1
|
Wang Q, Li H, Mao Y, Garg A, Park ES, Wu Y, Chow A, Peregrin J, Zhang X. Shc1 cooperates with Frs2 and Shp2 to recruit Grb2 in FGF-induced lens development. eLife 2025; 13:RP103615. [PMID: 40327534 PMCID: PMC12055001 DOI: 10.7554/elife.103615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Fibroblast growth factor (FGF) signaling elicits multiple downstream pathways, most notably the Ras/MAPK cascade facilitated by the adaptor protein Grb2. However, the mechanism by which Grb2 is recruited to the FGF signaling complex remains unresolved. Here, we showed that genetic ablation of FGF signaling prevented murine lens induction by disrupting transcriptional regulation and actin cytoskeletal arrangements, which could be reproduced by deleting the juxtamembrane region of the FGF receptor and rescued by Kras activation. Conversely, mutations affecting the Frs2-binding site on the FGF receptor or the deletion of Frs2 and Shp2 primarily impact later stages of lens vesicle development involving lens fiber cell differentiation. Our study further revealed that the loss of Grb2 abolished MAPK signaling, resulting in a profound arrest of lens development. However, removing Grb2's putative Shp2 dephosphorylation site (Y209) neither produced a detectable phenotype nor impaired MAPK signaling during lens development. Furthermore, the catalytically inactive Shp2 mutation (C459S) only modestly impaired FGF signaling, whereas replacing Shp2's C-terminal phosphorylation sites (Y542/Y580) previously implicated in Grb2 binding only caused placental defects, perinatal lethality, and reduced lacrimal gland branching without impacting lens development, suggesting that Shp2 only partially mediates Grb2 recruitment. In contrast, we observed that FGF signaling is required for the phosphorylation of the Grb2-binding sites on Shc1 and the deletion of Shc1 exacerbates the lens vesicle defect caused by Frs2 and Shp2 deletion. These findings establish Shc1 as a critical collaborator with Frs2 and Shp2 in targeting Grb2 during FGF signaling.
Collapse
Affiliation(s)
- Qian Wang
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
| | - Hongge Li
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
| | - Yingyu Mao
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
| | - Ankur Garg
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
| | - Eun Sil Park
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
| | - Yihua Wu
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
| | - Alyssa Chow
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
| | - John Peregrin
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
| | - Xin Zhang
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| |
Collapse
|
2
|
Wang Q, Wu H, Mao Y, Chow A, Bouaziz M, Wu Y, Zhang X. mTOR regulates Wnt signaling to promote tension-mediated lens vesicle closure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639869. [PMID: 40060475 PMCID: PMC11888330 DOI: 10.1101/2025.02.24.639869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Lens vesicle closure is a pivotal event in ocular morphogenesis, and its disruption underlies Peters anomaly, a leading congenital cause of corneal opacity. Here, we elucidate a mechanistic hierarchy in which mTOR-Wnt signaling orchestrates cytoskeletal tension to drive this process. Conditional ablation of mTOR in the lens ectoderm induces aberrant corneal-lenticular stalk formation and transdifferentiation of the ciliary margin into neural retina. mTOR inhibition suppresses Wnt3 expression, and Wnt3 displayed a similar lens stalk phenotype, positioning mTOR as an upstream regulator of Wnt ligand production. Complete ablation of lens-derived Wnt ligands via deletion of the Wnt transporter Wls exacerbates developmental defects, triggering anterior lens herniation and ciliary margin development failure. Disruption of β-catenin-mediated Wnt signaling or dual deletion of Wnt co-receptors Lrp5/6 in lens ectoderm similarly prevents vesicle closure, recapitulating lens herniation. Strikingly, Rac1 deletion rescues corneal-lenticular stalk phenotypes in mTOR, Wls, and β-catenin mutants, directly linking Wnt effectors to cytoskeletal remodeling. Our findings establish an mTOR-Wnt-Rac1 signaling axis as the core regulator of cytoskeletal tension required for lens vesicle closure.
Collapse
Affiliation(s)
- Qian Wang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Wu
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Yingyu Mao
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Alyssa Chow
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Michael Bouaziz
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Yihua Wu
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
3
|
Wang Q, Li H, Mao Y, Garg A, Park ES, Wu Y, Chow A, Peregrin J, Zhang X. Shc1 cooperates with Frs2 and Shp2 to recruit Grb2 in FGF-induced lens development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.20.619055. [PMID: 39484547 PMCID: PMC11527007 DOI: 10.1101/2024.10.20.619055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Fibroblast growth factor (FGF) signaling elicits multiple downstream pathways, most notably the Ras/MAPK cascade facilitated by the adaptor protein Grb2. However, the mechanism by which Grb2 is recruited to the FGF signaling complex remains unresolved. Here we showed that genetic ablation of FGF signaling prevented lens induction by disrupting transcriptional regulation and actin cytoskeletal arrangements, which could be reproduced by deleting the juxtamembrane region of the FGF receptor and rescued by Kras activation. Conversely, mutations affecting the Frs2-binding site on the FGF receptor or the deletion of Frs2 and Shp2 primarily impact later stages of lens vesicle development involving lens fiber cell differentiation. Our study further revealed that the loss of Grb2 abolished MAPK signaling, resulting in a profound arrest of lens development. However, removing Grb2's putative Shp2 dephosphorylation site (Y209) neither produced a detectable phenotype nor impaired MAPK signaling during lens development. Furthermore, the catalytically inactive Shp2 mutation (C459S) only modestly impaired FGF signaling, whereas replacing Shp2's C-terminal phosphorylation sites (Y542/Y580) previously implicated in Grb2 binding only caused placental defects, perinatal lethality, and reduced lacrimal gland branching without impacting lens development, suggesting that Shp2 only partially mediates Grb2 recruitment. In contrast, we observed that FGF signaling is required for the phosphorylation of the Grb2-binding sites on Shc1 and the deletion of Shc1 exacerbates the lens vesicle defect caused by Frs2 and Shp2 deletion. These findings establish Shc1 as a critical collaborator with Frs2 and Shp2 in targeting Grb2 during FGF signaling.
Collapse
Affiliation(s)
- Qian Wang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Hongge Li
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Yingyu Mao
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Ankur Garg
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Eun Sil Park
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Yihua Wu
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Alyssa Chow
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - John Peregrin
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Xin Zhang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Makrides N, Sun E, Mir H, Jiang Z, Wu Y, Serra C, Cardoso WV, Shah NH, Zhang X. Allosteric inhibition rescues hydrocephalus caused by catalytically inactive Shp2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635289. [PMID: 39974929 PMCID: PMC11838390 DOI: 10.1101/2025.01.28.635289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
SHP2, a protein tyrosine phosphatase (PTP) crucial in Ras-MAPK signaling, is associated with various human congenital diseases and cancers. Here, we show that the catalytically inactive Shp2 C459S mutation results in communicating hydrocephalus, similar to the catalytically activating Shp2 E76K and Mek1 DD mutants. Unlike previous mutants, however, Shp2 C459S/+ mutation uniquely affects ciliary development rather than neurogenesis, leading to reduced cilia density and impaired ciliary motility. Differential scanning fluorimetry revealed that SHP2 C459S , SHP2 E76K and SHP2 C459S/E76K mutations all induce an open SHP2 conformation, but only SHP2 C459S leads to aberrant GAB1 phosphorylation in cells expressing wild-type SHP2. This distinctive signaling pattern correlates with our observations in brain ventricular tissues of Shp2 C459S/+ mice, where Erk and Stat3 activities remain normal but Gab1 phosphorylation is elevated. Critically, we show that the hydrocephalus phenotype in Shp2 C459S mice can be mitigated by allosteric inhibition of Shp2. These findings suggest that Shp2-associated hydrocephalus is driven by conformational changes rather than altered catalytic activity. Our results underscore the therapeutic potential of conformation-specific allosteric inhibitors in targeting both catalytically active and inactive SHP2 mutants.
Collapse
Affiliation(s)
- Neoklis Makrides
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Emily Sun
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Hilal Mir
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Ziyuan Jiang
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Yihua Wu
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Carlos Serra
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Wellington V Cardoso
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
5
|
Wu H, Mao Y, Wang Q, Yu H, Bouaziz M, Makrides N, Koleske AJ, Radice GL, Zhang X. Abl kinases regulate FGF signaling independent of Crk phosphorylation to prevent Peters anomaly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.619064. [PMID: 39484567 PMCID: PMC11526961 DOI: 10.1101/2024.10.24.619064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Peters anomaly, the most common cause of congenital corneal opacity, stems from corneal-lenticular adhesion. Despite numerous identified mutations, a cohesive molecular framework of the disease's etiology remains elusive. Here, we identified Abl kinases as pivotal regulators of FGF signaling, as genetic ablation of Abl kinases restores lens induction even in the absence of FGF signaling. Intriguingly, both Abl kinase deficiency and increased FGF-Ras activity result in Peters anomaly independent of ERK signaling, which can be rescued by allelic deletion of Abl substrate, Crk. However, contrary to the prevailing belief that Abl kinases regulate Crk proteins by direct phosphorylation, mutations at Abl kinase phosphorylation sites on Crk and CrkL did not yield any observable effects. Instead, our findings reveal that Abl kinases phosphorylate Ptpn12, which in turn inhibits p130Cas phosphorylation and Crk recruitment, crucial for Rho GTPases activation and cytoskeletal dynamics. Consequently, Abl kinase deficiency reduces actomyosin contractility within the lens vesicle and genetically interacts with RhoA inhibition. Conversely, Rac1 deletion mitigates Peters anomaly in models with aberrant FGF, Abl kinase and RhoA signaling. Our results demonstrate that Abl kinases regulate FGF signaling to balance RhoA and Rac1 activity via the Ptpn12-p130Cas pathway, suggesting that targeting tension-mediated lens vesicle separation could be a therapeutic strategy for Peters anomaly.
Collapse
Affiliation(s)
- Hao Wu
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Yingyu Mao
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Qian Wang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Honglian Yu
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Michael Bouaziz
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Neoklis Makrides
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Anthony J. Koleske
- Departments of Molecular Biophysics and Biochemistry and Neuroscience, Yale University, New Haven, CT 06520, USA
| | - Glenn L. Radice
- Department of Medicine, The Warren Alpert Medical School of Brown University, Lifespan Cardiovascular Institute, Rhode Island Hospital, Providence, RI 02903, USA
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
6
|
Wang Q, Tao C, Wu Y, Anderson KE, Hannan A, Lin CS, Hawkins P, Stephens L, Zhang X. Phospholipase Cγ regulates lacrimal gland branching by competing with PI3K in phosphoinositide metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601066. [PMID: 39005344 PMCID: PMC11244885 DOI: 10.1101/2024.06.28.601066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Although the regulation of branching morphogenesis by spatially distributed cues is well established, the role of intracellular signaling in determining the branching pattern remains poorly understood. In this study, we investigated the regulation and function of phospholipase C gamma (PLCγ) in Fibroblast Growth Factor (FGF) signaling in lacrimal gland development. We showed that deletion of PLCγ1 in the lacrimal gland epithelium leads to ectopic branching and acinar hyperplasia, which was phenocopied by either mutating the PLCγ1 binding site on Fgfr2 or disabling any of its SH2 domains. PLCγ1 inactivation did not change the level of Fgfr2 or affect MAPK signaling, but instead led to sustained AKT phosphorylation due to increased PIP3 production. Consistent with this, PLCγ1 mutant phenotype can be reproduced by elevation of PI3K signaling in Pten knockout and attenuated by blocking AKT signaling. This study demonstrated that PLCγ modulates PI3K signaling by shifting phosphoinositide metabolism, revealing an important role of signaling dynamics in conjunction with spatial cues in shaping branching morphogenesis.
Collapse
|
7
|
Hannan A, Wang Q, Wu Y, Makrides N, Qu X, Mao J, Que J, Cardoso W, Zhang X. Crk mediates Csk-Hippo signaling independently of Yap tyrosine phosphorylation to induce cell extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601065. [PMID: 39005335 PMCID: PMC11244872 DOI: 10.1101/2024.06.27.601065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Src family kinases (SFKs), including Src, Fyn and Yes, play important roles in development and cancer. Despite being first discovered as the Yes-associated protein, the regulation of Yap by SFKs remains poorly understood. Here, through single-cell analysis and genetic lineage tracing, we show that the pan-epithelial ablation of C-terminal Src kinase (Csk) in the lacrimal gland unleashes broad Src signaling but specifically causes extrusion and apoptosis of acinar progenitors at a time when they are shielded by myoepithelial cells from the basement membrane. Csk mutants can be phenocopied by constitutively active Yap and rescued by deleting Yap or Taz, indicating a significant functional overlap between Src and Yap signaling. Although Src-induced tyrosine phosphorylation has long been believed to regulate Yap activity, we find that mutating these tyrosine residues in both Yap and Taz fails to perturb mouse development or alleviate the Csk lacrimal gland phenotype. In contrast, Yap loses Hippo signaling-dependent serine phosphorylation and translocates into the nucleus in Csk mutants. Further chemical genetics studies demonstrate that acute inhibition of Csk enhances Crk/CrkL phosphorylation and Rac1 activity, whereas removing Crk/CrkL or Rac1/Rap1 ameliorates the Csk mutant phenotype. These results show that Src controls Hippo-Yap signaling through the Crk/CrkL-Rac/Rap axis to promote cell extrusion.
Collapse
Affiliation(s)
- Abdul Hannan
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Qian Wang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Yihua Wu
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Xiuxia Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jianwen Que
- Columbia Center for Human Development, Columbia University, New York, NY, USA
| | - Wellington Cardoso
- Columbia Center for Human Development, Columbia University, New York, NY, USA
| | - Xin Zhang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Columbia Center for Human Development, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Koontz A, Urrutia HA, Bronner ME. Making a head: Neural crest and ectodermal placodes in cranial sensory development. Semin Cell Dev Biol 2023; 138:15-27. [PMID: 35760729 PMCID: PMC10224775 DOI: 10.1016/j.semcdb.2022.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/11/2022] [Accepted: 06/19/2022] [Indexed: 01/04/2023]
Abstract
During development of the vertebrate sensory system, many important components like the sense organs and cranial sensory ganglia arise within the head and neck. Two progenitor populations, the neural crest, and cranial ectodermal placodes, contribute to these developing vertebrate peripheral sensory structures. The interactions and contributions of these cell populations to the development of the lens, olfactory, otic, pituitary gland, and cranial ganglia are vital for appropriate peripheral nervous system development. Here, we review the origins of both neural crest and placode cells at the neural plate border of the early vertebrate embryo and investigate the molecular and environmental signals that influence specification of different sensory regions. Finally, we discuss the underlying molecular pathways contributing to the complex vertebrate sensory system from an evolutionary perspective, from basal vertebrates to amniotes.
Collapse
Affiliation(s)
- Alison Koontz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hugo A Urrutia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
9
|
Tao C, Makrides N, Chuang JZ, Wu Y, Brooks SE, Esko JD, Sung CH, Zhang X. Chondroitin sulfate enhances the barrier function of basement membrane assembled by heparan sulfate. Development 2022; 149:275504. [PMID: 35608020 PMCID: PMC9270973 DOI: 10.1242/dev.200569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/05/2022] [Indexed: 01/08/2023]
Abstract
Glycosaminoglycans are ubiquitously expressed polysaccharides that are attached to proteoglycans. Here, we showed that ablation of the heparan sulfate (HS) polymerase Ext1 in retinal progenitor cells did not affect initial progression of retinal angiogenesis, but it disrupted the pruning of blood vessels and establishment of arterioles and venules. In the absence of retinal HS, blood vessels were also vulnerable to high oxygen tension in early postnatal stages, which could be rescued by exogenous vascular endothelial growth factor (VEGF), consistent with the role of retinal HS in the fine-tuning of VEGF signaling. Furthermore, we observed that the retinal inner limiting membrane (ILM) was disrupted by deletion of Ext1 in a timing-specific manner, suggesting that retinal HS is required for the assembly but not the maintenance of the basement membrane. Lastly, we showed that further deletion of C4st1, a chondroitin sulfate (CS) sulfation enzyme, did not affect the assembly of the ILM but, when combined with Ext1 deletion, it aggravated the retinal permeability by disrupting the retinal glycocalyx. These results demonstrate an important role of CS and HS in establishing the barrier function of the extracellular matrix.
Collapse
Affiliation(s)
- Chenqi Tao
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yihua Wu
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Steven E Brooks
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xin Zhang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
10
|
Chen K, Rao Z, Dong S, Chen Y, Wang X, Luo Y, Gong F, Li X. Roles of the fibroblast growth factor signal transduction system in tissue injury repair. BURNS & TRAUMA 2022; 10:tkac005. [PMID: 35350443 PMCID: PMC8946634 DOI: 10.1093/burnst/tkac005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/13/2021] [Indexed: 12/13/2022]
Abstract
Following injury, tissue autonomously initiates a complex repair process, resulting in either partial recovery or regeneration of tissue architecture and function in most organisms. Both the repair and regeneration processes are highly coordinated by a hierarchy of interplay among signal transduction pathways initiated by different growth factors, cytokines and other signaling molecules under normal conditions. However, under chronic traumatic or pathological conditions, the reparative or regenerative process of most tissues in different organs can lose control to different extents, leading to random, incomplete or even flawed cell and tissue reconstitution and thus often partial restoration of the original structure and function, accompanied by the development of fibrosis, scarring or even pathogenesis that could cause organ failure and death of the organism. Ample evidence suggests that the various combinatorial fibroblast growth factor (FGF) and receptor signal transduction systems play prominent roles in injury repair and the remodeling of adult tissues in addition to embryonic development and regulation of metabolic homeostasis. In this review, we attempt to provide a brief update on our current understanding of the roles, the underlying mechanisms and clinical application of FGFs in tissue injury repair.
Collapse
Affiliation(s)
| | | | - Siyang Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Department of breast surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yajing Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xulan Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yongde Luo
- Correspondence. Xiaokun Li, ; Fanghua Gong, ; Yongde Luo,
| | - Fanghua Gong
- Correspondence. Xiaokun Li, ; Fanghua Gong, ; Yongde Luo,
| | - Xiaokun Li
- Correspondence. Xiaokun Li, ; Fanghua Gong, ; Yongde Luo,
| |
Collapse
|
11
|
Makrides N, Wang Q, Tao C, Schwartz S, Zhang X. Jack of all trades, master of each: the diversity of fibroblast growth factor signalling in eye development. Open Biol 2022; 12:210265. [PMID: 35016551 PMCID: PMC8753161 DOI: 10.1098/rsob.210265] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A central question in development biology is how a limited set of signalling pathways can instruct unlimited diversity of multicellular organisms. In this review, we use three ocular tissues as models of increasing complexity to present the astounding versatility of fibroblast growth factor (FGF) signalling. In the lacrimal gland, we highlight the specificity of FGF signalling in a one-dimensional model of budding morphogenesis. In the lens, we showcase the dynamics of FGF signalling in altering functional outcomes in a two-dimensional space. In the retina, we present the prolific utilization of FGF signalling from three-dimensional development to homeostasis. These examples not only shed light on the cellular basis for the perfection and complexity of ocular development, but also serve as paradigms for the diversity of FGF signalling.
Collapse
Affiliation(s)
- Neoklis Makrides
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Qian Wang
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Chenqi Tao
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Samuel Schwartz
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Xin Zhang
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
12
|
Balasubramanian R, Min X, Quinn PMJ, Giudice QL, Tao C, Polanco K, Makrides N, Peregrin J, Bouaziz M, Mao Y, Wang Q, da Costa BL, Buenaventura D, Wang F, Ma L, Tsang SH, Fabre PJ, Zhang X. Phase transition specified by a binary code patterns the vertebrate eye cup. SCIENCE ADVANCES 2021; 7:eabj9846. [PMID: 34757798 PMCID: PMC8580326 DOI: 10.1126/sciadv.abj9846] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/21/2021] [Indexed: 05/27/2023]
Abstract
The developing vertebrate eye cup is partitioned into the neural retina (NR), the retinal pigmented epithelium (RPE), and the ciliary margin (CM). By single-cell analysis, we showed that fibroblast growth factor (FGF) signaling regulates the CM in its stem cell–like property of self-renewal, differentiation, and survival, which is balanced by an evolutionarily conserved Wnt signaling gradient. FGF promotes Wnt signaling in the CM by stabilizing β-catenin in a GSK3β-independent manner. While Wnt signaling converts the NR to either the CM or the RPE depending on FGF signaling, FGF transforms the RPE to the NR or CM dependent on Wnt activity. The default fate of the eye cup is the NR, but synergistic FGF and Wnt signaling promotes CM formation both in vivo and in human retinal organoid. Our study reveals that the vertebrate eye develops through phase transition determined by a combinatorial code of FGF and Wnt signaling.
Collapse
Affiliation(s)
| | - Xuanyu Min
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | | | - Quentin Lo Giudice
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Chenqi Tao
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Karina Polanco
- Department of Psychology, Columbia University, New York, NY, USA
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - John Peregrin
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Michael Bouaziz
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Yingyu Mao
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Qian Wang
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | | | | | - Fen Wang
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M, Houston, TX, USA
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen H. Tsang
- Department of Ophthalmology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Jonas Children’s Vision Care, and Bernard and Shirley Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York Presbyterian Hospital, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Pierre J. Fabre
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Xin Zhang
- Department of Ophthalmology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
13
|
Wang Q, Tao C, Hannan A, Yoon S, Min X, Peregrin J, Qu X, Li H, Yu H, Zhao J, Zhang X. Lacrimal gland budding requires PI3K-dependent suppression of EGF signaling. SCIENCE ADVANCES 2021; 7:7/27/eabf1068. [PMID: 34193412 PMCID: PMC8245041 DOI: 10.1126/sciadv.abf1068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
The patterning of epithelial buds is determined by the underlying signaling network. Here, we study the cross-talk between phosphoinositide 3-kinase (PI3K) and Ras signaling during lacrimal gland budding morphogenesis. Our results show that PI3K is activated by both the p85-mediated insulin-like growth factor (IGF) and Ras-mediated fibroblast growth factor (FGF) signaling. On the other hand, PI3K also promotes extracellular signal-regulated kinase (ERK) signaling via a direct interaction with Ras. Both PI3K and ERK are upstream regulators of mammalian target of rapamycin (mTOR), and, together, they prevent expansion of epidermal growth factor (EGF) receptor expression from the lacrimal gland stalk to the bud region. We further show that this suppression of EGF signaling is necessary for induction of lacrimal gland buds. These results reveal that the interplay between PI3K, mitogen-activated protein kinase, and mTOR mediates the cross-talk among FGF, IGF, and EGF signaling in support of lacrimal gland development.
Collapse
Affiliation(s)
- Qian Wang
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - Chenqi Tao
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - Abdul Hannan
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - Sungtae Yoon
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - Xuanyu Min
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - John Peregrin
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - Xiuxia Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hongge Li
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - Honglian Yu
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
- Department of Biochemistry, School of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Jean Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xin Zhang
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Garg A, Hannan A, Wang Q, Makrides N, Zhong J, Li H, Yoon S, Mao Y, Zhang X. Etv transcription factors functionally diverge from their upstream FGF signaling in lens development. eLife 2020; 9:e51915. [PMID: 32043969 PMCID: PMC7069720 DOI: 10.7554/elife.51915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
The signal regulated transcription factors (SRTFs) control the ultimate transcriptional output of signaling pathways. Here, we examined a family of FGF-induced SRTFs - Etv1, Etv 4, and Etv 5 - in murine lens development. Contrary to FGF receptor mutants that displayed loss of ERK signaling and defective cell differentiation, Etv deficiency augmented ERK phosphorylation without disrupting the normal lens fiber gene expression. Instead, the transitional zone for lens differentiation was shifted anteriorly as a result of reduced Jag1-Notch signaling. We also showed that Etv proteins suppresses mTOR activity by promoting Tsc2 expression, which is necessary for the nuclei clearance in mature lens. These results revealed the functional divergence between Etv and FGF in lens development, demonstrating that these SRTFs can operate outside the confine of their upstream signaling.
Collapse
Affiliation(s)
- Ankur Garg
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Abdul Hannan
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Qian Wang
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Jian Zhong
- Burke Neurological Institute and Feil Family Brain and Mind Research Institute, Weill Cornell MedicineWhite PlainsUnited States
| | - Hongge Li
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Sungtae Yoon
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Yingyu Mao
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Xin Zhang
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| |
Collapse
|
15
|
Lens differentiation is controlled by the balance between PDGF and FGF signaling. PLoS Biol 2019; 17:e3000133. [PMID: 30716082 PMCID: PMC6375662 DOI: 10.1371/journal.pbio.3000133] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/14/2019] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
How multiple receptor tyrosine kinases coordinate cell fate determination is yet to be elucidated. We show here that the receptor for platelet-derived growth factor (PDGF) signaling recruits the p85 subunit of Phosphoinositide 3-kinase (PI3K) to regulate mammalian lens development. Activation of PI3K signaling not only prevents B-cell lymphoma 2 (BCL2)-Associated X (Bax)- and BCL2 Antagonist/Killer (Bak)-mediated apoptosis but also promotes Notch signaling to prevent premature cell differentiation. Reducing PI3K activity destabilizes the Notch intracellular domain, while the constitutive activation of Notch reverses the PI3K deficiency phenotype. In contrast, fibroblast growth factor receptors (FGFRs) recruit Fibroblast Growth Factor Receptor Substrate 2 (Frs2) and Rous sarcoma oncogene (Src) Homology Phosphatase 2 (Shp2) to activate Mitogen-Activated Protein Kinase (MAPK) signaling, which induces the Notch ligand Jagged 1 (Jag1) and promotes cell differentiation. Inactivation of Shp2 restored the proper timing of differentiation in the p85 mutant lens, demonstrating the antagonistic interaction between FGF-induced MAPK and PDGF-induced PI3K signaling. By selective activation of PI3K and MAPK, PDGF and FGF cooperate with and oppose each other to balance progenitor cell maintenance and differentiation. A central aim in understanding cell signaling is to decode the cellular logic that underlies the functional specificity of growth factors. Although these factors are known to activate a common set of intracellular pathways, they nevertheless play specific roles in development and physiology. Using lens development in mice as a model, we show that fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF) antagonize each other through their intrinsic biases toward distinct downstream targets. While FGF primarily induces the Ras–Mitogen-Activated Protein Kinase (MAPK) axis to promote lens cell differentiation, PDGF preferentially stimulates Phosphoinositide 3-kinase (PI3K) to enhance Notch signaling, which is necessary for maintaining the lens progenitor cell pool. By revealing the intricate interactions between PDGF, FGF, and Notch, we present a paradigm for how signaling crosstalk enables balanced growth and differentiation in multicellular organisms.
Collapse
|
16
|
Abstract
This chapter provides an overview of the early developmental origins of six ocular tissues: the cornea, lens, ciliary body, iris, neural retina, and retina pigment epithelium. Many of these tissue types are concurrently specified and undergo a complex set of morphogenetic movements that facilitate their structural interconnection. Within the context of vertebrate eye organogenesis, we also discuss the genetic hierarchies of transcription factors and signaling pathways that regulate growth, patterning, cell type specification and differentiation.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States.
| |
Collapse
|
17
|
FGF-induced Pea3 transcription factors program the genetic landscape for cell fate determination. PLoS Genet 2018; 14:e1007660. [PMID: 30188892 PMCID: PMC6143274 DOI: 10.1371/journal.pgen.1007660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/18/2018] [Accepted: 08/27/2018] [Indexed: 12/01/2022] Open
Abstract
FGF signaling is a potent inducer of lacrimal gland development in the eye, capable of transforming the corneal epithelium into glandular tissues. Here, we show that genetic ablation of the Pea3 family of transcription factors not only disrupted the ductal elongation and branching of the lacrimal gland, but also biased the lacrimal gland epithelium toward an epidermal cell fate. Analysis of high-throughput gene expression and chromatin immunoprecipitation data revealed that the Pea3 genes directly control both the positive and negative feedback loops of FGF signaling. Importantly, Pea3 genes are also required to suppress aberrant Notch signaling which, if gone unchecked, can compromise lacrimal gland development by preventing the expression of both Sox and Six family genes. These results demonstrate that Pea3 genes are key FGF early response transcriptional factors, programing the genetic landscape for cell fate determination. FGF signaling regulates cell fate decision by inducing genome-wide changes in gene expression. We identified Pea3 family transcription factors as the key effectors of FGF signaling in reprograming the epithelia transcriptome. Pea3 factors control both the feedback and feedforward circuities of FGF signaling in lacrimal gland development. They also activate specific expression of Six and Sox family genes and suppress aberrant activation of Notch signaling. In the absence of Pea3 genes, the lacrimal gland progenitors become epidermal-like in their gene expression patterns. The study of Pea3 function resolves the long standing conundrum of how FGF induces the lacrimal gland fate, providing direction for regenerating the lacrimal gland to treat dry eye diseases.
Collapse
|
18
|
Collins TN, Mao Y, Li H, Bouaziz M, Hong A, Feng GS, Wang F, Quilliam LA, Chen L, Park T, Curran T, Zhang X. Crk proteins transduce FGF signaling to promote lens fiber cell elongation. eLife 2018; 7:32586. [PMID: 29360039 PMCID: PMC5818251 DOI: 10.7554/elife.32586] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/23/2018] [Indexed: 12/17/2022] Open
Abstract
Specific cell shapes are fundamental to the organization and function of multicellular organisms. Fibroblast Growth Factor (FGF) signaling induces the elongation of lens fiber cells during vertebrate lens development. Nonetheless, exactly how this extracellular FGF signal is transmitted to the cytoskeletal network has previously not been determined. Here, we show that the Crk family of adaptor proteins, Crk and Crkl, are required for mouse lens morphogenesis but not differentiation. Genetic ablation and epistasis experiments demonstrated that Crk and Crkl play overlapping roles downstream of FGF signaling in order to regulate lens fiber cell elongation. Upon FGF stimulation, Crk proteins were found to interact with Frs2, Shp2 and Grb2. The loss of Crk proteins was partially compensated for by the activation of Ras and Rac signaling. These results reveal that Crk proteins are important partners of the Frs2/Shp2/Grb2 complex in mediating FGF signaling, specifically promoting cell shape changes. As an embryo develops, its cells divide multiple times to transform into the specialized cell types that form our tissues and organs. To carry out specific roles, cells need to be of a certain shape. For example, in mammals, the cells that make up the main portion of the eye lens, develop into a fiber-like shape to be perfectly aligned with each other. This enables them to transmit light to the retina at the rear end of the eye. To do so, the lens cells increase over 1000 times in length with the help of a group of proteins called the Fibroblast Growth Factor, or FGF for short. The FGF pathway includes a network of interacting proteins that transmit signals to molecules inside the lens cells to control how they specialize and grow. However, until now it was not clear how it does this. Here, Zhang et al. used mouse lens-cells grown in the laboratory to investigate how FGF signaling causes cells to change their structure. The experiments revealed two related proteins called Crk and Crkl that linked the FGF pathway with another signaling system. When these two proteins were removed from the lens cells, the lens cells were still able to specialize, but could no longer grow in length. This suggests that these two processes are independent of each other. Moreover, Crk and Crkl helped the cells to change shape by increasing the amount of another group of proteins called Ras, which are known to both help cells to specialize and to regulate their shape. Zhang et al. discovered that the amount of Ras proteins determined whether cells specialized or modified their shape by changing the organization of proteins in the cell. Millions of children are born with cataracts, a disease caused when lens cells fail to shape properly. A better knowledge of FGF signaling may help to understand how cataracts develop and inspire future treatments. Moreover, the pathways identified in this study could also apply to other organs and diseases in which FGF signaling is active.
Collapse
Affiliation(s)
- Tamica N Collins
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
| | - Yingyu Mao
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
| | - Hongge Li
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
| | - Michael Bouaziz
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
| | - Angela Hong
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
| | - Gen-Sheng Feng
- Department of Pathology, University of California San Diego, La Jolla, United States
| | - Fen Wang
- Center for Cancer Biology and Nutrition, Houston, United States
| | - Lawrence A Quilliam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, United States
| | - Lin Chen
- Department of Rehabilitation Medicine, Third Military Medical University, Chongqing, China
| | - Taeju Park
- The Children's Research Institute, Children's Mercy Kansas City, Kansas City, United States
| | - Tom Curran
- The Children's Research Institute, Children's Mercy Kansas City, Kansas City, United States
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
| |
Collapse
|
19
|
Tao C, Zhang X. Retinal Proteoglycans Act as Cellular Receptors for Basement Membrane Assembly to Control Astrocyte Migration and Angiogenesis. Cell Rep 2017; 17:1832-1844. [PMID: 27829154 DOI: 10.1016/j.celrep.2016.10.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/16/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022] Open
Abstract
The basement membrane is crucial for cell polarity, adhesion, and motility, but how it is assembled on the cell surface remains unclear. Here, we find that ablation of glycosaminoglycan (GAG) side chains of proteoglycans in the neuroretina disrupts the retinal basement membrane, leading to arrested astrocyte migration and reduced angiogenesis. Using genetic deletion and time-lapse imaging, we show that retinal astrocytes require neuronal-derived PDGF as a chemoattractive cue and the retinal basement membrane as a migratory substrate. Genetic ablation of heparan sulfates does not produce the same defects as GAG null mutants. In contrast, enzymatic removal of heparan sulfates and chondroitin sulfates together inhibits de novo laminin network assembly. These results indicate that both heparan and chondroitin sulfate proteoglycans participate in retinal basement membrane assembly, thus promoting astrocyte migration and angiogenesis.
Collapse
Affiliation(s)
- Chenqi Tao
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
20
|
Garg A, Bansal M, Gotoh N, Feng GS, Zhong J, Wang F, Kariminejad A, Brooks S, Zhang X. Alx4 relays sequential FGF signaling to induce lacrimal gland morphogenesis. PLoS Genet 2017; 13:e1007047. [PMID: 29028795 PMCID: PMC5656309 DOI: 10.1371/journal.pgen.1007047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/25/2017] [Accepted: 09/28/2017] [Indexed: 11/18/2022] Open
Abstract
The sequential use of signaling pathways is essential for the guidance of pluripotent progenitors into diverse cell fates. Here, we show that Shp2 exclusively mediates FGF but not PDGF signaling in the neural crest to control lacrimal gland development. In addition to preventing p53-independent apoptosis and promoting the migration of Sox10-expressing neural crests, Shp2 is also required for expression of the homeodomain transcription factor Alx4, which directly controls Fgf10 expression in the periocular mesenchyme that is necessary for lacrimal gland induction. We show that Alx4 binds an Fgf10 intronic element conserved in terrestrial but not aquatic animals, underlying the evolutionary emergence of the lacrimal gland system in response to an airy environment. Inactivation of ALX4/Alx4 causes lacrimal gland aplasia in both human and mouse. These results reveal a key role of Alx4 in mediating FGF-Shp2-FGF signaling in the neural crest for lacrimal gland development. The dry eye disease caused by lacrimal gland dysgenesis is one of the most common ocular ailments. In this study, we show that Shp2 mediates the sequential use of FGF signaling in lacrimal gland development. Our study identifies Alx4 as a novel target of Shp2 signaling and a causal gene for lacrimal gland aplasia in humans. Given this result, there may also be a potential role for Alx4 in guiding pluripotent stem cells to produce lacrimal gland tissue. Finally, our data reveals an Alx4-Fgf10 regulatory unit broadly conserved in the diverse array of terrestrial animals from humans to reptiles, but not in aquatic animals such as amphibians and fish, which sheds light on how the lacrimal gland arose as an evolutionary innovation of terrestrial animals to adapt to their newfound exposure to an airy environment.
Collapse
Affiliation(s)
- Ankur Garg
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Mukesh Bansal
- PsychoGenics Inc., Tarrytown, NY, United States of America
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University Kakuma-machi, Kanazawa city, Japan
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, and Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Jian Zhong
- Burke Medical Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, White Plains, NY, United States of America
| | - Fen Wang
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States of America
| | | | - Steven Brooks
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY, United States of America
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
21
|
Cvekl A, Zhang X. Signaling and Gene Regulatory Networks in Mammalian Lens Development. Trends Genet 2017; 33:677-702. [PMID: 28867048 DOI: 10.1016/j.tig.2017.08.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
Ocular lens development represents an advantageous system in which to study regulatory mechanisms governing cell fate decisions, extracellular signaling, cell and tissue organization, and the underlying gene regulatory networks. Spatiotemporally regulated domains of BMP, FGF, and other signaling molecules in late gastrula-early neurula stage embryos generate the border region between the neural plate and non-neural ectoderm from which multiple cell types, including lens progenitor cells, emerge and undergo initial tissue formation. Extracellular signaling and DNA-binding transcription factors govern lens and optic cup morphogenesis. Pax6, c-Maf, Hsf4, Prox1, Sox1, and a few additional factors regulate the expression of the lens structural proteins, the crystallins. Extensive crosstalk between a diverse array of signaling pathways controls the complexity and order of lens morphogenetic processes and lens transparency.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
22
|
Anand D, Lachke SA. Systems biology of lens development: A paradigm for disease gene discovery in the eye. Exp Eye Res 2016; 156:22-33. [PMID: 26992779 DOI: 10.1016/j.exer.2016.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 12/19/2022]
Abstract
Over the past several decades, the biology of the developing lens has been investigated using molecular genetics-based approaches in various vertebrate model systems. These efforts, involving target gene knockouts or knockdowns, have led to major advances in our understanding of lens morphogenesis and the pathological basis of cataracts, as well as of other lens related eye defects. In particular, we now have a functional understanding of regulators such as Pax6, Six3, Sox2, Oct1 (Pou2f1), Meis1, Pnox1, Zeb2 (Sip1), Mab21l1, Foxe3, Tfap2a (Ap2-alpha), Pitx3, Sox11, Prox1, Sox1, c-Maf, Mafg, Mafk, Hsf4, Fgfrs, Bmp7, and Tdrd7 in this tissue. However, whether these individual regulators interact or their targets overlap, and the significance of such interactions during lens morphogenesis, is not well defined. The arrival of high-throughput approaches for gene expression profiling (microarrays, RNA-sequencing (RNA-seq), etc.), which can be coupled with chromatin immunoprecipitation (ChIP) or RNA immunoprecipitation (RIP) assays, along with improved computational resources and publically available datasets (e.g. those containing comprehensive protein-protein, protein-DNA information), presents new opportunities to advance our understanding of the lens tissue on a global systems level. Such systems-level knowledge will lead to the derivation of the underlying lens gene regulatory network (GRN), defined as a circuit map of the regulator-target interactions functional in lens development, which can be applied to expedite cataract gene discovery. In this review, we cover the various systems-level approaches such as microarrays, RNA-seq, and ChIP that are already being applied to lens studies and discuss strategies for assembling and interpreting these vast amounts of high-throughput information for effective dispersion to the scientific community. In particular, we discuss strategies for effective interpretation of this new information in the context of the rich knowledge obtained through the application of traditional single-gene focused experiments on the lens. Finally, we discuss our vision for integrating these diverse high-throughput datasets in a single web-based user-friendly tool iSyTE (integrated Systems Tool for Eye gene discovery) - a resource that is already proving effective in the identification and characterization of genes linked to lens development and cataract. We anticipate that application of a similar approach to other ocular tissues such as the retina and the cornea, and even other organ systems, will significantly impact disease gene discovery.
Collapse
Affiliation(s)
- Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA; Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA.
| |
Collapse
|
23
|
Cvekl A, Ashery-Padan R. The cellular and molecular mechanisms of vertebrate lens development. Development 2014; 141:4432-47. [PMID: 25406393 PMCID: PMC4302924 DOI: 10.1242/dev.107953] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ocular lens is a model system for understanding important aspects of embryonic development, such as cell specification and the spatiotemporally controlled formation of a three-dimensional structure. The lens, which is characterized by transparency, refraction and elasticity, is composed of a bulk mass of fiber cells attached to a sheet of lens epithelium. Although lens induction has been studied for over 100 years, recent findings have revealed a myriad of extracellular signaling pathways and gene regulatory networks, integrated and executed by the transcription factor Pax6, that are required for lens formation in vertebrates. This Review summarizes recent progress in the field, emphasizing the interplay between the diverse regulatory mechanisms employed to form lens progenitor and precursor cells and highlighting novel opportunities to fill gaps in our understanding of lens tissue morphogenesis.
Collapse
Affiliation(s)
- Aleš Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, 69978 Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
24
|
Li H, Tao C, Cai Z, Hertzler-Schaefer K, Collins TN, Wang F, Feng GS, Gotoh N, Zhang X. Frs2α and Shp2 signal independently of Gab to mediate FGF signaling in lens development. J Cell Sci 2013; 127:571-82. [PMID: 24284065 DOI: 10.1242/jcs.134478] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Fibroblast growth factor (FGF) signaling requires a plethora of adaptor proteins to elicit downstream responses, but the functional significances of these docking proteins remain controversial. In this study, we used lens development as a model to investigate Frs2α and its structurally related scaffolding proteins, Gab1 and Gab2, in FGF signaling. We show that genetic ablation of Frs2α alone has a modest effect, but additional deletion of tyrosine phosphatase Shp2 causes a complete arrest of lens vesicle development. Biochemical evidence suggests that this Frs2α-Shp2 synergy reflects their epistatic relationship in the FGF signaling cascade, as opposed to compensatory or parallel functions of these two proteins. Genetic interaction experiments further demonstrate that direct binding of Shp2 to Frs2α is necessary for activation of ERK signaling, whereas constitutive activation of either Shp2 or Kras signaling can compensate for the absence of Frs2α in lens development. By contrast, knockout of Gab1 and Gab2 failed to disrupt FGF signaling in vitro and lens development in vivo. These results establish the Frs2α-Shp2 complex as the key mediator of FGF signaling in lens development.
Collapse
Affiliation(s)
- Hongge Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sousounis K, Ogura A, Tsonis PA. Transcriptome analysis of Nautilus and pygmy squid developing eye provides insights in lens and eye evolution. PLoS One 2013; 8:e78054. [PMID: 24205087 PMCID: PMC3803853 DOI: 10.1371/journal.pone.0078054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/16/2013] [Indexed: 12/25/2022] Open
Abstract
Coleoid cephalopods like squids have a camera-type eye similar to vertebrates. On the other hand, Nautilus (Nautiloids) has a pinhole eye that lacks lens and cornea. Since pygmy squid and Nautilus are closely related species they are excellent model organisms to study eye evolution. Having being able to collect Nautilus embryos, we employed next-generation RNA sequencing using Nautilus and pygmy squid developing eyes. Their transcriptomes were compared and analyzed. Enrichment analysis of Gene Ontology revealed that contigs related to nucleic acid binding were largely up-regulated in squid, while the ones related to metabolic processes and extracellular matrix-related genes were up-regulated in Nautilus. These differences are most likely correlated with the complexity of tissue organization in these species. Moreover, when the analysis focused on the eye-related contigs several interesting patterns emerged. First, contigs from both species related to eye tissue differentiation and morphogenesis as well as to cilia showed best hits with their Human counterparts, while contigs related to rabdomeric photoreceptors showed the best hit with their Drosophila counterparts. This bolsters the idea that eye morphogenesis genes have been generally conserved in evolution, and compliments other studies showing that genes involved in photoreceptor differentiation clearly follow the diversification of invertebrate (rabdomeric) and vertebrate (ciliated) photoreceptors. Interestingly some contigs showed as good a hit with Drosophila and Human homologues in Nautilus and squid samples. One of them, capt/CAP1, is known to be preferentially expressed in Drosophila developing eye and in vertebrate lens. Importantly our analysis also provided evidence of gene duplication and diversification of their function in both species. One of these genes is the Neurofibromatosis 1 (NF1/Nf1), which in mice has been implicated in lens formation, suggesting a hitherto unsuspected role in the evolution of the lens in molluscs.
Collapse
Affiliation(s)
- Konstantinos Sousounis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, Ohio, United States of America
| | | | | |
Collapse
|
26
|
Schilter KF, Reis LM, Schneider A, Bardakjian TM, Abdul-Rahman O, Kozel BA, Zimmerman HH, Broeckel U, Semina EV. Whole-genome copy number variation analysis in anophthalmia and microphthalmia. Clin Genet 2013; 84:473-81. [PMID: 23701296 DOI: 10.1111/cge.12202] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 01/19/2023]
Abstract
Anophthalmia/microphthalmia (A/M) represent severe developmental ocular malformations. Currently, mutations in known genes explain less than 40% of A/M cases. We performed whole-genome copy number variation analysis in 60 patients affected with isolated or syndromic A/M. Pathogenic deletions of 3q26 (SOX2) were identified in four independent patients with syndromic microphthalmia. Other variants of interest included regions with a known role in human disease (likely pathogenic) as well as novel rearrangements (uncertain significance). A 2.2-Mb duplication of 3q29 in a patient with non-syndromic anophthalmia and an 877-kb duplication of 11p13 (PAX6) and a 1.4-Mb deletion of 17q11.2 (NF1) in two independent probands with syndromic microphthalmia and other ocular defects were identified; while ocular anomalies have been previously associated with 3q29 duplications, PAX6 duplications, and NF1 mutations in some cases, the ocular phenotypes observed here are more severe than previously reported. Three novel regions of possible interest included a 2q14.2 duplication which cosegregated with microphthalmia/microcornea and congenital cataracts in one family, and 2q21 and 15q26 duplications in two additional cases; each of these regions contains genes that are active during vertebrate ocular development. Overall, this study identified causative copy number mutations and regions with a possible role in ocular disease in 17% of A/M cases.
Collapse
Affiliation(s)
- K F Schilter
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cai Z, Tao C, Li H, Ladher R, Gotoh N, Feng GS, Wang F, Zhang X. Deficient FGF signaling causes optic nerve dysgenesis and ocular coloboma. Development 2013; 140:2711-23. [PMID: 23720040 DOI: 10.1242/dev.089987] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
FGF signaling plays a pivotal role in eye development. Previous studies using in vitro chick models and systemic zebrafish mutants have suggested that FGF signaling is required for the patterning and specification of the optic vesicle, but due to a lack of genetic models, its role in mammalian retinal development remains elusive. In this study, we show that specific deletion of Fgfr1 and Fgfr2 in the optic vesicle disrupts ERK signaling, which results in optic disc and nerve dysgenesis and, ultimately, ocular coloboma. Defective FGF signaling does not abrogate Shh or BMP signaling, nor does it affect axial patterning of the optic vesicle. Instead, FGF signaling regulates Mitf and Pax2 in coordinating the closure of the optic fissure and optic disc specification, which is necessary for the outgrowth of the optic nerve. Genetic evidence further supports that the formation of an Frs2α-Shp2 complex and its recruitment to FGF receptors are crucial for downstream ERK signaling in this process, whereas constitutively active Ras signaling can rescue ocular coloboma in the FGF signaling mutants. Our results thus reveal a previously unappreciated role of FGF-Frs2α-Shp2-Ras-ERK signaling axis in preventing ocular coloboma. These findings suggest that components of FGF signaling pathway may be novel targets in the diagnosis of and the therapeutic interventions for congenital ocular anomalies.
Collapse
Affiliation(s)
- Zhigang Cai
- Department of Medical and Molecular Genetics, Stark Neuroscience Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Madakashira BP, Kobrinski DA, Hancher AD, Arneman EC, Wagner BD, Wang F, Shin H, Lovicu FJ, Reneker LW, Robinson ML. Frs2α enhances fibroblast growth factor-mediated survival and differentiation in lens development. Development 2012; 139:4601-12. [PMID: 23136392 DOI: 10.1242/dev.081737] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most growth factor receptor tyrosine kinases (RTKs) signal through similar intracellular pathways, but they often have divergent biological effects. Therefore, elucidating the mechanism of channeling the intracellular effect of RTK stimulation to facilitate specific biological responses represents a fundamental biological challenge. Lens epithelial cells express numerous RTKs with the ability to initiate the phosphorylation (activation) of Erk1/2 and PI3-K/Akt signaling. However, only Fgfr stimulation leads to lens fiber cell differentiation in the developing mammalian embryo. Additionally, within the lens, only Fgfrs activate the signal transduction molecule Frs2α. Loss of Frs2α in the lens significantly increases apoptosis and decreases phosphorylation of both Erk1/2 and Akt. Also, Frs2α deficiency decreases the expression of several proteins characteristic of lens fiber cell differentiation, including Prox1, p57(KIP2), aquaporin 0 and β-crystallins. Although not normally expressed in the lens, the RTK TrkC phosphorylates Frs2α in response to binding the ligand NT3. Transgenic lens epithelial cells expressing both TrkC and NT3 exhibit several features characteristic of lens fiber cells. These include elongation, increased Erk1/2 and Akt phosphorylation, and the expression of β-crystallins. All these characteristics of NT3-TrkC transgenic lens epithelial cells depend on Frs2α. Therefore, tyrosine phosphorylation of Frs2α mediates Fgfr-dependent lens cell survival and provides a mechanistic basis for the unique fiber-differentiating capacity of Fgfs on mammalian lens epithelial cells.
Collapse
|
29
|
Carbe C, Hertzler-Schaefer K, Zhang X. The functional role of the Meis/Prep-binding elements in Pax6 locus during pancreas and eye development. Dev Biol 2012; 363:320-9. [PMID: 22240097 DOI: 10.1016/j.ydbio.2011.12.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 11/09/2011] [Accepted: 12/23/2011] [Indexed: 12/28/2022]
Abstract
Pax6 is an essential transcription factor for lens, lacrimal gland and pancreas development. Previous transgenic analyses have identified several Pax6 regulatory elements, but their functional significance and binding factors remain largely unknown. In this study, we generated two genomic truncations to delete three elements that were previously shown to bind to the Meis/Prep family homeoproteins. One 3.1 kb deletion (Pax6(∆DP/∆DP)) removed two putative pancreatic enhancers and a previously identified ectodermal enhancer, while a 450 bp sub-deletion (Pax6(∆PE/∆PE)) eliminated only the promoter-proximal pancreatic enhancer. Immunohistochemistry and quantitative RT-PCR showed that the Pax6(∆PE/∆PE) pancreata had a significant decrease in Pax6, glucagon, and insulin expression, while no further reductions were observed in the Pax6(∆DP/∆DP) mice, indicating that only the 450 bp region is required for pancreatic development. In contrast, Pax6(∆DP/∆DP), but not Pax6(∆PE/∆PE) mice, developed stunted lacrimal gland and lens hypoplasia which was significantly more severe than that reported when only the ectodermal enhancer was deleted. This result suggested that the ectodermal enhancer must cooperate with its neighboring sequences to regulate the Pax6 ectodermal expression. Finally, we generated conditional knockouts of Prep1 in the lens and pancreas, but surprisingly, did not observe any developmental defects. Together, these results provide functional evidence for the independent and synergistic roles of the Pax6 upstream enhancers, and they suggest the potential redundancy of Meis/Prep protein in Pax6 regulation.
Collapse
MESH Headings
- Animals
- Binding Sites/genetics
- Binding Sites/physiology
- Blotting, Western
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Enhancer Elements, Genetic/genetics
- Enhancer Elements, Genetic/physiology
- Eye/embryology
- Eye/metabolism
- Eye Proteins/genetics
- Eye Proteins/metabolism
- Female
- Gene Expression Regulation, Developmental
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Immunohistochemistry
- In Situ Hybridization
- Lacrimal Apparatus/embryology
- Lacrimal Apparatus/metabolism
- Lens, Crystalline/embryology
- Lens, Crystalline/metabolism
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Ecotropic Viral Integration Site 1 Protein
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- PAX6 Transcription Factor
- Paired Box Transcription Factors/genetics
- Paired Box Transcription Factors/metabolism
- Pancreas/embryology
- Pancreas/metabolism
- Protein Binding
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Christian Carbe
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|