1
|
Yang X, Gao X, Jiang X, Yue K, Luo P. Targeting capabilities of engineered extracellular vesicles for the treatment of neurological diseases. Neural Regen Res 2025; 20:3076-3094. [PMID: 39435635 PMCID: PMC11881733 DOI: 10.4103/nrr.nrr-d-24-00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024] Open
Abstract
Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases. Owing to their therapeutic properties and ability to cross the blood-brain barrier, extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions, including ischemic stroke, traumatic brain injury, neurodegenerative diseases, glioma, and psychosis. However, the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body. To address these limitations, multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles, thereby enabling the delivery of therapeutic contents to specific tissues or cells. Therefore, this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles, exploring their applications in treating traumatic brain injury, ischemic stroke, Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, glioma, and psychosis. Additionally, we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases. This review offers new insights for developing highly targeted therapies in this field.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Kangyi Yue
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
2
|
Ntetsika T, Catrina SB, Markaki I. Understanding the link between type 2 diabetes mellitus and Parkinson's disease: role of brain insulin resistance. Neural Regen Res 2025; 20:3113-3123. [PMID: 39715083 PMCID: PMC11881720 DOI: 10.4103/nrr.nrr-d-23-01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 03/03/2024] [Indexed: 12/25/2024] Open
Abstract
Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden. Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms. Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes. The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease, with emphasis on brain insulin resistance, is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.
Collapse
Affiliation(s)
- Theodora Ntetsika
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Center for Diabetes, Academic Specialist Center, Stockholm, Sweden
| | - Ioanna Markaki
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
| |
Collapse
|
3
|
Liu S, Feng A, Li Z. Neuron-Derived Extracellular Vesicles: Emerging Regulators in Central Nervous System Disease Progression. Mol Neurobiol 2025:10.1007/s12035-025-05010-4. [PMID: 40325332 DOI: 10.1007/s12035-025-05010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
The diagnosis and exploration of central nervous system (CNS) diseases remain challenging due to the blood-brain barrier (BBB), complex signaling pathways, and heterogeneous clinical manifestations. Neurons, as the core functional units of the CNS, play a pivotal role in CNS disease progression. Extracellular vesicles (EVs), capable of crossing the BBB, facilitate intercellular and cell-extracellular matrix (ECM) communication, making neuron-derived extracellular vesicles (NDEVs) a focal point of research. Recent studies reveal that NDEVs, carrying various bioactive substances, can exert either pathogenic or protective effects in numerous CNS diseases. Additionally, NDEVs show significant potential as biomarkers for CNS diseases. This review summarizes the emerging roles of NDEVs in CNS diseases, including Alzheimer's disease, depression, traumatic brain injury, schizophrenia, ischemic stroke, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. It aims to provide a novel perspective on developing therapeutic and diagnostic strategies for CNS diseases through the study of NDEVs.
Collapse
Affiliation(s)
- Sitong Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Aitong Feng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China.
| |
Collapse
|
4
|
Brooker SM, Gonzalez-Latapi P. Biomarkers in Parkinson's Disease. Neurol Clin 2025; 43:229-248. [PMID: 40185520 DOI: 10.1016/j.ncl.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Parkinson's disease (PD) is a leading cause of disability worldwide, and there is a pressing need to develop therapeutics to slow or halt disease progression. The identification of reliable biomarkers of PD at all stages of disease will be a critical step toward optimizing diagnosis and therapeutic development. For PD, biomarkers could serve multiple important functions. There have been significant advances in biomarker development in PD in recent years, and in this review, the authors summarize the current state of the PD biomarker field covering major advances in fluid, tissue, and neuroimaging biomarkers.
Collapse
Affiliation(s)
- Sarah M Brooker
- The Ken and Ruth Davee Neurology Department, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paulina Gonzalez-Latapi
- The Ken and Ruth Davee Neurology Department, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
5
|
Chen J, Tian C, Xiong X, Yang Y, Zhang J. Extracellular vesicles: new horizons in neurodegeneration. EBioMedicine 2025; 113:105605. [PMID: 40037089 PMCID: PMC11925178 DOI: 10.1016/j.ebiom.2025.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 03/06/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid-enclosed nanovesicles secreted by diverse cell types that orchestrate intercellular communication through cargo delivery. Their pivotal roles span from supporting the development of normal central nervous system (CNS) to contributing to the pathogenesis of neurological diseases. Particularly noteworthy is their involvement in the propagation of pathogenic proteins, such as those involved in neurodegenerative disorders, and nucleic acids, closely linking them to disease onset and progression. Moreover, EVs have emerged as promising diagnostic biomarkers for neurological disorders and as tools for disease staging, owing to their ability to traverse the blood-brain barrier and their specific, stable, and accessible properties. This review comprehensively explores the realm of CNS-derived EVs found in peripheral blood, encompassing their detection methods, transport mechanisms, and diverse roles in various neurodegenerative diseases. Furthermore, we evaluate the potentials and limitations of EVs in clinical applications and highlight prospective research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Chen Tian
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Xiao Xiong
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Ying Yang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China.
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China; National Human Brain Bank for Health and Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China.
| |
Collapse
|
6
|
Malin SK, Battillo DJ, Beeri MS, Mustapic M, Delgado‐Peraza F, Kapogiannis D. Two weeks of exercise alters neuronal extracellular vesicle insulin signaling proteins and pro-BDNF in older adults with prediabetes. Aging Cell 2025; 24:e14369. [PMID: 39421964 PMCID: PMC11709104 DOI: 10.1111/acel.14369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Adults with prediabetes are at risk for Alzheimer's Disease and Related Dementia (ADRD). While exercise may lower ADRD risk, the exact mechanism is unclear. We tested the hypothesis that short-term exercise would raise neuronal insulin signaling and pro-BDNF in neuronal extracellular vesicles (nEVs) in prediabetes. Twenty-one older adults (18F, 60.0 ± 8.6 yrs.; BMI: 33.5 ± 1.1 kg/m2) with prediabetes (ADA criteria; 75 g OGTT) were randomized to 12 supervised work-matched continuous (n = 13, 70% HRpeak) or interval (n = 8, 90% HRpeak and 50% HRpeak for 3 min each) sessions over 2-wks for 60 min/d. Aerobic fitness (VO2peak) and body weight were assessed. After an overnight fast, whole-body glucose tolerance (total area under the curve, tAUC) and insulin sensitivity (SIis) were determined from a 120 min 75 g OGTT. nEVs were acquired from 0 and 60 min time-points of the OGTT, and levels of insulin signaling proteins (i.e., p-IRS-1, total-/p-Akt, pERK1/2, pJNK1/2, and pp38) and pro-BNDF were measured. OGTT stimulatory effects were calculated from protein differences (i.e., OGTT 60-0 min). Adults were collapsed into a single group as exercise intensity did not affect nEV outcomes. Exercise raised VO2peak (+1.4 ± 2.0 mL/kg/min, p = 0.008) and insulin sensitivity (p = 0.01) as well as decreased weight (-0.4 ± 0.9 kg, p = 0.04) and whole-body glucose tAUC120min (p = 0.02). Training lowered 0-min pro-BDNF (704.1 ± 1019.0 vs. 414.5 ± 533.5, p = 0.04) and increased OGTT-stimulated tAkt (-51.8 ± 147.2 vs. 95 ± 204.5 a.u., p = 0.01), which was paralleled by reduced pAkt/tAkt at 60 min of the OGTT (1.3 ± 0.2 vs. 1.2 ± 0.1 a.u., p = 0.04). Thus, 2 weeks of exercise altered neuronal insulin signaling responses to glucose ingestion and lowered pro-BNDF among adults with prediabetes, thereby potentially lowering ADRD risk.
Collapse
Affiliation(s)
- Steven K. Malin
- Rutgers UniversityNew BrunswickNew JerseyUSA
- Division of Endocrinology, Metabolism & NutritionRutgers UniversityNew BrunswickNew JerseyUSA
- New Jersey Institute for Food, Nutrition and HealthRutgers UniversityNew BrunswickNew JerseyUSA
- Institute of Translational Medicine and ScienceRutgers UniversityNew BrunswickNew JerseyUSA
| | | | | | | | | | | |
Collapse
|
7
|
Lewis JM, Harris DA, Kosmatka J, Mikrut E, Evenson J, Balcer HI, Dhani H, Hinestrosa JP, Rissman R, Billings PR. Single step capture and assessment of multiple plasma extracellular vesicle biomarkers in Alzheimer's disease detection. J Alzheimers Dis 2024; 102:659-669. [PMID: 39533951 DOI: 10.1177/13872877241291964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND Blood tests for Alzheimer's disease (AD) that measure biomarkers related to neuropathology have demonstrated to be useful, minimally-invasive ways to identify patients for screening into clinical trials. While some AD biomarkers can be detected in plasma, greater sensitivity is needed to make plasma AD tests more effective. Extracellular vesicles (EVs) in plasma carry AD-related biomarkers from the brain and could offer a concentrated source of brain-related biomarkers, though the methodological complexities involved in isolating plasma EVs have hampered its validation for clinical use. OBJECTIVE To explore the feasibility and effectiveness of developing blood tests for AD utilizing extracellular vesicle-bound protein biomarkers. METHODS We developed a simplified method for isolating EVs directly from plasma using an alternating current electrokinetic (ACE) microchip. No sample pretreatment steps were needed. Protein biomarkers on the EVs were detected by adding fluorescent antibodies to the plasma samples before capture by the chip. This allowed measurement of EV biomarker levels directly on the chip. RESULTS AD or non-AD control plasma was measured for ten different AD-related biomarkers. EV-associated NCAM1, pTau231, α-synuclein, and TDP-43 levels were able to distinguish a group of 10 AD, 10 mild cognitive impairment (MCI), and 10 non-AD subjects. pTau231 was different between AD and non-AD (p = 0.0300) and α-synuclein differentiated AD from MCI (p = 0.0148). CONCLUSIONS This study shows how ACE microfluidic chip technology can help differentiate AD and MCI patients from non-AD controls with clinical relevance. This work also highlights the important diagnostic role of plasma EV biomarkers in neurodegenerative disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Robert Rissman
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of the University of Southern California, San Diego, CA, USA
| | | |
Collapse
|
8
|
Malaguarnera M, Cabrera-Pastor A. Emerging Role of Extracellular Vesicles as Biomarkers in Neurodegenerative Diseases and Their Clinical and Therapeutic Potential in Central Nervous System Pathologies. Int J Mol Sci 2024; 25:10068. [PMID: 39337560 PMCID: PMC11432603 DOI: 10.3390/ijms251810068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The emerging role of extracellular vesicles (EVs) in central nervous system (CNS) diseases is gaining significant interest, particularly their applications as diagnostic biomarkers and therapeutic agents. EVs are involved in intercellular communication and are secreted by all cell types. They contain specific markers and a diverse cargo such as proteins, lipids, and nucleic acids, reflecting the physiological and pathological state of their originating cells. Their reduced immunogenicity and ability to cross the blood-brain barrier make them promising candidates for both biomarkers and therapeutic agents. In the context of CNS diseases, EVs have shown promise as biomarkers isolable from different body fluids, providing a non-invasive method for diagnosing CNS diseases and monitoring disease progression. This makes them useful for the early detection and monitoring of diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, where specific alterations in EVs content can be detected. Additionally, EVs derived from stem cells show potential in promoting tissue regeneration and repairing damaged tissues. An evaluation has been conducted on the current clinical trials studying EVs for CNS diseases, focusing on their application, treatment protocols, and obtained results. This review aims to explore the potential of EVs as diagnostic markers and therapeutic carriers for CNS diseases, highlighting their significant advantages and ongoing clinical trials evaluating their efficacy.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Departamento de Psicobiología, Facultad de Psicología y Logopedia, Universitat de València, 46010 Valencia, Spain;
- Departamento de Enfermería, Facultad de Enfermería y Podología, Universitat de València, 46010 Valencia, Spain
| | - Andrea Cabrera-Pastor
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain
- Fundación de Investigación del Hospital Clínico Universitario de Valencia, INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
9
|
Taha HB. α-Synuclein in speculative neuronal extracellular vesicles: A marker for Parkinson's disease risk? Eur J Neurosci 2024; 60:4982-4986. [PMID: 39086046 DOI: 10.1111/ejn.16489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
This opinion piece describes major limitations of using α-synuclein in speculative neuronally enriched for diagnosing or predicting Parkinson's disease risk from prodromal conditions such as REM behaviour disorder. It concludes that such an approach is unreliable and recommends that future researchers divert away to more widely accepted approaches such as seed amplification assays.
Collapse
Affiliation(s)
- Hash Brown Taha
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
10
|
Rocha DAS, Santos LE, Da Fonseca PB, De Felice FG. Prospects and challenges in using neuronal extracellular vesicles in biomarker research. Alzheimers Dement 2024; 20:6632-6638. [PMID: 39009473 PMCID: PMC11497720 DOI: 10.1002/alz.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 07/17/2024]
Abstract
Extracellular vesicles (EVs) hold promise as a source of disease biomarkers. The diverse molecular cargo of EVs can potentially indicate the status of their tissue of origin, even against the complex background of whole plasma. The main tools currently available for assessing biomarkers of brain health include brain imaging and analysis of the cerebrospinal fluid of patients. Given the costs and difficulties associated with these methods, isolation of EVs of neuronal origin (NEVs) from the blood is an attractive approach to identify brain-specific biomarkers. This perspective describes current key challenges in EV- and NEV-based biomarker research. These include the relative low abundance of EVs, the lack of validated isolation methods, and the difficult search for an adequate target for immunocapturing NEVs. We discuss that these challenges must be addressed before NEVs can fulfill their potential for biomarker research. HIGHLIGHTS: NEVs are promising sources of biomarkers for brain disorders. Immunocapturing NEVs from complex biofluids presents several challenges. The choice of surface target for capture will determine NEV yield. Contamination by non-EV sources is relevant for biomarkers at low concentrations.
Collapse
Affiliation(s)
| | - Luis E. Santos
- D'Or Institute for Research and EducationRio de JaneiroBrazil
| | - Pedro B. Da Fonseca
- D'Or Institute for Research and EducationRio de JaneiroBrazil
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Fernanda G. De Felice
- D'Or Institute for Research and EducationRio de JaneiroBrazil
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroBrazil
- Centre for Neuroscience StudiesDepartment of Biomedical and Molecular Sciences and Department of PsychiatryQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
11
|
Manolopoulos A, York W, Pucha KA, Earley CJ, Kapogiannis D. Brain Iron Dysregulation in Iron Deficiency Anemia-Related Restless Leg Syndrome Revealed by Neuron-Derived Extracellular Vesicles: A Case-Control Study. Ann Neurol 2024; 96:560-564. [PMID: 38646966 PMCID: PMC12049180 DOI: 10.1002/ana.26941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Brain iron deficiency (ID) and, to a degree, systemic ID have been implicated in restless leg syndrome (RLS) pathogenesis. Previously, we found increased ferritin in neuron-derived extracellular vesicles (NDEVs) in RLS, suggesting a mechanism for depleting intracellular iron by secreting ferritin-loaded NDEVs. In this study, we hypothesized that increased NDEV ferritin occurs even in RLS accompanied by systemic ID and that neuronal intracellular iron depletion in RLS also manifests as NDEV abnormalities in other iron regulatory proteins, specifically, decreased transferrin receptor (TfR) and increased ferroportin. To address these hypotheses, we studied 71 women with ID anemia, 36 with RLS, and 35 without RLS. Subjects with RLS again showed higher NDEV ferritin and also decreased TfR, suggesting diminished neuronal capacity for iron uptake. Findings inform a more complete understanding of the pathogenic role of neuronal iron homeostasis and dissociate it from peripheral ID. ANN NEUROL 2024;96:560-564.
Collapse
Affiliation(s)
- Apostolos Manolopoulos
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - William York
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Krishna Ananthu Pucha
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Christopher J Earley
- Johns Hopkins Sleep Disorders Center, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, USA
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Ying C, Zhang H, Wang T, Li Y, Mao W, Hu S, Zhao L, Cai Y. Plasma level of alpha-synuclein oligomers as a biomarker for isolated rapid eye movement sleep behavior disorder diagnosis and progression: a prospective cohort study. Front Neurol 2024; 15:1442173. [PMID: 39246606 PMCID: PMC11377258 DOI: 10.3389/fneur.2024.1442173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
Background Alpha-synuclein oligomers (o-α-syn) are pivotal in the pathogenesis of α-synucleinopathy. Isolated rapid eye movement (REM) sleep behavior disorder (iRBD) serves as an early indicator of the disease, offering insights into disease mechanisms and early intervention. Nevertheless, the diagnostic and predictive potential of o-α-syn in iRBD remains largely unexplored. This study aimed to evaluate the plasma levels of o-α-syn in patients and investigate their utility as biomarkers for diagnosis of and predicting phenoconversion in iRBD. Methods A total of 143 participants, including 77 polysomnography-confirmed iRBD patients and 66 normal controls (NC), were recruited for this longitudinal observational study. Baseline clinical assessments and plasma collection were conducted for all iRBD patients, with 72 of them undergoing regularly prospective follow-up assessments for parkinsonism or dementia. Plasma levels of o-α-syn were quantified using enzyme-linked immunosorbent assay, and were compared between groups using a general linear model adjusted for age and sex. The diagnostic performance of plasma o-α-syn in iRBD was evaluated by area under the receiver operating characteristic curve (AUC) with 95% CI. Cox regression analysis and Kaplan-Meier survival curves were employed to assess the predictive value of plasma o-α-syn for phenoconversion in iRBD. Results Plasma o-α-syn levels did not exhibit statistically significant differences among iRBD converter patients, iRBD nonconverter patients, and NC. The AUC for distinguishing NC from iRBD was 0.52 (95% CI: 0.42-0.62, p = 0.682). Spearman correlation analysis revealed a significant positive correlation between plasma o-α-syn levels and MOCA scores in the iRBD group (p < 0.001). Subgroup analyses indicated that iRBD patients with cognitive decline (p = 0.058) and depressive symptoms (p = 0.017) had notably lower o-α-syn levels compared to those without such symptoms. Over a median follow-up period of 5.83 years, 26 iRBD patients developed neurodegenerative synucleinopathies. Cox regression and Kaplan-Meier survival curve analyses indicated that plasma level of o-α-syn lacked a predictive value for disease conversion in iRBD patients. Conclusion Despite a potential role in the pathophysiology of iRBD, o-α-syn are not appropriate biomarkers for diagnosing or predicting disease progression. While this study offers insights into the pathogenesis of iRBD and neurodegenerative synucleinopathies, further large-scale longitudinal studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Chao Ying
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Hui Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ting Wang
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yuan Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Mao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Songnian Hu
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Lifang Zhao
- Beijing Geriatric Medical Research Center, Beijing, China
- Department of Clinical Biobank and Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanning Cai
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
- Department of Clinical Biobank and Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Bahadorani M, Nasiri M, Dellinger K, Aravamudhan S, Zadegan R. Engineering Exosomes for Therapeutic Applications: Decoding Biogenesis, Content Modification, and Cargo Loading Strategies. Int J Nanomedicine 2024; 19:7137-7164. [PMID: 39050874 PMCID: PMC11268655 DOI: 10.2147/ijn.s464249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Exosomes emerge from endosomal invagination and range in size from 30 to 200 nm. Exosomes contain diverse proteins, lipids, and nucleic acids, which can indicate the state of various physiological and pathological processes. Studies have revealed the remarkable clinical potential of exosomes in diagnosing and prognosing multiple diseases, including cancer, cardiovascular disorders, and neurodegenerative conditions. Exosomes also have the potential to be engineered and deliver their cargo to a specific target. However, further advancements are imperative to optimize exosomes' diagnostic and therapeutic capabilities for practical implementation in clinical settings. This review highlights exosomes' diagnostic and therapeutic applications, emphasizing their engineering through simple incubation, biological, and click chemistry techniques. Additionally, the loading of therapeutic agents onto exosomes, utilizing passive and active strategies, and exploring hybrid and artificial exosomes are discussed.
Collapse
Affiliation(s)
- Mehrnoosh Bahadorani
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Mahboobeh Nasiri
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Shyam Aravamudhan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Reza Zadegan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| |
Collapse
|
14
|
Tang X, He Y, Liu J, Xu J, Peng Q. Exosomes: The endogenous nanomaterials packed with potential for diagnosis and treatment of neurologic disorders. Colloids Surf B Biointerfaces 2024; 239:113938. [PMID: 38718474 DOI: 10.1016/j.colsurfb.2024.113938] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 03/17/2025]
Abstract
Neurologic disorders (NDs) are serious diseases that threaten public health. However, due to the complex pathogenesis and significant individual differences in traditional treatments, specific treatment methods for NDs are still lacking. Exosomes, the smallest extracellular vesicles secreted by eukaryotic cells, are receiving increasing attention in the field of NDs. They contain misfolded proteins related to various NDs, including amyloid-beta, Tau proteins, and α-synuclein, indicating their promising roles in the diagnosis and treatment of NDs. In this review, an overview of the biogenesis, composition, and biological functions of exosomes is provided. Moreover, we summarize their potential roles in the pathogenesis of three prevalent NDs (including Alzheimer's disease, Ischemic stroke, and Parkinson's disease). On this basis, the diagnostic potential and therapeutic value of exosomes carrying various bioactive molecules are discussed in detail. Also, the concerns and perspectives of exosome-based diagnosis and therapy are discussed.
Collapse
Affiliation(s)
- Xuelin Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuxuan He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinchi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingchen Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Cabrera-Pastor A. Extracellular Vesicles as Mediators of Neuroinflammation in Intercellular and Inter-Organ Crosstalk. Int J Mol Sci 2024; 25:7041. [PMID: 39000150 PMCID: PMC11241119 DOI: 10.3390/ijms25137041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Neuroinflammation, crucial in neurological disorders like Alzheimer's disease, multiple sclerosis, and hepatic encephalopathy, involves complex immune responses. Extracellular vesicles (EVs) play a pivotal role in intercellular and inter-organ communication, influencing disease progression. EVs serve as key mediators in the immune system, containing molecules capable of activating molecular pathways that exacerbate neuroinflammatory processes in neurological disorders. However, EVs from mesenchymal stem cells show promise in reducing neuroinflammation and cognitive deficits. EVs can cross CNS barriers, and peripheral immune signals can influence brain function via EV-mediated communication, impacting barrier function and neuroinflammatory responses. Understanding EV interactions within the brain and other organs could unveil novel therapeutic targets for neurological disorders.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain; or
- Fundación de Investigación del Hospital Clínico Universitario de Valencia, INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
16
|
Yao PJ, Manolopoulos A, Eren E, Rivera SM, Hessl DR, Hagerman R, Martinez‐Cerdeno V, Tassone F, Kapogiannis D. Mitochondrial dysfunction in brain tissues and Extracellular Vesicles Fragile X-associated tremor/ataxia syndrome. Ann Clin Transl Neurol 2024; 11:1420-1429. [PMID: 38717724 PMCID: PMC11187838 DOI: 10.1002/acn3.52040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Accepted: 02/24/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Mitochondrial impairments have been implicated in the pathogenesis of Fragile X-associated tremor/ataxia syndrome (FXTAS) based on analysis of mitochondria in peripheral tissues and cultured cells. We sought to assess whether mitochondrial abnormalities present in postmortem brain tissues of patients with FXTAS are also present in plasma neuron-derived extracellular vesicles (NDEVs) from living carriers of fragile X messenger ribonucleoprotein1 (FMR1) gene premutations at an early asymptomatic stage of the disease continuum. METHODS We utilized postmortem frozen cerebellar and frontal cortex samples from a cohort of eight patients with FXTAS and nine controls and measured the quantity and activity of the mitochondrial proteins complex IV and complex V. In addition, we evaluated the same measures in isolated plasma NDEVs by selective immunoaffinity capture targeting L1CAM from a separate cohort of eight FMR1 premutation carriers and four age-matched controls. RESULTS Lower complex IV and V quantity and activity were observed in the cerebellum of FXTAS patients compared to controls, without any differences in total mitochondrial content. No patient-control differences were observed in the frontal cortex. In NDEVs, FMR1 premutation carriers compared to controls had lower activity of Complex IV and Complex V, but higher Complex V quantity. INTERPRETATION Quantitative and functional abnormalities in mitochondrial electron transport chain complexes IV and V seen in the cerebellum of patients with FXTAS are also manifest in plasma NDEVs of FMR1 premutation carriers. Plasma NDEVs may provide further insights into mitochondrial pathologies in this syndrome and could potentially lead to the development of biomarkers for predicting symptomatic FXTAS among premutation carriers and disease monitoring.
Collapse
Affiliation(s)
- Pamela J. Yao
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Apostolos Manolopoulos
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Erden Eren
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Susan Michelle Rivera
- Department of PsychologyUniversity of MarylandCollege ParkMarylandUSA
- MIND InstituteUniversity of California, Davis, Medical CenterSacramentoCaliforniaUSA
| | - David R. Hessl
- MIND InstituteUniversity of California, Davis, Medical CenterSacramentoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of California, Davis, School of MedicineSacramentoCaliforniaUSA
| | - Randi Hagerman
- MIND InstituteUniversity of California, Davis, Medical CenterSacramentoCaliforniaUSA
- Department of PediatricsUniversity of California, Davis, School of MedicineSacramentoCaliforniaUSA
| | - Veronica Martinez‐Cerdeno
- MIND InstituteUniversity of California, Davis, Medical CenterSacramentoCaliforniaUSA
- Department of Pathology and Laboratory MedicineUniversity of California, Davis, School of MedicineSacramentoCaliforniaUSA
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children Northern CaliforniaSacramentoCaliforniaUSA
| | - Flora Tassone
- MIND InstituteUniversity of California, Davis, Medical CenterSacramentoCaliforniaUSA
- Department of Biochemistry and Molecular MedicineUniversity of California, Davis, School of MedicineSacramentoCaliforniaUSA
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| |
Collapse
|
17
|
Nogueras‐Ortiz CJ, Eren E, Yao P, Calzada E, Dunn C, Volpert O, Delgado‐Peraza F, Mustapic M, Lyashkov A, Rubio FJ, Vreones M, Cheng L, You Y, Hill AF, Ikezu T, Eitan E, Goetzl EJ, Kapogiannis D. Single-extracellular vesicle (EV) analyses validate the use of L1 Cell Adhesion Molecule (L1CAM) as a reliable biomarker of neuron-derived EVs. J Extracell Vesicles 2024; 13:e12459. [PMID: 38868956 PMCID: PMC11170079 DOI: 10.1002/jev2.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
Isolation of neuron-derived extracellular vesicles (NDEVs) with L1 Cell Adhesion Molecule (L1CAM)-specific antibodies has been widely used to identify blood biomarkers of CNS disorders. However, full methodological validation requires demonstration of L1CAM in individual NDEVs and lower levels or absence of L1CAM in individual EVs from other cells. Here, we used multiple single-EV techniques to establish the neuronal origin and determine the abundance of L1CAM-positive EVs in human blood. L1CAM epitopes of the ectodomain are shown to be co-expressed on single-EVs with the neuronal proteins β-III-tubulin, GAP43, and VAMP2, the levels of which increase in parallel with the enrichment of L1CAM-positive EVs. Levels of L1CAM-positive EVs carrying the neuronal proteins VAMP2 and β-III-tubulin range from 30% to 63%, in contrast to 0.8%-3.9% of L1CAM-negative EVs. Plasma fluid-phase L1CAM does not bind to single-EVs. Our findings support the use of L1CAM as a target for isolating plasma NDEVs and leveraging their cargo to identify biomarkers reflecting neuronal function.
Collapse
Affiliation(s)
- Carlos J Nogueras‐Ortiz
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Erden Eren
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Pamela Yao
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Elizabeth Calzada
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Christopher Dunn
- Flow Cytometry Unit, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | | | - Francheska Delgado‐Peraza
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Maja Mustapic
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Alexey Lyashkov
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - F Javier Rubio
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research BranchIntramural Research Program/National Institute on Drug Abuse/National Institutes of HealthBaltimoreMarylandUSA
| | - Michael Vreones
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Lesley Cheng
- La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Yang You
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Andrew F Hill
- La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
| | - Tsuneya Ikezu
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | | | - Edward J Goetzl
- Department of MedicineUniversity of CaliforniaSan FranciscoCaliforniaUSA
- San Francisco Campus for Jewish LivingSan FranciscoCaliforniaUSA
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
18
|
Kim KY, Shin KY, Chang KA. Potential Exosome Biomarkers for Parkinson's Disease Diagnosis: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:5307. [PMID: 38791346 PMCID: PMC11121363 DOI: 10.3390/ijms25105307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Given its prevalence, reliable biomarkers for early diagnosis are required. Exosomal proteins within extracellular nanovesicles are promising candidates for diagnostic, screening, prognostic, and disease monitoring purposes in neurological diseases such as PD. This review aims to evaluate the potential of extracellular vesicle proteins or miRNAs as biomarkers for PD. A comprehensive literature search until January 2024 was conducted across multiple databases, including PubMed, EMBASE, Web of Science, and Cochrane Library, to identify relevant studies reporting exosome biomarkers in blood samples from PD patients. Out of 417 articles screened, 47 studies were selected for analysis. Among exosomal protein biomarkers, α-synuclein, tau, Amyloid β 1-42, and C-X-C motif chemokine ligand 12 (CXCL12) were identified as significant markers for PD. Concerning miRNA biomarkers, miRNA-24, miR-23b-3p, miR-195-3p, miR-29c, and mir-331-5p are promising across studies. α-synuclein exhibited increased levels in PD patients compared to control groups in twenty-one studies, while a decrease was observed in three studies. Our meta-analysis revealed a significant difference in total exosomal α-synuclein levels between PD patients and healthy controls (standardized mean difference [SMD] = 1.369, 95% confidence interval [CI] = 0.893 to 1.846, p < 0.001), although these results are limited by data availability. Furthermore, α-synuclein levels significantly differ between PD patients and healthy controls (SMD = 1.471, 95% CI = 0.941 to 2.002, p < 0.001). In conclusion, certain exosomal proteins and multiple miRNAs could serve as potential biomarkers for diagnosis, prognosis prediction, and assessment of disease progression in PD.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Republic of Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Ki Young Shin
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
19
|
Mulroy E, Erro R, Bhatia KP, Hallett M. Refining the clinical diagnosis of Parkinson's disease. Parkinsonism Relat Disord 2024; 122:106041. [PMID: 38360507 PMCID: PMC11069446 DOI: 10.1016/j.parkreldis.2024.106041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Our ability to define, understand, and classify Parkinson's disease (PD) has undergone significant changes since the disorder was first described in 1817. Clinical features and neuropathologic signatures can now be supplemented by in-vivo interrogation of genetic and biological substrates of disease, offering great opportunity for further refining the diagnosis of PD. In this mini-review, we discuss the historical perspectives which shaped our thinking surrounding the definition and diagnosis of PD. We highlight the clinical, genetic, pathologic and biologic diversity which underpins the condition, and proceed to discuss how recent developments in our ability to define biologic and pathologic substrates of disease might impact PD definition, diagnosis, individualised prognostication, and personalised clinical care. We argue that Parkinson's 'disease', as currently diagnosed in the clinic, is actually a syndrome. It is the outward manifestation of any array of potential dysfunctional biologic processes, neuropathological changes, and disease aetiologies, which culminate in common outward clinical features which we term PD; each person has their own unique disease, which we can now define with increasing precision. This is an exciting time in PD research and clinical care. Our ability to refine the clinical diagnosis of PD, incorporating in-vivo assessments of disease biology, neuropathology, and neurogenetics may well herald the era of biologically-based, precision medicine approaches PD management. With this however comes a number of challenges, including how to integrate these technologies into clinical practice in a way which is acceptable to patients, promotes meaningful changes to care, and minimises health economic impact.
Collapse
Affiliation(s)
- Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, (SA), Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Zheng J, Zhou R, Wang B, He C, Bai S, Yan H, Yu J, Li H, Peng B, Gao Z, Yu X, Li C, Jiang C, Guo K. Electrochemical detection of extracellular vesicles for early diagnosis: a focus on disease biomarker analysis. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:165-179. [PMID: 39698540 PMCID: PMC11648401 DOI: 10.20517/evcna.2023.72] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 12/20/2024]
Abstract
This review article presents a detailed examination of the integral role that electrochemical detection of extracellular vesicles (EVs) plays, particularly focusing on the potential application for early disease diagnostics through EVs biomarker analysis. Through an exploration of the benefits and challenges presented by electrochemical detection vetted for protein, lipid, and nucleic acid biomarker analysis, we underscore the significance of these techniques. Evidence from recent studies renders this detection modality imperative in identifying diverse biomarkers from EVs, leading to early diagnosis of diseases such as cancer and neurodegenerative disorders. Recent advancements that have led to enhanced sensitivity, specificity and point-of-care testing (POCT) potential are elucidated, along with equipment deployed for electrochemical detection. The review concludes with a contemplation of future perspectives, recognizing the potential shifts in disease diagnostics and prognosis, necessary advances for broad adoption, and potential areas of ongoing research. The objective is to propel further investigation into this rapidly burgeoning field, thereby facilitating a potential paradigm shift in disease detection, monitoring, and treatment toward human health management.
Collapse
Affiliation(s)
- Jintao Zheng
- Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, Guangdong, China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
- Authors contributed equally
| | - Runzhi Zhou
- Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, Guangdong, China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
- Authors contributed equally
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen 518057, Guangdong, China
- Authors contributed equally
| | - Chang He
- Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Authors contributed equally
| | - Shiyao Bai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Haoyang Yan
- Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, Guangdong, China
| | - Jiacheng Yu
- Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, Guangdong, China
| | - Huaiguang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, shaanxi, China
| | - Zhaoli Gao
- Department of Biomedical Engineering, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiean Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen 518057, Guangdong, China
| | - Chenzhong Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Cheng Jiang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Keying Guo
- Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, Guangdong, China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, Parkville VIC 3052, Australia
| |
Collapse
|
21
|
Das S, Lyon CJ, Hu T. A Panorama of Extracellular Vesicle Applications: From Biomarker Detection to Therapeutics. ACS NANO 2024; 18:9784-9797. [PMID: 38471757 PMCID: PMC11008359 DOI: 10.1021/acsnano.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Extracellular vesicles (EVs) secreted by all cell types are involved in the cell-to-cell transfer of regulatory factors that influence cell and tissue phenotypes in normal and diseased tissues. EVs are thus a rich source of biomarker targets for assays that analyze blood and urinary EVs for disease diagnosis. Sensitive biomarker detection in EVs derived from specific cell populations is a key major hurdle when analyzing complex biological samples, but innovative approaches surveyed in this Perspective can streamline EV isolation and enhance the sensitivity of EV detection procedures required for clinical application of EV-based diagnostics and therapeutics, including nanotechnology and microfluidics, to achieve EV characterizations. Finally, this Perspective also outlines opportunities and challenges remaining for clinical translation of EV-based assays.
Collapse
Affiliation(s)
- Sumita Das
- Center for Cellular and Molecular Diagnostics
and Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Christopher J. Lyon
- Center for Cellular and Molecular Diagnostics
and Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics
and Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
22
|
Taha HB, Bogoniewski A. Analysis of biomarkers in speculative CNS-enriched extracellular vesicles for parkinsonian disorders: a comprehensive systematic review and diagnostic meta-analysis. J Neurol 2024; 271:1680-1706. [PMID: 38103086 PMCID: PMC10973014 DOI: 10.1007/s00415-023-12093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Parkinsonian disorders, including Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), and corticobasal syndrome (CBS), exhibit overlapping early-stage symptoms, complicating definitive diagnosis despite heterogeneous cellular and regional pathophysiology. Additionally, the progression and the eventual conversion of prodromal conditions such as REM behavior disorder (RBD) to PD, MSA, or DLB remain challenging to predict. Extracellular vesicles (EVs) are small, membrane-enclosed structures released by cells, playing a vital role in communicating cell-state-specific messages. Due to their ability to cross the blood-brain barrier into the peripheral circulation, measuring biomarkers in blood-isolated speculative CNS enriched EVs has become a popular diagnostic approach. However, replication and independent validation remain challenging in this field. Here, we aimed to evaluate the diagnostic accuracy of speculative CNS-enriched EVs for parkinsonian disorders. METHODS We conducted a PRISMA-guided systematic review and meta-analysis, covering 18 studies with a total of 1695 patients with PD, 253 with MSA, 21 with DLB, 172 with PSP, 152 with CBS, 189 with RBD, and 1288 HCs, employing either hierarchical bivariate models or univariate models based on study size. RESULTS Diagnostic accuracy was moderate for differentiating patients with PD from HCs, but revealed high heterogeneity and significant publication bias, suggesting an inflation of the perceived diagnostic effectiveness. The bias observed indicates that studies with non-significant or lower effect sizes were less likely to be published. Although results for differentiating patients with PD from those with MSA or PSP and CBS appeared promising, their validity is limited due to the small number of involved studies coming from the same research group. Despite initial reports, our analyses suggest that using speculative CNS-enriched EV biomarkers may not reliably differentiate patients with MSA from HCs or patients with RBD from HCs, due to their lesser accuracy and substantial variability among the studies, further complicated by substantial publication bias. CONCLUSION Our findings underscore the moderate, yet unreliable diagnostic accuracy of biomarkers in speculative CNS-enriched EVs in differentiating parkinsonian disorders, highlighting the presence of substantial heterogeneity and significant publication bias. These observations reinforce the need for larger, more standardized, and unbiased studies to validate the utility of these biomarkers but also call for the development of better biomarkers for parkinsonian disorders.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Aleksander Bogoniewski
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
23
|
Cohen J, Mathew A, Dourvetakis KD, Sanchez-Guerrero E, Pangeni RP, Gurusamy N, Aenlle KK, Ravindran G, Twahir A, Isler D, Sosa-Garcia SR, Llizo A, Bested AC, Theoharides TC, Klimas NG, Kempuraj D. Recent Research Trends in Neuroinflammatory and Neurodegenerative Disorders. Cells 2024; 13:511. [PMID: 38534355 PMCID: PMC10969521 DOI: 10.3390/cells13060511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Neuroinflammatory and neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI) and Amyotrophic lateral sclerosis (ALS) are chronic major health disorders. The exact mechanism of the neuroimmune dysfunctions of these disease pathogeneses is currently not clearly understood. These disorders show dysregulated neuroimmune and inflammatory responses, including activation of neurons, glial cells, and neurovascular unit damage associated with excessive release of proinflammatory cytokines, chemokines, neurotoxic mediators, and infiltration of peripheral immune cells into the brain, as well as entry of inflammatory mediators through damaged neurovascular endothelial cells, blood-brain barrier and tight junction proteins. Activation of glial cells and immune cells leads to the release of many inflammatory and neurotoxic molecules that cause neuroinflammation and neurodegeneration. Gulf War Illness (GWI) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are chronic disorders that are also associated with neuroimmune dysfunctions. Currently, there are no effective disease-modifying therapeutic options available for these diseases. Human induced pluripotent stem cell (iPSC)-derived neurons, astrocytes, microglia, endothelial cells and pericytes are currently used for many disease models for drug discovery. This review highlights certain recent trends in neuroinflammatory responses and iPSC-derived brain cell applications in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Jessica Cohen
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Annette Mathew
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Kirk D Dourvetakis
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Estella Sanchez-Guerrero
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Rajendra P Pangeni
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Kristina K Aenlle
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| | - Geeta Ravindran
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Assma Twahir
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Dylan Isler
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Sara Rukmini Sosa-Garcia
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Axel Llizo
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Alison C Bested
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| |
Collapse
|
24
|
Onkar A, Khan F, Goenka A, Rajendran RL, Dmello C, Hong CM, Mubin N, Gangadaran P, Ahn BC. Smart Nanoscale Extracellular Vesicles in the Brain: Unveiling their Biology, Diagnostic Potential, and Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6709-6742. [PMID: 38315446 DOI: 10.1021/acsami.3c16839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Information exchange is essential for the brain, where it communicates the physiological and pathological signals to the periphery and vice versa. Extracellular vesicles (EVs) are a heterogeneous group of membrane-bound cellular informants actively transferring informative calls to and from the brain via lipids, proteins, and nucleic acid cargos. In recent years, EVs have also been widely used to understand brain function, given their "cell-like" properties. On the one hand, the presence of neuron and astrocyte-derived EVs in biological fluids have been exploited as biomarkers to understand the mechanisms and progression of multiple neurological disorders; on the other, EVs have been used in designing targeted therapies due to their potential to cross the blood-brain-barrier (BBB). Despite the expanding literature on EVs in the context of central nervous system (CNS) physiology and related disorders, a comprehensive compilation of the existing knowledge still needs to be made available. In the current review, we provide a detailed insight into the multifaceted role of brain-derived extracellular vesicles (BDEVs) in the intricate regulation of brain physiology. Our focus extends to the significance of these EVs in a spectrum of disorders, including brain tumors, neurodegenerative conditions, neuropsychiatric diseases, autoimmune disorders, and others. Throughout the review, parallels are drawn for using EVs as biomarkers for various disorders, evaluating their utility in early detection and monitoring. Additionally, we discuss the promising prospects of utilizing EVs in targeted therapy while acknowledging the existing limitations and challenges associated with their applications in clinical scenarios. A foundational comprehension of the current state-of-the-art in EV research is essential for informing the design of future studies.
Collapse
Affiliation(s)
- Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Crismita Dmello
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Nida Mubin
- Department of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
25
|
Santos E, Clark C, Biag HMB, Tang SJ, Kim K, Ponzini MD, Schneider A, Giulivi C, Montanaro FAM, Gipe JTE, Dayton J, Randol JL, Yao PJ, Manolopoulos A, Kapogiannis D, Hwang YH, Hagerman P, Hagerman R, Tassone F. Open-Label Sulforaphane Trial in FMR1 Premutation Carriers with Fragile-X-Associated Tremor and Ataxia Syndrome (FXTAS). Cells 2023; 12:2773. [PMID: 38132093 PMCID: PMC10741398 DOI: 10.3390/cells12242773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Fragile X (FMR1) premutation is a common mutation that affects about 1 in 200 females and 1 in 450 males and can lead to the development of fragile-X-associated tremor/ataxia syndrome (FXTAS). Although there is no targeted, proven treatment for FXTAS, research suggests that sulforaphane, an antioxidant present in cruciferous vegetables, can enhance mitochondrial function and maintain redox balance in the dermal fibroblasts of individuals with FXTAS, potentially leading to improved cognitive function. In a 24-week open-label trial involving 15 adults aged 60-88 with FXTAS, 11 participants successfully completed the study, demonstrating the safety and tolerability of sulforaphane. Clinical outcomes and biomarkers were measured to elucidate the effects of sulforaphane. While there were nominal improvements in multiple clinical measures, they were not significantly different after correction for multiple comparisons. PBMC energetic measures showed that the level of citrate synthase was higher after sulforaphane treatment, resulting in lower ATP production. The ratio of complex I to complex II showed positive correlations with the MoCA and BDS scores. Several mitochondrial biomarkers showed increased activity and quantity and were correlated with clinical improvements.
Collapse
Affiliation(s)
- Ellery Santos
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA 95817, USA (A.S.); (R.H.)
- Department of Pediatrics, School of Medicine, University of California, Davis, CA 95817, USA
| | - Courtney Clark
- Department of Pediatrics, School of Medicine, University of California, Davis, CA 95817, USA
| | - Hazel Maridith B. Biag
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA 95817, USA (A.S.); (R.H.)
- Department of Pediatrics, School of Medicine, University of California, Davis, CA 95817, USA
| | - Si Jie Tang
- Department of Pediatrics, School of Medicine, University of California, Davis, CA 95817, USA
| | - Kyoungmi Kim
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA 95817, USA (A.S.); (R.H.)
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA 95616, USA
| | - Matthew D. Ponzini
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA 95817, USA (A.S.); (R.H.)
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA 95616, USA
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA 95817, USA (A.S.); (R.H.)
- Department of Pediatrics, School of Medicine, University of California, Davis, CA 95817, USA
| | - Cecilia Giulivi
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA 95817, USA (A.S.); (R.H.)
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Jesse Tran-Emilia Gipe
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jacquelyn Dayton
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jamie L. Randol
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95616, USA
| | - Pamela J. Yao
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 212241, USA (A.M.); (D.K.)
| | - Apostolos Manolopoulos
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 212241, USA (A.M.); (D.K.)
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 212241, USA (A.M.); (D.K.)
| | - Ye Hyun Hwang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95616, USA
| | - Paul Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA 95817, USA (A.S.); (R.H.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95616, USA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA 95817, USA (A.S.); (R.H.)
- Department of Pediatrics, School of Medicine, University of California, Davis, CA 95817, USA
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health, Sacramento, CA 95817, USA (A.S.); (R.H.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
26
|
Tallon C, Bell BJ, Malvankar MM, Deme P, Nogueras-Ortiz C, Eren E, Thomas AG, Hollinger KR, Pal A, Mustapic M, Huang M, Coleman K, Joe TR, Rais R, Haughey NJ, Kapogiannis D, Slusher BS. Inhibiting tau-induced elevated nSMase2 activity and ceramides is therapeutic in an Alzheimer's disease mouse model. Transl Neurodegener 2023; 12:56. [PMID: 38049923 PMCID: PMC10694940 DOI: 10.1186/s40035-023-00383-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Cognitive decline in Alzheimer's disease (AD) is associated with hyperphosphorylated tau (pTau) propagation between neurons along synaptically connected networks, in part via extracellular vesicles (EVs). EV biogenesis is triggered by ceramide enrichment at the plasma membrane from neutral sphingomyelinase2 (nSMase2)-mediated cleavage of sphingomyelin. We report, for the first time, that human tau expression elevates brain ceramides and nSMase2 activity. METHODS To determine the therapeutic benefit of inhibiting this elevation, we evaluated PDDC, the first potent, selective, orally bioavailable, and brain-penetrable nSMase2 inhibitor in the transgenic PS19 AD mouse model. Additionally, we directly evaluated the effect of PDDC on tau propagation in a mouse model where an adeno-associated virus (AAV) encoding P301L/S320F double mutant human tau was stereotaxically-injected unilaterally into the hippocampus. The contralateral transfer of the double mutant human tau to the dentate gyrus was monitored. We examined ceramide levels, histopathological changes, and pTau content within EVs isolated from the mouse plasma. RESULTS Similar to human AD, the PS19 mice exhibited increased brain ceramide levels and nSMase2 activity; both were completely normalized by PDDC treatment. The PS19 mice also exhibited elevated tau immunostaining, thinning of hippocampal neuronal cell layers, increased mossy fiber synaptophysin immunostaining, and glial activation, all of which were pathologic features of human AD. PDDC treatment reduced these changes. The plasma of PDDC-treated PS19 mice had reduced levels of neuronal- and microglial-derived EVs, the former carrying lower pTau levels, compared to untreated mice. In the tau propagation model, PDDC normalized the tau-induced increase in brain ceramides and significantly reduced the amount of tau propagation to the contralateral side. CONCLUSIONS PDDC is a first-in-class therapeutic candidate that normalizes elevated brain ceramides and nSMase2 activity, leading to the slowing of tau spread in AD mice.
Collapse
Affiliation(s)
- Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Benjamin J Bell
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Medhinee M Malvankar
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Pragney Deme
- Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Carlos Nogueras-Ortiz
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Ste 8C228, Baltimore, MD, 21224, USA
| | - Erden Eren
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Ste 8C228, Baltimore, MD, 21224, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kristen R Hollinger
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Arindom Pal
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Maja Mustapic
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Ste 8C228, Baltimore, MD, 21224, USA
| | - Meixiang Huang
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kaleem Coleman
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Tawnjerae R Joe
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Norman J Haughey
- Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Rangos 278, Baltimore, MD, 21205, USA.
- Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Pathology 517, Baltimore, MD, 21287, USA.
| | - Dimitrios Kapogiannis
- Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Ste 8C228, Baltimore, MD, 21224, USA.
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Rangos 278, Baltimore, MD, 21205, USA.
| |
Collapse
|
27
|
Taha HB, Ati SS. Evaluation of α-synuclein in CNS-originating extracellular vesicles for Parkinsonian disorders: A systematic review and meta-analysis. CNS Neurosci Ther 2023; 29:3741-3755. [PMID: 37416941 PMCID: PMC10651986 DOI: 10.1111/cns.14341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND & AIMS Parkinsonian disorders, such as Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), share early motor symptoms but have distinct pathophysiology. As a result, accurate premortem diagnosis is challenging for neurologists, hindering efforts for disease-modifying therapeutic discovery. Extracellular vesicles (EVs) contain cell-state-specific biomolecules and can cross the blood-brain barrier to the peripheral circulation, providing a unique central nervous system (CNS) insight. This meta-analysis evaluated blood-isolated neuronal and oligodendroglial EVs (nEVs and oEVs) α-synuclein levels in Parkinsonian disorders. METHODS Following PRISMA guidelines, the meta-analysis included 13 studies. An inverse-variance random-effects model quantified effect size (SMD), QUADAS-2 assessed risk of bias and publication bias was evaluated. Demographic and clinical variables were collected for meta-regression. RESULTS The meta-analysis included 1,565 patients with PD, 206 with MSA, 21 with DLB, 172 with PSP, 152 with CBS and 967 healthy controls (HCs). Findings suggest that combined concentrations of nEVs and oEVs α-syn is higher in patients with PD compared to HCs (SMD = 0.21, p = 0.021), while nEVs α-syn is lower in patients with PSP and CBS compared to patients with PD (SMD = -1.04, p = 0.0017) or HCs (SMD = -0.41, p < 0.001). Additionally, α-syn in nEVs and/or oEVs did not significantly differ in patients with PD vs. MSA, contradicting the literature. Meta-regressions show that demographic and clinical factors were not significant predictors of nEVs or oEVs α-syn concentrations. CONCLUSION The results highlight the need for standardized procedures and independent validations in biomarker studies and the development of improved biomarkers for distinguishing Parkinsonian disorders.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Shomik S. Ati
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
28
|
Vijiaratnam N, Foltynie T. How should we be using biomarkers in trials of disease modification in Parkinson's disease? Brain 2023; 146:4845-4869. [PMID: 37536279 PMCID: PMC10690028 DOI: 10.1093/brain/awad265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
The recent validation of the α-synuclein seed amplification assay as a biomarker with high sensitivity and specificity for the diagnosis of Parkinson's disease has formed the backbone for a proposed staging system for incorporation in Parkinson's disease clinical studies and trials. The routine use of this biomarker should greatly aid in the accuracy of diagnosis during recruitment of Parkinson's disease patients into trials (as distinct from patients with non-Parkinson's disease parkinsonism or non-Parkinson's disease tremors). There remain, however, further challenges in the pursuit of biomarkers for clinical trials of disease modifying agents in Parkinson's disease, namely: optimizing the distinction between different α-synucleinopathies; the selection of subgroups most likely to benefit from a candidate disease modifying agent; a sensitive means of confirming target engagement; and the early prediction of longer-term clinical benefit. For example, levels of CSF proteins such as the lysosomal enzyme β-glucocerebrosidase may assist in prognostication or allow enrichment of appropriate patients into disease modifying trials of agents with this enzyme as the target; the presence of coexisting Alzheimer's disease-like pathology (detectable through CSF levels of amyloid-β42 and tau) can predict subsequent cognitive decline; imaging techniques such as free-water or neuromelanin MRI may objectively track decline in Parkinson's disease even in its later stages. The exploitation of additional biomarkers to the α-synuclein seed amplification assay will, therefore, greatly add to our ability to plan trials and assess the disease modifying properties of interventions. The choice of which biomarker(s) to use in the context of disease modifying clinical trials will depend on the intervention, the stage (at risk, premotor, motor, complex) of the population recruited and the aims of the trial. The progress already made lends hope that panels of fluid biomarkers in tandem with structural or functional imaging may provide sensitive and objective methods of confirming that an intervention is modifying a key pathophysiological process of Parkinson's disease. However, correlation with clinical progression does not necessarily equate to causation, and the ongoing validation of quantitative biomarkers will depend on insightful clinical-genetic-pathophysiological comparisons incorporating longitudinal biomarker changes from those at genetic risk with evidence of onset of the pathophysiology and those at each stage of manifest clinical Parkinson's disease.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
29
|
Rai S, Bharti PS, Singh R, Rastogi S, Rani K, Sharma V, Gorai PK, Rani N, Verma BK, Reddy TJ, Modi GP, Inampudi KK, Pandey HC, Yadav S, Rajan R, Nikolajeff F, Kumar S. Circulating plasma miR-23b-3p as a biomarker target for idiopathic Parkinson's disease: comparison with small extracellular vesicle miRNA. Front Neurosci 2023; 17:1174951. [PMID: 38033547 PMCID: PMC10684698 DOI: 10.3389/fnins.2023.1174951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/24/2023] [Indexed: 12/02/2023] Open
Abstract
Background Parkinson's disease (PD) is an increasingly common neurodegenerative condition, which causes movement dysfunction and a broad range of non-motor symptoms. There is no molecular or biochemical diagnosis test for PD. The miRNAs are a class of small non-coding RNAs and are extensively studied owing to their altered expression in pathological states and facile harvesting and analysis techniques. Methods A total of 48 samples (16 each of PD, aged-matched, and young controls) were recruited. The small extracellular vesicles (sEVs) were isolated and validated using Western blot, transmission electron microscope, and nanoparticle tracking analysis. Small RNA isolation, library preparation, and small RNA sequencing followed by differential expression and targeted prediction of miRNA were performed. The real-time PCR was performed with the targeted miRNA on PD, age-matched, and young healthy control of plasma and plasma-derived sEVs to demonstrate their potential as a diagnostic biomarker. Results In RNA sequencing, we identified 14.89% upregulated (fold change 1.11 to 11.04, p < 0.05) and 16.54% downregulated (fold change -1.04 to -7.28, p < 0.05) miRNAs in PD and controls. Four differentially expressed miRNAs (miR-23b-3p, miR-29a-3p, miR-19b-3p, and miR-150-3p) were selected. The expression of miR-23b-3p was "upregulated" (p = 0.002) in plasma, whereas "downregulated" (p = 0.0284) in plasma-derived sEVs in PD than age-matched controls. The ROC analysis of miR-23b-3p revealed better AUC values in plasma (AUC = 0.8086, p = 0.0029) and plasma-derived sEVs (AUC = 0.7278, p = 0.0483) of PD and age-matched controls. Conclusion We observed an opposite expression profile of miR-23b-3p in PD and age-matched healthy control in plasma and plasma-derived sEV fractions, where the expression of miR-23b-3p is increased in PD plasma while decreased in plasma-derived sEV fractions. We further observed the different miR-23b-3p expression profiles in young and age-matched healthy control.
Collapse
Affiliation(s)
- Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | | | - Rishabh Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Simran Rastogi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Komal Rani
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences Bibinagar, Hyderabad, India
| | - Vaibhav Sharma
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Priya Kumari Gorai
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Bhupendra Kumar Verma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Gyan Prakash Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, India
| | | | - Hem Chandra Pandey
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Yadav
- Department of Biochemistry, All India Institute of Medical Sciences Raebareli, Uttar Pradesh, India
| | - Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
30
|
Yan S, Jiang C, Davis JJ, Tofaris GK. Methodological considerations in neuronal extracellular vesicle isolation for α-synuclein biomarkers. Brain 2023; 146:e95-e97. [PMID: 37224515 PMCID: PMC10629756 DOI: 10.1093/brain/awad169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Affiliation(s)
- Shijun Yan
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Cheng Jiang
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - George K Tofaris
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
31
|
Markaki I, Paslawski W, Ntetsika T, Engesvik L, Catrina SB, Svenningsson P. Isolation of L1CAM-Extracellular Vesicles Reveals Signs of Insulin Resistance in Parkinson's Disease. Mov Disord 2023; 38:2136-2137. [PMID: 37670426 DOI: 10.1002/mds.29601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Affiliation(s)
- Ioanna Markaki
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
| | - Wojciech Paslawski
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Theodora Ntetsika
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Lisa Engesvik
- Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Diabetes, Academic Specialist Center, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
32
|
Taha HB. Plasma versus serum for extracellular vesicle (EV) isolation: A duel for reproducibility and accuracy for CNS-originating EVs biomarker analysis. J Neurosci Res 2023; 101:1677-1686. [PMID: 37501394 DOI: 10.1002/jnr.25231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Blood-derived extracellular vesicles (EVs) are a popular source of biomarkers for central nervous system (CNS) diseases, but inconsistencies in isolation and analysis hinder their clinical translation. This review summarizes recent studies that investigate the impact of different anticoagulated plasma and serum on the yield, purity, and molecular content of EVs. Specifically, the studies compare ethylenediaminetetraacetic acid (EDTA), citrate, heparin plasma, and serum and highlight the risk of contamination from platelet-derived EVs. Here, I offer practical guidelines for standardizing EV isolation and analysis, recommending the use of plasma anticoagulated with acid-citrate-dextrose (ACD) or citrate followed by EDTA and heparin, subgroup analyses for samples from different biobank repositories, and avoiding serum and plasma-to-serum transformation. Other factors like illness, age, gender, meal timing, exercise, circadian timing, and arm pressure during blood draw can alter EV signatures. Yet, how these variables interact with different anticoagulated plasma or serum samples is unclear, necessitating further research. Furthermore, whether the changes are dependent on the isolation or quantification methodology remains an area of investigation. Importantly, the perspective emphasizes the need for consistency in experimental methodologies to improve the reproducibility and clinical applicability of CNS-originating EV biomarker studies. The proposed guidelines, along with ongoing efforts to standardize blood sample handling and collection, may facilitate the development of more reliable and informative CNS-originating EV biomarkers for diagnosis, prognosis, and treatment monitoring of CNS diseases.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
33
|
Taha HB, Bogoniewski A. Extracellular vesicles from bodily fluids for the accurate diagnosis of Parkinson's disease and related disorders: A systematic review and diagnostic meta-analysis. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e121. [PMID: 38939363 PMCID: PMC11080888 DOI: 10.1002/jex2.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 06/29/2024]
Abstract
Parkinsonian disorders, including Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy body (DLB), corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP) are often misdiagnosed due to overlapping symptoms and the absence of precise biomarkers. Furthermore, there are no current methods to ascertain the progression and conversion of prodromal conditions such as REM behaviour disorder (RBD). Extracellular vesicles (EVs), containing a mixture of biomolecules, have emerged as potential sources for parkinsonian diagnostics. However, inconsistencies in previous studies have left their diagnostic potential unclear. We conducted a meta-analysis, following PRISMA guidelines, to assess the diagnostic accuracy of general EVs isolated from various bodily fluids, including cerebrospinal fluid (CSF), plasma, serum, urine or saliva, in differentiating patients with parkinsonian disorders from healthy controls (HCs). The meta-analysis included 21 studies encompassing 1285 patients with PD, 24 with MSA, 105 with DLB, 99 with PSP, 101 with RBD and 783 HCs. Further analyses were conducted only for patients with PD versus HCs, given the limited number for other comparisons. Using bivariate and hierarchal receiver operating characteristics (HSROC) models, the meta-analysis revealed moderate diagnostic accuracy in distinguishing patients with PD from HCs, with substantial heterogeneity and publication bias. The trim-and-fill method revealed at least two missing studies with null or low diagnostic accuracy. CSF-EVs showed better overall diagnostic accuracy, while plasma-EVs had the lowest performance. General EVs demonstrated higher diagnostic accuracy compared to CNS-originating EVs, which are more time-consuming, labour- and cost-intensive to isolate. In conclusion, while holding promise, utilizing biomarkers in general EVs for PD diagnosis remains unfeasible due to existing challenges. The focus should shift toward harmonizing the field through standardization, collaboration, and rigorous validation. Current efforts by the International Society For Extracellular Vesicles (ISEV) aim to enhance the accuracy and reproducibility of EV-related research through rigor and standardization, aiming to bridge the gap between theory and practical clinical application.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Aleksander Bogoniewski
- Department of Molecular and Medical Pharmacology, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
34
|
Pucha KA, Ma TC, York W, Kang UJ, Kaufmann H, Kapogiannis D, Palma JA. Neuron-derived extracellular vesicles to examine brain mTOR target engagement with sirolimus in patients with multiple system atrophy. Parkinsonism Relat Disord 2023; 115:105821. [PMID: 37643509 PMCID: PMC10592064 DOI: 10.1016/j.parkreldis.2023.105821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Impaired autophagy is a pathogenic mechanism in the synucleinopathies. Sirolimus, a potent mTOR inhibitor and autophagy activator, had no beneficial effects in a randomized placebo-controlled trial in patients with multiple system atrophy (MSA). Whether sirolimus effectively inhibited brain mTOR activity was unknown. We aimed to evaluate if patients with MSA treated with sirolimus had evidence of inhibited brain mTOR pathways by measuring neuron-derived serum extracellular vesicles (NEVs). METHODS Serum samples were collected from participants of the sirolimus-MSA trial, which randomized patients to sirolimus (2-6 mg/day) or placebo for 48 weeks. NEVs were immunoprecipitated with three antibodies-against neurons. Brain mTOR engagement was quantified as the change in the NEV phosphorylated mTOR (p-mTOR) to total-mTOR (tot-mTOR) ratio after 48 weeks of sirolimus. RESULTS Samples from 27 patients [mean (±SD) age, 59.2±7 years, 15 (55.5%) men] were analyzed (19 sirolimus, 8 placebo). Treated- and placebo-patients had similar p-mTOR:tot-mTOR ratio at 24 (placebo: 0.248 ± 0.03, sirolimus: 0.289 ± 0.02; P = 0.305) and 48 weeks (placebo: 0.299 ± 0.05, sirolimus: 0.261 ± 0.03; P = 0.544). The tot-mTOR, p-mTOR, or their ratio levels were not associated with Unified MSA Rating Scale (UMSARS) worsening. DISCUSSION These results are consistent with no brain mTOR engagement by oral sirolimus up to 6 mg/day. NEV-based biomarkers are a rational approach to investigating target engagement in clinical trials of brain-targeted therapeutics.
Collapse
Affiliation(s)
- Krishna A Pucha
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Thong C Ma
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - William York
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Un Jung Kang
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Jose-Alberto Palma
- Department of Neurology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Lepinay E, Cicchetti F. Tau: a biomarker of Huntington's disease. Mol Psychiatry 2023; 28:4070-4083. [PMID: 37749233 DOI: 10.1038/s41380-023-02230-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023]
Abstract
Developing effective treatments for patients with Huntington's disease (HD)-a neurodegenerative disorder characterized by severe cognitive, motor and psychiatric impairments-is proving extremely challenging. While the monogenic nature of this condition enables to identify individuals at risk, robust biomarkers would still be extremely valuable to help diagnose disease onset and progression, and especially to confirm treatment efficacy. If measurements of cerebrospinal fluid neurofilament levels, for example, have demonstrated use in recent clinical trials, other proteins may prove equal, if not greater, relevance as biomarkers. In fact, proteins such as tau could specifically be used to detect/predict cognitive affectations. We have herein reviewed the literature pertaining to the association between tau levels and cognitive states, zooming in on Alzheimer's disease, Parkinson's disease and traumatic brain injury in which imaging, cerebrospinal fluid, and blood samples have been interrogated or used to unveil a strong association between tau and cognition. Collectively, these areas of research have accrued compelling evidence to suggest tau-related measurements as both diagnostic and prognostic tools for clinical practice. The abundance of information retrieved in this niche of study has laid the groundwork for further understanding whether tau-related biomarkers may be applied to HD and guide future investigations to better understand and treat this disease.
Collapse
Affiliation(s)
- Eva Lepinay
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
36
|
Manolopoulos A, Delgado-Peraza F, Mustapic M, Pucha KA, Nogueras-Ortiz C, Daskalopoulos A, Knight DD, Leoutsakos JM, Oh ES, Lyketsos CG, Kapogiannis D. Comparative assessment of Alzheimer's disease-related biomarkers in plasma and neuron-derived extracellular vesicles: a nested case-control study. Front Mol Biosci 2023; 10:1254834. [PMID: 37828917 PMCID: PMC10565036 DOI: 10.3389/fmolb.2023.1254834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction: Alzheimer's disease (AD) is currently defined according to biomarkers reflecting the core underlying neuropathological processes: Aβ deposition, Tau, and neurodegeneration (ATN). The soluble phase of plasma and plasma neuron-derived extracellular vesicles (NDEVs) are increasingly being investigated as sources of biomarkers. The aim of this study was to examine the comparative biomarker potential of these two biofluids, as well as the association between respective biomarkers. Methods: We retrospectively identified three distinct diagnostic groups of 44 individuals who provided samples at baseline and at a mean of 3.1 years later; 14 were cognitively unimpaired at baseline and remained so (NRM-NRM), 13 had amnestic MCI that progressed to AD dementia (MCI-DEM) and 17 had AD dementia at both timepoints (DEM-DEM). Plasma NDEVs were isolated by immunoaffinity capture targeting the neuronal markers L1CAM, GAP43, and NLGN3. In both plasma and NDEVs, we assessed ATN biomarkers (Aβ42, Aβ40, total Tau, P181-Tau) alongside several other exploratory markers. Results: The Aβ42/Aβ40 ratio in plasma and NDEVs was lower in MCI-DEM than NRM-NRM at baseline and its levels in NDEVs decreased over time in all three groups. Similarly, plasma and NDEV-associated Aβ42 was lower in MCI-DEM compared to NRM-NRM at baseline and its levels in plasma decreased over time in DEM-DEM. For NDEV-associated proBDNF, compared to NRM-NRM, its levels were lower in MCI-DEM and DEM-DEM at baseline, and they decreased over time in the latter group. No group differences were found for other exploratory markers. NDEV-associated Aβ42/Aβ40 ratio and proBDNF achieved the highest areas under the curve (AUCs) for discriminating between diagnostic groups, while proBDNF was positively associated with Mini-Mental State Examination (MMSE) score. No associations were found between the two biofluids for any assessed marker. Discussion: The soluble phase of plasma and plasma NDEVs demonstrate distinct biomarker profiles both at a single time point and longitudinally. The lack of association between plasma and NDEV measures indicates that the two types of biofluids demonstrate distinct biomarker signatures that may be attributable to being derived through different biological processes. NDEV-associated proBDNF may be a useful biomarker for AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, United States
| | - Francheska Delgado-Peraza
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, United States
| | - Maja Mustapic
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, United States
| | - Krishna Ananthu Pucha
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, United States
| | - Carlos Nogueras-Ortiz
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, United States
| | - Alexander Daskalopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, United States
| | - De’Larrian DeAnté Knight
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, United States
| | - Jeannie-Marie Leoutsakos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Esther S. Oh
- Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Constantine G. Lyketsos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Dimitrios Kapogiannis
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, United States
| |
Collapse
|
37
|
Delgado-Peraza F, Nogueras-Ortiz C, Simonsen AH, Knight DD, Yao PJ, Goetzl EJ, Jensen CS, Høgh P, Gottrup H, Vestergaard K, Hasselbalch SG, Kapogiannis D. Neuron-derived extracellular vesicles in blood reveal effects of exercise in Alzheimer's disease. Alzheimers Res Ther 2023; 15:156. [PMID: 37730689 PMCID: PMC10510190 DOI: 10.1186/s13195-023-01303-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Neuron-derived extracellular vesicles (NDEVs) in blood may be used to derive biomarkers for the effects of exercise in Alzheimer's disease (AD). For this purpose, we studied changes in neuroprotective proteins proBDNF, BDNF, and humanin in plasma NDEVs from patients with mild to moderate AD participating in the randomized controlled trial (RCT) of exercise ADEX. METHODS proBDNF, BDNF, and humanin were quantified in NDEVs immunocaptured from the plasma of 95 ADEX participants, randomized into exercise and control groups, and collected at baseline and 16 weeks. Exploratorily, we also quantified NDEV levels of putative exerkines known to respond to exercise in peripheral tissues. RESULTS NDEV levels of proBDNF, BDNF, and humanin increased in the exercise group, especially in APOE ε4 carriers, but remained unchanged in the control group. Inter-correlations between NDEV biomarkers observed at baseline were maintained after exercise. NDEV levels of putative exerkines remained unchanged. CONCLUSIONS Findings suggest that the cognitive benefits of exercise could be mediated by the upregulation of neuroprotective factors in NDEVs. Additionally, our results indicate that AD subjects carrying APOE ε4 are more responsive to the neuroprotective effects of physical activity. Unchanged NDEV levels of putative exerkines after physical activity imply that exercise engages different pathways in neurons and peripheral tissues. Future studies should aim to expand upon the effects of exercise duration, intensity, and type in NDEVs from patients with early AD and additional neurodegenerative disorders. TRIAL REGISTRATION The Effect of Physical Exercise in Alzheimer Patients (ADEX) was registered in ClinicalTrials.gov on April 30, 2012 with the identifier NCT01681602.
Collapse
Affiliation(s)
- Francheska Delgado-Peraza
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Carlos Nogueras-Ortiz
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, 2100, Copenhagen, Denmark
| | - De'Larrian DeAnté Knight
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Edward J Goetzl
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Research Department, Campus for Jewish Living, San Francisco, CA, 94112, USA
| | - Camilla Steen Jensen
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, 2100, Copenhagen, Denmark
| | - Peter Høgh
- Department of Neurology, Zealand University Hospital, 4000, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, 1165, Copenhagen, Denmark
| | - Hanne Gottrup
- Department of Neurology, Dementia Clinic, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Karsten Vestergaard
- Department of Neurology, Dementia Clinic, Aalborg University Hospital, 9000, Aalborg, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, 2100, Copenhagen, Denmark.
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
38
|
Taha HB. Rethinking the reliability and accuracy of biomarkers in CNS-originating EVs for Parkinson's disease and multiple system atrophy. Front Neurol 2023; 14:1192115. [PMID: 37731853 PMCID: PMC10507694 DOI: 10.3389/fneur.2023.1192115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 09/22/2023] Open
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
39
|
Popescu I, Deelen J, Illario M, Adams J. Challenges in anti-aging medicine-trends in biomarker discovery and therapeutic interventions for a healthy lifespan. J Cell Mol Med 2023; 27:2643-2650. [PMID: 37610311 PMCID: PMC10494298 DOI: 10.1111/jcmm.17912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
We are facing a growing aging population, along with increasing pressure on health systems, caused by the impact of chronic co-morbidities (i.e. cancer, cardiovascular and neurodegenerative diseases) and functional disabilities as people age. Relatively simple preventive lifestyle interventions, such as dietary restriction and physical exercise, are important contributors to active and healthy aging in the general population. However, as shown in model organisms or in 'in vitro' conditions, lifestyle-independent interventions may have additional health benefits and can even be conceived as possible reversers of the aging process. Thus, pharmaceutical laboratories, research institutes, and universities are putting more and more effort into finding new molecular pathways and druggable targets to develop gerotherapeutics. One approach is to target the driving mechanisms of aging, some of which, like cellular senescence and impaired autophagy, we discussed in an update on the biology of aging at AgingFit 2023 in Lille, France. We underline the importance of carefully and extensively testing senotherapeutics, given the pleiotropism and heterogeneity of targeted senescent cells within different organs, at different time frames. Other druggable targets emerging from new putative mechanisms, like those based on transcriptome imbalance, nucleophagy, protein phosphatase depletion, glutamine metabolism, or seno-antigenicity, have been evidenced by recent preclinical studies in classical models of aging but need to be validated in humans. Finally, we highlight several approaches in the discovery of biomarkers of healthy aging, as well as for the prediction of neurodegenerative diseases and the evaluation of rejuvenation strategies.
Collapse
Affiliation(s)
- Iuliana Popescu
- Barnstable Brown Diabetes Research CenterUniversity of Kentucky, College of MedicineLexingtonKentuckyUSA
| | - Joris Deelen
- Max Planck Institute for Biology of AgeingKölnGermany
| | - Maddalena Illario
- Department of Public Health and EDANFederico II University and HospitalNaplesItaly
| | | |
Collapse
|
40
|
Xylaki M, Chopra A, Weber S, Bartl M, Outeiro TF, Mollenhauer B. Extracellular Vesicles for the Diagnosis of Parkinson's Disease: Systematic Review and Meta-Analysis. Mov Disord 2023; 38:1585-1597. [PMID: 37449706 DOI: 10.1002/mds.29497] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/18/2023] Open
Abstract
Parkinson's disease (PD) biomarkers are needed by both clinicians and researchers (for diagnosis, identifying study populations, and monitoring therapeutic response). Imaging, genetic, and biochemical biomarkers have been widely studied. In recent years, extracellular vesicles (EVs) have become a promising material for biomarker development. Proteins and molecular material from any organ, including the central nervous system, can be packed into EVs and transported to the periphery into easily obtainable biological specimens like blood, urine, and saliva. We performed a systematic review and meta-analysis of articles (published before November 15, 2022) reporting biomarker assessment in EVs in PD patients and healthy controls (HCs). Biomarkers were analyzed using random effects meta-analysis and the calculated standardized mean difference (Std.MD). Several proteins and ribonucleic acids have been identified in EVs in PD patients, but only α-synuclein (aSyn) and leucine-rich repeat kinase 2 (LRRK2) were reported in sufficient studies (n = 24 and 6, respectively) to perform a meta-analysis. EV aSyn was significantly increased in neuronal L1 cell adhesion molecule (L1CAM)-positive blood EVs in PD patients compared to HCs (Std.MD = 1.84, 95% confidence interval = 0.76-2.93, P = 0.0009). Further analysis of the biological sample and EV isolation method indicated that L1CAM-IP (immunoprecipitation) directly from plasma was the best isolation method for assessing aSyn in PD patients. Upcoming neuroprotective clinical trials immediately need peripheral biomarkers for identifying individuals at risk of developing PD. Overall, the improved sensitivity of assays means they can identify biomarkers in blood that reflect changes in the brain. CNS-derived EVs in blood will likely play a major role in biomarker development in the coming years. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mary Xylaki
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Avika Chopra
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Sandrina Weber
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Michael Bartl
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, Upon Tyne, United Kingdom
- Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
- Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| |
Collapse
|
41
|
Sigdel S, Swenson S, Wang J. Extracellular Vesicles in Neurodegenerative Diseases: An Update. Int J Mol Sci 2023; 24:13161. [PMID: 37685965 PMCID: PMC10487947 DOI: 10.3390/ijms241713161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide. The likelihood of developing a neurodegenerative disease rises dramatically as life expectancy increases. Although it has drawn significant attention, there is still a lack of proper effective treatments for neurodegenerative disease because the mechanisms of its development and progression are largely unknown. Extracellular vesicles (EVs) are small bi-lipid layer-enclosed nanosized particles in tissues and biological fluids. EVs are emerging as novel intercellular messengers and regulate a series of biological responses. Increasing evidence suggests that EVs are involved in the pathogenesis of neurodegenerative disorders. In this review, we summarize the recent findings of EVs in neurodegenerative diseases and bring up the limitations in the field.
Collapse
Affiliation(s)
| | | | - Jinju Wang
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (S.S.); (S.S.)
| |
Collapse
|
42
|
Dutta S, Hornung S, Taha HB, Bitan G. Biomarkers for parkinsonian disorders in CNS-originating EVs: promise and challenges. Acta Neuropathol 2023; 145:515-540. [PMID: 37012443 PMCID: PMC10071251 DOI: 10.1007/s00401-023-02557-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023]
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and oncosomes, are nano-sized particles enclosed by a lipid bilayer. EVs are released by virtually all eukaryotic cells and have been shown to contribute to intercellular communication by transporting proteins, lipids, and nucleic acids. In the context of neurodegenerative diseases, EVs may carry toxic, misfolded forms of amyloidogenic proteins and facilitate their spread to recipient cells in the central nervous system (CNS). CNS-originating EVs can cross the blood-brain barrier into the bloodstream and may be found in other body fluids, including saliva, tears, and urine. EVs originating in the CNS represent an attractive source of biomarkers for neurodegenerative diseases, because they contain cell- and cell state-specific biological materials. In recent years, multiple papers have reported the use of this strategy for identification and quantitation of biomarkers for neurodegenerative diseases, including Parkinson's disease and atypical parkinsonian disorders. However, certain technical issues have yet to be standardized, such as the best surface markers for isolation of cell type-specific EVs and validating the cellular origin of the EVs. Here, we review recent research using CNS-originating EVs for biomarker studies, primarily in parkinsonian disorders, highlight technical challenges, and propose strategies for overcoming them.
Collapse
Affiliation(s)
- Suman Dutta
- International Institute of Innovation and Technology, New Town, Kolkata, India
| | - Simon Hornung
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hash Brown Taha
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA.
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Spiers HVM, Stadler LKJ, Smith H, Kosmoliaptsis V. Extracellular Vesicles as Drug Delivery Systems in Organ Transplantation: The Next Frontier. Pharmaceutics 2023; 15:891. [PMID: 36986753 PMCID: PMC10052210 DOI: 10.3390/pharmaceutics15030891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Extracellular vesicles are lipid bilayer-delimited nanoparticles excreted into the extracellular space by all cells. They carry a cargo rich in proteins, lipids and DNA, as well as a full complement of RNA species, which they deliver to recipient cells to induce downstream signalling, and they play a key role in many physiological and pathological processes. There is evidence that native and hybrid EVs may be used as effective drug delivery systems, with their intrinsic ability to protect and deliver a functional cargo by utilising endogenous cellular mechanisms making them attractive as therapeutics. Organ transplantation is the gold standard for treatment for suitable patients with end-stage organ failure. However, significant challenges still remain in organ transplantation; prevention of graft rejection requires heavy immunosuppression and the lack of donor organs results in a failure to meet demand, as manifested by growing waiting lists. Pre-clinical studies have demonstrated the ability of EVs to prevent rejection in transplantation and mitigate ischemia reperfusion injury in several disease models. The findings of this work have made clinical translation of EVs possible, with several clinical trials actively recruiting patients. However, there is much to be uncovered, and it is essential to understand the mechanisms behind the therapeutic benefits of EVs. Machine perfusion of isolated organs provides an unparalleled platform for the investigation of EV biology and the testing of the pharmacokinetic and pharmacodynamic properties of EVs. This review classifies EVs and their biogenesis routes, and discusses the isolation and characterisation methods adopted by the international EV research community, before delving into what is known about EVs as drug delivery systems and why organ transplantation represents an ideal platform for their development as drug delivery systems.
Collapse
Affiliation(s)
- Harry V M Spiers
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Lukas K J Stadler
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Hugo Smith
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
44
|
Jacopo M. Unconventional protein secretion (UPS): role in important diseases. MOLECULAR BIOMEDICINE 2023; 4:2. [PMID: 36622461 PMCID: PMC9827022 DOI: 10.1186/s43556-022-00113-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Unconventional protein secretion (UPS) is the new secretion process discovered in liquid form over three decades ago. More recently, UPS has been shown to operate also in solid forms generated from four types of organelles: fractions of lysosomes and autophagy (APh) undergoing exocytosis; exosomes and ectosomes, with their extracellular vesicles (EVs). Recently many mechanisms and proteins of these solid forms have been shown to depend on UPS. An additional function of UPS is the regulation of diseases, often investigated separately from each other. In the present review, upon short presentation of UPS in healthy cells and organs, interest is focused on the mechanisms and development of diseases. The first reported are neurodegenerations, characterized by distinct properties. Additional diseases, including inflammasomes, inflammatory responses, glial effects and other diseases of various origin, are governed by proteins generated, directly or alternatively, by UPS. The diseases most intensely affected by UPS are various types of cancer, activated in most important processes: growth, proliferation and invasion, relapse, metastatic colonization, vascular leakiness, immunomodulation, chemoresistence. The therapy role of UPS diseases depends largely on exosomes. In addition to affecting neurodegenerative diseases, its special aim is the increased protection against cancer. Its immense relevance is due to intrinsic features, including low immunogenicity, biocompatibility, stability, and crossing of biological barriers. Exosomes, loaded with factors for pharmacological actions and target cell sensitivity, induce protection against various specific cancers. Further expansion of disease therapies is expected in the near future.
Collapse
Affiliation(s)
- Meldolesi Jacopo
- grid.18887.3e0000000417581884San Raffaele Institute, Vita-Salute San Raffaele University, Milan, Italy ,CNR Institute of Neuroscience at the Milano-Bicocca University, Milan, Italy
| |
Collapse
|
45
|
Natale F, Fusco S, Grassi C. Dual role of brain-derived extracellular vesicles in dementia-related neurodegenerative disorders: cargo of disease spreading signals and diagnostic-therapeutic molecules. Transl Neurodegener 2022; 11:50. [PMID: 36437458 PMCID: PMC9701396 DOI: 10.1186/s40035-022-00326-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022] Open
Abstract
Neurodegenerative disorders are one of the most common causes of disability and represent 6.3% of the global burden of disease. Among them, Alzheimer's, Parkinson's, and Huntington's diseases cause cognitive decline, representing the most disabling symptom on both personal and social levels. The molecular mechanisms underlying the onset and progression of dementia are still poorly understood, and include secretory factors potentially affecting differentiated neurons, glial cells and neural stem cell niche. In the last decade, much attention has been devoted to exosomes as novel carriers of information exchanged among both neighbouring and distant cells. These vesicles can be generated and internalized by different brain cells including neurons, neural stem cells, astrocytes, and microglia, thereby affecting neural plasticity and cognitive functions in physiological and pathological conditions. Here, we review data on the roles of exosomes as carriers of bioactive molecules potentially involved in the pathogenesis of neurodegenerative disorders and detectable in biological fluids as biomarkers of dementia. We also discuss the experimental evidence of the therapeutic potential of stem cell-derived vesicles in experimental models of neurodegeneration-dependent cognitive decline.
Collapse
Affiliation(s)
- Francesca Natale
- grid.8142.f0000 0001 0941 3192Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Salvatore Fusco
- grid.8142.f0000 0001 0941 3192Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Claudio Grassi
- grid.8142.f0000 0001 0941 3192Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
46
|
Vandendriessche C, Kapogiannis D, Vandenbroucke RE. Biomarker and therapeutic potential of peripheral extracellular vesicles in Alzheimer's disease. Adv Drug Deliv Rev 2022; 190:114486. [PMID: 35952829 PMCID: PMC9985115 DOI: 10.1016/j.addr.2022.114486] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/01/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived nanoparticles with an important role in intercellular communication, even across brain barriers. The bidirectional brain-barrier crossing capacity of EVs is supported by research identifying neuronal markers in peripheral EVs, as well as the brain delivery of peripherally administered EVs. In addition, EVs are reflective of their cellular origin, underlining their biomarker and therapeutic potential when released by diseased and regenerative cells, respectively. Both characteristics are of interest in Alzheimer's disease (AD) where the current biomarker profile is solely based on brain-centered readouts and effective therapeutic options are lacking. In this review, we elaborate on the role of peripheral EVs in AD. We focus on bulk EVs and specific EV subpopulations including bacterial EVs (bEVs) and neuronal-derived EVs (nEVs), which have mainly been studied from a biomarker perspective. Furthermore, we highlight the therapeutic potential of peripherally administered EVs whereby research has centered around stem cell derived EVs.
Collapse
Affiliation(s)
- Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Dimitrios Kapogiannis
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, USA
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
47
|
Ding Y, Zhang Y, Liu X. Combinational treatments of RNA interference and extracellular vesicles in the spinocerebellar ataxia. Front Mol Neurosci 2022; 15:1043947. [PMID: 36311034 PMCID: PMC9606576 DOI: 10.3389/fnmol.2022.1043947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is an autosomal dominant neurodegenerative disease (ND) with a high mortality rate. Symptomatic treatment is the only clinically adopted treatment. However, it has poor effect and serious complications. Traditional diagnostic methods [such as magnetic resonance imaging (MRI)] have drawbacks. Presently, the superiority of RNA interference (RNAi) and extracellular vesicles (EVs) in improving SCA has attracted extensive attention. Both can serve as the potential biomarkers for the diagnosing and monitoring disease progression. Herein, we analyzed the basis and prospect of therapies for SCA. Meanwhile, we elaborated the development and application of miRNAs, siRNAs, shRNAs, and EVs in the diagnosis and treatment of SCA. We propose the combination of RNAi and EVs to avoid the adverse factors of their respective treatment and maximize the benefits of treatment through the technology of EVs loaded with RNA. Obviously, the combinational therapy of RNAi and EVs may more accurately diagnose and cure SCA.
Collapse
Affiliation(s)
- Yingying Ding
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang, China
- *Correspondence: Xuehong Liu,
| |
Collapse
|