1
|
Gowtham A, Kaundal RK. Exploring the ncRNA landscape in exosomes: Insights into wound healing mechanisms and therapeutic applications. Int J Biol Macromol 2025; 292:139206. [PMID: 39732230 DOI: 10.1016/j.ijbiomac.2024.139206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Exosomal non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have emerged as crucial modulators in cellular signaling, influencing wound healing processes. Stem cell-derived exosomes, which serve as vehicles for these ncRNAs, show remarkable therapeutic potential due to their ability to modulate wound healing stages, from initial inflammation to collagen formation. These ncRNAs act as molecular signals, regulating gene expression and protein synthesis necessary for cellular responses in healing. Wound healing is a complex, staged process involving inflammation, hemostasis, fibroblast proliferation, angiogenesis, and tissue remodeling. Stem cell-derived exosomal ncRNAs enhance these stages by reducing excessive inflammation, promoting anti-inflammatory responses, guiding fibroblast and keratinocyte maturation, enhancing vascularization, and ensuring organized collagen deposition. Their molecular cargo, particularly ncRNAs, specifically targets pathways to aid chronic wound repair and support scarless regeneration. This review delves into the unique composition and signaling roles of Stem cell-derived exosomes and ncRNAs, highlighting their impact across wound healing stages and their potential as innovative therapeutics. Understanding the interaction between exosomal ncRNAs and cellular signaling pathways opens new avenues in regenerative medicine, positioning Stem cell-derived exosomes and their ncRNAs as promising molecular-level interventions in wound healing.
Collapse
Affiliation(s)
- A Gowtham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
2
|
Wang Y, Guan P, Tan R, Shi Z, Li Q, Lu B, Hu E, Ding W, Wang W, Cheng B, Lan G, Lu F. Fiber-Reinforced Silk Microneedle Patches for Improved Tissue Adhesion in Treating Diabetic Wound Infections. ADVANCED FIBER MATERIALS 2024; 6:1596-1615. [DOI: 10.1007/s42765-024-00439-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/21/2024] [Indexed: 01/12/2025]
|
3
|
Guo L, Xiao D, Xing H, Yang G, Yang X. Engineered exosomes as a prospective therapy for diabetic foot ulcers. BURNS & TRAUMA 2024; 12:tkae023. [PMID: 39026930 PMCID: PMC11255484 DOI: 10.1093/burnst/tkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Indexed: 07/20/2024]
Abstract
Diabetic foot ulcer (DFU), characterized by high recurrence rate, amputations and mortality, poses a significant challenge in diabetes management. The complex pathology involves dysregulated glucose homeostasis leading to systemic and local microenvironmental complications, including peripheral neuropathy, micro- and macro-angiopathy, recurrent infection, persistent inflammation and dysregulated re-epithelialization. Novel approaches to accelerate DFU healing are actively pursued, with a focus on utilizing exosomes. Exosomes are natural nanovesicles mediating cellular communication and containing diverse functional molecular cargos, including DNA, mRNA, microRNA (miRNA), lncRNA, proteins, lipids and metabolites. While some exosomes show promise in modulating cellular function and promoting ulcer healing, their efficacy is limited by low yield, impurities, low loading content and inadequate targeting. Engineering exosomes to enhance their curative activity represents a potentially more efficient approach for DFUs. This could facilitate focused repair and regeneration of nerves, blood vessels and soft tissue after ulcer development. This review provides an overview of DFU pathogenesis, strategies for exosome engineering and the targeted therapeutic application of engineered exosomes in addressing critical pathological changes associated with DFUs.
Collapse
Affiliation(s)
- Lifei Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- Cadet Team 6 of School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Dan Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Tiantanxili Street #4, Dongcheng District, Beijing 100050, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| |
Collapse
|
4
|
Zhu D, Hu Y, Kong X, Luo Y, Zhang Y, Wu Y, Tan J, Chen J, Xu T, Zhu L. Enhanced burn wound healing by controlled-release 3D ADMSC-derived exosome-loaded hyaluronan hydrogel. Regen Biomater 2024; 11:rbae035. [PMID: 38628545 PMCID: PMC11018541 DOI: 10.1093/rb/rbae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/23/2024] [Accepted: 03/17/2024] [Indexed: 04/19/2024] Open
Abstract
Adipose mesenchymal stem cell (ADMSC)-derived exosomes (ADMSC-Exos) have shown great potential in regenerative medicine and been evidenced benefiting wound repair such as burns. However, the low yield, easy loss after direct coating, and no suitable loading system to improve their availability and efficacy hinder their clinical application for wound healing. And few studies focused on the comparison of biological functions between exosomes derived from different culture techniques, especially in exosome-releasing hydrogel system. Therefore, we designed a high-performance exosome controllable releasing hydrogel system for burn wound healing, namely loading 3D-printed microfiber culture-derived exosomes in a highly biocompatible hyaluronic acid (HA). In this project, we compared the biological functions in vitro and in a burn model among exosomes derived from the conventional two-dimensional (2D) plate culture (2D-Exos), microcarrier culture (2.5D-Exos), and 3D-printed microfiber culture (3D-Exos). Results showed that compared with 2D-Exos and 2.5D-Exos, 3D-Exos promoted HACATs and HUVECs cell proliferation and migration more significantly. Additionally, 3D-Exos had stronger angiogenesis-promoting effects in tube formation of (HUVECs) cells. Moreover, we found HA-loaded 3D-Exos showed better burn wound healing promotion compared to 2D-Exos and 2.5D-Exos, including accelerated burn wound healing rate and better collagen remodeling. The study findings reveal that the HA-loaded, controllable-release 3D-Exos repair system distinctly augments therapeutic efficacy in terms of wound healing, while concurrently introducing a facile application approach. This system markedly bolsters the exosomal loading efficiency, provides a robust protective milieu, and potentiates the inherent biological functionalities of the exosomes. Our findings provide a rationale for more efficient utilization of high-quality and high-yield 3D exosomes in the future, and a novel strategy for healing severe burns.
Collapse
Affiliation(s)
- Delong Zhu
- Department of Dermatology & Plastic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Ying Hu
- Department of Dermatology & Plastic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Xiangkai Kong
- Department of Dermatology & Plastic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Yuansen Luo
- Department of the Second Plastic Surgery, The First People’s Hospital of Foshan, Foshan 528000, China
| | - Yi Zhang
- Department of Research and Development, Huaqing Zhimei (Shenzhen) Biotechnology Co., Ltd, Shenzhen 518107, People’s Republic of China
| | - Yu Wu
- Department of Dermatology & Plastic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Jiameng Tan
- Department of Dermatology & Plastic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Jianwei Chen
- Center for Bio-Intelligent Manufacturing and Living Matter Bioprinting, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen 518057, People’s Republic of China
| | - Tao Xu
- Center for Bio-Intelligent Manufacturing and Living Matter Bioprinting, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen 518057, People’s Republic of China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People’s Republic of China
| | - Lei Zhu
- Department of Dermatology & Plastic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| |
Collapse
|
5
|
Wang Y, Shen X, Song S, Chen Y, Wang Y, Liao J, Chen N, Zeng L. Mesenchymal stem cell-derived exosomes and skin photoaging: From basic research to practical application. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:556-566. [PMID: 37605539 DOI: 10.1111/phpp.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Skin photoaging is a condition caused by long-term exposure to ultraviolet irradiation, resulting in a variety of changes in the skin, such as capillary dilation, increased or absent pigmentation, dryness, sagging, and wrinkles. Stem cells possess a remarkable antioxidant capacity and the ability to proliferate, differentiate, and migrate, and their main mode of action is through paracrine secretion, with exosomes being the primary form of secretion. Stem cell-derived exosomes contain a variety of growth factors and cytokines and may have great potential to promote skin repair and delay skin ageing. METHODS This review focuses on the mechanisms of UV-induced skin photoaging, the research progress of stem cell exosomes against skin photoaging, emerging application approaches and limitations in the application of exosome therapy. RESULT Exosomes derived from various stem cells have the potential to prevent skin photoaging. CONCLUSION The combination with novel materials may be a key step for their practical application, which could be an important direction for future basic research and practical applications.
Collapse
Affiliation(s)
- Yihao Wang
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xu Shen
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Shenghua Song
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yan Chen
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yiping Wang
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Junlin Liao
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Nian Chen
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Li Zeng
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
6
|
Roy V, Paquet A, Touzel-Deschênes L, Khuong HT, Dupré N, Gros-Louis F. Heterozygous NF1 dermal fibroblasts modulate exosomal content to promote angiogenesis in a tissue-engineered skin model of neurofibromatosis type-1. J Neurochem 2023; 167:556-570. [PMID: 37837197 DOI: 10.1111/jnc.15982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/01/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023]
Abstract
Neovascularization is a critical process in tumor progression and malignant transformation associated with neurofibromatosis type 1 (NF1). Indeed, fibroblasts are known to play a key role in the tumoral microenvironment modification by producing an abundant collagenous matrix, but their contribution in paracrine communication pathways is poorly understood. Here, we hypothesized that NF1 heterozygosis in human dermal fibroblasts could promote angiogenesis through exosomes secretion. The purposes of this study are to identify the NF1 fibroblast-derived exosome protein contents and to determine their proangiogenic activity. Angiogenic proteome measurement confirmed the overexpression of VEGF and other proteins involved in vascularization. Tube formation of microvascular endothelial cells was also enhanced in presence of exosomes derived from NF1 skin fibroblasts. NF1 tissue-engineered skin (NF1-TES) generation showed a significantly denser microvessels networks compared to healthy controls. The reduction of exosomes production with an inhibitor treatment demonstrated a drastic decrease in blood vessel formation within the dermis. Our results suggest that NF1 haploinsufficiency alters the dermal fibroblast function and creates a pro-angiogenic signal via exosomes, which increases the capillary formation. This study highlights the potential of targeting exosome secretion and angiogenesis for therapeutic interventions in NF1.
Collapse
Affiliation(s)
- Vincent Roy
- Department of Surgery, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Division of Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Quebec, Canada
| | - Alexandre Paquet
- Department of Surgery, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Division of Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Quebec, Canada
| | - Lydia Touzel-Deschênes
- Department of Surgery, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Division of Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Quebec, Canada
| | - Hélène T Khuong
- Department of Surgery, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Division of Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Quebec, Canada
| | - Nicolas Dupré
- Division of Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Quebec, Canada
- Department of Neurological Sciences, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Francois Gros-Louis
- Department of Surgery, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Division of Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
7
|
Hu P, Armato U, Freddi G, Chiarini A, Dal Prà I. Human Keratinocytes and Fibroblasts Co-Cultured on Silk Fibroin Scaffolds Exosomally Overrelease Angiogenic and Growth Factors. Cells 2023; 12:1827. [PMID: 37508492 PMCID: PMC10378127 DOI: 10.3390/cells12141827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Objectives: The optimal healing of skin wounds, deep burns, and chronic ulcers is an important clinical problem. Attempts to solve it have been driving the search for skin equivalents based on synthetic or natural polymers. Methods: Consistent with this endeavor, we used regenerated silk fibroin (SF) from Bombyx mori to produce a novel compound scaffold by welding a 3D carded/hydroentangled SF-microfiber-based nonwoven layer (C/H-3D-SFnw; to support dermis engineering) to an electrospun 2D SF nanofiber layer (ESFN; a basal lamina surrogate). Next, we assessed-via scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, differential scanning calorimetry, mono- and co-cultures of HaCaT keratinocytes and adult human dermal fibroblasts (HDFs), dsDNA assays, exosome isolation, double-antibody arrays, and angiogenesis assays-whether the C/H-3D-SFnws/ESFNs would allow the reconstitution of a functional human skin analog in vitro. Results: Physical analyses proved that the C/H-3D-SFnws/ESFNs met the requirements for human soft-tissue-like implants. dsDNA assays revealed that co-cultures of HaCaTs (on the 2D ESFN surface) and HDFs (inside the 3D C/H-3D-SFnws) grew more intensely than did the respective monocultures. Double-antibody arrays showed that the CD9+/CD81+ exosomes isolated from the 14-day pooled growth media of HDF and/or HaCaT mono- or co-cultures conveyed 35 distinct angiogenic/growth factors (AGFs). However, versus monocultures' exosomes, HaCaT/HDF co-cultures' exosomes (i) transported larger amounts of 15 AGFs, i.e., PIGF, ANGPT-1, bFGF, Tie-2, Angiogenin, VEGF-A, VEGF-D, TIMP-1/-2, GRO-α/-β/-γ, IL-1β, IL-6, IL-8, MMP-9, and MCP-1, and (ii) significantly more strongly stimulated human dermal microvascular endothelial cells to migrate and assemble tubes/nodes in vitro. Conclusions: Our results showed that both cell-cell and cell-SF interactions boosted the exosomal release of AGFs from HaCaTs/HDFs co-cultured on C/H-3D-SFnws/ESFNs. Hence, such exosomes are an asset for prospective clinical applications as they advance cell growth and neoangiogenesis and consequently graft take and skin healing. Moreover, this new integument analog could be instrumental in preclinical and translational studies on human skin pathophysiology and regeneration.
Collapse
Affiliation(s)
- Peng Hu
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| | - Ubaldo Armato
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| | | | - Anna Chiarini
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| | - Ilaria Dal Prà
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| |
Collapse
|
8
|
Casajuana Ester M, Day RM. Production and Utility of Extracellular Vesicles with 3D Culture Methods. Pharmaceutics 2023; 15:pharmaceutics15020663. [PMID: 36839984 PMCID: PMC9961751 DOI: 10.3390/pharmaceutics15020663] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In recent years, extracellular vesicles (EVs) have emerged as promising biomarkers, cell-free therapeutic agents, and drug delivery carriers. Despite their great clinical potential, poor yield and unscalable production of EVs remain significant challenges. When using 3D culture methods, such as scaffolds and bioreactors, large numbers of cells can be expanded and the cell environment can be manipulated to control the cell phenotype. This has been employed to successfully increase the production of EVs as well as to enhance their therapeutic effects. The physiological relevance of 3D cultures, such as spheroids, has also provided a strategy for understanding the role of EVs in the pathogenesis of several diseases and to evaluate their role as tools to deliver drugs. Additionally, 3D culture methods can encapsulate EVs to achieve more sustained therapeutic effects as well as prevent premature clearance of EVs to enable more localised delivery and concentrated exosome dosage. This review highlights the opportunities and drawbacks of different 3D culture methods and their use in EV research.
Collapse
|
9
|
Apte A, Liechty KW, Zgheib C. Immunomodulatory biomaterials on chemokine signaling in wound healing. Front Pharmacol 2023; 14:1084948. [PMID: 37153787 PMCID: PMC10160628 DOI: 10.3389/fphar.2023.1084948] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Normal wound healing occurs through a careful orchestration of cytokine and chemokine signaling in response to injury. Chemokines are a small family of chemotactic cytokines that are secreted by immune cells in response to injury and are primarily responsible for recruiting appropriate immune cell types to injured tissue at the appropriate time. Dysregulation of chemokine signaling is suspected to contribute to delayed wound healing and chronic wounds in diseased states. Various biomaterials are being used in the development of new therapeutics for wound healing and our understanding of their effects on chemokine signaling is limited. It has been shown that modifications to the physiochemical properties of biomaterials can affect the body's immune reaction. Studying these effects on chemokine expression by various tissues and cell type can help us develop novel biomaterial therapies. In this review, we summarize the current research available on both natural and synthetic biomaterials and their effects on chemokine signaling in wound healing. In our investigation, we conclude that our knowledge of chemokines is still limited and that many in fact share both pro-inflammatory and anti-inflammatory properties. The predominance of either a pro-inflammatory or anti-inflammatory profile is mostly likely dependent on timing after injury and exposure to the biomaterial. More research is needed to better understand the interaction and contribution of biomaterials to chemokine activity in wound healing and their immunomodulatory effects.
Collapse
|
10
|
Wang K, Liu Y, Wang H, Liu Y, Yang X, Sun S. Multi-functional nanofilms capable of angiogenesis, near-infrared-triggered anti-bacterial activity and inflammatory regulation for infected wound healing. BIOMATERIALS ADVANCES 2022; 142:213154. [PMID: 36341743 DOI: 10.1016/j.bioadv.2022.213154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Chronic infected wound healing is a critical challenge in clinical practice owing to the involvement of multiple physiological processes, including bacteria-related, inflammatory regulation and angiogenesis. Therefore, a multi-functional strategy with synergistic anti-bacterial, anti-inflammatory and pro-angiogenic effects should be developed. Owing to their biomimetic structural features and controlled delivery of active agents, electrospun nanofilms are promising biomaterials for the treatment of skin defects. In this study, we fabricated multi-functional nanofilms with pro-angiogenic, anti-bacterial and anti-inflammatory capacities. First, strontium (Sr) ions were incorporated into poly(L-lactic-co-caprolactone) (PLCL) nanofilms. Subsequently, polydopamine (PDA) and zinc oxide (ZnO) were decorated onto the surface of Sr-loaded PLCL nanofilms to prepare ZnO/PDA@PLCL@Sr nanofilms. In vitro results showed that ZnO/PDA@PLCL@Sr nanofilms were biocompatible, exhibited angiogenic activity and significantly inhibited the growth of Staphylococcus aureus and Escherichia coli upon near-infrared -light irradiation. Furthermore, ZnO/PDA@PLCL@Sr nanofilms were found to drive the transformation of macrophages into the M2 phenotype. In vivo results further validated that ZnO/PDA@PLCL@Sr nanofilms exhibited pro-angiogenic and anti-bacterial activities and regulated inflammation to accelerate wound -healing in a rat model of bacteria-infected skin defects. In conclusion, we successfully developed a multi-functional biomaterial with pro-angiogenic, anti-bacterial and anti-inflammatory capacities to treat chronic infected wounds.
Collapse
Affiliation(s)
- Kun Wang
- Department of Burns and Wound Repair, Weifang People's Hospital, Weifang 261041, China
| | - Yanqun Liu
- National Tissue Engineering Center of China, Shanghai 200241, China
| | - Hui Wang
- Department of Burns and Wound Repair, Weifang People's Hospital, Weifang 261041, China
| | - Yufang Liu
- Department of Burns and Wound Repair, Weifang People's Hospital, Weifang 261041, China
| | - Xuelin Yang
- Department of Burns and Wound Repair, Weifang People's Hospital, Weifang 261041, China
| | - Shudong Sun
- Department of Burns and Wound Repair, Weifang People's Hospital, Weifang 261041, China.
| |
Collapse
|
11
|
Camponogara F, Zanotti F, Trentini M, Tiengo E, Zanolla I, Pishavar E, Soliani E, Scatto M, Gargiulo P, Zambito Y, De Luca S, Ferroni L, Zavan B. Biomaterials for Regenerative Medicine in Italy: Brief State of the Art of the Principal Research Centers. Int J Mol Sci 2022; 23:8245. [PMID: 35897825 PMCID: PMC9368060 DOI: 10.3390/ijms23158245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Regenerative medicine is the branch of medicine that effectively uses stem cell therapy and tissue engineering strategies to guide the healing or replacement of damaged tissues or organs. A crucial element is undoubtedly the biomaterial that guides biological events to restore tissue continuity. The polymers, natural or synthetic, find wide application thanks to their great adaptability. In fact, they can be used as principal components, coatings or vehicles to functionalize several biomaterials. There are many leading centers for the research and development of biomaterials in Italy. The aim of this review is to provide an overview of the current state of the art on polymer research for regenerative medicine purposes. The last five years of scientific production of the main Italian research centers has been screened to analyze the current advancement in tissue engineering in order to highlight inputs for the development of novel biomaterials and strategies.
Collapse
Affiliation(s)
- Francesca Camponogara
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Federica Zanotti
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Martina Trentini
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Elena Tiengo
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Ilaria Zanolla
- Medical Sciences Department, University of Ferrara, 44121 Ferrara, Italy;
| | - Elham Pishavar
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Elisa Soliani
- Bioengineering Department, Imperial College London, London SW7 2BX, UK;
| | - Marco Scatto
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venezia, Italy;
| | - Paolo Gargiulo
- Institute for Biomedical and Neural Engineering, Reykjavík University, 101 Reykjavík, Iceland;
- Department of Science, Landspítali, 101 Reykjavík, Iceland
| | - Ylenia Zambito
- Chemical Department, University of Pisa, 56124 Pisa, Italy;
| | - Stefano De Luca
- Unit of Naples, Institute of Applied Sciences and Intelligent Systems, National Research Council, Via P. Castellino 111, 80131 Napoli, Italy;
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy;
| | - Barbara Zavan
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| |
Collapse
|
12
|
Guo Y, Jiang X, Pan P, Liu X, Huang L, Li M, Liu Y. Preparation of SF/SF-nHA double-layer scaffolds for periodental tissue regeneration. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ying Guo
- National Engineering Laboratory for Mordern Silk, College of Textile and Clothing Engineering, Soochow University, Jiangsu, China
| | - Xuefeng Jiang
- National Engineering Laboratory for Mordern Silk, College of Textile and Clothing Engineering, Soochow University, Jiangsu, China
| | - Peng Pan
- National Engineering Laboratory for Mordern Silk, College of Textile and Clothing Engineering, Soochow University, Jiangsu, China
| | - Xueping Liu
- National Engineering Laboratory for Mordern Silk, College of Textile and Clothing Engineering, Soochow University, Jiangsu, China
| | - Linling Huang
- National Engineering Laboratory for Mordern Silk, College of Textile and Clothing Engineering, Soochow University, Jiangsu, China
| | - Mingzhong Li
- National Engineering Laboratory for Mordern Silk, College of Textile and Clothing Engineering, Soochow University, Jiangsu, China
| | - Yu Liu
- National Engineering Laboratory for Mordern Silk, College of Textile and Clothing Engineering, Soochow University, Jiangsu, China
| |
Collapse
|
13
|
Stem Cell-Derived Exosomes: A New Method for Reversing Skin Aging. Tissue Eng Regen Med 2022; 19:961-968. [PMID: 35809187 DOI: 10.1007/s13770-022-00461-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 10/17/2022] Open
Abstract
Senescence is an inevitable natural life process that involves structural and functional degeneration of tissues and organs. Recently, the process of skin aging has attracted much attention. Determining a means to delay or even reverse skin aging has become a research hotspot in medical cosmetology and anti-aging. Dysfunction in the epidermis and fibroblasts and changes in the composition and content of the extracellular matrix are common pathophysiological manifestations of skin aging. Reactive oxygen species and matrix metalloproteinases play essential roles in this process. Stem cells are pluripotent cells that possess self-replication abilities and can differentiate into multiple functional cells under certain conditions. These cells also possess a strong ability to facilitate tissue repair and regeneration. Stem cell transplantation has the potential for application in anti-aging therapy. Increasing studies have demonstrated that stem cells perform functions through paracrine processes, particularly those involving exosomes. Exosomes are nano-vesicular substances secreted by stem cells that participate in cell-to-cell communication by transporting their contents into target cells. In this chapter, the biological characteristics of exosomes were reviewed, including their effects on extracellular matrix formation, epidermal cell function, fibroblast function and antioxidation. Exosomes derived from stem cells may provide a new means to reverse skin aging.
Collapse
|
14
|
Zou Q, Zhang M, Yuan R, Wang Y, Gong Z, Shi R, Li Y, Fei K, Luo C, Xiong Y, Zheng T, Zhu L, Tang G, Li M, Li X, Jiang Y. Small extracellular vesicles derived from dermal fibroblasts promote fibroblast activity and skin development through carrying miR-218 and ITGBL1. J Nanobiotechnology 2022; 20:296. [PMID: 35733144 PMCID: PMC9215004 DOI: 10.1186/s12951-022-01499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Skin thickness is closely related to the appearance of human skin, such as sagging and wrinkling, which primarily depends on the level of collagen I synthesized by dermal fibroblasts (DFs). Small extracellular vesicles (SEVs), especially those derived from human DFs (HDFs), are crucial orchestrators in shaping physiological and pathological development of skin. However, the limited supply of human skin prevents the production of a large amount of HDFs-SEVs, and pig skin is used as a model of human skin. In this study, SEVs derived from DFs of Chenghua pigs (CH-SEVs), considered to have superior skin thickness, and Large White pigs (LW-SEVs) were collected to compare their effects on DFs and skin tissue. Our results showed that, compared with LW-SEVs, CH-SEVs more effectively promoted fibroblast proliferation, migration, collagen synthesis and contraction; in addition, in mouse model injected with both SEVs, compared with LW-SEVs, CH-SEVs increased the skin thickness and collagen I content more effectively. Some differentially expressed miRNAs and proteins were found between CH-SEVs and LW-SEVs by small RNA-seq and LC-MS/MS analysis. Interestingly, we identified that CH-SEVs were enriched in miRNA-218 and ITGBL1 protein, which played important roles in promoting fibroblast activity via activation of the downstream TGFβ1-SMAD2/3 pathway in vitro. Furthermore, overexpression of miRNA-218 and ITGBL1 protein increased the thickness and collagen I content of mouse skin in vivo. These results indicate that CH-SEVs can effectively stimulate fibroblast activity and promote skin development and thus have the potential to protect against and repair skin damage.
Collapse
Affiliation(s)
- Qin Zou
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Mei Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Rong Yuan
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, 610081, Sichuan, China
| | - Yifei Wang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Zhengyin Gong
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Rui Shi
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Yujing Li
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Kaixin Fei
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Chenggang Luo
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, 610081, Sichuan, China
| | - Ying Xiong
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Ting Zheng
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Li Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guoqing Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanzhi Jiang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.
| |
Collapse
|
15
|
Liu M, Liu Z, Chen Y, Peng S, Yang J, Chen C, Wang J, Shang R, Tang Y, Huang Y, Zhang X, Hu X, Liou YC, Luo G, He W. Dendritic epidermal T cells secreting exosomes promote the proliferation of epidermal stem cells to enhance wound re-epithelialization. Stem Cell Res Ther 2022; 13:121. [PMID: 35313958 PMCID: PMC8935714 DOI: 10.1186/s13287-022-02783-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Background Efficient re-epithelialization is important for successful skin wound healing. The proportion of epidermal stem cells (EpSCs) and dendritic epidermal T cells (DETCs) determines the extent of wound re-epithelialization, especially in large areas of skin tissue loss. However, it remains unknown whether and how DETCs regulate the status of EpSCs to impact wound re-epithelialization. Methods To investigate how DETCs regulate EpSCs in skin re-epithelialization, we utilized normal or full-thickness skin deficient wide type (WT) mice and Tcrσ knockout (Tcrσ−/−) mice with DETCs or DETCs-derived exosomes (Exos) treatment. Flow cytometry analysis (FCAS), BrdU labelled experiments, immunofluorescence and immunohistochemical assays were performed to detect the proportion of EpSCs in the epidermis. Wound closure rate and re-epithelialization were assayed by a macroscopical view and hematoxylin–eosin (H&E) staining. EpSCs in vitro were co-cultured with DETCs in a transwell-dependent or -independent manner, or supplement with GW4869 or Exos (5 µg/mL, 15 µg/mL and 45 µg/mL), and the proliferation of EpSCs was detected by means of FCAS and CFSE. Results Our data showed that the proportion of CD49fbriCD71dim cells, K15+ cells and BrdU+ cells in the normal epidermis of Tcrδ−/− mice had no significant difference compared to WT mice. For wounded Tcrδ−/− mice, DETCs treatment increase the proportion of CD49fbriCD71dim cells, K15+ cells and BrdU+ cells in the epidermis around the wound in comparison to PBS treatment. DETCs significantly increased the number of CD49fbriCD7dim cells and K15+ cells through transwell-dependent or -independent manners relative to control group. Furthermore, Exos stimuli remarkedly promote the proliferation of EpSCs compared to control group, while the increasement was suppressed when DETCs were interfered with GW4869. Gross observation and H&E staining showed that Exos significantly accelerated wound closure and increased re-epithelialization length in Tcrδ−/− mice when compared to control mice. Additionally, we found in vivo that Exos observably facilitated the proliferation of CD49fbriCD7dim cells and K15+ cells. Conclusions We revealed that DETCs enhanced the proliferation of EpSCs in the epidermis around the wounds to accelerate re-epithelialization in which Exos played important roles in the remote regulation of EpSCs proliferation. Together, these findings suggest a mechanistic link among DETC-derived exosomes, the proliferation of EpSCs, and wound re-epithelialization in the skin.
Collapse
Affiliation(s)
- Mian Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Zhihui Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Yunxia Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Shiya Peng
- Department of Dermatology, Xinqiao Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Cheng Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Jue Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Yuanyang Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Academy of Biological Engineering, Chongqing University, Chongqing, 400038, China
| | - Yong Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Yih-Cherng Liou
- Department Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China.
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China.
| |
Collapse
|
16
|
Hu P, Chiarini A, Wu J, Wei Z, Armato U, Dal Prà I. Adult Human Vascular Smooth Muscle Cells on 3D Silk Fibroin Nonwovens Release Exosomes Enriched in Angiogenic and Growth-Promoting Factors. Polymers (Basel) 2022; 14:697. [PMID: 35215609 PMCID: PMC8875541 DOI: 10.3390/polym14040697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Our earlier works showed the quick vascularization of mouse skin grafted Bombyx mori 3D silk fibroin nonwoven scaffolds (3D-SFnws) and the release of exosomes enriched in angiogenic/growth factors (AGFs) from in vitro 3D-SFnws-stuck human dermal fibroblasts (HDFs). Here, we explored whether coronary artery adult human smooth muscle cells (AHSMCs) also release AGFs-enriched exosomes when cultured on 3D-SFnws in vitro. METHODS Media with exosome-depleted FBS served for AHSMCs and human endothelial cells (HECs) cultures on 3D-SFnws or polystyrene. Biochemical methods and double-antibody arrays assessed cell growth, metabolism, and intracellular TGF-β and NF-κB signalling pathways activation. AGFs conveyed by CD9+/CD81+ exosomes released from AHSMCs were double-antibody array analysed and their angiogenic power evaluated on HECs in vitro. RESULTS AHSMCs grew and consumed D-glucose more intensely and showed a stronger phosphorylation/activation of TAK-1, SMAD-1/-2/-4/-5, ATF-2, c-JUN, ATM, CREB, and an IκBα phosphorylation/inactivation on SFnws vs. polystyrene, consistent overall with a proliferative/secretory phenotype. SFnws-stuck AHSMCs also released exosomes richer in IL-1α/-2/-4/-6/-8; bFGF; GM-CSF; and GRO-α/-β/-γ, which strongly stimulated HECs' growth, migration, and tubes/nodes assembly in vitro. CONCLUSIONS Altogether, the intensified AGFs exosomal release from 3D-SFnws-attached AHSMCs and HDFs could advance grafts' colonization, vascularization, and take in vivo-noteworthy assets for prospective clinical applications.
Collapse
Affiliation(s)
- Peng Hu
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134 Verona, Italy; (P.H.); (U.A.)
- Department of Burns & Plastic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China;
| | - Anna Chiarini
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134 Verona, Italy; (P.H.); (U.A.)
| | - Jun Wu
- Department of Burns and Plastic Surgery, Second People’s Hospital, University of Shenzhen, Shenzhen 518000, China;
| | - Zairong Wei
- Department of Burns & Plastic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China;
| | - Ubaldo Armato
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134 Verona, Italy; (P.H.); (U.A.)
- Department of Burns and Plastic Surgery, Second People’s Hospital, University of Shenzhen, Shenzhen 518000, China;
| | - Ilaria Dal Prà
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134 Verona, Italy; (P.H.); (U.A.)
- Department of Burns and Plastic Surgery, Second People’s Hospital, University of Shenzhen, Shenzhen 518000, China;
| |
Collapse
|
17
|
Armato U, Freddi G. Editorial: Biomaterials for Skin Wound Repair: Tissue Engineering, Guided Regeneration, and Wound Scarring Prevention. Front Bioeng Biotechnol 2021; 9:722327. [PMID: 34350167 PMCID: PMC8326968 DOI: 10.3389/fbioe.2021.722327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/07/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
- Ubaldo Armato
- Department of Burns and Plastic Surgery, 2nd People's Hospital, Shenzhen University, Shenzhen, China.,Department of Surgery, Dentistry, Paediatrics and Gynaecology, Medical School, University of Verona, Verona, Italy
| | | |
Collapse
|