1
|
Li J, Ju Y, Jiang M, Li S, Yang XY. Epitope-Based Vaccines: The Next Generation of Promising Vaccines Against Bacterial Infection. Vaccines (Basel) 2025; 13:248. [PMID: 40266107 PMCID: PMC11946261 DOI: 10.3390/vaccines13030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/24/2025] Open
Abstract
The increasing resistance of bacteria to antibiotics has underscored the need for new drugs or vaccines to prevent bacterial infections. Reducing multidrug resistance is a key objective of the WHO's One Health initiative. Epitopes, the key parts of antigen molecules that determine their specificity, directly stimulate the body to produce specific humoral and/or cellular immune responses. Epitope-based vaccines, which combine dominant epitopes in a rational manner, induce a more efficient and specific immune response than the original antigen. While these vaccines face significant challenges, such as epitope escape or low immunogenicity, they offer advantages including minimal adverse reactions, improved efficacy, and optimized protection. As a result, epitope-based vaccines are considered a promising next-generation approach to combating bacterial infections. This review summarizes the latest advancements, challenges, and future prospects of epitope-based vaccines targeting bacteria, with a focus on their development workflow and application in antibiotic-resistant pathogens with high mortality rates, including Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. The goal of this review is to provide insights into next-generation vaccination strategies to combat bacterial infections associated with antibiotic resistance and high mortality rates.
Collapse
Affiliation(s)
| | | | | | | | - Xiao-Yan Yang
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China; (J.L.)
| |
Collapse
|
2
|
Wang H. Current and Future Landscape of the Antimicrobial Resistance of Nosocomial Infections in China. China CDC Wkly 2022; 4:1101-1104. [PMID: 36751664 PMCID: PMC9889228 DOI: 10.46234/ccdcw2022.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The rapid increase in antimicrobial resistance driven by the widespread use, abuse, and misuse of antibiotics constitutes one of China's most challenging healthcare problems. In particular, nosocomial infections caused by multidrug-resistant organisms such as methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Acinetobacter baumannii (CRAB), and carbapenem-resistant Enterobacterales (CRE), which exhibit resistance to most available antibiotics, lead to high mortality and enormous economic and human costs. Here, we summarize the current patterns of the antimicrobial resistance of nosocomial infections in China and address possible interventions to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China,Hui Wang,
| | | |
Collapse
|
3
|
Wang H, Chen D, Lu H. Anti-bacterial monoclonal antibodies: next generation therapy against superbugs. Appl Microbiol Biotechnol 2022; 106:3957-3972. [PMID: 35648146 DOI: 10.1007/s00253-022-11989-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022]
Abstract
Prior to the nineteenth century, infectious disease was one of the leading causes of death. Human life expectancy has roughly doubled over the past century as a result of the development of antibiotics and vaccines. However, the emergence of antibiotic-resistant superbugs brings new challenges. The side effects of broad-spectrum antibiotics, such as causing antimicrobial resistance and destroying the normal flora, often limit their applications. Furthermore, the development of new antibiotics has lagged far behind the emergence and spread of antibiotic resistance. On the other hand, the genome complexity of bacteria makes it difficult to create effective vaccines. Therefore, novel therapeutic agents in supplement to antibiotics and vaccines are urgently needed to improve the treatment of infections. In recent years, monoclonal antibodies (mAbs) have achieved remarkable clinical success in a variety of fields. In the treatment of infectious diseases, mAbs can play functions through multiple mechanisms, including toxins neutralization, virulence factors inhibition, complement-mediated killing activity, and opsonic phagocytosis. Toxins and bacterial surface components are good targets to generate antibodies against. The U.S. FDA has approved three monoclonal antibody drugs, and there are numerous candidates in the preclinical or clinical trial stages. This article reviews recent advances in the research and development of anti-bacterial monoclonal antibody drugs in order to provide a valuable reference for future studies in this area. KEY POINTS: • Novel drugs against antibiotic-resistant superbugs are urgently required • Monoclonal antibodies can treat bacterial infections through multiple mechanisms • There are many anti-bacterial monoclonal antibodies developed in recent years and some candidates have entered the preclinical or clinical stages of development.
Collapse
Affiliation(s)
- Hui Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
4
|
Zhu FC, Zeng H, Li JX, Wang B, Meng FY, Yang F, Gu J, Liang HY, Hu YM, Liu P, Peng LS, Hu XK, Zhuang Y, Fan M, Li HB, Tan ZM, Luo P, Zhang P, Chu K, Zhang JY, Zeng M, Zou QM. Evaluation of a recombinant five-antigen Staphylococcus aureus vaccine: The randomized, single-centre phase 1a/1b clinical trials. Vaccine 2022; 40:3216-3227. [DOI: 10.1016/j.vaccine.2022.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
|
5
|
Duan L, Zhang J, Chen Z, Gou Q, Xiong Q, Yuan Y, Jing H, Zhu J, Ni L, Zheng Y, Liu Z, Zhang X, Zeng H, Zou Q, Zhao Z. Antibiotic Combined with Epitope-Specific Monoclonal Antibody Cocktail Protects Mice Against Bacteremia and Acute Pneumonia from Methicillin-Resistant Staphylococcus aureus Infection. J Inflamm Res 2021; 14:4267-4282. [PMID: 34511967 PMCID: PMC8415768 DOI: 10.2147/jir.s325286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose We previously reported that monoclonal antibody (mAb) cocktail improves survival in Staphylococcus aureus infection. In this study, we used acute pneumonia model and lethal sepsis model to investigate the efficacy of antibiotic combined with epitope-specific mAb cocktail in treating MRSA252 infection. Methods MRSA252 was challenged by tail vein injection or tracheal intubation to establish sepsis model or pneumonia model. One hour after infection, the mice received a single intravenous injection of normal saline, vancomycin, and vancomycin combined monoclonal antibody, linezolid alone or linezolid combined monoclonal antibody. Daily record survival rate (total 7 days), bacterial load, histology, cytokine analysis of serum and alveolar lavage fluid, and in vitro determination of the neutralizing ability of antibodies to SEB toxin and Hla toxin explained the mechanism of antibody action. Results The mAb cocktail combined with low doses of vancomycin or linezolid improved survival rates in acute pneumonia model (70%, 80%) and lethal sepsis model (80%, 80%). Epitope-specific monoclonal antibodies reduced bacterial colonization in the kidneys and lungs of mice and inhibited the biological functions of the toxins Hla and SEB in vitro. Compared to the antibiotic alone or PBS groups, the combination group had higher levels of IL-1α, IL-1β and IFN-γ and lower levels of IL-6, IL-10, TNF-α. Further, the combination of antibiotic and mAb cocktail improved infection survival against the clinical MRSA isolates in a lethal sepsis model. Conclusion This study demonstrates a novel method to treat people with low immunity against drug-resistant S. aureus infections.
Collapse
Affiliation(s)
- LianLi Duan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhifu Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Qiang Gou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Qingshan Xiong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yue Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jiang Zhu
- Department of Pathology, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Li Ni
- Obstetrics and Gynecology, The First People's Hospital of Jiulongpo District, Chongqing, 400050, People's Republic of China
| | - Yuling Zheng
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, People's Republic of China
| | - Zhiyong Liu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Xiaokai Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People's Republic of China
| |
Collapse
|
6
|
Chen Z, Gou Q, Xiong Q, Duan L, Yuan Y, Zhu J, Zou J, Chen L, Jing H, Zhang X, Luo P, Zeng H, Zou Q, Zhao Z, Zhang J. Immunodominance of Epitopes and Protective Efficacy of HI Antigen Are Differentially Altered Using Different Adjuvants in a Mouse Model of Staphylococcus aureus Bacteremia. Front Immunol 2021; 12:684823. [PMID: 34122448 PMCID: PMC8190387 DOI: 10.3389/fimmu.2021.684823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
HI, a fusion protein that consists of the alpha-toxin (Hla) and the N2 domain of iron surface determinant B (IsdB), is one of the antigens in the previously reported S. aureus vaccine rFSAV and has already entered phase II clinical trials. Previous studies revealed that HI is highly immunogenic in both mice and healthy volunteers, and the humoral immune response plays key roles in HI-mediated protection. In this study, we further investigated the protective efficacy of immunization with HI plus four different adjuvants in a mouse bacteremia model. Results showed that HI-mediated protection was altered in response to different adjuvants. Using antisera from immunized mice, we identified seven B-cell immunodominant epitopes on Hla and IsdB, including 6 novel epitopes (Hla1-18, Hla84-101, Hla186-203, IsdB342-359, IsdB366-383, and IsdB384-401). The immunodominance of B-cell epitopes, total IgG titers and the levels of IFN-γ and IL-17A from mice immunized with HI plus different adjuvants were different from each other, which may explain the difference in protective immunity observed in each immunized group. Thus, our results indicate that adjuvants largely affected the immunodominance of epitopes and the protective efficacy of HI, which may guide further adjuvant screening for vaccine development and optimization.
Collapse
Affiliation(s)
- Zhifu Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Qiang Gou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Qingshan Xiong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Lianli Duan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yue Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jiang Zhu
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jintao Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Longlong Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaoli Zhang
- Department of Clinical Hematology, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
7
|
Wei J, Cheng X, Zhang Y, Gao C, Wang Y, Peng Q, Luo P, Yang L, Zou Q, Zeng H, Gu J. Identification and application of a neutralizing epitope within alpha-hemolysin using human serum antibodies elicited by vaccination. Mol Immunol 2021; 135:45-52. [PMID: 33873093 DOI: 10.1016/j.molimm.2021.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 11/15/2022]
Abstract
Staphylococcus aureus (SA), especially the methicillin-resistant variant (MRSA), is becoming a serious threat to human health in hospitals and communities, making the development of an effective vaccine urgent. Alpha-hemolysin (Hla) is a key virulence factor and also a good target for the development of SA vaccines. However, the epitopes in Hla recognized by human immunity are not characterized in detail, which hinders the design of epitope-based human vaccines against SA. In this study, we collected sera from volunteers in a phase 1b clinical trial of a novel recombinant five-antigen SA vaccine (NCT03966040). Using a Luminex-based assay, we characterized the human serologic response against Hla, and identified Hla121-138 as a neutralizing epitope. In addition, we successfully produced ferritin nanoparticles carrying the neutralizing Hla121-138 epitope (EpNP) in E. coli. EpNP presented as homogenous nanoparticles in aqueous solution. Immunization with EpNP elicited potent hemolysis-neutralizing antibodies and conferred significant protection in a mouse model of SA skin infection. Our data suggest that EpNP, carrying the neutralizing epitope Hla121-138, is a good candidate for a vaccine against SA.
Collapse
Affiliation(s)
- Jinning Wei
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Xin Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Yi Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Chen Gao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Ying Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Qi Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Liuyang Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China; Medical Laboratory Center, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China.
| | - Jiang Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China.
| |
Collapse
|
8
|
Ford CA, Hurford IM, Cassat JE. Antivirulence Strategies for the Treatment of Staphylococcus aureus Infections: A Mini Review. Front Microbiol 2021; 11:632706. [PMID: 33519793 PMCID: PMC7840885 DOI: 10.3389/fmicb.2020.632706] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium capable of infecting nearly all host tissues, causing severe morbidity and mortality. Widespread antimicrobial resistance has emerged among S. aureus clinical isolates, which are now the most frequent causes of nosocomial infection among drug-resistant pathogens. S. aureus produces an array of virulence factors that enhance in vivo fitness by liberating nutrients from the host or evading host immune responses. Staphylococcal virulence factors have been identified as viable therapeutic targets for treatment, as they contribute to disease pathogenesis, tissue injury, and treatment failure. Antivirulence strategies, or treatments targeting virulence without direct toxicity to the inciting pathogen, show promise as an adjunctive therapy to traditional antimicrobials. This Mini Review examines recent research on S. aureus antivirulence strategies, with an emphasis on translational studies. While many different virulence factors have been investigated as therapeutic targets, this review focuses on strategies targeting three virulence categories: pore-forming toxins, immune evasion mechanisms, and the S. aureus quorum sensing system. These major areas of S. aureus antivirulence research demonstrate broad principles that may apply to other human pathogens. Finally, challenges of antivirulence research are outlined including the potential for resistance, the need to investigate multiple infection models, and the importance of studying antivirulence in conjunction with traditional antimicrobial treatments.
Collapse
Affiliation(s)
- Caleb A. Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Ian M. Hurford
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James E. Cassat
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|