1
|
Gadek M, Shaw CK, Abdulai-Saiku S, Saloner R, Marino F, Wang D, Bonham LW, Yokoyama JS, Panning B, Benayoun BA, Casaletto KB, Ramani V, Dubal DB. Aging activates escape of the silent X chromosome in the female mouse hippocampus. SCIENCE ADVANCES 2025; 11:eads8169. [PMID: 40043106 PMCID: PMC11881916 DOI: 10.1126/sciadv.ads8169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/31/2024] [Indexed: 03/09/2025]
Abstract
Women live longer than men and exhibit less cognitive aging. The X chromosome contributes to sex differences, as females harbor an inactive X (Xi) and active X (Xa), in contrast to males with only an Xa. Thus, reactivation of silent Xi genes may contribute to sex differences. We use allele-specific, single-nucleus RNA sequencing to show that aging remodels transcription of the Xi and Xa across hippocampal cell types. Aging preferentially changed gene expression on the X's relative to autosomes. Select genes on the Xi underwent activation, with new escape across cells including in the dentate gyrus, critical to learning and memory. Expression of the Xi escapee Plp1, a myelin component, was increased in the aging hippocampus of female mice and parahippocampus of women. AAV-mediated Plp1 elevation in the dentate gyrus of aging male and female mice improved cognition. Understanding how the Xi may confer female advantage could lead to novel targets that counter brain aging and disease in both sexes.
Collapse
Affiliation(s)
- Margaret Gadek
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Cayce K. Shaw
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Rehabilitation Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Samira Abdulai-Saiku
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rowan Saloner
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Francesca Marino
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Dan Wang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Luke W. Bonham
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer S. Yokoyama
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Barbara Panning
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine; USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
- USC Stem Cell Initiative, Los Angeles, CA, USA
| | - Kaitlin B. Casaletto
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Vijay Ramani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, San Francisco, CA, USA
| | - Dena B. Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Rehabilitation Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Das R, Panigrahi GK. Messenger RNA Surveillance: Current Understanding, Regulatory Mechanisms, and Future Implications. Mol Biotechnol 2025; 67:393-409. [PMID: 38411790 DOI: 10.1007/s12033-024-01062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved surveillance mechanism in eukaryotes primarily deployed to ensure RNA quality control by eliminating aberrant transcripts and also involved in modulating the expression of several physiological transcripts. NMD, the mRNA surveillance pathway, is a major form of gene regulation in eukaryotes. NMD serves as one of the most significant quality control mechanisms as it primarily scans the newly synthesized transcripts and differentiates the aberrant and non-aberrant transcripts. The synthesis of truncated proteins is restricted, which would otherwise lead to cellular dysfunctions. The up-frameshift factors (UPFs) play a central role in executing the NMD event, largely by recognizing and recruiting multiple protein factors that result in the decay of non-physiological mRNAs. NMD exhibits astounding variability in its ability across eukaryotes in an array of pathological and physiological contexts. The detailed understanding of NMD and the underlying molecular mechanisms remains blurred. This review outlines our current understanding of NMD, in regulating multifaceted cellular events during development and disease. It also attempts to identify unanswered questions that deserve further investigation.
Collapse
Affiliation(s)
- Rutupurna Das
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| |
Collapse
|
3
|
Behera A, Panigrahi GK, Sahoo A. Nonsense-Mediated mRNA Decay in Human Health and Diseases: Current Understanding, Regulatory Mechanisms and Future Perspectives. Mol Biotechnol 2024:10.1007/s12033-024-01267-7. [PMID: 39264527 DOI: 10.1007/s12033-024-01267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that is conserved across all eukaryotes ensuring the quality of transcripts by targeting messenger RNA (mRNA) harbouring premature stop codons. It regulates the gene expression by targeting aberrant mRNA carrying pre-termination codons (PTCs) and eliminates C-terminal truncated proteins. NMD distinguishes aberrant and non-aberrant transcript by looking after long 3' UTRs and exon-junction complex (EJC) downstream of stop codon that indicate the presence of PTC. Therefore, NMD modulates cellular surveillance and eliminates the truncated proteins but if the PTC escapes the surveillance pathway it can lead to potential negative phenotype resulting in genetic diseases. The alternative splicing also contributes in formation of NMD-sensitive isoforms by introducing PTC. NMD plays a complex role in cancer, it can either aggravate or downregulates the tumour. Some tumours agitate NMD to deteriorate mRNAs encoding tumour suppressor proteins, stress response proteins and neoantigens. In other case, tumours suppress the NMD to encourage the expression of oncoproteins for tumour growth and survival. This mechanism augmented in the development of new therapeutics by PTC read-through mechanism and personalized medicine. Detailed studies on NMD surveillance will possibly lead towards development of strategies for improving human health aligning with United Nations sustainable development goals (SDG 3: Good health and well-being). The potential therapeutic applications of NMD pose a challenge in terms of safe and effective modulation. Understanding the complexities of NMD regulation and its interaction with other cellular processes can lead to the development of new interventions for various diseases.
Collapse
Affiliation(s)
- Amrita Behera
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| | - Annapurna Sahoo
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| |
Collapse
|
4
|
Papadimitriou E, Thomaidou D. Post-transcriptional mechanisms controlling neurogenesis and direct neuronal reprogramming. Neural Regen Res 2024; 19:1929-1939. [PMID: 38227517 DOI: 10.4103/1673-5374.390976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/08/2023] [Indexed: 01/17/2024] Open
Abstract
Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches. A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells towards the neuronal state is achieved due to sophisticated mechanisms of epigenetic, transcriptional, and post-transcriptional regulation. Understanding these neurogenic mechanisms is of major importance, not only for shedding light on very complex and crucial developmental processes, but also for the identification of putative reprogramming factors, that harbor hierarchically central regulatory roles in the course of neurogenesis and bare thus the capacity to drive direct reprogramming towards the neuronal fate. The major transcriptional programs that orchestrate the neurogenic process have been the focus of research for many years and key neurogenic transcription factors, as well as repressor complexes, have been identified and employed in direct reprogramming protocols to convert non-neuronal cells, into functional neurons. The post-transcriptional regulation of gene expression during nervous system development has emerged as another important and intricate regulatory layer, strongly contributing to the complexity of the mechanisms controlling neurogenesis and neuronal function. In particular, recent advances are highlighting the importance of specific RNA binding proteins that control major steps of mRNA life cycle during neurogenesis, such as alternative splicing, polyadenylation, stability, and translation. Apart from the RNA binding proteins, microRNAs, a class of small non-coding RNAs that block the translation of their target mRNAs, have also been shown to play crucial roles in all the stages of the neurogenic process, from neural stem/progenitor cell proliferation, neuronal differentiation and migration, to functional maturation. Here, we provide an overview of the most prominent post-transcriptional mechanisms mediated by RNA binding proteins and microRNAs during the neurogenic process, giving particular emphasis on the interplay of specific RNA binding proteins with neurogenic microRNAs. Taking under consideration that the molecular mechanisms of neurogenesis exert high similarity to the ones driving direct neuronal reprogramming, we also discuss the current advances in in vitro and in vivo direct neuronal reprogramming approaches that have employed microRNAs or RNA binding proteins as reprogramming factors, highlighting the so far known mechanisms of their reprogramming action.
Collapse
|
5
|
Nicolas-Martinez EC, Robinson O, Pflueger C, Gardner A, Corbett MA, Ritchie T, Kroes T, van Eyk CL, Scheffer IE, Hildebrand MS, Barnier JV, Rousseau V, Genevieve D, Haushalter V, Piton A, Denommé-Pichon AS, Bruel AL, Nambot S, Isidor B, Grigg J, Gonzalez T, Ghedia S, Marchant RG, Bournazos A, Wong WK, Webster RI, Evesson FJ, Jones KJ, Cooper ST, Lister R, Gecz J, Jolly LA. RNA variant assessment using transactivation and transdifferentiation. Am J Hum Genet 2024; 111:1673-1699. [PMID: 39084224 PMCID: PMC11339655 DOI: 10.1016/j.ajhg.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Understanding the impact of splicing and nonsense variants on RNA is crucial for the resolution of variant classification as well as their suitability for precision medicine interventions. This is primarily enabled through RNA studies involving transcriptomics followed by targeted assays using RNA isolated from clinically accessible tissues (CATs) such as blood or skin of affected individuals. Insufficient disease gene expression in CATs does however pose a major barrier to RNA based investigations, which we show is relevant to 1,436 Mendelian disease genes. We term these "silent" Mendelian genes (SMGs), the largest portion (36%) of which are associated with neurological disorders. We developed two approaches to induce SMG expression in human dermal fibroblasts (HDFs) to overcome this limitation, including CRISPR-activation-based gene transactivation and fibroblast-to-neuron transdifferentiation. Initial transactivation screens involving 40 SMGs stimulated our development of a highly multiplexed transactivation system culminating in the 6- to 90,000-fold induction of expression of 20/20 (100%) SMGs tested in HDFs. Transdifferentiation of HDFs directly to neurons led to expression of 193/516 (37.4%) of SMGs implicated in neurological disease. The magnitude and isoform diversity of SMG expression following either transactivation or transdifferentiation was comparable to clinically relevant tissues. We apply transdifferentiation and/or gene transactivation combined with short- and long-read RNA sequencing to investigate the impact that variants in USH2A, SCN1A, DMD, and PAK3 have on RNA using HDFs derived from affected individuals. Transactivation and transdifferentiation represent rapid, scalable functional genomic solutions to investigate variants impacting SMGs in the patient cell and genomic context.
Collapse
Affiliation(s)
- Emmylou C Nicolas-Martinez
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Olivia Robinson
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Christian Pflueger
- Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Alison Gardner
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mark A Corbett
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Tarin Ritchie
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Thessa Kroes
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Clare L van Eyk
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - David Genevieve
- Montpellier University, Inserm U1183, Reference Center for Rare Diseases Developmental Anomaly and Malformative Syndromes, Genetics Department, Montpellier Hospital, Montpellier, France
| | - Virginie Haushalter
- Genetic Diagnosis Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Amélie Piton
- Genetic Diagnosis Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Anne-Sophie Denommé-Pichon
- CRMRs "Anomalies du Développement et syndromes malformatifs" et "Déficiences Intellectuelles de causes rares", Centre de Génétique, CHU Dijon, Dijon, France; INSERM UMR1231, GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Ange-Line Bruel
- CRMRs "Anomalies du Développement et syndromes malformatifs" et "Déficiences Intellectuelles de causes rares", Centre de Génétique, CHU Dijon, Dijon, France; INSERM UMR1231, GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Sophie Nambot
- CRMRs "Anomalies du Développement et syndromes malformatifs" et "Déficiences Intellectuelles de causes rares", Centre de Génétique, CHU Dijon, Dijon, France; INSERM UMR1231, GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Bertrand Isidor
- CRMRs "Anomalies du Développement et syndromes malformatifs" et "Déficiences Intellectuelles de causes rares", Centre de Génétique, CHU Dijon, Dijon, France; INSERM UMR1231, GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - John Grigg
- Speciality of Ophthalmology, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia
| | - Tina Gonzalez
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Sondhya Ghedia
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Rhett G Marchant
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia
| | - Adam Bournazos
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Wui-Kwan Wong
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Children's Medical Research Institute, Westmead, NSW 2145, Australia; Department of Paediatric Neurology, Children's Hospital at Westmead, Sydney, NSW 2000, Australia
| | - Richard I Webster
- Department of Paediatric Neurology, Children's Hospital at Westmead, Sydney, NSW 2000, Australia
| | - Frances J Evesson
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Kristi J Jones
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Children's Medical Research Institute, Westmead, NSW 2145, Australia; Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, NSW 2000, Australia
| | - Sandra T Cooper
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Ryan Lister
- Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Jozef Gecz
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia.
| | - Lachlan A Jolly
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
6
|
Lin L, Zhao J, Kubota N, Li Z, Lam YL, Nguyen LP, Yang L, Pokharel SP, Blue SM, Yee BA, Chen R, Yeo GW, Chen CW, Chen L, Zheng S. Epistatic interactions between NMD and TRP53 control progenitor cell maintenance and brain size. Neuron 2024; 112:2157-2176.e12. [PMID: 38697111 PMCID: PMC11446168 DOI: 10.1016/j.neuron.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024]
Abstract
Mutations in human nonsense-mediated mRNA decay (NMD) factors are enriched in neurodevelopmental disorders. We show that deletion of key NMD factor Upf2 in mouse embryonic neural progenitor cells causes perinatal microcephaly but deletion in immature neurons does not, indicating NMD's critical roles in progenitors. Upf2 knockout (KO) prolongs the cell cycle of radial glia progenitor cells, promotes their transition into intermediate progenitors, and leads to reduced upper-layer neurons. CRISPRi screening identified Trp53 knockdown rescuing Upf2KO progenitors without globally reversing NMD inhibition, implying marginal contributions of most NMD targets to the cell cycle defect. Integrated functional genomics shows that NMD degrades selective TRP53 downstream targets, including Cdkn1a, which, without NMD suppression, slow the cell cycle. Trp53KO restores the progenitor cell pool and rescues the microcephaly of Upf2KO mice. Therefore, one physiological role of NMD in the developing brain is to degrade selective TRP53 targets to control progenitor cell cycle and brain size.
Collapse
Affiliation(s)
- Lin Lin
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Jingrong Zhao
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Naoto Kubota
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Zhelin Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Yi-Li Lam
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Lauren P Nguyen
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sheela P Pokharel
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Renee Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA; City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sika Zheng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA; Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
7
|
Abedini SS, Akhavantabasi S, Liang Y, Heng JIT, Alizadehsani R, Dehzangi I, Bauer DC, Alinejad-Rokny H. A critical review of the impact of candidate copy number variants on autism spectrum disorder. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108509. [PMID: 38977176 DOI: 10.1016/j.mrrev.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/14/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder (NDD) influenced by genetic, epigenetic, and environmental factors. Recent advancements in genomic analysis have shed light on numerous genes associated with ASD, highlighting the significant role of both common and rare genetic mutations, as well as copy number variations (CNVs), single nucleotide polymorphisms (SNPs) and unique de novo variants. These genetic variations disrupt neurodevelopmental pathways, contributing to the disorder's complexity. Notably, CNVs are present in 10 %-20 % of individuals with autism, with 3 %-7 % detectable through cytogenetic methods. While the role of submicroscopic CNVs in ASD has been recently studied, their association with genomic loci and genes has not been thoroughly explored. In this review, we focus on 47 CNV regions linked to ASD, encompassing 1632 genes, including protein-coding genes and long non-coding RNAs (lncRNAs), of which 659 show significant brain expression. Using a list of ASD-associated genes from SFARI, we detect 17 regions harboring at least one known ASD-related protein-coding gene. Of the remaining 30 regions, we identify 24 regions containing at least one protein-coding gene with brain-enriched expression and a nervous system phenotype in mouse mutants, and one lncRNA with both brain-enriched expression and upregulation in iPSC to neuron differentiation. This review not only expands our understanding of the genetic diversity associated with ASD but also underscores the potential of lncRNAs in contributing to its etiology. Additionally, the discovered CNVs will be a valuable resource for future diagnostic, therapeutic, and research endeavors aimed at prioritizing genetic variations in ASD.
Collapse
Affiliation(s)
- Seyedeh Sedigheh Abedini
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; School of Biotechnology & Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Shiva Akhavantabasi
- Department of Molecular Biology and Genetics, Yeni Yuzyil University, Istanbul, Turkey; Ghiaseddin Jamshid Kashani University, Andisheh University Town, Danesh Blvd, 3441356611, Abyek, Qazvin, Iran
| | - Yuheng Liang
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Julian Ik-Tsen Heng
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6845, Australia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria, Australia
| | - Iman Dehzangi
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; Department of Computer Science, Rutgers University, Camden, NJ 08102, USA
| | - Denis C Bauer
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, Australia; Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Macquarie Park, Australia
| | - Hamid Alinejad-Rokny
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
8
|
Huang ZA, Liu R, Zhu Z, Tan KC. Multitask Learning for Joint Diagnosis of Multiple Mental Disorders in Resting-State fMRI. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:8161-8175. [PMID: 36459608 DOI: 10.1109/tnnls.2022.3225179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Facing the increasing worldwide prevalence of mental disorders, the symptom-based diagnostic criteria struggle to address the urgent public health concern due to the global shortfall in well-qualified professionals. Thanks to the recent advances in neuroimaging techniques, functional magnetic resonance imaging (fMRI) has surfaced as a new solution to characterize neuropathological biomarkers for detecting functional connectivity (FC) anomalies in mental disorders. However, the existing computer-aided diagnosis models for fMRI analysis suffer from unstable performance on large datasets. To address this issue, we propose an efficient multitask learning (MTL) framework for joint diagnosis of multiple mental disorders using resting-state fMRI data. A novel multiobjective evolutionary clustering algorithm is presented to group regions of interests (ROIs) into different clusters for FC pattern analysis. On the optimal clustering solution, the multicluster multigate mixture-of-expert model is used for the final classification by capturing the highly consistent feature patterns among related diagnostic tasks. Extensive simulation experiments demonstrate that the performance of the proposed framework is superior to that of the other state-of-the-art methods. Moreover, the potential for practical application of the framework is also validated in terms of limited computational resources, real-time analysis, and insufficient training data. The proposed model can identify the remarkable interpretative biomarkers associated with specific mental disorders for clinical interpretation analysis.
Collapse
|
9
|
Yadav P, Tamilselvan R, Mani H, Singh KK. MicroRNA-mediated regulation of nonsense-mediated mRNA decay factors: Insights into microRNA prediction tools and profiling techniques. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195022. [PMID: 38437914 DOI: 10.1016/j.bbagrm.2024.195022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) stands out as a prominent RNA surveillance mechanism within eukaryotes, meticulously overseeing both RNA abundance and integrity by eliminating aberrant transcripts. These defective transcripts are discerned through the concerted efforts of translating ribosomes, eukaryotic release factors (eRFs), and trans-acting NMD factors, with Up-Frameshift 3 (UPF3) serving as a noteworthy component. Remarkably, in humans, UPF3 exists in two paralogous forms, UPF3A (UPF3) and UPF3B (UPF3X). Beyond its role in quality control, UPF3 wields significant influence over critical cellular processes, including neural development, synaptic plasticity, and axon guidance. However, the precise regulatory mechanisms governing UPF3 remain elusive. MicroRNAs (miRNAs) emerge as pivotal post-transcriptional gene regulators, exerting substantial impact on diverse pathological and physiological pathways. This comprehensive review encapsulates our current understanding of the intricate regulatory nexus between NMD and miRNAs, with particular emphasis on the essential role played by UPF3B in neurodevelopment. Additionally, we bring out the significance of the 3'-untranslated region (3'-UTR) as the molecular bridge connecting NMD and miRNA-mediated gene regulation. Furthermore, we provide an in-depth exploration of diverse computational tools tailored for the prediction of potential miRNA targets. To complement these computational approaches, we delineate experimental techniques designed to validate predicted miRNA-mRNA interactions, empowering readers with the knowledge necessary to select the most appropriate methodology for their specific research objectives.
Collapse
Affiliation(s)
- Priyanka Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Raja Tamilselvan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Harita Mani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kusum Kumari Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
10
|
Romano F, Haanpää MK, Pomianowski P, Peraino AR, Pollard JR, Di Feo MF, Traverso M, Severino M, Derchi M, Henzen E, Zara F, Faravelli F, Capra V, Scala M. Expanding the phenotype of UPF3B-related disorder: Case reports and literature review. Am J Med Genet A 2024; 194:e63534. [PMID: 38318947 DOI: 10.1002/ajmg.a.63534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
UPF3B encodes the Regulator of nonsense transcripts 3B protein, a core-member of the nonsense-mediated mRNA decay pathway, protecting the cells from the potentially deleterious actions of transcripts with premature termination codons. Hemizygous variants in the UPF3B gene cause a spectrum of neuropsychiatric issues including intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, and schizophrenia/childhood-onset schizophrenia (COS). The number of patients reported to date is very limited, often lacking an extensive phenotypical and neuroradiological description of this ultra-rare syndrome. Here we report three subjects harboring UPF3B variants, presenting with variable clinical pictures, including cognitive impairment, central hypotonia, and syndromic features. Patients 1 and 2 harbored novel UPF3B variants-the p.(Lys207*) and p.(Asp429Serfs*27) ones, respectively-while the p.(Arg225Lysfs*229) variant, identified in Patient 3, was already reported in the literature. Novel features in our patients are represented by microcephaly, midface hypoplasia, and brain malformations. Then, we reviewed pertinent literature and compared previously reported subjects to our cases, providing possible insights into genotype-phenotype correlations in this emerging condition. Overall, the detailed phenotypic description of three patients carrying UPF3B variants is useful not only to expand the genotypic and phenotypic spectrum of UPF3B-related disorders, but also to ameliorate the clinical management of affected individuals.
Collapse
Affiliation(s)
- Ferruccio Romano
- Clinical Genomics and Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria K Haanpää
- Department of Genomics and Clinical Genetics, Turku University Hospital, Turku, Finland
| | - Pawel Pomianowski
- Center for Medical Genetics and Genomics, Christiana Care Health System, Newark, Delaware, USA
| | - Amanda Rose Peraino
- Center for Medical Genetics and Genomics, Christiana Care Health System, Newark, Delaware, USA
| | - John R Pollard
- Epilepsy Center, Christiana Care Health System, Newark, Delaware, USA
| | - Maria Francesca Di Feo
- Clinical Genomics and Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Genomics and Clinical Genetics, Turku University Hospital, Turku, Finland
- Center for Medical Genetics and Genomics, Christiana Care Health System, Newark, Delaware, USA
- Epilepsy Center, Christiana Care Health System, Newark, Delaware, USA
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Monica Traverso
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | | - Maria Derchi
- Cardiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Edoardo Henzen
- Genomics Facility, Italian Institute of Technology (IIT), Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Francesca Faravelli
- Clinical Genomics and Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Valeria Capra
- Clinical Genomics and Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Scala
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
11
|
Ma Z, Sharma R, Rogers AN. Physiological Consequences of Nonsense-Mediated Decay and Its Role in Adaptive Responses. Biomedicines 2024; 12:1110. [PMID: 38791071 PMCID: PMC11117581 DOI: 10.3390/biomedicines12051110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The evolutionarily conserved nonsense-mediated mRNA decay (NMD) pathway is a quality control mechanism that degrades aberrant mRNA containing one or more premature termination codons (PTCs). Recent discoveries indicate that NMD also differentially regulates mRNA from wild-type protein-coding genes despite lacking PTCs. Together with studies showing that NMD is involved in development and adaptive responses that influence health and longevity, these findings point to an expanded role of NMD that adds a new layer of complexity in the post-transcriptional regulation of gene expression. However, the extent of its control, whether different types of NMD play different roles, and the resulting physiological outcomes remain unclear and need further elucidation. Here, we review different branches of NMD and what is known of the physiological outcomes associated with this type of regulation. We identify significant gaps in the understanding of this process and the utility of genetic tools in accelerating progress in this area.
Collapse
Affiliation(s)
- Zhengxin Ma
- MDI Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Ratna Sharma
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA;
| | | |
Collapse
|
12
|
Lee MK, Azizgolshani N, Shapiro JA, Nguyen LN, Kolling FW, Zanazzi GJ, Frost HR, Christensen BC. Identifying tumor type and cell type-specific gene expression alterations in pediatric central nervous system tumors. Nat Commun 2024; 15:3634. [PMID: 38688897 PMCID: PMC11061189 DOI: 10.1038/s41467-024-47712-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
Central nervous system (CNS) tumors are the leading cause of pediatric cancer death, and these patients have an increased risk for developing secondary neoplasms. Due to the low prevalence of pediatric CNS tumors, major advances in targeted therapies have been lagging compared to other adult tumors. We collect single nuclei RNA-seq data from 84,700 nuclei of 35 pediatric CNS tumors and three non-tumoral pediatric brain tissues and characterize tumor heterogeneity and transcriptomic alterations. We distinguish cell subpopulations associated with specific tumor types including radial glial cells in ependymomas and oligodendrocyte precursor cells in astrocytomas. In tumors, we observe pathways important in neural stem cell-like populations, a cell type previously associated with therapy resistance. Lastly, we identify transcriptomic alterations among pediatric CNS tumor types compared to non-tumor tissues, while accounting for cell type effects on gene expression. Our results suggest potential tumor type and cell type-specific targets for pediatric CNS tumor treatment. Here we address current gaps in understanding single nuclei gene expression profiles of previously under-investigated tumor types and enhance current knowledge of gene expression profiles of single cells of various pediatric CNS tumors.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Nasim Azizgolshani
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Joshua A Shapiro
- Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Bala Cynwyd, PA, USA
| | - Lananh N Nguyen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | - George J Zanazzi
- Dartmouth Cancer Center, Lebanon, NH, USA
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Hildreth Robert Frost
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
13
|
D'Incal C, Van Dijck A, Ibrahim J, De Man K, Bastini L, Konings A, Elinck E, Theys C, Gozes I, Marusic Z, Anicic M, Vukovic J, Van der Aa N, Mateiu L, Vanden Berghe W, Kooy RF. ADNP dysregulates methylation and mitochondrial gene expression in the cerebellum of a Helsmoortel-Van der Aa syndrome autopsy case. Acta Neuropathol Commun 2024; 12:62. [PMID: 38637827 PMCID: PMC11027339 DOI: 10.1186/s40478-024-01743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/11/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Helsmoortel-Van der Aa syndrome is a neurodevelopmental disorder in which patients present with autism, intellectual disability, and frequent extra-neurological features such as feeding and gastrointestinal problems, visual impairments, and cardiac abnormalities. All patients exhibit heterozygous de novo nonsense or frameshift stop mutations in the Activity-Dependent Neuroprotective Protein (ADNP) gene, accounting for a prevalence of 0.2% of all autism cases worldwide. ADNP fulfills an essential chromatin remodeling function during brain development. In this study, we investigated the cerebellum of a died 6-year-old male patient with the c.1676dupA/p.His559Glnfs*3 ADNP mutation. RESULTS The clinical presentation of the patient was representative of the Helsmoortel-Van der Aa syndrome. During his lifespan, he underwent two liver transplantations after which the child died because of multiple organ failure. An autopsy was performed, and various tissue samples were taken for further analysis. We performed a molecular characterization of the cerebellum, a brain region involved in motor coordination, known for its highest ADNP expression and compared it to an age-matched control subject. Importantly, epigenome-wide analysis of the ADNP cerebellum identified CpG methylation differences and expression of multiple pathways causing neurodevelopmental delay. Interestingly, transcription factor motif enrichment analysis of differentially methylated genes showed that the ADNP binding motif was the most significantly enriched. RNA sequencing of the autopsy brain further identified downregulation of the WNT signaling pathway and autophagy defects as possible causes of neurodevelopmental delay. Ultimately, label-free quantification mass spectrometry identified differentially expressed proteins involved in mitochondrial stress and sirtuin signaling pathways amongst others. Protein-protein interaction analysis further revealed a network including chromatin remodelers (ADNP, SMARCC2, HDAC2 and YY1), autophagy-related proteins (LAMP1, BECN1 and LC3) as well as a key histone deacetylating enzyme SIRT1, involved in mitochondrial energy metabolism. The protein interaction of ADNP with SIRT1 was further biochemically validated through the microtubule-end binding proteins EB1/EB3 by direct co-immunoprecipitation in mouse cerebellum, suggesting important mito-epigenetic crosstalk between chromatin remodeling and mitochondrial energy metabolism linked to autophagy stress responses. This is further supported by mitochondrial activity assays and stainings in patient-derived fibroblasts which suggest mitochondrial dysfunctions in the ADNP deficient human brain. CONCLUSION This study forms the baseline clinical and molecular characterization of an ADNP autopsy cerebellum, providing novel insights in the disease mechanisms of the Helsmoortel-Van der Aa syndrome. By combining multi-omic and biochemical approaches, we identified a novel SIRT1-EB1/EB3-ADNP protein complex which may contribute to autophagic flux alterations and impaired mitochondrial metabolism in the Helsmoortel-Van der Aa syndrome and holds promise as a new therapeutic target.
Collapse
Affiliation(s)
- Claudio D'Incal
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
- Family Medicine and Population Health (FAMPOP), Department of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Joe Ibrahim
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Kevin De Man
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Lina Bastini
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Anthony Konings
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Ellen Elinck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Claudia Theys
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical & Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Zlatko Marusic
- Clinical Department of Pathology and Cytology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Mirna Anicic
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Jurica Vukovic
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nathalie Van der Aa
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Ligia Mateiu
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium.
| |
Collapse
|
14
|
Bhattacharjee R, Jolly LA, Corbett MA, Wee IC, Rao SR, Gardner AE, Ritchie T, van Hugte EJH, Ciptasari U, Piltz S, Noll JE, Nazri N, van Eyk CL, White M, Fornarino D, Poulton C, Baynam G, Collins-Praino LE, Snel MF, Nadif Kasri N, Hemsley KM, Thomas PQ, Kumar R, Gecz J. Compromised transcription-mRNA export factor THOC2 causes R-loop accumulation, DNA damage and adverse neurodevelopment. Nat Commun 2024; 15:1210. [PMID: 38331934 PMCID: PMC10853216 DOI: 10.1038/s41467-024-45121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.
Collapse
Affiliation(s)
- Rudrarup Bhattacharjee
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Lachlan A Jolly
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mark A Corbett
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ing Chee Wee
- Discipline of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sushma R Rao
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Proteomics, Metabolomics and MS-imaging Core Facility, South Australian Health and Medical Research Institute, and Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Alison E Gardner
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tarin Ritchie
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Eline J H van Hugte
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Ummi Ciptasari
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Sandra Piltz
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Jacqueline E Noll
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide and Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Nazzmer Nazri
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Clare L van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Melissa White
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Dani Fornarino
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cathryn Poulton
- Undiagnosed Diseases Program, Genetic Services of WA, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
| | - Gareth Baynam
- Undiagnosed Diseases Program, Genetic Services of WA, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
- Rare Care Centre, Perth Children's Hospital, Nedlands, WA, 6009, Australia
| | - Lyndsey E Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Marten F Snel
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Proteomics, Metabolomics and MS-imaging Core Facility, South Australian Health and Medical Research Institute, and Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Kim M Hemsley
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Paul Q Thomas
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Raman Kumar
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
15
|
Malone TJ, Wu J, Zhang Y, Licznerski P, Chen R, Nahiyan S, Pedram M, Jonas EA, Kaczmarek LK. Neuronal potassium channel activity triggers initiation of mRNA translation through binding of translation regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579306. [PMID: 38370631 PMCID: PMC10871293 DOI: 10.1101/2024.02.07.579306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Neuronal activity stimulates mRNA translation crucial for learning and development. While FMRP (Fragile X Mental Retardation Protein) and CYFIP1 (Cytoplasmic FMR1 Interacting Protein 1) regulate translation, the mechanism linking translation to neuronal activity is not understood. We now find that translation is stimulated when FMRP and CYFIP1 translocate to the potassium channel Slack (KCNT1, Slo2.2). When Slack is activated, both factors are released from eIF4E (Eukaryotic Initiation Factor 4E), where they normally inhibit translation initiation. A constitutively active Slack mutation and pharmacological stimulation of the wild-type channel both increase binding of FMRP and CYFIP1 to the channel, enhancing the translation of a reporter for β-actin mRNA in cell lines and the synthesis of β-actin in neuronal dendrites. Slack activity-dependent translation is abolished when both FMRP and CYFIP1 expression are suppressed. The effects of Slack mutations on activity-dependent translation may explain the severe intellectual disability produced by these mutations in humans. HIGHLIGHTS Activation of Slack channels triggers translocation of the FMRP/CYFIP1 complexSlack channel activation regulates translation initiation of a β-actin reporter constructA Slack gain-of-function mutation increases translation of β-actin reporter construct and endogenous cortical β-actinFMRP and CYFIP1 are required for Slack activity-dependent translation. IN BRIEF Malone et al . show that the activation of Slack channels triggers translocation of the FMRP/CYFIP1 complex from the translation initiation factor eIF4E to the channel. This translocation releases eIF4E and stimulates mRNA translation of a reporter for β-actin and cortical β-actin mRNA, elucidating the mechanism that connects neuronal activity with translational regulation.
Collapse
|
16
|
Courraud J, Engel C, Quartier A, Drouot N, Houessou U, Plassard D, Sorlin A, Brischoux-Boucher E, Gouy E, Van Maldergem L, Rossi M, Lesca G, Edery P, Putoux A, Bilan F, Gilbert-Dussardier B, Atallah I, Kalscheuer VM, Mandel JL, Piton A. Molecular consequences of PQBP1 deficiency, involved in the X-linked Renpenning syndrome. Mol Psychiatry 2024; 29:287-296. [PMID: 38030819 DOI: 10.1038/s41380-023-02323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
Mutations in the PQBP1 gene (polyglutamine-binding protein-1) are responsible for a syndromic X-linked form of neurodevelopmental disorder (XL-NDD) with intellectual disability (ID), named Renpenning syndrome. PQBP1 encodes a protein involved in transcriptional and post-transcriptional regulation of gene expression. To investigate the consequences of PQBP1 loss, we used RNA interference to knock-down (KD) PQBP1 in human neural stem cells (hNSC). We observed a decrease of cell proliferation, as well as the deregulation of the expression of 58 genes, comprising genes encoding proteins associated with neurodegenerative diseases, playing a role in mRNA regulation or involved in innate immunity. We also observed an enrichment of genes involved in other forms of NDD (CELF2, APC2, etc). In particular, we identified an increase of a non-canonical isoform of another XL-NDD gene, UPF3B, an actor of nonsense mRNA mediated decay (NMD). This isoform encodes a shorter protein (UPF3B_S) deprived from the domains binding NMD effectors, however no notable change in NMD was observed after PQBP1-KD in fibroblasts containing a premature termination codon. We showed that short non-canonical and long canonical UPF3B isoforms have different interactomes, suggesting they could play distinct roles. The link between PQBP1 loss and increase of UPF3B_S expression was confirmed in mRNA obtained from patients with pathogenic variants in PQBP1, particularly pronounced for truncating variants and missense variants located in the C-terminal domain. We therefore used it as a molecular marker of Renpenning syndrome, to test the pathogenicity of variants of uncertain clinical significance identified in PQPB1 in individuals with NDD, using patient blood mRNA and HeLa cells expressing wild-type or mutant PQBP1 cDNA. We showed that these different approaches were efficient to prove a functional effect of variants in the C-terminal domain of the protein. In conclusion, our study provided information on the pathological mechanisms involved in Renpenning syndrome, but also allowed the identification of a biomarker of PQBP1 deficiency useful to test variant effect.
Collapse
Affiliation(s)
- Jérémie Courraud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Camille Engel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Angélique Quartier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Ursula Houessou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Damien Plassard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Arthur Sorlin
- National Center of Genetics, Laboratoire national de santé, Dudelange, Luxembourg
| | - Elise Brischoux-Boucher
- Centre de Génétique Humaine, CHU Besançon, Université de Franche-Comté, 25056, Besançon, France
| | - Evan Gouy
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
| | - Lionel Van Maldergem
- Centre de Génétique Humaine, CHU Besançon, Université de Franche-Comté, 25056, Besançon, France
| | - Massimiliano Rossi
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
- Equipe GENDEV, CRNL, Inserm U1028, CNRS UMR 5292, UCB Lyon1, Illkirch, France
| | - Gaetan Lesca
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
- Equipe GENDEV, CRNL, Inserm U1028, CNRS UMR 5292, UCB Lyon1, Illkirch, France
| | - Patrick Edery
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
- Equipe GENDEV, CRNL, Inserm U1028, CNRS UMR 5292, UCB Lyon1, Illkirch, France
| | - Audrey Putoux
- Genetics Department, University Hospital of Lyon, Bron, 69500, France
- Equipe GENDEV, CRNL, Inserm U1028, CNRS UMR 5292, UCB Lyon1, Illkirch, France
| | - Frederic Bilan
- Service de génétique médicale, CHU de Poitiers, 86 000, Poitiers, France
| | | | - Isis Atallah
- Department of Medical Genetics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 67 400, Illkirch, France
| | - Amélie Piton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.
- Université de Strasbourg, 67 400, Illkirch, France.
- Genetic diagnosis laboratory, Strasbourg University Hospital, 67 090, Strasbourg, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
17
|
Monaghan L, Longman D, Cáceres JF. Translation-coupled mRNA quality control mechanisms. EMBO J 2023; 42:e114378. [PMID: 37605642 PMCID: PMC10548175 DOI: 10.15252/embj.2023114378] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
mRNA surveillance pathways are essential for accurate gene expression and to maintain translation homeostasis, ensuring the production of fully functional proteins. Future insights into mRNA quality control pathways will enable us to understand how cellular mRNA levels are controlled, how defective or unwanted mRNAs can be eliminated, and how dysregulation of these can contribute to human disease. Here we review translation-coupled mRNA quality control mechanisms, including the non-stop and no-go mRNA decay pathways, describing their mechanisms, shared trans-acting factors, and differences. We also describe advances in our understanding of the nonsense-mediated mRNA decay (NMD) pathway, highlighting recent mechanistic findings, the discovery of novel factors, as well as the role of NMD in cellular physiology and its impact on human disease.
Collapse
Affiliation(s)
- Laura Monaghan
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Dasa Longman
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
18
|
Petrić Howe M, Patani R. Nonsense-mediated mRNA decay in neuronal physiology and neurodegeneration. Trends Neurosci 2023; 46:879-892. [PMID: 37543480 DOI: 10.1016/j.tins.2023.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/19/2023] [Accepted: 07/09/2023] [Indexed: 08/07/2023]
Abstract
The processes of mRNA export from the nucleus and subsequent mRNA translation in the cytoplasm are of particular relevance in eukaryotic cells. In highly polarised cells such as neurons, finely-tuned molecular regulation of these processes serves to safeguard the spatiotemporal fidelity of gene expression. Nonsense-mediated mRNA decay (NMD) is a cytoplasmic translation-dependent quality control process that regulates gene expression in a wide range of scenarios in the nervous system, including neurodevelopment, learning, and memory formation. Moreover, NMD dysregulation has been implicated in a broad range of neurodevelopmental and neurodegenerative disorders. We discuss how NMD and related aspects of mRNA translation regulate key neuronal functions and, in particular, we focus on evidence implicating these processes in the molecular pathogenesis of neurodegeneration. Finally, we discuss the therapeutic potential and challenges of targeting mRNA translation and NMD across the spectrum of largely untreatable neurological diseases.
Collapse
Affiliation(s)
- Marija Petrić Howe
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London (UCL), Queen Square, WC1N 3BG London, UK.
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London (UCL), Queen Square, WC1N 3BG London, UK.
| |
Collapse
|
19
|
Hsieh MC, Lai CY, Yeh CM, Yang PS, Cheng JK, Wang HH, Lin KH, Nie ST, Lin TB, Peng HY. Phosphorylated Upstream Frameshift 1-dependent Nonsense-mediated μ-Opioid Receptor mRNA Decay in the Spinal Cord Contributes to the Development of Neuropathic Allodynia-like Behavior in Rats. Anesthesiology 2023; 138:634-655. [PMID: 36867667 DOI: 10.1097/aln.0000000000004550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND Nonsense-mediated messenger RNA (mRNA) decay increases targeted mRNA degradation and has been implicated in the regulation of gene expression in neurons. The authors hypothesized that nonsense-mediated μ-opioid receptor mRNA decay in the spinal cord is involved in the development of neuropathic allodynia-like behavior in rats. METHODS Adult Sprague-Dawley rats of both sexes received spinal nerve ligation to induce neuropathic allodynia-like behavior. The mRNA and protein expression contents in the dorsal horn of animals were measured by biochemical analyses. Nociceptive behaviors were evaluated by the von Frey test and the burrow test. RESULTS On Day 7, spinal nerve ligation significantly increased phosphorylated upstream frameshift 1 (UPF1) expression in the dorsal horn (mean ± SD; 0.34 ± 0.19 in the sham ipsilateral group vs. 0.88 ± 0.15 in the nerve ligation ipsilateral group; P < 0.001; data in arbitrary units) and drove allodynia-like behaviors in rats (10.58 ± 1.72 g in the sham ipsilateral group vs. 1.19 ± 0.31 g in the nerve ligation ipsilateral group, P < 0.001). No sex-based differences were found in either Western blotting or behavior tests in rats. Eukaryotic translation initiation factor 4A3 (eIF4A3) triggered SMG1 kinase (0.06 ± 0.02 in the sham group vs. 0.20 ± 0.08 in the nerve ligation group, P = 0.005, data in arbitrary units)-mediated UPF1 phosphorylation, leading to increased nonsense-mediated mRNA decay factor SMG7 binding and µ-opioid receptor mRNA degradation (0.87 ± 0.11-fold in the sham group vs. 0.50 ± 0.11-fold in the nerve ligation group, P = 0.002) in the dorsal horn of the spinal cord after spinal nerve ligation. Pharmacologic or genetic inhibition of this signaling pathway in vivo ameliorated allodynia-like behaviors after spinal nerve ligation. CONCLUSIONS This study suggests that phosphorylated UPF1-dependent nonsense-mediated μ-opioid receptor mRNA decay is involved in the pathogenesis of neuropathic pain. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung, Taiwan; Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Po-Sheng Yang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Siao-Tong Nie
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan; Institute of New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
20
|
Valcarce DG, Riesco MF, Cuesta-Martín L, Esteve-Codina A, Martínez-Vázquez JM, Robles V. Stress decreases spermatozoa quality and induces molecular alterations in zebrafish progeny. BMC Biol 2023; 21:70. [PMID: 37013516 PMCID: PMC10071778 DOI: 10.1186/s12915-023-01570-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Chronic stress can produce a severe negative impact on health not only in the exposed individuals but also in their offspring. Indeed, chronic stress may be contributing to the current worldwide scenario of increasing infertility and decreasing gamete quality in human populations. Here, we evaluate the effect of chronic stress on behavior and male reproductive parameters in zebrafish. Our goal is to provide information on the impact that chronic stress has at molecular, histological, and physiological level in a vertebrate model species. RESULTS We evaluated the effects of a 21-day chronic stress protocol covering around three full waves of spermatogenesis in Danio rerio adult males. The induction of chronic stress produced anxiety-like behavior in stressed males as assessed by a novel tank test. At a molecular level, the induction of chronic stress consistently resulted in the overexpression of two genes related to endoplasmic reticulum (ER) stress in the brain. Gene set enrichment analysis (GSEA) of testes suggested a dysregulation of the nonsense-mediated decay (NMD) pathway, which was also confirmed on qPCR analysis. Histological analysis of the testicle did not show significant differences in terms of the relative proportions of each germ-cell type; however, the quality of sperm from stressed males was compromised in terms of motility. RNA-seq analysis in stress-derived larval progenies revealed molecular alterations, including those predicted to affect translation initiation, DNA repair, cell cycle control, and response to stress. CONCLUSIONS Induction of chronic stress during a few cycles of spermatogenesis in the vertebrate zebrafish model affects behavior, gonadal gene expression, final gamete quality, and progeny. The NMD surveillance pathway (a key cellular mechanism that regulates the stability of both normal and mutant transcripts) is severely affected in the testes by chronic stress and therefore the control and regulation of RNAs during spermatogenesis may be affected altering the molecular status in the progeny.
Collapse
Affiliation(s)
- David G Valcarce
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander (COST-IEO), CSIC, Calle Severiano Ballesteros 16. 39004, Santander, Spain
| | - Marta F Riesco
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Leyre Cuesta-Martín
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Juan Manuel Martínez-Vázquez
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander (COST-IEO), CSIC, Calle Severiano Ballesteros 16. 39004, Santander, Spain
| | - Vanesa Robles
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| |
Collapse
|
21
|
Lehtiniemi T, Bourgery M, Ma L, Ahmedani A, Mäkelä M, Asteljoki J, Olotu O, Laasanen S, Zhang FP, Tan K, Chousal JN, Burow D, Koskinen S, Laiho A, Elo L, Chalmel F, Wilkinson M, Kotaja N. SMG6 localizes to the chromatoid body and shapes the male germ cell transcriptome to drive spermatogenesis. Nucleic Acids Res 2022; 50:11470-11491. [PMID: 36259644 PMCID: PMC9723633 DOI: 10.1093/nar/gkac900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 12/24/2022] Open
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA turnover pathway that depends on the endonuclease SMG6. Here, we show that SMG6 is essential for male germ cell differentiation in mice. Germ-cell conditional knockout (cKO) of Smg6 induces extensive transcriptome misregulation, including a failure to eliminate meiotically expressed transcripts in early haploid cells, and accumulation of NMD target mRNAs with long 3' untranslated regions (UTRs). Loss of SMG6 in the male germline results in complete arrest of spermatogenesis at the early haploid cell stage. We find that SMG6 is strikingly enriched in the chromatoid body (CB), a specialized cytoplasmic granule in male germ cells also harboring PIWI-interacting RNAs (piRNAs) and the piRNA-binding protein PIWIL1. This raises the possibility that SMG6 and the piRNA pathway function together, which is supported by several findings, including that Piwil1-KO mice phenocopy Smg6-cKO mice and that SMG6 and PIWIL1 co-regulate many genes in round spermatids. Together, our results demonstrate that SMG6 is an essential regulator of the male germline transcriptome, and highlight the CB as a molecular platform coordinating RNA regulatory pathways to control sperm production and fertility.
Collapse
Affiliation(s)
- Tiina Lehtiniemi
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Matthieu Bourgery
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Lin Ma
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Ammar Ahmedani
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Margareeta Mäkelä
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Juho Asteljoki
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Opeyemi Olotu
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Samuli Laasanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Fu-Ping Zhang
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- GM-Unit, Helsinki Institute of Life Science, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer N Chousal
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Dana Burow
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Satu Koskinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Frédéric Chalmel
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine (IGM), University of California, San Diego, La Jolla, CA 92093, USA
| | - Noora Kotaja
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| |
Collapse
|
22
|
Chousal JN, Sohni A, Vitting-Seerup K, Cho K, Kim M, Tan K, Porse B, Wilkinson MF, Cook-Andersen H. Progression of the pluripotent epiblast depends upon the NMD factor UPF2. Development 2022; 149:dev200764. [PMID: 36255229 PMCID: PMC9687065 DOI: 10.1242/dev.200764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that degrades RNAs harboring in-frame stop codons in specific contexts. Loss of NMD factors leads to embryonic lethality in organisms spanning the phylogenetic scale, but the mechanism remains unknown. Here, we report that the core NMD factor, UPF2, is required for expansion of epiblast cells within the inner cell mass of mice in vivo. We identify NMD target mRNAs in mouse blastocysts - both canonical and alternatively processed mRNAs - including those encoding cell cycle arrest and apoptosis factors, raising the possibility that NMD is essential for embryonic cell proliferation and survival. In support, the inner cell mass of Upf2-null blastocysts rapidly regresses with outgrowth and is incompetent for embryonic stem cell derivation in vitro. In addition, we uncovered concordant temporal- and lineage-specific regulation of NMD factors and mRNA targets, indicative of a shift in NMD magnitude during peri-implantation development. Together, our results reveal developmental and molecular functions of the NMD pathway in the early embryo.
Collapse
Affiliation(s)
- Jennifer N. Chousal
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Abhishek Sohni
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kristoffer Vitting-Seerup
- The Bioinformatics Centre, Department of Biology and Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
- Section for Bioinformatics, Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Kyucheol Cho
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew Kim
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun Tan
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bo Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Miles F. Wilkinson
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Jia X, Zhang S, Tan S, Du B, He M, Qin H, Chen J, Duan X, Luo J, Chen F, Ouyang L, Wang J, Chen G, Yu B, Zhang G, Zhang Z, Lyu Y, Huang Y, Jiao J, Chen JY(H, Swoboda KJ, Agolini E, Novelli A, Leoni C, Zampino G, Cappuccio G, Brunetti-Pierri N, Gerard B, Ginglinger E, Richer J, McMillan H, White-Brown A, Hoekzema K, Bernier RA, Kurtz-Nelson EC, Earl RK, Meddens C, Alders M, Fuchs M, Caumes R, Brunelle P, Smol T, Kuehl R, Day-Salvatore DL, Monaghan KG, Morrow MM, Eichler EE, Hu Z, Yuan L, Tan J, Xia K, Shen Y, Guo H. De novo variants in genes regulating stress granule assembly associate with neurodevelopmental disorders. SCIENCE ADVANCES 2022; 8:eabo7112. [PMID: 35977029 PMCID: PMC9385150 DOI: 10.1126/sciadv.abo7112] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/06/2022] [Indexed: 05/25/2023]
Abstract
Stress granules (SGs) are cytoplasmic assemblies in response to a variety of stressors. We report a new neurodevelopmental disorder (NDD) with common features of language problems, intellectual disability, and behavioral issues caused by de novo likely gene-disruptive variants in UBAP2L, which encodes an essential regulator of SG assembly. Ubap2l haploinsufficiency in mouse led to social and cognitive impairments accompanied by disrupted neurogenesis and reduced SG formation during early brain development. On the basis of data from 40,853 individuals with NDDs, we report a nominally significant excess of de novo variants within 29 genes that are not implicated in NDDs, including 3 essential genes (G3BP1, G3BP2, and UBAP2L) in the core SG interaction network. We validated that NDD-related de novo variants in newly implicated and known NDD genes, such as CAPRIN1, disrupt the interaction of the core SG network and interfere with SG formation. Together, our findings suggest the common SG pathology in NDDs.
Collapse
Affiliation(s)
- Xiangbin Jia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Shujie Zhang
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Senwei Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Bing Du
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Mei He
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Hunan, China
| | - Haisong Qin
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Jia Chen
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Xinyu Duan
- Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Fei Chen
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Luping Ouyang
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Guodong Chen
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Bin Yu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Ge Zhang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Zimin Zhang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Yongqing Lyu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Yi Huang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Jian Jiao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Jin Yun (Helen) Chen
- Massachusetts General Hospital Neurogenetics Unit, Department of Neurology, Massachusetts General Brigham, Boston, MA 02114, USA
| | - Kathryn J. Swoboda
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome 00165, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome 00165, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome 00168, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome 00168, Italy
- Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, Rome 00168, Italy
- Fondazione Policlinico Universitario Agostino Gemelli Dipartimento Scienze della Salute della Donna e del Bambino, Rome, Italy
- Università Cattolica S. Cuore, Dipartimento Scienze della Vita e Sanità Pubblica, Rome, Italy
| | - Gerarda Cappuccio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
| | - Benedicte Gerard
- Institut de Génétique Médicale d’Alsace (IGMA), Laboratoire de Diagnostic Génétique, Hôpitaux universitaires de Strasbourg, Strasbourg, Alsace, France
| | | | - Julie Richer
- Department of Medical Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Hugh McMillan
- Department of Pediatrics, Neurology and Neurosurgery, Montreal Children’s Hospital, McGill University, Montreal, Canada
| | - Alexandre White-Brown
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Rachel K. Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Claartje Meddens
- Amsterdam University Medical Center, Department of Clinical Genetics, Amsterdam, Netherlands
- University Medical Center Utrecht, Department of Paediatrics, Utrecht, Netherlands
| | - Marielle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | - Roseline Caumes
- CHU Lille, Clinique de Génétique, Guy Fontaine, F-59000 Lille, France
| | - Perrine Brunelle
- Institut de Génétique Médicale, Université de Lille, ULR7364 RADEME, CHU Lille, F-59000 Lille, France
| | - Thomas Smol
- Institut de Génétique Médicale, Université de Lille, ULR7364 RADEME, CHU Lille, F-59000 Lille, France
| | - Ryan Kuehl
- Department of Medical Genetics and Genomic Medicine, Saint Peter’s University Hospital, New Brunswick, NJ 08901, USA
| | - Debra-Lynn Day-Salvatore
- Department of Medical Genetics and Genomic Medicine, Saint Peter’s University Hospital, New Brunswick, NJ 08901, USA
| | | | | | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Ling Yuan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Jieqiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
- CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Chinese Academy of Sciences, Shanghai 200000, China
- Hengyang Medical School, University of South China, Hengyang, China
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hui Guo
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University; Changsha, Hunan 410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan 410078, China
| |
Collapse
|
24
|
Malone TJ, Kaczmarek LK. The role of altered translation in intellectual disability and epilepsy. Prog Neurobiol 2022; 213:102267. [PMID: 35364140 PMCID: PMC10583652 DOI: 10.1016/j.pneurobio.2022.102267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
A very high proportion of cases of intellectual disability are genetic in origin and are associated with the occurrence of epileptic seizures during childhood. These two disorders together effect more than 5% of the world's population. One feature linking the two diseases is that learning and memory require the synthesis of new synaptic components and ion channels, while maintenance of overall excitability also requires synthesis of similar proteins in response to altered neuronal stimulation. Many of these disorders result from mutations in proteins that regulate mRNA processing, translation initiation, translation elongation, mRNA stability or upstream translation modulators. One theme that emerges on reviewing this field is that mutations in proteins that regulate changes in translation following neuronal stimulation are more likely to result in epilepsy with intellectual disability than general translation regulators with no known role in activity-dependent changes. This is consistent with the notion that activity-dependent translation in neurons differs from that in other cells types in that the changes in local cellular composition, morphology and connectivity that occur generally in response to stimuli are directly coupled to local synaptic activity and persist for months or years after the original stimulus.
Collapse
Affiliation(s)
- Taylor J Malone
- Departments of Pharmacology, and of Cellular & Molecular Physiology, Yale University, 333 Cedar Street B-309, New Haven, CT 06520, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology, and of Cellular & Molecular Physiology, Yale University, 333 Cedar Street B-309, New Haven, CT 06520, USA.
| |
Collapse
|
25
|
Wallmeroth D, Lackmann JW, Kueckelmann S, Altmüller J, Dieterich C, Boehm V, Gehring NH. Human UPF3A and UPF3B enable fault-tolerant activation of nonsense-mediated mRNA decay. EMBO J 2022; 41:e109191. [PMID: 35451084 PMCID: PMC9108619 DOI: 10.15252/embj.2021109191] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
The paralogous human proteins UPF3A and UPF3B are involved in recognizing mRNAs targeted by nonsense‐mediated mRNA decay (NMD). UPF3B has been demonstrated to support NMD, presumably by bridging an exon junction complex (EJC) to the NMD factor UPF2. The role of UPF3A has been described either as a weak NMD activator or an NMD inhibitor. Here, we present a comprehensive functional analysis of UPF3A and UPF3B in human cells using combinatory experimental approaches. Overexpression or knockout of UPF3A as well as knockout of UPF3B did not substantially change global NMD activity. In contrast, the co‐depletion of UPF3A and UPF3B resulted in a marked NMD inhibition and a transcriptome‐wide upregulation of NMD substrates, demonstrating a functional redundancy between both NMD factors. In rescue experiments, UPF2 or EJC binding‐deficient UPF3B largely retained NMD activity. However, combinations of different mutants, including deletion of the middle domain, showed additive or synergistic effects and therefore failed to maintain NMD. Collectively, UPF3A and UPF3B emerge as fault‐tolerant, functionally redundant NMD activators in human cells.
Collapse
Affiliation(s)
- Damaris Wallmeroth
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | - Sabrina Kueckelmann
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
26
|
The Physiological Roles of the Exon Junction Complex in Development and Diseases. Cells 2022; 11:cells11071192. [PMID: 35406756 PMCID: PMC8997533 DOI: 10.3390/cells11071192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 01/12/2023] Open
Abstract
The exon junction complex (EJC) becomes an increasingly important regulator of early gene expression in the central nervous system (CNS) and other tissues. The EJC is comprised of three core proteins: RNA-binding motif 8A (RBM8A), Mago homolog (MAGOH), eukaryotic initiation factor 4A3 (EIF4A3), and a peripheral EJC factor, metastatic lymph node 51 (MLN51), together with various auxiliary factors. The EJC is assembled specifically at exon-exon junctions on mRNAs, hence the name of the complex. The EJC regulates multiple levels of gene expression, from splicing to translation and mRNA degradation. The functional roles of the EJC have been established as crucial to the normal progress of embryonic and neurological development, with wide ranging implications on molecular, cellular, and organism level function. Dysfunction of the EJC has been implicated in multiple developmental and neurological diseases. In this review, we discuss recent progress on the EJC’s physiological roles.
Collapse
|
27
|
Marques AR, Santos JX, Martiniano H, Vilela J, Rasga C, Romão L, Vicente AM. Gene Variants Involved in Nonsense-Mediated mRNA Decay Suggest a Role in Autism Spectrum Disorder. Biomedicines 2022; 10:biomedicines10030665. [PMID: 35327467 PMCID: PMC8945030 DOI: 10.3390/biomedicines10030665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental condition with unclear etiology. Many genes have been associated with ASD risk, but the underlying mechanisms are still poorly understood. An important post-transcriptional regulatory mechanism that plays an essential role during neurodevelopment, the Nonsense-Mediated mRNA Decay (NMD) pathway, may contribute to ASD risk. In this study, we gathered a list of 46 NMD factors and regulators and investigated the role of genetic variants in these genes in ASD. By conducting a comprehensive search for Single Nucleotide Variants (SNVs) in NMD genes using Whole Exome Sequencing data from 1828 ASD patients, we identified 270 SNVs predicted to be damaging in 28.7% of the population. We also analyzed Copy Number Variants (CNVs) from two cohorts of ASD patients (N = 3570) and discovered 38 CNVs in 1% of cases. Importantly, we discovered 136 genetic variants (125 SNVs and 11 CNVs) in 258 ASD patients that were located within protein domains required for NMD. These gene variants are classified as damaging using in silico prediction tools, and therefore may interfere with proper NMD function in ASD. The discovery of NMD genes as candidates for ASD in large patient genomic datasets provides evidence supporting the involvement of the NMD pathway in ASD pathophysiology.
Collapse
Affiliation(s)
- Ana Rita Marques
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (A.R.M.); (J.X.S.); (H.M.); (J.V.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal;
| | - João Xavier Santos
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (A.R.M.); (J.X.S.); (H.M.); (J.V.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal;
| | - Hugo Martiniano
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (A.R.M.); (J.X.S.); (H.M.); (J.V.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal;
| | - Joana Vilela
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (A.R.M.); (J.X.S.); (H.M.); (J.V.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal;
| | - Célia Rasga
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (A.R.M.); (J.X.S.); (H.M.); (J.V.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal;
| | - Luísa Romão
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal;
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Astrid Moura Vicente
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (A.R.M.); (J.X.S.); (H.M.); (J.V.); (C.R.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal;
- Correspondence:
| |
Collapse
|
28
|
Cell Type-Specific Role of RNA Nuclease SMG6 in Neurogenesis. Cells 2021; 10:cells10123365. [PMID: 34943873 PMCID: PMC8699217 DOI: 10.3390/cells10123365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
SMG6 is an endonuclease, which cleaves mRNAs during nonsense-mediated mRNA decay (NMD), thereby regulating gene expression and controling mRNA quality. SMG6 has been shown as a differentiation license factor of totipotent embryonic stem cells. To investigate whether it controls the differentiation of lineage-specific pluripotent progenitor cells, we inactivated Smg6 in murine embryonic neural stem cells. Nestin-Cre-mediated deletion of Smg6 in mouse neuroprogenitor cells (NPCs) caused perinatal lethality. Mutant mice brains showed normal structure at E14.5 but great reduction of the cortical NPCs and late-born cortical neurons during later stages of neurogenesis (i.e., E18.5). Smg6 inactivation led to dramatic cell death in ganglionic eminence (GE) and a reduction of interneurons at E14.5. Interestingly, neurosphere assays showed self-renewal defects specifically in interneuron progenitors but not in cortical NPCs. RT-qPCR analysis revealed that the interneuron differentiation regulators Dlx1 and Dlx2 were reduced after Smg6 deletion. Intriguingly, when Smg6 was deleted specifically in cortical and hippocampal progenitors, the mutant mice were viable and showed normal size and architecture of the cortex at E18.5. Thus, SMG6 regulates cell fate in a cell type-specific manner and is more important for neuroprogenitors originating from the GE than for progenitors from the cortex.
Collapse
|
29
|
El Khouri E, Ghoumid J, Haye D, Giuliano F, Drevillon L, Briand-Suleau A, De La Grange P, Nau V, Gaillon T, Bienvenu T, Jacquemin-Sablon H, Goossens M, Amselem S, Giurgea I. Wnt/β-catenin pathway and cell adhesion deregulation in CSDE1-related intellectual disability and autism spectrum disorders. Mol Psychiatry 2021; 26:3572-3585. [PMID: 33867523 DOI: 10.1038/s41380-021-01072-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Among the genetic factors playing a key role in the etiology of intellectual disabilities (IDs) and autism spectrum disorders (ASDs), several encode RNA-binding proteins (RBPs). In this study, we deciphered the molecular and cellular bases of ID-ASD in a patient followed from birth to the age of 21, in whom we identified a de novo CSDE1 (Cold Shock Domain-containing E1) nonsense variation. CSDE1 encodes an RBP that regulates multiple cellular pathways by monitoring the translation and abundance of target transcripts. Analyses performed on the patient's primary fibroblasts showed that the identified CSDE1 variation leads to haploinsufficiency. We identified through RNA-seq assays the Wnt/β-catenin signaling and cellular adhesion as two major deregulated pathways. These results were further confirmed by functional studies involving Wnt-specific luciferase and substrate adhesion assays. Additional data support a disease model involving APC Down-Regulated-1 (APCDD1) and cadherin-2 (CDH2), two components of the Wnt/β-catenin pathway, CDH2 being also pivotal for cellular adhesion. Our study, which relies on both the deep phenotyping and long-term follow-up of a patient with CSDE1 haploinsufficiency and on ex vivo studies, sheds new light on the CSDE1-dependent deregulated pathways in ID-ASD.
Collapse
Affiliation(s)
- E El Khouri
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France
| | - J Ghoumid
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.,Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille, France
| | - D Haye
- Service de Génétique Médicale Centre, Hospitalo-Universitaire de Nice, Nice, France
| | - F Giuliano
- Service de Génétique Médicale Centre, Hospitalo-Universitaire de Nice, Nice, France
| | - L Drevillon
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.,CHU Caen Normandie, Caen, France
| | - A Briand-Suleau
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.,Service de Génétique et Biologie Moléculaires, Hôpital Cochin, INSERM UMR1266 - Institute of Psychiatry and Neuroscience of Paris (IPNP) and University of Paris, Paris, France
| | | | - V Nau
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France
| | - T Gaillon
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France
| | - T Bienvenu
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, INSERM UMR1266 - Institute of Psychiatry and Neuroscience of Paris (IPNP) and University of Paris, Paris, France
| | - H Jacquemin-Sablon
- INSERM UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - M Goossens
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France
| | - S Amselem
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France
| | - I Giurgea
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France. .,Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.
| |
Collapse
|
30
|
Kwon OS, Mishra R, Safieddine A, Coleno E, Alasseur Q, Faucourt M, Barbosa I, Bertrand E, Spassky N, Le Hir H. Exon junction complex dependent mRNA localization is linked to centrosome organization during ciliogenesis. Nat Commun 2021; 12:1351. [PMID: 33649372 PMCID: PMC7921557 DOI: 10.1038/s41467-021-21590-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Exon junction complexes (EJCs) mark untranslated spliced mRNAs and are crucial for the mRNA lifecycle. An imbalance in EJC dosage alters mouse neural stem cell (mNSC) division and is linked to human neurodevelopmental disorders. In quiescent mNSC and immortalized human retinal pigment epithelial (RPE1) cells, centrioles form a basal body for ciliogenesis. Here, we report that EJCs accumulate at basal bodies of mNSC or RPE1 cells and decline when these cells differentiate or resume growth. A high-throughput smFISH screen identifies two transcripts accumulating at centrosomes in quiescent cells, NIN and BICD2. In contrast to BICD2, the localization of NIN transcripts is EJC-dependent. NIN mRNA encodes a core component of centrosomes required for microtubule nucleation and anchoring. We find that EJC down-regulation impairs both pericentriolar material organization and ciliogenesis. An EJC-dependent mRNA trafficking towards centrosome and basal bodies might contribute to proper mNSC division and brain development. Exon junction complexes (EJCs) that mark untranslated mRNA are involved in transport, translation and nonsense-mediated mRNA decay. Here the authors show centrosomal localization of EJCs which appears to be required for both the localization of NIN mRNA around centrosomes and ciliogenesis.
Collapse
Affiliation(s)
- Oh Sung Kwon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Rahul Mishra
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Adham Safieddine
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Emeline Coleno
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Quentin Alasseur
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Isabelle Barbosa
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
31
|
Neurodevelopmental signatures of narcotic and neuropsychiatric risk factors in 3D human-derived forebrain organoids. Mol Psychiatry 2021; 26:7760-7783. [PMID: 34158620 PMCID: PMC8873021 DOI: 10.1038/s41380-021-01189-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/20/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
It is widely accepted that narcotic use during pregnancy and specific environmental factors (e.g., maternal immune activation and chronic stress) may increase risk of neuropsychiatric illness in offspring. However, little progress has been made in defining human-specific in utero neurodevelopmental pathology due to ethical and technical challenges associated with accessing human prenatal brain tissue. Here we utilized human induced pluripotent stem cells (hiPSCs) to generate reproducible organoids that recapitulate dorsal forebrain development including early corticogenesis. We systemically exposed organoid samples to chemically defined "enviromimetic" compounds to examine the developmental effects of various narcotic and neuropsychiatric-related risk factors within tissue of human origin. In tandem experiments conducted in parallel, we modeled exposure to opiates (μ-opioid agonist endomorphin), cannabinoids (WIN 55,212-2), alcohol (ethanol), smoking (nicotine), chronic stress (human cortisol), and maternal immune activation (human Interleukin-17a; IL17a). Human-derived dorsal forebrain organoids were consequently analyzed via an array of unbiased and high-throughput analytical approaches, including state-of-the-art TMT-16plex liquid chromatography/mass-spectrometry (LC/MS) proteomics, hybrid MS metabolomics, and flow cytometry panels to determine cell-cycle dynamics and rates of cell death. This pipeline subsequently revealed both common and unique proteome, reactome, and metabolome alterations as a consequence of enviromimetic modeling of narcotic use and neuropsychiatric-related risk factors in tissue of human origin. However, of our 6 treatment groups, human-derived organoids treated with the cannabinoid agonist WIN 55,212-2 exhibited the least convergence of all groups. Single-cell analysis revealed that WIN 55,212-2 increased DNA fragmentation, an indicator of apoptosis, in human-derived dorsal forebrain organoids. We subsequently confirmed induction of DNA damage and apoptosis by WIN 55,212-2 within 3D human-derived dorsal forebrain organoids. Lastly, in a BrdU pulse-chase neocortical neurogenesis paradigm, we identified that WIN 55,212-2 was the only enviromimetic treatment to disrupt newborn neuron numbers within human-derived dorsal forebrain organoids. Cumulatively this study serves as both a resource and foundation from which human 3D biologics can be used to resolve the non-genomic effects of neuropsychiatric risk factors under controlled laboratory conditions. While synthetic cannabinoids can differ from naturally occurring compounds in their effects, our data nonetheless suggests that exposure to WIN 55,212-2 elicits neurotoxicity within human-derived developing forebrain tissue. These human-derived data therefore support the long-standing belief that maternal use of cannabinoids may require caution so to avoid any potential neurodevelopmental effects upon developing offspring in utero.
Collapse
|
32
|
UPF2 leads to degradation of dendritically targeted mRNAs to regulate synaptic plasticity and cognitive function. Mol Psychiatry 2020; 25:3360-3379. [PMID: 31636381 PMCID: PMC7566522 DOI: 10.1038/s41380-019-0547-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
Synaptic plasticity requires a tight control of mRNA levels in dendrites. RNA translation and degradation pathways have been recently linked to neurodevelopmental and neuropsychiatric diseases, suggesting a role for RNA regulation in synaptic plasticity and cognition. While the local translation of specific mRNAs has been implicated in synaptic plasticity, the tightly controlled mechanisms that regulate local quantity of specific mRNAs remain poorly understood. Despite being the only RNA regulatory pathway that is associated with multiple mental illnesses, the nonsense-mediated mRNA decay (NMD) pathway presents an unexplored regulatory mechanism for synaptic function and plasticity. Here, we show that neuron-specific disruption of UPF2, an NMD component, in adulthood attenuates learning, memory, spine density, synaptic plasticity (L-LTP), and potentiates perseverative/repetitive behavior in mice. We report that the NMD pathway operates within dendrites to regulate Glutamate Receptor 1 (GLUR1) surface levels. Specifically, UPF2 modulates the internalization of GLUR1 and promotes its local synthesis in dendrites. We identified neuronal Prkag3 mRNA as a mechanistic substrate for NMD that contributes to the UPF2-mediated regulation of GLUR1 by limiting total GLUR1 levels. These data establish that UPF2 regulates synaptic plasticity, cognition, and local protein synthesis in dendrites, providing fundamental insight into the neuron-specific function of NMD within the brain.
Collapse
|
33
|
McSweeney C, Dong F, Chen M, Vitale J, Xu L, Crowley N, Luscher B, Zou D, Mao Y. Full function of exon junction complex factor, Rbm8a, is critical for interneuron development. Transl Psychiatry 2020; 10:379. [PMID: 33154347 PMCID: PMC7644723 DOI: 10.1038/s41398-020-01065-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
The formation of the nervous system requires a balance between proliferation, differentiation, and migration of neural progenitors (NPs). Mutations in genes regulating development impede neurogenesis and lead to neuropsychiatric diseases, including autism spectrum disorders (ASDs) and schizophrenia (SZ). Recently, mutations in nonsense-mediated mRNA decay genes have been associated with ASDs, intellectual disability (ID), and SZ. Here, we examine the function of a gene in the exon junction complex, Rbm8a, in the cortical development. When Rbm8a is selectively knocked out in neural stem cells, the resulting mice exhibit microcephaly, early postnatal lethality, and altered distribution of excitatory neurons in the neocortex. Moreover, Rbm8a haploinsufficiency in the central nervous system decreases cell proliferation in the ganglionic eminences. Parvalbumin+ and neuropeptide Y+ interneurons in the cortex are significantly reduced, and distribution of interneurons are altered. Consistently, neurons in the cortex of conditional knockout (cKO) mice show a significant decrease in GABA frequency. Transcriptomic analysis revealed differentially expressed genes enriched in telencephalon development and mitosis. To further investigate the role of Rbm8a in interneuron differentiation, conditional KO of Rbm8a in NKX2.1 interneuron progenitor cells reduces progenitor proliferation and alters interneuron distributions. Taken together, these data reveal a critical role of Rbm8a in interneuron development, and establish that perturbation of this gene leads to profound cortical deficits.
Collapse
Affiliation(s)
- Colleen McSweeney
- grid.29857.310000 0001 2097 4281Department of Biology, Pennsylvania State University, University Park, PA 16802 USA
| | - Fengping Dong
- grid.29857.310000 0001 2097 4281Department of Biology, Pennsylvania State University, University Park, PA 16802 USA
| | - Miranda Chen
- grid.29857.310000 0001 2097 4281Department of Biology, Pennsylvania State University, University Park, PA 16802 USA
| | - Jessica Vitale
- grid.29857.310000 0001 2097 4281Department of Biology, Pennsylvania State University, University Park, PA 16802 USA
| | - Li Xu
- grid.29857.310000 0001 2097 4281Department of Biology, Pennsylvania State University, University Park, PA 16802 USA ,grid.268505.c0000 0000 8744 8924Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang China
| | - Nicole Crowley
- grid.29857.310000 0001 2097 4281Department of Biology, Pennsylvania State University, University Park, PA 16802 USA
| | - Bernhard Luscher
- grid.29857.310000 0001 2097 4281Department of Biology, Pennsylvania State University, University Park, PA 16802 USA ,grid.29857.310000 0001 2097 4281Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802 USA
| | - Donghua Zou
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, 530021, Nanning, Guangxi, China.
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
34
|
Deka B, Chandra P, Singh KK. Functional roles of human Up-frameshift suppressor 3 (UPF3) proteins: From nonsense-mediated mRNA decay to neurodevelopmental disorders. Biochimie 2020; 180:10-22. [PMID: 33132159 DOI: 10.1016/j.biochi.2020.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/03/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a post-transcriptional quality control mechanism that eradicates aberrant transcripts from cells. Aberrant transcripts are recognized by translating ribosomes, eRFs, and trans-acting NMD factors leading to their degradation. The trans-factors are conserved among eukaryotes and consist of UPF1, UPF2, and UPF3 proteins. Intriguingly, in humans, UPF3 exists as paralog proteins, UPF3A, and UPF3B. While UPF3 paralogs are traditionally known to be involved in the NMD pathway, there is a growing consensus that there are other critical cellular functions beyond quality control that are dictated by the UPF3 proteins. This review presents the current knowledge on the biochemical functions of UPF3 paralogs in diverse cellular processes, including NMD, translation, and genetic compensation response. We also discuss the contribution of the UPF3 paralogs in development and function of the central nervous system and germ cells. Furthermore, significant advances in the past decade have provided new perspectives on the implications of UPF3 paralogs in neurodevelopmental diseases. In this regard, genome- and transcriptome-wide sequencing analysis of patient samples revealed that loss of UPF3B is associated with brain disorders such as intellectual disability, autism, attention deficit hyperactivity disorder, and schizophrenia. Therefore, we further aim to provide an insight into the brain diseases associated with loss-of-function mutations of UPF3B.
Collapse
Affiliation(s)
- Bhagyashree Deka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Pratap Chandra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Kusum Kumari Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
35
|
The Branched Nature of the Nonsense-Mediated mRNA Decay Pathway. Trends Genet 2020; 37:143-159. [PMID: 33008628 DOI: 10.1016/j.tig.2020.08.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved translation-coupled quality control mechanism in all eukaryotes that regulates the expression of a significant fraction of both the aberrant and normal transcriptomes. In vertebrates, NMD has become an essential process owing to expansion of the diversity of NMD-regulated transcripts, particularly during various developmental processes. Surprisingly, however, some core NMD factors that are essential for NMD in simpler organisms appear to be dispensable for vertebrate NMD. At the same time, numerous NMD enhancers and suppressors have been identified in multicellular organisms including vertebrates. Collectively, the available data suggest that vertebrate NMD is a complex, branched pathway wherein individual branches regulate specific mRNA subsets to fulfill distinct physiological functions.
Collapse
|
36
|
Domingo D, Nawaz U, Corbett M, Espinoza JL, Tatton-Brown K, Coman D, Wilkinson MF, Gecz J, Jolly LA. A synonymous UPF3B variant causing a speech disorder implicates NMD as a regulator of neurodevelopmental disorder gene networks. Hum Mol Genet 2020; 29:2568-2578. [PMID: 32667670 PMCID: PMC10893962 DOI: 10.1093/hmg/ddaa151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 07/11/2020] [Indexed: 11/12/2022] Open
Abstract
Loss-of-function mutations of the X-chromosome gene UPF3B cause male neurodevelopmental disorders (NDDs) via largely unknown mechanisms. We investigated initially by interrogating a novel synonymous UPF3B variant in a male with absent speech. In silico and functional studies using cell lines derived from this individual show altered UPF3B RNA splicing. The resulting mRNA species encodes a frame-shifted protein with a premature termination codon (PTC) predicted to elicit degradation via nonsense-mediated mRNA decay (NMD). UPF3B mRNA was reduced in the cell line, and no UPF3B protein was produced, confirming a loss-of-function allele. UPF3B is itself involved in the NMD mechanism which degrades both PTC-bearing mutant transcripts and also many physiological transcripts. RNAseq analysis showed that ~1.6% of mRNAs exhibited altered expression. These mRNA changes overlapped and correlated with those we identified in additional cell lines obtained from individuals harbouring other UPF3B mutations, permitting us to interrogate pathogenic mechanisms of UPF3B-associated NDDs. We identified 102 genes consistently deregulated across all UPF3B mutant cell lines. Of the 51 upregulated genes, 75% contained an NMD-targeting feature, thus identifying high-confidence direct NMD targets. Intriguingly, 22 of the dysregulated genes encoded known NDD genes, suggesting UPF3B-dependent NMD regulates gene networks critical for cognition and behaviour. Indeed, we show that 78.5% of all NDD genes encode a transcript predicted to be targeted by NMD. These data describe the first synonymous UPF3B mutation in a patient with prominent speech and language disabilities and identify plausible mechanisms of pathology downstream of UPF3B mutations involving the deregulation of NDD-gene networks.
Collapse
Affiliation(s)
- Deepti Domingo
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
| | - Urwah Nawaz
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
| | - Mark Corbett
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
| | | | - Katrina Tatton-Brown
- St George’s University of London, London SW17, UK
- Southwest Thames Regional Genetics Centre, St George’s Healthcare NHS Trust, London SW17, UK
| | - David Coman
- School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Miles F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jozef Gecz
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Lachlan A Jolly
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
| |
Collapse
|
37
|
Tan K, Jones SH, Lake BB, Chousal JN, Shum EY, Zhang L, Chen S, Sohni A, Pandya S, Gallo RL, Zhang K, Cook-Andersen H, Wilkinson MF. The role of the NMD factor UPF3B in olfactory sensory neurons. eLife 2020; 9:e57525. [PMID: 32773035 PMCID: PMC7452722 DOI: 10.7554/elife.57525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022] Open
Abstract
The UPF3B-dependent branch of the nonsense-mediated RNA decay (NMD) pathway is critical for human cognition. Here, we examined the role of UPF3B in the olfactory system. Single-cell RNA-sequencing (scRNA-seq) analysis demonstrated considerable heterogeneity of olfactory sensory neuron (OSN) cell populations in wild-type (WT) mice, and revealed that UPF3B loss influences specific subsets of these cell populations. UPF3B also regulates the expression of a large cadre of antimicrobial genes in OSNs, and promotes the selection of specific olfactory receptor (Olfr) genes for expression in mature OSNs (mOSNs). RNA-seq and Ribotag analyses identified classes of mRNAs expressed and translated at different levels in WT and Upf3b-null mOSNs. Integrating multiple computational approaches, UPF3B-dependent NMD target transcripts that are candidates to mediate the functions of NMD in mOSNs were identified in vivo. Together, our data provides a valuable resource for the olfactory field and insights into the roles of NMD in vivo.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Samantha H Jones
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Blue B Lake
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
| | - Jennifer N Chousal
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Eleen Y Shum
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Lingjuan Zhang
- Department of Dermatology, University of California, San DiegoSan DiegoUnited States
| | - Song Chen
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
| | - Abhishek Sohni
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Shivam Pandya
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Richard L Gallo
- Department of Dermatology, University of California, San DiegoSan DiegoUnited States
| | - Kun Zhang
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
- Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
- Institute of Genomic Medicine, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
38
|
Bao X, Huang Y, Xu W, Xiong G. Functions and Clinical Significance of UPF3a Expression in Human Colorectal Cancer. Cancer Manag Res 2020; 12:4271-4281. [PMID: 32606924 PMCID: PMC7292372 DOI: 10.2147/cmar.s244486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/19/2020] [Indexed: 12/22/2022] Open
Abstract
Background Nonsense-mediated mRNA decay (NMD) can degrade mRNAs with a premature termination codon (PTC), and undegraded mRNAs with PTC mutations can induce a genetic compensation response (GCR) by upregulating its compensatory genes. UPF3a refers to up-frame shift 3A (UPF3a) participating in NMD pathway and GCR. It inhibits the NMD pathway while it stimulates GCR. Notably, the role of UPF3a in cancer remains unclear. Purpose The identification and discovery of prognostic markers for colorectal cancer (CRC) are of great clinical significance. The aim of this study was to investigate clinical significance of UPF3a expression in CRC. Materials and Methods UPF3a expression was examined in fresh CRC tissues and pared distant metastatic tissues using quantitative real-time PCR, Western blotting and immunohistochemistry staining. Tissue microarray immunohistochemical staining was used to study the relationship of UPF3a with clinicopathological features in 158 CRC patient samples collected from January 2008 to December 2012, and prognosis of CRC was analyzed. Results The expression of UPF3a was higher in metastatic tissues than that in primary sites. Moreover, high expression of UPF3a was significantly associated with TNM stage (p=0.009), liver metastasis and recurrence (p<0.001) in CRC patients. The Cancer Genome Atlas (TCGA) database showed the same trend. In CRC cells, knockdown of UPF3a led to a decline in the migration potential. Kaplan-Meier survival analysis revealed that high UPF3a expression, TNM stage were significantly associated (all P<0.01) with poor prognosis for patients. Furthermore, univariate and multivariate Cox analysis revealed that high UPF3a expression was independent risk factor for both overall survival and disease-free survival of CRC patients (all P<0.01). Conclusion Results showed that high levels of UPF3a could lead to aggressiveness and poor CRC prognosis. Targeted UPF3a can act as a novel and effective gene therapy for CRC patients to make a better prognosis.
Collapse
Affiliation(s)
- Xinmin Bao
- No.1 People´s Hospital, Jiujiang City, Jiangxi Province, People's Republic of China
| | - Yuji Huang
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Colorectal Cancer Research Center, Shanghai, People's Republic of China
| | - Weimin Xu
- Department of Colorectal Surgery, Xin-Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Colorectal Cancer Research Center, Shanghai, People's Republic of China
| | - Gongyou Xiong
- No.1 People´s Hospital, Jiujiang City, Jiangxi Province, People's Republic of China
| |
Collapse
|
39
|
Yang C, Zheng J, Liu X, Xue Y, He Q, Dong Y, Wang D, Li Z, Liu L, Ma J, Cai H, Liu Y. Role of ANKHD1/LINC00346/ZNF655 Feedback Loop in Regulating the Glioma Angiogenesis via Staufen1-Mediated mRNA Decay. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:866-878. [PMID: 32464549 PMCID: PMC7256448 DOI: 10.1016/j.omtn.2020.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
Accumulating evidence shows that long noncoding RNA (lncRNA) dysregulation plays a critical role in tumor angiogenesis. Glioma is characterized by abundant angiogenesis. Herein, we investigated the expression and function of LINC00346 in the regulation of glioma angiogenesis. The present study first demonstrated that ANKHD1 (ankyrin repeat and KH domain-containing protein 1) and LINC00346 were significantly increased in glioma-associated endothelial cells (GECs), whereas ZNF655 (zinc finger protein 655) was decreased in GECs. Meanwhile, ANKHD1 inhibition, LINC00346 inhibition, or ZNF655 overexpression impeded angiogenesis of GECs. Moreover, ANKHD1 targeted LINC00346 and enhanced the stability of LINC00346. In addition, LINC00346 bound to ZNF655 mRNA through their Alu elements so that LINC00346 facilitated the degradation of ZNF655 mRNA via a STAU1 (Staufen1)-mediated mRNA decay (SMD) mechanism. Futhermore, ZNF655 targeted the promoter region of ANKHD1 and formed an ANKHD1/LINC00346/ZNF655 feedback loop that regulated glioma angiogenesis. Finally, knockdown of ANKHD1 and LINC00346, combined with overexpression of ZNF655, resulted in a significant decrease in new vessels and hemoglobin content in vivo. The results identified an ANKHD1/LINC00346/ZNF655 feedback loop in the regulation of glioma angiogenesis that may provide new targets and strategies for targeted therapy against glioma.
Collapse
Affiliation(s)
- Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Qianru He
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yiming Dong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.
| |
Collapse
|
40
|
Nonsense-Mediated mRNA Decay: Pathologies and the Potential for Novel Therapeutics. Cancers (Basel) 2020; 12:cancers12030765. [PMID: 32213869 PMCID: PMC7140085 DOI: 10.3390/cancers12030765] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022] Open
Abstract
Nonsense-mediated messenger RNA (mRNA) decay (NMD) is a surveillance pathway used by cells to control the quality mRNAs and to fine-tune transcript abundance. NMD plays an important role in cell cycle regulation, cell viability, DNA damage response, while also serving as a barrier to virus infection. Disturbance of this control mechanism caused by genetic mutations or dys-regulation of the NMD pathway can lead to pathologies, including neurological disorders, immune diseases and cancers. The role of NMD in cancer development is complex, acting as both a promoter and a barrier to tumour progression. Cancer cells can exploit NMD for the downregulation of key tumour suppressor genes, or tumours adjust NMD activity to adapt to an aggressive immune microenvironment. The latter case might provide an avenue for therapeutic intervention as NMD inhibition has been shown to lead to the production of neoantigens that stimulate an immune system attack on tumours. For this reason, understanding the biology and co-option pathways of NMD is important for the development of novel therapeutic agents. Inhibitors, whose design can make use of the many structures available for NMD study, will play a crucial role in characterizing and providing diverse therapeutic options for this pathway in cancer and other diseases.
Collapse
|
41
|
Kurosaki T, Popp MW, Maquat LE. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol 2020; 20:406-420. [PMID: 30992545 DOI: 10.1038/s41580-019-0126-2] [Citation(s) in RCA: 506] [Impact Index Per Article: 101.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is one of the best characterized and most evolutionarily conserved cellular quality control mechanisms. Although NMD was first found to target one-third of mutated, disease-causing mRNAs, it is now known to also target ~10% of unmutated mammalian mRNAs to facilitate appropriate cellular responses - adaptation, differentiation or death - to environmental changes. Mutations in NMD genes in humans are associated with intellectual disability and cancer. In this Review, we discuss how NMD serves multiple purposes in human cells by degrading both mutated mRNAs to protect the integrity of the transcriptome and normal mRNAs to control the quantities of unmutated transcripts.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Maximilian W Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA. .,Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
42
|
Dyle MC, Kolakada D, Cortazar MA, Jagannathan S. How to get away with nonsense: Mechanisms and consequences of escape from nonsense-mediated RNA decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1560. [PMID: 31359616 PMCID: PMC10685860 DOI: 10.1002/wrna.1560] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 11/04/2023]
Abstract
Nonsense-mediated RNA decay (NMD) is an evolutionarily conserved RNA quality control process that serves both as a mechanism to eliminate aberrant transcripts carrying premature stop codons, and to regulate expression of some normal transcripts. For a quality control process, NMD exhibits surprising variability in its efficiency across transcripts, cells, tissues, and individuals in both physiological and pathological contexts. Whether an aberrant RNA is spared or degraded, and by what mechanism, could determine the phenotypic outcome of a disease-causing mutation. Hence, understanding the variability in NMD is not only important for clinical interpretation of genetic variants but also may provide clues to identify novel therapeutic approaches to counter genetic disorders caused by nonsense mutations. Here, we discuss the current knowledge of NMD variability and the mechanisms that allow certain transcripts to escape NMD despite the presence of NMD-inducing features. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Michael C. Dyle
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Divya Kolakada
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A. Cortazar
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
43
|
Driver DI, Thomas S, Gogtay N, Rapoport JL. Childhood-Onset Schizophrenia and Early-onset Schizophrenia Spectrum Disorders: An Update. Child Adolesc Psychiatr Clin N Am 2020; 29:71-90. [PMID: 31708054 DOI: 10.1016/j.chc.2019.08.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical severity, impact on development, and poor prognosis of childhood-onset schizophrenia may represent a more homogeneous group. Positive symptoms in children are necessary for the diagnosis, and hallucinations are more often multimodal. In healthy children and children with a variety of other psychiatric illnesses, hallucinations are not uncommon and diagnosis should not be based on these alone. Childhood-onset schizophrenia is an extraordinarily rare illness that is poorly understood but seems continuous with the adult-onset disorder. Once a diagnosis is confirmed, aggressive medication treatment combined with family education and individual counseling may prevent further deterioration.
Collapse
Affiliation(s)
- David I Driver
- Child Psychiatry Branch, National Institutes of Mental Health (NIMH), National Institutes Health (NIH), Building 10, Room 4N313C, 10 Center Drive, Bethesda, MD 20814, USA.
| | - Shari Thomas
- Healthy Foundations Group, 4350 East West Highway, Suite 200, Bethesda, Maryland 20814, USA
| | - Nitin Gogtay
- National Institutes Health (NIH), NSC Building, Room 6104, 6001 Executive Boulevard, Rockville, MD 20852, USA
| | - Judith L Rapoport
- National Institutes Health (NIH), Building 10-CRC, Room 6-5332, 10 Center Drive, Bethesda, MD 20814, USA
| |
Collapse
|
44
|
Abstract
The genetic architecture of schizophrenia is complex and highly polygenic. This article discusses key findings from genetic studies of childhood-onset schizophrenia (COS) and the more common adult-onset schizophrenia (AOS), including studies of familial aggregation and common, rare, and copy number variants. Extant literature suggests that COS is a rare variant of AOS involving greater familial aggregation of schizophrenia spectrum disorders and a potentially higher occurrence of pathogenic copy number variants. The direct utility of genetics to clinical practice for COS is currently limited; however, identifying common pathways through which risk genes affect brain function offers promise for novel interventions.
Collapse
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Robert F Asarnow
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA; Department of Psychology, University of California, Los Angeles, 502 Portola Plaza Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, USA.
| |
Collapse
|
45
|
Han X, Wei Y, Wang H, Wang F, Ju Z, Li T. Nonsense-mediated mRNA decay: a 'nonsense' pathway makes sense in stem cell biology. Nucleic Acids Res 2019; 46:1038-1051. [PMID: 29272451 PMCID: PMC5814811 DOI: 10.1093/nar/gkx1272] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/09/2017] [Indexed: 01/04/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a highly conserved post-transcriptional regulatory mechanism of gene expression in eukaryotes. Originally, NMD was identified as an RNA surveillance machinery in degrading 'aberrant' mRNA species with premature termination codons. Recent studies indicate that NMD regulates the stability of natural gene transcripts that play significant roles in cell functions. Although components and action modes of the NMD machinery in degrading its RNA targets have been extensively studied with biochemical and structural approaches, the biological roles of NMD remain to be defined. Stem cells are rare cell populations, which play essential roles in tissue homeostasis and hold great promises in regenerative medicine. Stem cells self-renew to maintain the cellular identity and differentiate into somatic lineages with specialized functions to sustain tissue integrity. Transcriptional regulations and epigenetic modulations have been extensively implicated in stem cell biology. However, post-transcriptional regulatory mechanisms, such as NMD, in stem cell regulation are largely unknown. In this paper, we summarize the recent findings on biological roles of NMD factors in embryonic and tissue-specific stem cells. Furthermore, we discuss the possible mechanisms of NMD in regulating stem cell fates.
Collapse
Affiliation(s)
- Xin Han
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Yanling Wei
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Hua Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Feilong Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Zhenyu Ju
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Tangliang Li
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| |
Collapse
|
46
|
Grassi E, Santoro R, Umbach A, Grosso A, Oliviero S, Neri F, Conti L, Ala U, Provero P, DiCunto F, Merlo GR. Choice of Alternative Polyadenylation Sites, Mediated by the RNA-Binding Protein Elavl3, Plays a Role in Differentiation of Inhibitory Neuronal Progenitors. Front Cell Neurosci 2019; 12:518. [PMID: 30687010 PMCID: PMC6338052 DOI: 10.3389/fncel.2018.00518] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
Alternative polyadenylation (APA) is a widespread mechanism involving about half of the expressed genes, resulting in varying lengths of the 3′ untranslated region (3′UTR). Variations in length and sequence of the 3′UTR may underlie changes of post-transcriptional processing, localization, miRNA targeting and stability of mRNAs. During embryonic development a large array of mRNAs exhibit APA, with a prevalence of the longer 3′UTR versions in differentiating cells. Little is known about polyA+ site usage during differentiation of mammalian neural progenitors. Here we exploit a model of adherent neural stem (ANS) cells, which homogeneously and efficiently differentiate into GABAergic neurons. RNAseq data shows a global trend towards lengthening of the 3′UTRs during differentiation. Enriched expression of the longer 3′UTR variants of Pes1 and Gng2 was detected in the mouse brain in areas of cortical and subcortical neuronal differentiation, respectively, by two-probes fluorescent in situ hybridization (FISH). Among the coding genes upregulated during differentiation of ANS cells we found Elavl3, a neural-specific RNA-binding protein homologous to Drosophila Elav. In the insect, Elav regulates polyA+ site choice while interacting with paused Pol-II promoters. We tested the role of Elavl3 in ANS cells, by silencing Elavl3 and observed consistent changes in 3′UTR length and delayed neuronal differentiation. These results indicate that choice of the polyA+ site and lengthening of 3′UTRs is a possible additional mechanism of posttranscriptional RNA modification involved in neuronal differentiation.
Collapse
Affiliation(s)
- Elena Grassi
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Roberto Santoro
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Alessandro Umbach
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Anna Grosso
- Department of Neurosciences, University of Turin, Turin, Italy
| | - Salvatore Oliviero
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Life Science and System Biology, University of Turin, Turin, Italy
| | - Francesco Neri
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Life Science and System Biology, University of Turin, Turin, Italy
| | - Luciano Conti
- Centre for Integrative Biology-CIBIO, University of Trento, Povo, Italy
| | - Ugo Ala
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Ferdinando DiCunto
- Department of Molecular Biotechnology, University of Turin, Turin, Italy.,Department of Neurosciences, University of Turin, Turin, Italy
| | - Giorgio R Merlo
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| |
Collapse
|
47
|
Tastet J, Cuberos H, Vallée B, Toutain A, Raynaud M, Marouillat S, Thépault RA, Laumonnier F, Bonnet-Brilhault F, Vourc'h P, Andres CR, Bénédetti H. LIMK2-1 is a Hominidae-Specific Isoform of LIMK2 Expressed in Central Nervous System and Associated with Intellectual Disability. Neuroscience 2018; 399:199-210. [PMID: 30594563 DOI: 10.1016/j.neuroscience.2018.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022]
Abstract
LIMK2 is involved in neuronal functions by regulating actin dynamics. Different isoforms of LIMK2 are described in databanks. LIMK2a and LIMK2b are the most characterized. A few pieces of evidence suggest that LIMK2 isoforms might not have overlapping functions. In this study, we focused our attention on a less studied human LIMK2 isoform, LIMK2-1. Compared to the other LIMK2 isoforms, LIMK2-1 contains a supplementary C-terminal phosphatase 1 inhibitory domain (PP1i). We found out that this isoform was hominidae-specific and showed that it was expressed in human fetal brain and faintly in adult brain. Its coding sequence was sequenced in 173 patients with sporadic non-syndromic intellectual disability (ID), and we observed an association of a rare missense variant in the PP1i domain (rs151191437, p.S668P) with ID. Our results also suggest an implication of LIMK2-1 in neurite outgrowth and neurons arborization which appears to be affected by the p.S668P variation. Therefore our results suggest that LIMK2-1 plays a role in the developing brain, and that a rare variation of this isoform is a susceptibility factor in ID.
Collapse
Affiliation(s)
- Julie Tastet
- UMR INSERM U1253, Université François Rabelais, Tours, France; CNRS UPR 4301, CBM, Orléans, France; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hélène Cuberos
- UMR INSERM U1253, Université François Rabelais, Tours, France; CNRS UPR 4301, CBM, Orléans, France
| | | | - Annick Toutain
- UMR INSERM U1253, Université François Rabelais, Tours, France; CHRU de Tours, Service de Génétique, Tours, France
| | - Martine Raynaud
- UMR INSERM U1253, Université François Rabelais, Tours, France; CHRU de Tours, Service de Génétique, Tours, France
| | | | | | | | - Frédérique Bonnet-Brilhault
- UMR INSERM U1253, Université François Rabelais, Tours, France; CHRU de Tours, Service de Pédopsychiatrie, Tours, France
| | - Patrick Vourc'h
- UMR INSERM U1253, Université François Rabelais, Tours, France; CHRU de Tours, Service de Biochimie et de Biologie Moléculaire, Tours, France
| | - Christian R Andres
- UMR INSERM U1253, Université François Rabelais, Tours, France; CHRU de Tours, Service de Biochimie et de Biologie Moléculaire, Tours, France
| | | |
Collapse
|
48
|
Jaffrey SR, Wilkinson MF. Nonsense-mediated RNA decay in the brain: emerging modulator of neural development and disease. Nat Rev Neurosci 2018; 19:715-728. [PMID: 30410025 PMCID: PMC6396682 DOI: 10.1038/s41583-018-0079-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Steady-state RNA levels are controlled by the balance between RNA synthesis and RNA turnover. A selective RNA turnover mechanism that has received recent attention in neurons is nonsense-mediated RNA decay (NMD). NMD has been shown to influence neural development, neural stem cell differentiation decisions, axon guidance and synaptic plasticity. In humans, NMD factor gene mutations cause some forms of intellectual disability and are associated with neurodevelopmental disorders, including schizophrenia and autism spectrum disorder. Impairments in NMD are linked to neurodegenerative disorders, including amyotrophic lateral sclerosis. We discuss these findings, their clinical implications and challenges for the future.
Collapse
Affiliation(s)
- Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA.
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, La Jolla, CA, USA.
| |
Collapse
|
49
|
ALS mutations of FUS suppress protein translation and disrupt the regulation of nonsense-mediated decay. Proc Natl Acad Sci U S A 2018; 115:E11904-E11913. [PMID: 30455313 PMCID: PMC6304956 DOI: 10.1073/pnas.1810413115] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by preferential motor neuron death. Approximately 15% of ALS cases are familial, and mutations in the fused in sarcoma (FUS) gene contribute to a subset of familial ALS cases. FUS is a multifunctional protein participating in many RNA metabolism pathways. ALS-linked mutations cause a liquid-liquid phase separation of FUS protein in vitro, inducing the formation of cytoplasmic granules and inclusions. However, it remains elusive what other proteins are sequestered into the inclusions and how such a process leads to neuronal dysfunction and degeneration. In this study, we developed a protocol to isolate the dynamic mutant FUS-positive cytoplasmic granules. Proteomic identification of the protein composition and subsequent pathway analysis led us to hypothesize that mutant FUS can interfere with protein translation. We demonstrated that the ALS mutations in FUS indeed suppressed protein translation in N2a cells expressing mutant FUS and fibroblast cells derived from FUS ALS cases. In addition, the nonsense-mediated decay (NMD) pathway, which is closely related to protein translation, was altered by mutant FUS. Specifically, NMD-promoting factors UPF1 and UPF3b increased, whereas a negative NMD regulator, UPF3a, decreased, leading to the disruption of NMD autoregulation and the hyperactivation of NMD. Alterations in NMD factors and elevated activity were also observed in the fibroblast cells of FUS ALS cases. We conclude that mutant FUS suppresses protein biosynthesis and disrupts NMD regulation, both of which likely contribute to motor neuron death.
Collapse
|
50
|
Huang L, Shum EY, Jones SH, Lou CH, Chousal J, Kim H, Roberts AJ, Jolly LA, Espinoza JL, Skarbrevik DM, Phan MH, Cook-Andersen H, Swerdlow NR, Gecz J, Wilkinson MF. A Upf3b-mutant mouse model with behavioral and neurogenesis defects. Mol Psychiatry 2018; 23:1773-1786. [PMID: 28948974 PMCID: PMC5869067 DOI: 10.1038/mp.2017.173] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/05/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA degradation pathway that acts on RNAs terminating their reading frames in specific contexts. NMD is regulated in a tissue-specific and developmentally controlled manner, raising the possibility that it influences developmental events. Indeed, loss or depletion of NMD factors have been shown to disrupt developmental events in organisms spanning the phylogenetic scale. In humans, mutations in the NMD factor gene, UPF3B, cause intellectual disability (ID) and are strongly associated with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and schizophrenia (SCZ). Here, we report the generation and characterization of mice harboring a null Upf3b allele. These Upf3b-null mice exhibit deficits in fear-conditioned learning, but not spatial learning. Upf3b-null mice also have a profound defect in prepulse inhibition (PPI), a measure of sensorimotor gating commonly deficient in individuals with SCZ and other brain disorders. Consistent with both their PPI and learning defects, cortical pyramidal neurons from Upf3b-null mice display deficient dendritic spine maturation in vivo. In addition, neural stem cells from Upf3b-null mice have impaired ability to undergo differentiation and require prolonged culture to give rise to functional neurons with electrical activity. RNA sequencing (RNAseq) analysis of the frontal cortex identified UPF3B-regulated RNAs, including direct NMD target transcripts encoding proteins with known functions in neural differentiation, maturation and disease. We suggest Upf3b-null mice serve as a novel model system to decipher cellular and molecular defects underlying ID and neurodevelopmental disorders.
Collapse
Affiliation(s)
- L Huang
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - E Y Shum
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - S H Jones
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - C-H Lou
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - J Chousal
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - H Kim
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - A J Roberts
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - L A Jolly
- Adelaide Medical School and Robison Research Institute, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - J L Espinoza
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - D M Skarbrevik
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - M H Phan
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - H Cook-Andersen
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - N R Swerdlow
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - J Gecz
- Adelaide Medical School and Robison Research Institute, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - M F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|