1
|
Lim SY, Tan AH, Ahmad-Annuar A, Okubadejo NU, Lohmann K, Morris HR, Toh TS, Tay YW, Lange LM, Bandres-Ciga S, Mata I, Foo JN, Sammler E, Ooi JCE, Noyce AJ, Bahr N, Luo W, Ojha R, Singleton AB, Blauwendraat C, Klein C. Uncovering the genetic basis of Parkinson's disease globally: from discoveries to the clinic. Lancet Neurol 2024; 23:1267-1280. [PMID: 39447588 DOI: 10.1016/s1474-4422(24)00378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Knowledge on the genetic basis of Parkinson's disease has grown tremendously since the discovery of the first monogenic form, caused by a mutation in α-synuclein, and with the subsequent identification of multiple other causative genes and associated loci. Genetic studies provide insights into the phenotypic heterogeneity and global distribution of Parkinson's disease. By shedding light on the underlying biological mechanisms, genetics facilitates the identification of new biomarkers and therapeutic targets. Several clinical trials of genetics-informed therapies are ongoing or imminent. International programmes in populations who have been under-represented in Parkinson's disease genetics research are fostering collaboration and capacity-building, and have already generated novel findings. Many challenges remain for genetics research in these populations, but addressing them provides opportunities to obtain a more complete and equitable understanding of Parkinson's disease globally. These advances facilitate the integration of genetics into the clinic, to improve patient management and personalised medicine.
Collapse
Affiliation(s)
- Shen-Yang Lim
- Division of Neurology, Department of Medicine, and The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, and The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Njideka Ulunma Okubadejo
- College of Medicine, University of Lagos and Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology, London, UK
| | - Tzi Shin Toh
- Division of Neurology, Department of Medicine, and The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lara M Lange
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany; Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Ignacio Mata
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore; Laboratory of Neurogenetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Esther Sammler
- Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK; Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Joshua Chin Ern Ooi
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Alastair J Noyce
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Natascha Bahr
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany; Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, People's Republic of China
| | - Rajeev Ojha
- Department of Neurology, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA; Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA; Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany; Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|
2
|
Qin F, Zhang M, Wang P, Dai Z, Li X, Li D, Jing L, Qi C, Fan H, Qin M, Li Y, Huang L, Wang T. Transcriptome analysis reveals the anti-Parkinson's activity of Mangiferin in zebrafish. Biomed Pharmacother 2024; 179:117387. [PMID: 39245002 DOI: 10.1016/j.biopha.2024.117387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
As the global population ages, the incidence of Parkinson's Disease (PD) continues to rise, imposing significant social and economic burdens. Mangiferin (MGF), a polyphenolic, bioactive compound has been shown to play a role in the prevention and treatment of PD. This study investigates the neuroprotective effects of MGF in an MPTP-induced zebrafish model of PD through transcriptome analysis. Initially, optimal concentrations for modeling were determined using various MPTP and MGF combinations. The zebrafish were then divided into control, MPTP-treated, and MGF co-treated groups. Subsequent evaluations included hatching rates, mortality rates, growth and development conditions, spontaneous motor abilities, as well as measurements of enzymatic activities of SOD, CAT, and levels of GSH. Ultimately, the therapeutic efficacy of MGF on the PD model in zebrafish was assessed through transcriptome sequencing. The results demonstrated that MPTP treatment induced PD-associated symptoms in zebrafish, while MGF treatment significantly improved the motor abilities and survival rates of the PD model zebrafish, effectively reducing oxidative stress and ameliorating PD symptoms. Transcriptome sequencing further revealed that MGF may mitigate mitochondrial-related oxidative stress in PD zebrafish by modulating the expression of critical genes including lrrk2, vps35, atp13a, dnajc6, and uchl1. Differential gene expression analysis indicated that these genes are primarily involved in vital signaling pathways, such as neuroactive ligand-receptor interaction, and the calcium signaling pathway. In summary, our study provides robust scientific evidence supporting MGF as a potential therapeutic candidate for PD by preserving mitochondrial homeostasis and elucidating its mechanisms of action.
Collapse
Affiliation(s)
- Fengqing Qin
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, Qinzhou Key Laboratory of Food Flavor Analysis and Control, Beibu Gulf University, Qinzhou 535011, China; College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Ming Zhang
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, Qinzhou Key Laboratory of Food Flavor Analysis and Control, Beibu Gulf University, Qinzhou 535011, China.
| | - Pei Wang
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, Qinzhou Key Laboratory of Food Flavor Analysis and Control, Beibu Gulf University, Qinzhou 535011, China.
| | - Ziru Dai
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, Qinzhou Key Laboratory of Food Flavor Analysis and Control, Beibu Gulf University, Qinzhou 535011, China.
| | - Xi Li
- School of Mental Health, Wenzhou Medical University, Wenzhou, China.
| | - Dongliang Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Lijun Jing
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| | - Cen Qi
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, Qinzhou Key Laboratory of Food Flavor Analysis and Control, Beibu Gulf University, Qinzhou 535011, China.
| | - Heliang Fan
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, Qinzhou Key Laboratory of Food Flavor Analysis and Control, Beibu Gulf University, Qinzhou 535011, China.
| | - Mei Qin
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, Qinzhou Key Laboratory of Food Flavor Analysis and Control, Beibu Gulf University, Qinzhou 535011, China.
| | - Ying Li
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, Qinzhou Key Laboratory of Food Flavor Analysis and Control, Beibu Gulf University, Qinzhou 535011, China.
| | - Likun Huang
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, Qinzhou Key Laboratory of Food Flavor Analysis and Control, Beibu Gulf University, Qinzhou 535011, China.
| | - Tianci Wang
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, Qinzhou Key Laboratory of Food Flavor Analysis and Control, Beibu Gulf University, Qinzhou 535011, China.
| |
Collapse
|
3
|
Lin M, Tu RH, Wu SZ, Zhong Q, Weng K, Wu YK, Lin GT, Wang JB, Zheng CH, Xie JW, Lin JX, Chen QY, Huang CM, Cao LL, Li P. Increased ONECUT2 induced by Helicobacter pylori promotes gastric cancer cell stemness via an AKT-related pathway. Cell Death Dis 2024; 15:497. [PMID: 38997271 PMCID: PMC11245518 DOI: 10.1038/s41419-024-06885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Helicobacter pylori (HP) infection initiates and promotes gastric carcinogenesis. ONECUT2 shows promise for tumor diagnosis, prognosis, and treatment. This study explored ONECUT2's role and the specific mechanism underlying HP infection-associated gastric carcinogenesis to suggest a basis for targeting ONECUT2 as a therapeutic strategy for gastric cancer (GC). Multidimensional data supported an association between ONECUT2, HP infection, and GC pathogenesis. HP infection upregulated ONECUT2 transcriptional activity via NFκB. In vitro and in vivo experiments demonstrated that ONECUT2 increased the stemness of GC cells. ONECUT2 was also shown to inhibit PPP2R4 transcription, resulting in reduced PP2A activity, which in turn increased AKT/β-catenin phosphorylation. AKT/β-catenin phosphorylation facilitates β-catenin translocation to the nucleus, initiating transcription of downstream stemness-associated genes in GC cells. HP infection upregulated the reduction of AKT and β-catenin phosphorylation triggered by ONECUT2 downregulation via ONECUT2 induction. Clinical survival analysis indicated that high ONECUT2 expression may indicate poor prognosis in GC. This study highlights a critical role played by ONECUT2 in promoting HP infection-associated GC by enhancing cell stemness through the PPP2R4/AKT/β-catenin signaling pathway. These findings suggest promising therapeutic strategies and potential targets for GC treatment.
Collapse
Affiliation(s)
- Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Sheng-Ze Wu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Qing Zhong
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Kai Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Yu-Kai Wu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Guang-Tan Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
4
|
Pätsi H, Kilpeläinen TP, Jumppanen M, Uhari-Väänänen J, Wielendaele PV, De Lorenzo F, Cui H, Auno S, Saharinen J, Seppälä E, Sipari N, Savinainen J, De Meester I, Lambeir AM, Lahtela-Kakkonen M, Myöhänen TT, Wallén EAA. 5-Aminothiazoles Reveal a New Ligand-Binding Site on Prolyl Oligopeptidase Which is Important for Modulation of Its Protein-Protein Interaction-Derived Functions. J Med Chem 2024; 67:5421-5436. [PMID: 38546708 PMCID: PMC11394002 DOI: 10.1021/acs.jmedchem.3c01993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
A series of novel 5-aminothiazole-based ligands for prolyl oligopeptidase (PREP) comprise selective, potent modulators of the protein-protein interaction (PPI)-mediated functions of PREP, although they are only weak inhibitors of the proteolytic activity of PREP. The disconnected structure-activity relationships are significantly more pronounced for the 5-aminothiazole-based ligands than for the earlier published 5-aminooxazole-based ligands. Furthermore, the stability of the 5-aminothiazole scaffold allowed exploration of wider substitution patterns than that was possible with the 5-aminooxazole scaffold. The intriguing structure-activity relationships for the modulation of the proteolytic activity and PPI-derived functions of PREP were elaborated by presenting a new binding site for PPI modulating PREP ligands, which was initially discovered using molecular modeling and later confirmed through point mutation studies. Our results suggest that this new binding site on PREP is clearly more important than the active site of PREP for the modulation of its PPI-mediated functions.
Collapse
Affiliation(s)
- Henri
T. Pätsi
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Tommi P. Kilpeläinen
- Drug
Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Mikael Jumppanen
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Johanna Uhari-Väänänen
- Drug
Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Pieter Van Wielendaele
- Laboratory
of Medical Biochemistry, Department of Pharmaceutical Sciences, Faculty
of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Francesca De Lorenzo
- Drug
Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Hengjing Cui
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland
| | - Samuli Auno
- Drug
Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Janne Saharinen
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Erin Seppälä
- School
of Medicine/Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 8, Kuopio 70211, Finland
| | - Nina Sipari
- Viikki
Metabolomics
Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 5 E, 00014 Helsinki, Finland
| | - Juha Savinainen
- School
of Medicine/Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 8, Kuopio 70211, Finland
| | - Ingrid De Meester
- Laboratory
of Medical Biochemistry, Department of Pharmaceutical Sciences, Faculty
of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Anne-Marie Lambeir
- Laboratory
of Medical Biochemistry, Department of Pharmaceutical Sciences, Faculty
of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Maija Lahtela-Kakkonen
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland
| | - Timo T. Myöhänen
- Drug
Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland
- Division
of Pharmacology, Faculty of Medicine, University
of Helsinki, P.O.Box 63, 00014 Helsinki, Finland
| | - Erik A. A. Wallén
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
5
|
Lin P, Zhang B, Yang H, Yang S, Xue P, Chen Y, Yu S, Zhang J, Zhang Y, Chen L, Fan C, Li F, Ling D. An artificial protein modulator reprogramming neuronal protein functions. Nat Commun 2024; 15:2039. [PMID: 38448420 PMCID: PMC10917760 DOI: 10.1038/s41467-024-46308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Reversible protein phosphorylation, regulated by protein phosphatases, fine-tunes target protein function and plays a vital role in biological processes. Dysregulation of this process leads to aberrant post-translational modifications (PTMs) and contributes to disease development. Despite the widespread use of artificial catalysts as enzyme mimetics, their direct modulation of proteins remains largely unexplored. To address this gap and enable the reversal of aberrant PTMs for disease therapy, we present the development of artificial protein modulators (APROMs). Through atomic-level engineering of heterogeneous catalysts with asymmetric catalytic centers, these modulators bear structural similarities to protein phosphatases and exhibit remarkable ability to destabilize the bridging μ3-hydroxide. This activation of catalytic centers enables spontaneous hydrolysis of phospho-substrates, providing precise control over PTMs. Notably, APROMs, with protein phosphatase-like characteristics, catalytically reprogram the biological function of α-synuclein by directly hydrolyzing hyperphosphorylated α-synuclein. Consequently, synaptic function is reinforced in Parkinson's disease. Our findings offer a promising avenue for reprogramming protein function through de novo PTMs strategy.
Collapse
Affiliation(s)
- Peihua Lin
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201210, China
| | - Hongli Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengfei Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pengpeng Xue
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shiyi Yu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yixiao Zhang
- In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liwei Chen
- In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, 200240, China
- Future Battery Research Center, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China.
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China.
- World Laureates Association (WLA) Laboratories, Shanghai, 201210, China.
| |
Collapse
|
6
|
Wallace JN, Crockford ZC, Román-Vendrell C, Brady EB, Hoffmann C, Vargas KJ, Potcoava M, Wegman ME, Alford ST, Milovanovic D, Morgan JR. Excess phosphoserine-129 α-synuclein induces synaptic vesicle trafficking and declustering defects at a vertebrate synapse. Mol Biol Cell 2024; 35:ar10. [PMID: 37991902 PMCID: PMC10881165 DOI: 10.1091/mbc.e23-07-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
α-Synuclein is a presynaptic protein that regulates synaptic vesicle (SV) trafficking. In Parkinson's disease (PD) and dementia with Lewy bodies (DLB), α-synuclein aberrantly accumulates throughout neurons, including at synapses. During neuronal activity, α-synuclein is reversibly phosphorylated at serine 129 (pS129). While pS129 comprises ∼4% of total α-synuclein under physiological conditions, it dramatically increases in PD and DLB brains. The impacts of excess pS129 on synaptic function are currently unknown. We show here that compared with wild-type (WT) α-synuclein, pS129 exhibits increased binding and oligomerization on synaptic membranes and enhanced vesicle "microclustering" in vitro. Moreover, when acutely injected into lamprey reticulospinal axons, excess pS129 α-synuclein robustly localized to synapses and disrupted SV trafficking in an activity-dependent manner, as assessed by ultrastructural analysis. Specifically, pS129 caused a declustering and dispersion of SVs away from the synaptic vicinity, leading to a significant loss of total synaptic membrane. Live imaging further revealed altered SV cycling, as well as microclusters of recently endocytosed SVs moving away from synapses. Thus, excess pS129 caused an activity-dependent inhibition of SV trafficking via altered vesicle clustering/reclustering. This work suggests that accumulation of pS129 at synapses in diseases like PD and DLB could have profound effects on SV dynamics.
Collapse
Affiliation(s)
| | | | | | - Emily B. Brady
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, and
| | - Christian Hoffmann
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Karina J. Vargas
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, and
- Department of Cell Biology, University of Pittsburgh, PA 15261
| | - Mariana Potcoava
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | | | - Simon T. Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | - Dragomir Milovanovic
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | | |
Collapse
|
7
|
Di Fonzo A, Percetti M, Monfrini E, Palmieri I, Albanese A, Avenali M, Bartoletti-Stella A, Blandini F, Brescia G, Calandra-Buonaura G, Campopiano R, Capellari S, Colangelo I, Comi GP, Cuconato G, Ferese R, Galandra C, Gambardella S, Garavaglia B, Gaudio A, Giardina E, Invernizzi F, Mandich P, Mineri R, Panteghini C, Reale C, Trevisan L, Zampatti S, Cortelli P, Valente EM. Harmonizing Genetic Testing for Parkinson's Disease: Results of the PARKNET Multicentric Study. Mov Disord 2023; 38:2241-2248. [PMID: 37750340 DOI: 10.1002/mds.29617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Early-onset Parkinson's disease (EOPD) commonly recognizes a genetic basis; thus, patients with EOPD are often addressed to diagnostic testing based on next-generation sequencing (NGS) of PD-associated multigene panels. However, NGS interpretation can be challenging in a diagnostic setting, and few studies have addressed this issue so far. METHODS We retrospectively collected data from 648 patients with PD with age at onset younger than 55 years who underwent NGS of a minimal shared panel of 15 PD-related genes, as well as PD-multiplex ligation-dependent probe amplification in eight Italian diagnostic laboratories. Data included a minimal clinical dataset, the complete list of variants included in the diagnostic report, and final interpretation (positive/negative/inconclusive). Patients were further stratified based on age at onset ≤40 years (very EOPD, n = 157). All variants were reclassified according to the latest American College of Medical Genetics and Genomics criteria. For classification purposes, PD-associated GBA1 variants were considered diagnostic. RESULTS In 186 of 648 (29%) patients, the diagnostic report listed at least one variant, and the outcome was considered diagnostic (positive) in 105 (16%). After reanalysis, diagnosis changed in 18 of 186 (10%) patients, with 5 shifting from inconclusive to positive and 13 former positive being reclassified as inconclusive. A definite diagnosis was eventually reached in 97 (15%) patients, of whom the majority carried GBA1 variants or, less frequently, biallelic PRKN variants. In 89 (14%) cases, the genetic report was inconclusive. CONCLUSIONS This study attempts to harmonize reporting of PD genetic testing across several diagnostic labs and highlights current difficulties in interpreting genetic variants emerging from NGS-multigene panels, with relevant implications for counseling. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Marco Percetti
- Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
- School of Medicine and Surgery, Milan Center for Neuroscience, University of Milan-Bicocca, Milan, Italy
- Foundation IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Edoardo Monfrini
- Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | | | | | - Micol Avenali
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavior Sciences, University of Pavia, Pavia, Italy
| | - Anna Bartoletti-Stella
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- DIMEC, University of Bologna, Bologna, Italy
| | - Fabio Blandini
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gloria Brescia
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | - Sabina Capellari
- DIMEC, University of Bologna, Bologna, Italy
- DIBINEM, University of Bologna, Bologna, Italy
| | - Isabel Colangelo
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Giacomo Pietro Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Giada Cuconato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Caterina Galandra
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stefano Gambardella
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Andrea Gaudio
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Federica Invernizzi
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Paola Mandich
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- DINOGMI, University of Genoa, Genoa, Italy
| | | | - Celeste Panteghini
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Chiara Reale
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | | | - Stefania Zampatti
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Pietro Cortelli
- DIMEC, University of Bologna, Bologna, Italy
- DIBINEM, University of Bologna, Bologna, Italy
| | - Enza Maria Valente
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Dulski J, Soto-Beasley AI, Uitti RJ, Wszolek ZK, Ross OA. PTPA variants are rare in early-onset and familial Parkinson's disease. Brain 2023; 146:e125-e127. [PMID: 37448355 DOI: 10.1093/brain/awad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Affiliation(s)
- Jarosław Dulski
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-211 Gdansk, Poland
- Neurology Department, St Adalbert Hospital, Copernicus PL Ltd., 80-462 Gdansk, Poland
| | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
9
|
Ostrožovičová M, Mecheri Y, Al-Mubarak BR, Al-Tassan N, Makarious MB, Periñan MT, Bandres-Ciga S. PTPA variants and the risk for Parkinson's disease in diverse ancestry populations. Brain 2023; 146:e120-e124. [PMID: 37467482 PMCID: PMC10689897 DOI: 10.1093/brain/awad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Affiliation(s)
- Miriam Ostrožovičová
- Department of Neurology, P.J. Safarik University, Kosice 04011, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice 04011, Slovak Republic
| | - Yasser Mecheri
- Neurology Department, Dr Benbadis University Hospital, Constantine 25018, Algeria
| | - Bashayer R Al-Mubarak
- Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Nada Al-Tassan
- Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- UCL Movement Disorders Centre, University College London, WC1N 3BG London, UK
| | - Maria Teresa Periñan
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, 41013 Seville, Spain
- Preventive Neurology Unit, Centre for Prevention, Detection and Diagnosis, Wolfson Institute of Population Health, Queen Mary University of London, EC1M 6BQ London, UK
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|