1
|
Muthukutty P, MacDonald J, Yoo SY. Combating Emerging Respiratory Viruses: Lessons and Future Antiviral Strategies. Vaccines (Basel) 2024; 12:1220. [PMID: 39591123 PMCID: PMC11598775 DOI: 10.3390/vaccines12111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Emerging viral diseases, including seasonal illnesses and pandemics, pose significant global public health risks. Respiratory viruses, particularly coronaviruses and influenza viruses, are associated with high morbidity and mortality, imposing substantial socioeconomic burdens. This review focuses on the current landscape of respiratory viruses, particularly influenza and SARS-CoV-2, and their antiviral treatments. It also discusses the potential for pandemics and the development of new antiviral vaccines and therapies, drawing lessons from past outbreaks to inform future strategies for managing viral threats.
Collapse
Affiliation(s)
| | | | - So Young Yoo
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea; (P.M.); (J.M.)
| |
Collapse
|
2
|
Cies JJ, Moore WS, Marino D, Deacon J, Enache A, Chopra A. Oxygenator impact on peramivir in extra-corporeal membrane oxygenation circuits. Perfusion 2023; 38:501-506. [PMID: 35225084 DOI: 10.1177/02676591211060975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION This study aims to determine the oxygenator impact on alterations of peramivir (PRV) in a contemporary neonatal/pediatric (1/4-inch) and adolescent/adult (3/8-inch) extra-corporeal membrane oxygenation (ECMO) circuit including the Quadrox-i® oxygenator. METHODS 1/4-inch and 3/8-inch, simulated closed-loop ECMO circuits were prepared with a Quadrox-i pediatric and Quadrox-i adult oxygenator and blood primed. Additionally, 1/4-inch and 3/8-inch circuits were also prepared without an oxygenator in series. A one-time dose of PRV was administered into the circuits and serial pre- and post-oxygenator concentrations were obtained at 5-min and 1-, 2-, 3-, 4-, 5-, 6-, 8-, 12-, and 24-h time points. PRV was also maintained in a glass vial, and samples were taken from the vial at the same time periods for control purposes to assess for spontaneous drug degradation. RESULTS For the 1/4-in. circuit with an oxygenator, there was < 15% PRV loss, and for the 1/4-in. circuit without an oxygenator, there was < 3% PRV loss during the study period. For the 3/8-in. circuits with an oxygenator, there was < 15% PRV loss, and for the 3/8-in. circuits without an oxygenator, there was < 3% PRV loss during the study period. CONCLUSION There was no significant PRV loss over the 24-h study period in either the 1/4-in. or 3/8-in circuit, regardless of the presence of the oxygenator. The concentrations obtained pre- and post-oxygenator appeared to approximate each other, suggesting there may be no drug loss via the oxygenator. This preliminary data suggests PRV dosing may not need to be adjusted for concern of drug loss via the oxygenator. Additional single and multiple dose studies are needed to validate these findings.
Collapse
Affiliation(s)
- Jeffrey J Cies
- The Center for Pediatric Pharmacotherapy LLC, Pottstown, PA, USA.,St Christopher's Hospital for Children, Philadelphia, PA, USA.,Drexel University College of Medicine, Philadelphia, PA, USA
| | - Wayne S Moore
- The Center for Pediatric Pharmacotherapy LLC, Pottstown, PA, USA
| | - Daniel Marino
- St Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Jillian Deacon
- St Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Adela Enache
- Atlantic Diagnostic Laboratories, Bensalem, PA, USA
| | - Arun Chopra
- The Center for Pediatric Pharmacotherapy LLC, Pottstown, PA, USA.,12297NYU Langone Medical Center, New York, NY, USA.,NYU School of Medicine, New York, NY, USA
| |
Collapse
|
3
|
Batool S, Chokkakula S, Song MS. Influenza Treatment: Limitations of Antiviral Therapy and Advantages of Drug Combination Therapy. Microorganisms 2023; 11:183. [PMID: 36677475 PMCID: PMC9865513 DOI: 10.3390/microorganisms11010183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Influenza infection is serious and debilitating for humans and animals. The influenza virus undergoes incessant mutation, segment recombination, and genome reassortment. As a result, new epidemics and pandemics are expected to emerge, making the elimination challenging of the disease. Antiviral therapy has been used for the treatment of influenza since the development of amantadine in the 1960s; however, its use is hampered by the emergence of novel strains and the development of drug resistance. Thus, combinational therapy with two or more antivirals or immunomodulators with different modes of action is the optimal strategy for the effective treatment of influenza infection. In this review, we describe current options for combination therapy, their performance, and constraints imposed by resistance, calling attention to the advantages of combination therapy against severe influenza infections. We also discuss the challenges of influenza therapy and the limitations of approved antiviral drugs.
Collapse
Affiliation(s)
| | | | - Min-Suk Song
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
4
|
Chow EJ, Beigi RH, Riley LE, Uyeki TM. Clinical Effectiveness and Safety of Antivirals for Influenza in Pregnancy. Open Forum Infect Dis 2021; 8:ofab138. [PMID: 34189160 DOI: 10.1093/ofid/ofab138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/19/2021] [Indexed: 11/14/2022] Open
Abstract
Seasonal influenza epidemics result in substantial health care burden annually. Early initiation of antiviral treatment of influenza has been shown to reduce the risk of complications and duration of illness. Pregnant and postpartum women may be at increased risk for influenza-associated complications; however, pregnant women have been generally excluded from clinical trials of antiviral treatment of influenza. In this review, we summarize the available evidence on the clinical effectiveness and safety of antiviral treatment of pregnant women with influenza. Observational data show a reduction of severe outcomes when pregnant and postpartum women are treated with oseltamivir and other neuraminidase inhibitors without increased risk of adverse maternal, fetal, or neonatal outcomes. Due to lack of safety and efficacy data for baloxavir treatment of pregnant and postpartum women, baloxavir is currently not recommended for use in these populations.
Collapse
Affiliation(s)
- Eric J Chow
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Richard H Beigi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh Magee-Womens Hospital, Pittsburgh, Pennsylvania, USA
| | - Laura E Riley
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York, USA
| | - Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Uyeki TM, Bernstein HH, Bradley JS, Englund JA, File TM, Fry AM, Gravenstein S, Hayden FG, Harper SA, Hirshon JM, Ison MG, Johnston BL, Knight SL, McGeer A, Riley LE, Wolfe CR, Alexander PE, Pavia AT. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clin Infect Dis 2019; 68:e1-e47. [PMID: 30566567 PMCID: PMC6653685 DOI: 10.1093/cid/ciy866] [Citation(s) in RCA: 372] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022] Open
Abstract
These clinical practice guidelines are an update of the guidelines published by the Infectious Diseases Society of America (IDSA) in 2009, prior to the 2009 H1N1 influenza pandemic. This document addresses new information regarding diagnostic testing, treatment and chemoprophylaxis with antiviral medications, and issues related to institutional outbreak management for seasonal influenza. It is intended for use by primary care clinicians, obstetricians, emergency medicine providers, hospitalists, laboratorians, and infectious disease specialists, as well as other clinicians managing patients with suspected or laboratory-confirmed influenza. The guidelines consider the care of children and adults, including special populations such as pregnant and postpartum women and immunocompromised patients.
Collapse
Affiliation(s)
- Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Henry H Bernstein
- Division of General Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York
| | - John S Bradley
- Division of Infectious Diseases, Rady Children's Hospital
- University of California, San Diego
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Hospital
| | - Thomas M File
- Division of Infectious Diseases Summa Health, Northeast Ohio Medical University, Rootstown
| | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stefan Gravenstein
- Providence Veterans Affairs Medical Center and Center for Gerontology and Healthcare Research, Brown University, Providence, Rhode Island
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville
| | - Scott A Harper
- Office of Public Health Preparedness and Response, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jon Mark Hirshon
- Department of Emergency Medicine, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - B Lynn Johnston
- Department of Medicine, Dalhousie University, Nova Scotia Health Authority, Halifax, Canada
| | - Shandra L Knight
- Library and Knowledge Services, National Jewish Health, Denver, Colorado
| | - Allison McGeer
- Division of Infection Prevention and Control, Sinai Health System, University of Toronto, Ontario, Canada
| | - Laura E Riley
- Department of Maternal-Fetal Medicine, Massachusetts General Hospital, Boston
| | - Cameron R Wolfe
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Paul E Alexander
- McMaster University, Hamilton, Ontario, Canada
- Infectious Diseases Society of America, Arlington, Virginia
| | - Andrew T Pavia
- Division of Pediatric Infectious Diseases, University of Utah, Salt Lake City
| |
Collapse
|
6
|
Uyeki TM, Bernstein HH, Bradley JS, Englund JA, File TM, Fry AM, Gravenstein S, Hayden FG, Harper SA, Hirshon JM, Ison MG, Johnston BL, Knight SL, McGeer A, Riley LE, Wolfe CR, Alexander PE, Pavia AT. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clin Infect Dis 2019; 68. [PMID: 30566567 PMCID: PMC6653685 DOI: 10.1093/cid/ciy866 10.1093/cid/ciz044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
These clinical practice guidelines are an update of the guidelines published by the Infectious Diseases Society of America (IDSA) in 2009, prior to the 2009 H1N1 influenza pandemic. This document addresses new information regarding diagnostic testing, treatment and chemoprophylaxis with antiviral medications, and issues related to institutional outbreak management for seasonal influenza. It is intended for use by primary care clinicians, obstetricians, emergency medicine providers, hospitalists, laboratorians, and infectious disease specialists, as well as other clinicians managing patients with suspected or laboratory-confirmed influenza. The guidelines consider the care of children and adults, including special populations such as pregnant and postpartum women and immunocompromised patients.
Collapse
Affiliation(s)
- Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Henry H Bernstein
- Division of General Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York
| | - John S Bradley
- Division of Infectious Diseases, Rady Children's Hospital
- University of California, San Diego
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Hospital
| | - Thomas M File
- Division of Infectious Diseases Summa Health, Northeast Ohio Medical University, Rootstown
| | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stefan Gravenstein
- Providence Veterans Affairs Medical Center and Center for Gerontology and Healthcare Research, Brown University, Providence, Rhode Island
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville
| | - Scott A Harper
- Office of Public Health Preparedness and Response, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jon Mark Hirshon
- Department of Emergency Medicine, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - B Lynn Johnston
- Department of Medicine, Dalhousie University, Nova Scotia Health Authority, Halifax, Canada
| | - Shandra L Knight
- Library and Knowledge Services, National Jewish Health, Denver, Colorado
| | - Allison McGeer
- Division of Infection Prevention and Control, Sinai Health System, University of Toronto, Ontario, Canada
| | - Laura E Riley
- Department of Maternal-Fetal Medicine, Massachusetts General Hospital, Boston
| | - Cameron R Wolfe
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Paul E Alexander
- McMaster University, Hamilton, Ontario, Canada
- Infectious Diseases Society of America, Arlington, Virginia
| | - Andrew T Pavia
- Division of Pediatric Infectious Diseases, University of Utah, Salt Lake City
| |
Collapse
|
7
|
Association of severe abnormal behavior and acetaminophen with/without neuraminidase inhibitors. J Infect Chemother 2019; 25:423-426. [PMID: 30744989 DOI: 10.1016/j.jiac.2019.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/14/2018] [Accepted: 01/16/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Even though abnormal behavior related with influenza and neuraminidase inhibitors (NI) has been discussed, the risks of acetaminophen and co-administration of NI and acetaminophen have not been examined. This study assesses those risks. MATERIALS AND METHODS All cases of patients with influenza who present with severe abnormal behavior are reported by physicians of all clinics and hospitals throughout Japan. The numbers of people diagnosed as having influenza, whether prescribed NI and acetaminophen or not, were extracted from the National Database of Electronic Medical Claims (NDBEMC). The study period was from September 2009 to March 2016. RESULTS We found two consistent results among four combinations of age class and severity. The one was that patients who did not use NI or acetaminophen showed significantly higher incidence of abnormal behavior than zanamivir with acetaminophen, another one was that patients with oseltamivir only has higher incidence than zanamivir with acetaminophen. Concerning about acetaminophen, the use of it significantly decrease risk for severe and the most severe instances in 5-9-year-old patients with laninamivir and the severe instances in 10-19-year-old patients with zanamivir. DISCUSSION We also demonstrated that acetaminophen alone or co-administered with NI does not seem to raise the risk of abnormal behavior in influenza patients.
Collapse
|
8
|
Measer GT, Maher CT, Hu-Primmer J. Monitoring and Assessment of Medical Countermeasures as Part of a Public Health Emergency Response. Am J Public Health 2018; 108:S224-S226. [PMID: 30192659 PMCID: PMC6129665 DOI: 10.2105/ajph.2018.304526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2018] [Indexed: 11/04/2022]
Affiliation(s)
- Gregory T Measer
- Gregory T. Measer and Jean Hu-Primmer are with the Office of Counterterrorism and Emerging Threats, Office of the Chief Scientist, US Food and Drug Administration (FDA), Silver Spring, MD. Carmen T. Maher is a retired US Public Health Service Commissioned Corps officer formerly affiliated with the FDA
| | - Carmen T Maher
- Gregory T. Measer and Jean Hu-Primmer are with the Office of Counterterrorism and Emerging Threats, Office of the Chief Scientist, US Food and Drug Administration (FDA), Silver Spring, MD. Carmen T. Maher is a retired US Public Health Service Commissioned Corps officer formerly affiliated with the FDA
| | - Jean Hu-Primmer
- Gregory T. Measer and Jean Hu-Primmer are with the Office of Counterterrorism and Emerging Threats, Office of the Chief Scientist, US Food and Drug Administration (FDA), Silver Spring, MD. Carmen T. Maher is a retired US Public Health Service Commissioned Corps officer formerly affiliated with the FDA
| |
Collapse
|
9
|
Koonin LM, Patel A. Timely Antiviral Administration During an Influenza Pandemic: Key Components. Am J Public Health 2018; 108:S215-S220. [PMID: 30192657 PMCID: PMC6129661 DOI: 10.2105/ajph.2018.304609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 11/04/2022]
Abstract
Prompt treatment of ill persons with influenza antivirals will be an important part of a future pandemic influenza response. This essay reviews key lessons learned from the 2009 H1N1 pandemic and the changing landscape of antiviral drug availability, and identifies and describes the multiple components needed to ensure the timely administration of antiviral drugs during a future pandemic. Fortunately, many of these planning efforts can take place before a pandemic strikes to improve outcomes during a future public health emergency.
Collapse
Affiliation(s)
- Lisa M Koonin
- Both authors are with the Influenza Coordination Unit, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Anita Patel
- Both authors are with the Influenza Coordination Unit, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
10
|
Mishra V, Kashyap S, Hasija Y. Ligand based virtual screening for identifying potent inhibitors against viral neuraminidase: An in silico approach. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2014.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Vinita Mishra
- Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Sangeeta Kashyap
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut, N.H.-58, Baghpat Road, Bypass Crossing, Meerut 250005, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| |
Collapse
|
11
|
Nakamura Y, Sugawara T, Ohkusa Y, Taniguchi K, Miyazaki C, Momoi M, Okabe N. Severe abnormal behavior incidence after administration of neuraminidase inhibitors using the national database of medical claims. J Infect Chemother 2017; 24:177-181. [PMID: 29273435 DOI: 10.1016/j.jiac.2017.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 11/30/2022]
Abstract
An earlier study using the number of abnormal behaviors reported to the study group as the numerator and the number of influenza patient prescribed each neuraminidase inhibitor (NI) estimated by respective pharmaceutical companies found no significant difference among incidence rates of the most severe abnormal behaviors by type of NI throughout Japan. However, the dataset for the denominator used in that earlier study was the estimated number of prescriptions. In the present study, to compare the incidence rates of abnormal behavior more precisely among influenza patients administered several sorts of NI or administered no NI, we used data obtained from the National Database of Electronic Medical Claims (NDBEMC) as the denominator to reach a definitive conclusion. Results show that patients not administered any NI (hereinafter un-administered) or those administered peramivir sometimes showed higher risk of abnormal behavior than those administered oseltamivir, zanamivir, or laninamivir. However, the un-administered or peramivir patients were fewer than those taking other NI. Therefore, accumulation of data through continued research is expected to be necessary to reach a definitive conclusion about the relation between abnormal behavior and NI in influenza patients. Since severe abnormal behaviors with all types of NI or of un-administered patients have been reported, there are some risks in the administration of NI or even in un-administered cases. Therefore, we infer that the policy mandating package inserts in all types of NI.
Collapse
Affiliation(s)
| | - Tamie Sugawara
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Japan
| | - Yasushi Ohkusa
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Japan.
| | | | | | - Mariko Momoi
- International University of Health and Welfare, Japan
| | | |
Collapse
|
12
|
Affiliation(s)
- Margaret L Green
- University of Washington, 1959 NE Pacific Street, Box 359930, Seattle, WA 98195, USA; Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA.
| |
Collapse
|
13
|
Huang SF, Fung CP, Perng DW, Wang FD. Effects of corticosteroid and neuraminidase inhibitors on survival in patients with respiratory distress induced by influenza virus. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:586-594. [DOI: 10.1016/j.jmii.2015.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
|
14
|
Priedhorsky R, Osthus D, Daughton AR, Moran KR, Generous N, Fairchild G, Deshpande A, Del Valle SY. Measuring Global Disease with Wikipedia: Success, Failure, and a Research Agenda. CSCW : PROCEEDINGS OF THE CONFERENCE ON COMPUTER-SUPPORTED COOPERATIVE WORK. CONFERENCE ON COMPUTER-SUPPORTED COOPERATIVE WORK 2017; 2017:1812-1834. [PMID: 28782059 PMCID: PMC5542563 DOI: 10.1145/2998181.2998183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Effective disease monitoring provides a foundation for effective public health systems. This has historically been accomplished with patient contact and bureaucratic aggregation, which tends to be slow and expensive. Recent internet-based approaches promise to be real-time and cheap, with few parameters. However, the question of when and how these approaches work remains open. We addressed this question using Wikipedia access logs and category links. Our experiments, replicable and extensible using our open source code and data, test the effect of semantic article filtering, amount of training data, forecast horizon, and model staleness by comparing across 6 diseases and 4 countries using thousands of individual models. We found that our minimal-configuration, language-agnostic article selection process based on semantic relatedness is effective for improving predictions, and that our approach is relatively insensitive to the amount and age of training data. We also found, in contrast to prior work, very little forecasting value, and we argue that this is consistent with theoretical considerations about the nature of forecasting. These mixed results lead us to propose that the currently observational field of internet-based disease surveillance must pivot to include theoretical models of information flow as well as controlled experiments based on simulations of disease.
Collapse
Affiliation(s)
| | - Dave Osthus
- Computer, Computational, and Statistical Sciences (CCS) Division
| | - Ashlynn R Daughton
- Analytics, Intelligence, and Technology (A) Division Los Alamos National Laboratory Los Alamos, NM
| | - Kelly R Moran
- Analytics, Intelligence, and Technology (A) Division Los Alamos National Laboratory Los Alamos, NM
| | - Nicholas Generous
- Analytics, Intelligence, and Technology (A) Division Los Alamos National Laboratory Los Alamos, NM
| | - Geoffrey Fairchild
- Analytics, Intelligence, and Technology (A) Division Los Alamos National Laboratory Los Alamos, NM
| | - Alina Deshpande
- Analytics, Intelligence, and Technology (A) Division Los Alamos National Laboratory Los Alamos, NM
| | - Sara Y Del Valle
- Analytics, Intelligence, and Technology (A) Division Los Alamos National Laboratory Los Alamos, NM
| |
Collapse
|
15
|
Wester A, Shetty AK. Peramivir injection in the treatment of acute influenza: a review of the literature. Infect Drug Resist 2016; 9:201-14. [PMID: 27578993 PMCID: PMC5001662 DOI: 10.2147/idr.s86460] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Influenza virus infection is a major cause of morbidity and mortality in children and adults globally. Seasonal epidemics are common due to the rapid virus evolution, whereas the frequent emergence of antigenic variants can result in pandemics and sporadic/endemic avian influenza virus infections. Although annual vaccination is the mainstay for influenza prevention and control, the use of antiviral agents must be considered for treatment and prophylaxis against influenza. Currently available antiviral drugs include neuraminidase inhibitors (NAIs), adamantanes, and a novel polymerase inhibitor (favipiravir). Peramivir is a recently US Food and Drug Administration-approved NAI for the treatment of acute uncomplicated influenza in adults. The chemical structure of peramivir allows it to bind to the influenza neuraminidase with much higher affinity than oseltamivir. Peramivir is effective against a variety of influenza A and B subtypes and has a lower half-maximal inhibitory concentration compared to other NAIs in in vitro studies. Peramivir can be administered intravenously, a route that is favorable for hospitalized, critically ill patients with influenza. The long half-life of peramivir allows for once-daily dosing. The drug is eliminated primarily by the kidneys, warranting dose adjustments in patients with renal dysfunction. Studies have assessed the clinical efficacy of peramivir for treatment of pandemic influenza A (H1N1). Although anecdotal evidence supports the use of peramivir in pediatric patients, pregnant women, and hospitalized patients with severe influenza receiving continuous renal replacement therapy and extracorporeal membrane oxygenation, well-designed, controlled clinical trials should be conducted in order to assess its clinical efficacy in these patient populations.
Collapse
Affiliation(s)
| | - Avinash K Shetty
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
16
|
Alame MM, Massaad E, Zaraket H. Peramivir: A Novel Intravenous Neuraminidase Inhibitor for Treatment of Acute Influenza Infections. Front Microbiol 2016; 7:450. [PMID: 27065996 PMCID: PMC4815007 DOI: 10.3389/fmicb.2016.00450] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/21/2016] [Indexed: 12/20/2022] Open
Abstract
Peramivir is a novel cyclopentane neuraminidase inhibitor of influenza virus. It was approved by the Food and Drug Administration in December 2014 for treatment of acute uncomplicated influenza in patients 18 years and older. For several months prior to approval, the drug was made clinically available under Emergency Use authorization during the 2009 H1N1 influenza pandemic. Peramivir is highly effective against human influenza A and B isolates as well as emerging influenza virus strains with pandemic potential. Clinical trials demonstrated that the drug is well-tolerated in adult and pediatric populations. Adverse events are generally mild to moderate and similar in frequency to patients receiving placebo. Common side effects include gastrointestinal disorders and decreased neutrophil counts but are self-limiting. Peramivir is administered as a single-dose via the intravenous route providing a valuable therapeutic alternative for critically ill patients or those unable to tolerate other administration routes. Successful clinical trials and post-marketing data in pediatric populations in Japan support the safety and efficacy of peramivir in this population where administration of other antivirals might not be feasible.
Collapse
Affiliation(s)
- Malak M Alame
- The School of Pharmacy, Lebanese International University Beirut, Lebanon
| | - Elie Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of BeirutBeirut, Lebanon; Center for Infectious Diseases Research, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
17
|
Yoo JW, Choi SH, Huh JW, Lim CM, Koh Y, Hong SB. Peramivir is as effective as oral oseltamivir in the treatment of severe seasonal influenza. J Med Virol 2015; 87:1649-55. [DOI: 10.1002/jmv.24232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Jung-Wan Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine; Gyeongsang National University Hospital; Gyeongsangnam-do Republic of Korea
| | - Sang-Ho Choi
- Department of infectious diseases; University of Ulsan College of Medicine; Asan Medical Center; Seoul Republic of Korea
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine; University of Ulsan College of Medicine; Asan Medical Center; Seoul Republic of Korea
| | - Chae-Man Lim
- Department of Pulmonary and Critical Care Medicine; University of Ulsan College of Medicine; Asan Medical Center; Seoul Republic of Korea
| | - Younsuck Koh
- Department of Pulmonary and Critical Care Medicine; University of Ulsan College of Medicine; Asan Medical Center; Seoul Republic of Korea
| | - Sang-Bum Hong
- Department of Pulmonary and Critical Care Medicine; University of Ulsan College of Medicine; Asan Medical Center; Seoul Republic of Korea
| |
Collapse
|
18
|
Enantioselective Resolution of γ-Lactam by a Novel Thermostable Type II (+)-γ-Lactamase from the Hyperthermophilic Archaeon Aeropyrum pernix. Appl Biochem Biotechnol 2015; 176:170-84. [DOI: 10.1007/s12010-015-1565-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 03/12/2015] [Indexed: 11/26/2022]
|
19
|
Emerging and Reemerging Infectious Disease Threats. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015. [PMCID: PMC7151803 DOI: 10.1016/b978-1-4557-4801-3.00014-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Hata A, Akashi-Ueda R, Takamatsu K, Matsumura T. Safety and efficacy of peramivir for influenza treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2017-38. [PMID: 25368514 PMCID: PMC4216046 DOI: 10.2147/dddt.s46654] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective This report presents a review of the efficacy and safety of peramivir, a neuraminidase inhibitor that was granted Emergency Use Authorization by the US Food and Drug Administration (FDA) from October 23, 2009 to June 23, 2010 during the 2009 H1N1 pandemic. Methods Literature was accessed via PubMed (January 2000–April 2014) using several search terms: peramivir; BCX-1812; RWJ 270201; H1N1, influenza; antivirals; and neuraminidase inhibitors. The peramivir manufacturers, Shionogi and Co Ltd and BioCryst Pharmaceuticals, were contacted to obtain unpublished data and information presented at recent scientific meetings. Information was obtained from the Centers for Disease Control and Prevention (CDC) and from US FDA websites. English-language and Japanese-language reports in the literature were reviewed and selected based on relevance, along with information from the CDC, US FDA, and the drug manufacturers. Results We obtained eleven clinical trial reports of intravenous peramivir, two of which described comparisons with oseltamivir. Seven of nine other recently reported published studies was a dose–response study. Clinical reports of critically ill patients and pediatric patients infected with pandemic H1N1 described that early treatment significantly decreased mortality. Peramivir administered at 300 mg once daily in adult patients with influenza significantly reduces the time to alleviation of symptoms or fever compared to placebo. It is likely to be as effective as other neuraminidase inhibitors. Conclusion Although peramivir shows efficacy for the treatment of seasonal and pH1N1 influenza, it has not received US FDA approval. Peramivir is used safely and efficiently in hospitalized adult and pediatric patients with suspected or laboratory-confirmed influenza. Peramivir might be a beneficial alternative antiviral treatment for many patients, including those unable to receive inhaled or oral neuraminidase inhibitors, or those requiring nonintravenous drug delivery.
Collapse
Affiliation(s)
- Atsuko Hata
- Department of Pediatrics, Division of Respiratory Medicine, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan ; Department of Infectious Diseases, Division of Respiratory Medicine, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Ryoko Akashi-Ueda
- Department of Pediatrics, Division of Respiratory Medicine, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Kazufumi Takamatsu
- Respiratory Disease Center, Division of Respiratory Medicine, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Takuro Matsumura
- Department of Infectious Diseases, Division of Respiratory Medicine, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan
| |
Collapse
|
21
|
Martín Quirós A, Robles Marhuenda A, Paño Pardo JR. [Respiratory viriasis. Influenza]. Medicine (Baltimore) 2014; 11:2939-2945. [PMID: 32287896 PMCID: PMC7143709 DOI: 10.1016/s0304-5412(14)70720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Respiratory viriasis are acute infectious diseases with a usually favorable course. Influenza is the disease caused by influenza viruses A and B; it could cause seasonal periodical epidemics and influenza A is implicated in worlwide pandemias. Influenza complications usually are limited to older patients and to those with comorbilities, especially those with chronic respiratory or cardiovascular diseases. Anti-influenza therapy has an effect on the duration of the symptomatic period and vaccination efficiently decreases the incidence of the infection. Respiratory syncytial virus is the more frequent cause of the acute bronchiolitis in breastfeeding patients. Rinovirus and coronavirus are implicated in the common cold. Coronavirus was the etiological agent of the severe acute respiratory syndrome, described in 2002 in China. Parainfluenza virus is the cause of the laryngeal croup in infants.
Collapse
Affiliation(s)
- A Martín Quirós
- Unidad de Microbiología Clínica y Enfermedades Infecciosas del Servicio de Medicina Interna
| | - A Robles Marhuenda
- Servicio de Medicina Interna. Hospital Universitario La Paz. Madrid. España
| | - J R Paño Pardo
- Unidad de Microbiología Clínica y Enfermedades Infecciosas del Servicio de Medicina Interna
- Servicio de urgencias Hospital Universitario La Paz. Madrid. España
| |
Collapse
|
22
|
López-Medrano F, Cordero E, Gavaldá J, Cruzado JM, Marcos MÁ, Pérez-Romero P, Sabé N, Gómez-Bravo MÁ, Delgado JF, Cabral E, Carratalá J. Management of influenza infection in solid-organ transplant recipients: consensus statement of the Group for the Study of Infection in Transplant Recipients (GESITRA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) and the Spanish Network for Research in Infectious Diseases (REIPI). Enferm Infecc Microbiol Clin 2013; 31:526.e1-526.e20. [PMID: 23528341 DOI: 10.1016/j.eimc.2013.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 01/25/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Solid organ transplant (SOT) recipients are at greater risk than the general population for complications and mortality from influenza infection. METHODS Researchers and clinicians with experience in SOT infections have developed this consensus document in collaboration with several Spanish scientific societies and study networks related to transplant management. We conducted a systematic review to assess the management and prevention of influenza infection in SOT recipients. Evidence levels based on the available literature are given for each recommendation. This article was written in accordance with international recommendations on consensus statements and the recommendations of the Appraisal of Guidelines for Research and Evaluation II (AGREE II). RESULTS Recommendations are provided on the procurement of organs from donors with suspected or confirmed influenza infection. We highlight the importance of the possibility of influenza infection in any SOT recipient presenting upper or lower respiratory symptoms, including pneumonia. The importance of early antiviral treatment of SOT recipients with suspected or confirmed influenza infection and the necessity of annual influenza vaccination are emphasized. The microbiological techniques for diagnosis of influenza infection are reviewed. Guidelines for the use of antiviral prophylaxis in inpatients and outpatients are provided. Recommendations for household contacts of SOT recipients with influenza infection and health care workers in close contact with transplant patients are also included. Finally antiviral dose adjustment guidelines are presented for cases of impaired renal function and for pediatric populations. CONCLUSIONS The latest scientific information available regarding influenza infection in the context of SOT is incorporated into this document.
Collapse
Affiliation(s)
- Francisco López-Medrano
- Unidad de Enfermedades Infecciosas, Hospital Universitario 12 de Octubre, Instituto de Investigación Biomédica 12 de Octubre (i+12), Departamento de Medicina, Universidad Complutense, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
De Clercq E. A cutting-edge view on the current state of antiviral drug development. Med Res Rev 2013; 33:1249-77. [PMID: 23495004 DOI: 10.1002/med.21281] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prominent in the current stage of antiviral drug development are: (i) for human immunodeficiency virus (HIV), the use of fixed-dose combinations (FDCs), the most recent example being Stribild(TM); (ii) for hepatitis C virus (HCV), the pleiade of direct-acting antivirals (DAAs) that should be formulated in the most appropriate combinations so as to obtain a cure of the infection; (iii)-(v) new strategies (i.e., AIC316, AIC246, and FV-100) for the treatment of herpesvirus infections: herpes simplex virus (HSV), cytomegalovirus (CMV), and varicella-zoster virus (VZV), respectively; (vi) the role of a new tenofovir prodrug, tenofovir alafenamide (TAF) (GS-7340) for the treatment of HIV infections; (vii) the potential use of poxvirus inhibitors (CMX001 and ST-246); (viii) the usefulness of new influenza virus inhibitors (peramivir and laninamivir octanoate); (ix) the position of the hepatitis B virus (HBV) inhibitors [lamivudine, adefovir dipivoxil, entecavir, telbivudine, and tenofovir disoproxil fumarate (TDF)]; and (x) the potential of new compounds such as FGI-103, FGI-104, FGI-106, dUY11, and LJ-001 for the treatment of filoviruses (i.e., Ebola). Whereas for HIV and HCV therapy is aimed at multiple-drug combinations, for all other viruses, HSV, CMV, VZV, pox, influenza, HBV, and filoviruses, current strategies are based on the use of single compounds.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
24
|
Courtney B, Sherman S, Penn M. Federal legal preparedness tools for facilitating medical countermeasure use during public health emergencies. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2013; 41 Suppl 1:22-27. [PMID: 23590735 DOI: 10.1111/jlme.12033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Preparing for and responding to public health emergencies involving medical countermeasures (MCMs) raise often complex legal challenges and questions among response stakeholders at the local, state, and federal levels. This includes concerns about emergency legal authorities, liability, emergency use of regulated medical products, and regulations that might enhance or hinder public health response goals. In this article, lawyers from the U.S. Department of Health and Human Services' (HHS) Office of the General Counsel (OGC), Centers for Disease Control and Prevention (CDC), and Food and Drug Administration (FDA) discuss federal legal tools that are critical to enhancing MCM legal preparedness for public health emergencies, with an emphasis on the legal mechanisms that can be used to facilitate the emergency use of countermeasures. Specifically, the authors describe the Public Readiness and Emergency Preparedness (PREP) Act and Emergency Use Authorization (EUA) authority, outlining the conditions under which these tools can be utilized and providing examples of how they have supported both pre-event (e.g., doxycycline mass dispensing preparedness for anthrax) and intra-event (e.g., 2009 H1N1 influenza pandemic response) activities.
Collapse
Affiliation(s)
- Brooke Courtney
- Office of Counterterrorism and Emerging Threats, Office of the Commissioner, U.S. Food and Drug Administration
| | | | | |
Collapse
|
25
|
Antivirals: Past, present and future. Biochem Pharmacol 2013; 85:727-44. [DOI: 10.1016/j.bcp.2012.12.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 11/23/2022]
|
26
|
Engelhard D, Mohty B, de la Camara R, Cordonnier C, Ljungman P. European guidelines for prevention and management of influenza in hematopoietic stem cell transplantation and leukemia patients: summary of ECIL-4 (2011), on behalf of ECIL, a joint venture of EBMT, EORTC, ICHS, and ELN. Transpl Infect Dis 2013; 15:219-32. [DOI: 10.1111/tid.12054] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/19/2012] [Accepted: 11/23/2012] [Indexed: 12/22/2022]
Affiliation(s)
| | - B. Mohty
- Department of Hematology; Geneva University Hospital; Geneva; Switzerland
| | - R. de la Camara
- Department of Hematology; University Hospital La Princesa; Madrid; Spain
| | - C. Cordonnier
- Department of Hematology; Henri Mondor Teaching Hospital; Assistance Publique-Hopitaux de Paris and Paris Est-Créteil University; Créteil; France
| | - P. Ljungman
- Department of Haematology; Karolinska University Hospital and Division of Haematology; Department of Medicine; Karolinska Institutet/Huddinge; Stockholm; Sweden
| |
Collapse
|
27
|
Urushihara H, Matsui S, Kawakami K. Emergency authorization of medical products: regulatory challenges from the 2009 H1N1 influenza pandemic in Japan. Biosecur Bioterror 2012; 10:372-82. [PMID: 23210832 DOI: 10.1089/bsp.2012.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In response to the 2009 H1N1 influenza pandemic, the governments of Japan and the United States for the first time authorized the emergency use of unapproved drugs. In this article, we comprehensively review the different regulatory approaches of Japan and the United States, countries with advanced regulatory and healthcare systems, to emergency authorization of the use of medical products as a countermeasure to public health emergencies. We outline the legal system, range of targeted products, requirements for the application dossier, legal stance for authorization, product availability, and termination of the Japanese Emergency Approval (EA), and we compare characteristics with those of the US Emergency Use Authorization (EUA). We also review the actual cases of these 2009 emergency authorizations. The Japanese EA importation of novel H1N1 influenza vaccines with adjuvant is presented, with lessons learned, and contrasted with the US EUA of peramivir.
Collapse
Affiliation(s)
- Hisashi Urushihara
- Department of Pharmacoepidemiology, School of Medicine and Public Health, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
28
|
Lee SMY, Yen HL. Targeting the host or the virus: current and novel concepts for antiviral approaches against influenza virus infection. Antiviral Res 2012; 96:391-404. [PMID: 23022351 PMCID: PMC7132421 DOI: 10.1016/j.antiviral.2012.09.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022]
Abstract
Influenza epidemics and pandemics are constant threats to human health. The application of antiviral drugs provides an immediate and direct control of influenza virus infection. At present, the major strategy for managing patients with influenza is through targeting conserved viral proteins critical for viral replication. Two classes of conventional antiviral drugs, the M2 ion channel blockers and the neuraminidase inhibitors, are frequently used. In recent years, increasing levels of resistance to both drug classes has become a major public health concern, highlighting the urgent need for the development of alternative treatments. Novel classes of antiviral compounds or biomolecules targeting viral replication mechanism are under development, using approaches including high-throughput small-molecule screening platforms and structure-based designs. In response to influenza virus infection, host cellular mechanisms are triggered to defend against the invaders. At the same time, viruses as obligate intracellular pathogens have evolved to exploit cellular responses in support of their efficient replication, including antagonizing the host type I interferon response as well as activation of specific cellular pathways at different stages of the replication cycle. Numerous studies have highlighted the possibility of targeting virus-host interactions and host cellular mechanisms to develop new treatment regimens. This review aims to give an overview of current and novel concepts targeting the virus and the host for managing influenza.
Collapse
Affiliation(s)
- Suki Man-Yan Lee
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong
| | | |
Collapse
|
29
|
Ison MG, Hollister AS, Sheridan WP. Response to several recent publications related to safety and efficacy of peramivir from the emergency use authorization experience. Clin Infect Dis 2012; 56:164. [PMID: 22972863 DOI: 10.1093/cid/cis800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|