Hengyang 421001, China
| |
Collapse
|