1
|
Nakamura M, Sandell LL. Multiple roles for retinoid signaling in craniofacial development. Curr Top Dev Biol 2024; 161:33-57. [PMID: 39870438 DOI: 10.1016/bs.ctdb.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Retinoic acid (RA) signaling plays multiple essential roles in development of the head and face. Animal models with mutations in genes involved in RA signaling have enabled understanding of craniofacial morphogenic processes that are regulated by the retinoid pathway. During craniofacial morphogenesis RA signaling is active in spatially restricted domains defined by the expression of genes involved in RA production and RA breakdown. The spatial distribution of RA signaling changes with progressive development, corresponding to a multiplicity of craniofacial developmental processes that are regulated by RA. One important role of RA signaling occurs in the hindbrain. There RA contributes to specification of the anterior-posterior (AP) axis of the developing CNS and to the neural crest cells (NCC) which form the bones and nerves of the face and pharyngeal region. In the optic vesicles and frontonasal process RA orchestrates development of the midface, eyes, and nasal airway. Additional roles for RA in craniofacial development include regulation of submandibular salivary gland development and maintaining patency in the sutures of the cranial vault.
Collapse
Affiliation(s)
- Masahiro Nakamura
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States.
| |
Collapse
|
2
|
Ulhaq ZS, You MS, Yabe T, Takada S, Chen JK, Ogino Y, Jiang YJ, Tse WKF. Fgf8 contributes to the pathogenesis of Nager syndrome. Int J Biol Macromol 2024; 280:135692. [PMID: 39288852 DOI: 10.1016/j.ijbiomac.2024.135692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Nager syndrome (NS, OMIM 154400) is a rare disease characterized by craniofacial and limb malformations due to variants in the gene encoding splicing factor 3B subunit 4 (SF3B4). Although various noncanonical functions of SF3B4 unrelated to splicing have been previously described, limited studies elucidate molecular mechanisms underlying NS pathogenesis. Here we showed that sf3b4-deficient fish displayed craniofacial and segmentation defects associated with suppression of fgf8 levels, which perturbed FGF signaling and neural crest cell (NCC) expression. Our finding also pointed out that oxidative stress-induced apoptosis was prominently detected in sf3b4-deficient fish and may further exaggerate the bone remodeling process. Notably, injection of exogenous FGF8 significantly rescued the demonstrated defects in sf3b4-deficient fish, which further supported the participation of Fgf8 in NS pathogenesis. Overall, our study provides valuable insights into the molecular mechanism underlying developmental abnormalities observed in NS and suggests future therapeutic strategies to protect against the pathogenesis of NS and possibilities for preventing severe outcomes.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong 16911, Indonesia.
| | - May-Su You
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Taijiro Yabe
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; The Graduate University for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Shinji Takada
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; The Graduate University for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Wang Y, Wang J, Xu T, Yang S, Wang X, Zhu L, Li N, Liu B, Xiao J, Liu C. Ectopic Activation of Fgf8 in Dental Mesenchyme Causes Incisor Agenesis and Molar Microdontia. Int J Mol Sci 2024; 25:7045. [PMID: 39000154 PMCID: PMC11241644 DOI: 10.3390/ijms25137045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Putatively, tooth agenesis was attributed to the initiation failure of tooth germs, though little is known about the histological and molecular alterations. To address if constitutively active FGF signaling is associated with tooth agenesis, we activated Fgf8 in dental mesenchyme with Osr-cre knock-in allele in mice (Osr2-creKI; Rosa26R-Fgf8) and found incisor agenesis and molar microdontia. The cell survival assay showed tremendous apoptosis in both the Osr2-creKI; Rosa26R-Fgf8 incisor epithelium and mesenchyme, which initiated incisor regression from cap stage. In situ hybridization displayed vanished Shh transcription, and immunostaining exhibited reduced Runx2 expression and enlarged mesenchymal Lef1 domain in Osr2-creKI; Rosa26R-Fgf8 incisors, both of which were suggested to enhance apoptosis. In contrast, Osr2-creKI; Rosa26R-Fgf8 molar germs displayed mildly suppressed Shh transcription, and the increased expression of Ectodin, Runx2 and Lef1. Although mildly smaller than WT controls prenatally, the Osr2-creKI; Rosa26R-Fgf8 molar germs produced a miniature tooth with impaired mineralization after a 6-week sub-renal culture. Intriguingly, the implanted Osr2-creKI; Rosa26R-Fgf8 molar germs exhibited delayed odontoblast differentiation and accelerated ameloblast maturation. Collectively, the ectopically activated Fgf8 in dental mesenchyme caused incisor agenesis by triggering incisor regression and postnatal molar microdontia. Our findings reported tooth agenesis resulting from the regression from the early bell stage and implicated a correlation between tooth agenesis and microdontia.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Stomatology, Binzhou Medical University, Yantai 264003, China;
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (J.W.); (T.X.); (S.Y.); (X.W.); (L.Z.); (N.L.)
| | - Jingjing Wang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (J.W.); (T.X.); (S.Y.); (X.W.); (L.Z.); (N.L.)
| | - Tian Xu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (J.W.); (T.X.); (S.Y.); (X.W.); (L.Z.); (N.L.)
| | - Shuhui Yang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (J.W.); (T.X.); (S.Y.); (X.W.); (L.Z.); (N.L.)
| | - Xinran Wang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (J.W.); (T.X.); (S.Y.); (X.W.); (L.Z.); (N.L.)
| | - Lei Zhu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (J.W.); (T.X.); (S.Y.); (X.W.); (L.Z.); (N.L.)
| | - Nan Li
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (J.W.); (T.X.); (S.Y.); (X.W.); (L.Z.); (N.L.)
| | - Bo Liu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China;
| | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (J.W.); (T.X.); (S.Y.); (X.W.); (L.Z.); (N.L.)
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (J.W.); (T.X.); (S.Y.); (X.W.); (L.Z.); (N.L.)
| |
Collapse
|
4
|
Liu C, Zhou N, Li N, Xu T, Chen X, Zhou H, Xie A, Liu H, Zhu L, Wang S, Xiao J. Disrupted tenogenesis in masseter as a potential cause of micrognathia. Int J Oral Sci 2022; 14:50. [PMID: 36257937 PMCID: PMC9579150 DOI: 10.1038/s41368-022-00196-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
Micrognathia is a severe craniofacial deformity affecting appearance and survival. Previous studies revealed that multiple factors involved in the osteogenesis of mandibular bone have contributed to micrognathia, but concerned little on factors other than osteogenesis. In the current study, we found that ectopic activation of Fgf8 by Osr2-cre in the presumptive mesenchyme for masseter tendon in mice led to micrognathia, masseter regression, and the disrupted patterning and differentiation of masseter tendon. Since Myf5-cre;Rosa26R-Fgf8 mice exhibited the normal masseter and mandibular bone, the possibility that the micrognathia and masseter regression resulted directly from the over-expressed Fgf8 was excluded. Further investigation disclosed that a series of chondrogenic markers were ectopically activated in the developing Osr2-cre;Rosa26R-Fgf8 masseter tendon, while the mechanical sensing in the masseter and mandibular bone was obviously reduced. Thus, it suggested that the micrognathia in Osr2-cre;Rosa26R-Fgf8 mice resulted secondarily from the reduced mechanical force transmitted to mandibular bone. Consistently, when tenogenic or myogenic components were deleted from the developing mandibles, both the micrognathia and masseter degeneration took place with the decreased mechanical sensing in mandibular bone, which verified that the loss of mechanical force transmitted by masseter tendon could result in micrognathia. Furthermore, it appeared that the micrognathia resulting from the disrupted tenogenesis was attributed to the impaired osteogenic specification, instead of the differentiation in the periosteal progenitors. Our findings disclose a novel mechanism for mandibular morphogenesis, and shed light on the prevention and treatment for micrognathia.
Collapse
Affiliation(s)
- Chao Liu
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China.,Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Nan Zhou
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China
| | - Nan Li
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China.,Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Tian Xu
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China
| | - Xiaoyan Chen
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China
| | - Hailing Zhou
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China
| | - Ailun Xie
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China
| | - Han Liu
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China.,Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Lei Zhu
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China.,Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Songlin Wang
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian, China. .,Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
| | - Jing Xiao
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China. .,Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian, China.
| |
Collapse
|
5
|
Dash S, Trainor PA. Nucleolin loss of function leads to aberrant Fibroblast Growth Factor signaling and craniofacial anomalies. Development 2022; 149:dev200349. [PMID: 35762670 PMCID: PMC9270975 DOI: 10.1242/dev.200349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/25/2022] [Indexed: 11/23/2022]
Abstract
Ribosomal RNA (rRNA) transcription and ribosome biogenesis are global processes required for growth and proliferation of all cells, yet perturbation of these processes in vertebrates leads to tissue-specific defects termed ribosomopathies. Mutations in rRNA transcription and processing proteins often lead to craniofacial anomalies; however, the cellular and molecular reasons for these defects are poorly understood. Therefore, we examined the function of the most abundant nucleolar phosphoprotein, Nucleolin (Ncl), in vertebrate development. ncl mutant (ncl-/-) zebrafish present with craniofacial anomalies such as mandibulofacial hypoplasia. We observed that ncl-/- mutants exhibited decreased rRNA synthesis and p53-dependent apoptosis, consistent with a role in ribosome biogenesis. However, we found that Nucleolin also performs functions not associated with ribosome biogenesis. We discovered that the half-life of fgf8a mRNA was reduced in ncl-/- mutants, which perturbed Fgf signaling, resulting in misregulated Sox9a-mediated chondrogenesis and Runx2-mediated osteogenesis. Consistent with this model, exogenous FGF8 treatment significantly rescued the cranioskeletal phenotype in ncl-/- zebrafish, suggesting that Nucleolin regulates osteochondroprogenitor differentiation. Our work has therefore uncovered tissue-specific functions for Nucleolin in rRNA transcription and post-transcriptional regulation of growth factor signaling during embryonic craniofacial development.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
6
|
Liu Z, Zhan A, Fan S, Liao L, Lian W. DNCP induces the differentiation of induced pluripotent stem cells into odontoblasts by activating the Smad/p-Smad and p38/p-p38 signaling pathways. Exp Ther Med 2021; 22:1361. [PMID: 34659507 DOI: 10.3892/etm.2021.10481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/11/2021] [Indexed: 11/06/2022] Open
Abstract
In recent years, stem cells have been studied for treating tooth loss. The present study aimed to investigate the roles of dentin non-collagen protein (DNCP)-associated microenvironments in the differentiation of induced pluripotent stem cells (iPSCs) into dentin cells. iPSCs were cultured and identified by examining octamer-binding transcription-factor-4 (Oct-4) and sex-determining region-Y-2 (Sox-2) expression. iPSCs were differentiated by culturing DNCP-associated microenvironments (containing specific growth factors), and they were divided into control, DNCP, DNCP+bone morphogenetic proteins (BMPs) and DNCP+Noggin (a BMP inhibitor) groups. Msh homeobox 1 (Msx-1), dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP-1) mRNA expression was evaluated using reverse transcription-quantitative PCR. The levels of p38, phosphorylated (p)-p38, Smad and p-Smad were determined by western blotting. Upon treatment with mouse embryonic fibroblasts, iPSCs-dependent embryoid bodies (EBs) were successfully generated. iPSCs exhibited increased Oct-4 and Sox-2 expression. Differentiated iPSCs had higher expression levels of DSPP, DMP-1 and Msx-1 in the DNCP group compared with those in the control group (P<0.05). Noggin treatment significantly downregulated, while BMPs administration significantly increased the expression levels of DSPP, DMP-1 and Msx-1 compared with those of the DNCP group (P<0.05). The ratios of p-p38/p38 and p-Smad/Smad were significantly higher in the DNCP group compared with those in the control group (P<0.05). Noggin and BMPs significantly decreased ratios of p-p38/p38, compared with those of the DNCP group (P<0.05). In conclusion, DNCP induced the differentiation of iPSCs into odontoblasts by activating the Smad/p-Smad and p38/p-p38 signaling pathways.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Aiping Zhan
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Sumeng Fan
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lan Liao
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenwei Lian
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
7
|
Fabik J, Psutkova V, Machon O. The Mandibular and Hyoid Arches-From Molecular Patterning to Shaping Bone and Cartilage. Int J Mol Sci 2021; 22:7529. [PMID: 34299147 PMCID: PMC8303155 DOI: 10.3390/ijms22147529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The mandibular and hyoid arches collectively make up the facial skeleton, also known as the viscerocranium. Although all three germ layers come together to assemble the pharyngeal arches, the majority of tissue within viscerocranial skeletal components differentiates from the neural crest. Since nearly one third of all birth defects in humans affect the craniofacial region, it is important to understand how signalling pathways and transcription factors govern the embryogenesis and skeletogenesis of the viscerocranium. This review focuses on mouse and zebrafish models of craniofacial development. We highlight gene regulatory networks directing the patterning and osteochondrogenesis of the mandibular and hyoid arches that are actually conserved among all gnathostomes. The first part of this review describes the anatomy and development of mandibular and hyoid arches in both species. The second part analyses cell signalling and transcription factors that ensure the specificity of individual structures along the anatomical axes. The third part discusses the genes and molecules that control the formation of bone and cartilage within mandibular and hyoid arches and how dysregulation of molecular signalling influences the development of skeletal components of the viscerocranium. In conclusion, we notice that mandibular malformations in humans and mice often co-occur with hyoid malformations and pinpoint the similar molecular machinery controlling the development of mandibular and hyoid arches.
Collapse
Affiliation(s)
- Jaroslav Fabik
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
| |
Collapse
|
8
|
Tian A, Wang S, Wang H, Li N, Liu H, Zhou H, Chen X, Liu X, Deng J, Xiao J, Liu C. Over-expression of Fgf8 in cardiac neural crest cells leads to persistent truncus arteriosus. J Mol Histol 2021; 52:351-361. [PMID: 33547543 DOI: 10.1007/s10735-021-09956-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/04/2021] [Indexed: 11/24/2022]
Abstract
During cardiogenesis, the outflow tract undergoes a complicated morphogenesis, including the re-alignment of the great blood vessels, and the separation of aorta and pulmonary trunk. The deficiency of FGF8 in the morphogenesis of outflow tract has been well studied, however, the effect of over-dosed FGF8 on the development of outflow tract remains unknown. In this study, Rosa26R-Fgf8 knock-in allele was constitutively activated by Wnt1-cre transgene in the mouse neural crest cells presumptive for the endocardial cushion of outflow tract. Surprisingly, Wnt1-cre; Rosa26R-Fgf8 mouse embryos exhibited persistent truncus arteriosus and died prior to E15.5. The cardiac neural crest cells in Wnt1-cre; Rosa26R-Fgf8 truncus arteriosus did not degenerate as in WT controls, but proliferated into a thickened endocardial cushion and then, blocked the blood outflow from cardiac chambers into the lungs, which resulted in the embryonic lethality. Although the spiral aorticopulmonary septum failed to form, the differentiaion of the endothelium and smooth muscle in the Wnt1-cre; Rosa26R-Fgf8 truncus arteriosus were impacted little. However, lineage tracing assay showed that the neural crest derived cells aggregated in the cushion layer, but failed to differentiate into the endothelium of Wnt1-cre; Rosa26R-Fgf8 truncus arteriosus. Further investigation displayed the reduced p-Akt and p-Erk immunostaining, and the decreased Bmp2 and Bmp4 transcription in the endothelium of Wnt1-cre; Rosa26R-Fgf8 truncus arteriosus. Our findings suggested that Fgf8 over-expression in cardiac neural crest impaired the formation of aorticopulmonary septum by suppressing the endothelial differentiation and stimulating the proliferation of endocardial cushion cells, which implicated a novel etiology of persistent truncus arteriosus.
Collapse
Affiliation(s)
- Aijuan Tian
- Department of Nuclear Medicine, The 2nd Hospital Affiliated to Dalian Medical University, Dalian, 116023, China
| | - Shangqi Wang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Haoru Wang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Nan Li
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Han Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China.,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Hailing Zhou
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Xiaoyan Chen
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Xuena Liu
- Department of Nuclear Medicine, The 2nd Hospital Affiliated to Dalian Medical University, Dalian, 116023, China
| | - Jiamin Deng
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China. .,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, 116044, China.
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China. .,Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
9
|
Dash S, Trainor PA. The development, patterning and evolution of neural crest cell differentiation into cartilage and bone. Bone 2020; 137:115409. [PMID: 32417535 DOI: 10.1016/j.bone.2020.115409] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Neural crest cells are a vertebrate-specific migratory, multipotent cell population that give rise to a diverse array of cells and tissues during development. Cranial neural crest cells, in particular, generate cartilage, bone, tendons and connective tissue in the head and face as well as neurons, glia and melanocytes. In this review, we focus on the chondrogenic and osteogenic potential of cranial neural crest cells and discuss the roles of Sox9, Runx2 and Msx1/2 transcription factors and WNT, FGF and TGFβ signaling pathways in regulating neural crest cell differentiation into cartilage and bone. We also describe cranioskeletal defects and disorders arising from gain or loss-of-function of genes that are required for patterning and differentiation of cranial neural crest cells. Finally, we discuss the evolution of skeletogenic potential in neural crest cells and their function as a conduit for intraspecies and interspecies variation, and the evolution of craniofacial novelties.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
10
|
microRNA-875-5p plays critical role for mesenchymal condensation in epithelial-mesenchymal interaction during tooth development. Sci Rep 2020; 10:4918. [PMID: 32188878 PMCID: PMC7080778 DOI: 10.1038/s41598-020-61693-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 02/17/2020] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal interaction has critical roles for organ development including teeth, during which epithelial thickening and mesenchymal condensation are initiated by precise regulation of the signaling pathway. In teeth, neural crest-derived mesenchymal cells expressed PDGF receptors migrate and become condensed toward invaginated epithelium. To identify the molecular mechanism of this interaction, we explored the specific transcriptional start sites (TSSs) of tooth organs using cap analysis of gene expression (CAGE). We identified a tooth specific TSS detected in the chromosome 15qD1 region, which codes microRNA-875 (mir875). MiR875-5p is specifically expressed in dental mesenchyme during the early stage of tooth development. Furthermore, PRRX1/2 binds to the mir875 promoter region and enhances the expression of mir875. To assess the role of miR875-5p in dental mesenchyme, we transfected mimic miR875-5p into mouse dental pulp (mDP) cells, which showed that cell migration toward dental epithelial cells was significantly induced by miR875-5p via the PDGF signaling pathway. Those results also demonstrated that miR875-5p induces cell migration by inhibiting PTEN and STAT1, which are regulated by miR875-5p as part of post-transcriptional regulation. Together, our findings indicate that tooth specific miR875-5p has important roles in cell condensation of mesenchymal cells around invaginated dental epithelium and induction of epithelial-mesenchymal interaction.
Collapse
|
11
|
Xu J, Wang L, Huang Z, Chen Y, Shao M. Exogenous FGF8 signaling in osteocytes leads to mandibular hypoplasia in mice. Oral Dis 2020; 26:590-596. [PMID: 31863612 DOI: 10.1111/odi.13262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Fibroblast growth factor 8 (FGF8) signaling is essential in regulating craniofacial osteogenesis. This study aims to explore the effect of altered FGF8 signaling in maxillomandibular development during embryogenesis. MATERIALS AND METHODS Dmp1Cre ;R26RmTmG mice were generated to trace Dmp1+ cell lineage, and Dmp1Cre ;R26RFgf8 mice were generated to explore the effects of augmented FGF8 signaling in Dmp1+ cells on osteogenesis with a focus on maxillomandibular development during embryogenesis, as assessed by whole mount skeletal staining, histology, and immunostaining. Additionally, cell proliferation rate and the expression of osteogenic genes were examined. RESULTS Osteocytes of maxillomandibular bones were found Dmp1-positive prenatally, and Fgf8 over-expression in Dmp1+ cells led to mandibular hypoplasia. While Dmp1Cre allele functions in the osteocytes of the developing mandibular bone at as early as E13.5, and enhanced cell proliferation rate is observed in the bone forming region of the mandible in Dmp1Cre ;R26RFgf8 mice at E14.5, histological examination showed that osteogenesis was initially impacted at E15.5, along with an inhibition of osteogenic differentiation markers. CONCLUSIONS Augmented FGF8 signaling in Dmp1+ cells lead to osteogenic deficiency in the mandibular bones, resulting in mandibular hypoplasia.
Collapse
Affiliation(s)
- Jue Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Linyan Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, and Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhen Huang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Meiying Shao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
DiStasio A, Paulding D, Chaturvedi P, Stottmann RW. Nubp2 is required for cranial neural crest survival in the mouse. Dev Biol 2019; 458:189-199. [PMID: 31733190 DOI: 10.1016/j.ydbio.2019.10.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/16/2019] [Accepted: 10/26/2019] [Indexed: 12/31/2022]
Abstract
The N-ethyl-N-nitrosourea (ENU) ←forward genetic screen is a useful tool for the unbiased discovery of novel mechanisms regulating developmental processes. We recovered the dorothy mutation in such a screen designed to recover recessive mutations affecting craniofacial development in the mouse. Dorothy embryos die prenatally and exhibit many striking phenotypes commonly associated with ciliopathies, including a severe midfacial clefting phenotype. We used exome sequencing to discover a missense mutation in nucleotide binding protein 2 (Nubp2) to be causative. This finding was confirmed by a complementation assay with the dorothy allele and an independent Nubp2 null allele (Nubp2null). We demonstrated that Nubp2 is indispensable for embryogenesis. NUBP2 is implicated in both the cytosolic iron/sulfur cluster assembly pathway and negative regulation of ciliogenesis. Conditional ablation of Nubp2 in the neural crest lineage with Wnt1-cre recapitulates the dorothy craniofacial phenotype. Using this model, we found that the proportion of ciliated cells in the craniofacial mesenchyme was unchanged, and that markers of the SHH, FGF, and BMP signaling pathways are unaltered. Finally, we show evidence that the phenotype results from a marked increase in apoptosis within the craniofacial mesenchyme.
Collapse
Affiliation(s)
| | | | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, 45229, USA
| | - Rolf W Stottmann
- Division of Human Genetics, OH, 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Shriner's Hospital for Children - Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
13
|
A combination insecticide at sub-lethal dose debilitated the expression pattern of crucial signalling molecules that facilitate craniofacial patterning in domestic chick Gallus domesticus. Neurotoxicol Teratol 2019; 76:106836. [PMID: 31593814 DOI: 10.1016/j.ntt.2019.106836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022]
Abstract
Pesticides despite being agents that protect the plants and humans from noxious pests, are infamous for their potential to cause detrimental health issues in nontargeted species. In order to ascertain the latter, a set of experiments were conducted by exposing early chick embryos to a widely used combination insecticide (Ci, 50% chlorpyrifos and 5% cypermethrin). The results revealed a myriad of congenital defects pertaining to craniofacial development such as anophthalmia, microphthalmia, exencephaly as well as deformed beak and cranial structures. These teratological manifestations could be attributed to the Ci induced alteration in the titre of major regulators of neurulation and ossification. Therefore, the mRNA and/or the protein level expression pattern of genes which are reported to be involved in the craniofacial development were studied at selected time points of embryonic development. The analysis of the result showed that there have been significant alternations in the expression patterns of the signalling molecules such as SHH, WNTs, CDH1, CDH2, L1CAM, PAX6, HOX, PCNA, GLI3, BMP7, FGF8, GLIs, SOX9, RUNX2, DLX5, COL10A1, CASPASE3 etc. on embryonic days 2, 4 and/or 10. Concurrently, on day 10, whole-mount skeletal staining and biochemical estimation of hydroxyproline were carried out in the cranial tissues of the embryos. The overall result of the current study indicates that exposure to Ci during early development impede the crucial regulatory signals that orchestrate the morphogenesis of cranial neural crest cells thereby hindering the normal progression of neural tube and endochondral ossification which collectively lead to craniofacial dysmorphism in domestic chicks.
Collapse
|
14
|
Nowialis P, Lopusna K, Opavska J, Haney SL, Abraham A, Sheng P, Riva A, Natarajan A, Guryanova O, Simpson M, Hlady R, Xie M, Opavsky R. Catalytically inactive Dnmt3b rescues mouse embryonic development by accessory and repressive functions. Nat Commun 2019; 10:4374. [PMID: 31558711 PMCID: PMC6763448 DOI: 10.1038/s41467-019-12355-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/04/2019] [Indexed: 01/19/2023] Open
Abstract
DNA methylation regulates gene expression in a variety of processes, including mouse embryonic development. Four catalytically active enzymes function in mice as DNA methyltransferases (Dnmts) and as transcriptional regulators. Inactivation of Dnmt3b results in mouse embryonic lethality, but which activities are involved is unclear. Here we show that catalytically inactive Dnmt3b restores a majority of methylation and expression changes deregulated in the absence of Dnmt3b, and as a result, mice survive embryonic development. Thus, Dnmt3b functions as an accessory cofactor supporting catalytic activities performed by other Dnmts. We further demonstrate that Dnmt3b is linked to a control of major developmental pathways, including Wnt and hedgehog signaling. Dnmt3b directly represses Wnt9b whose aberrant up-regulation contributes to embryonic lethality of Dnmt3b knockout embryos. Our results highlight that Dnmt3b is a multifaceted protein that serves as an enzyme, an accessory factor for other methyltransferases, and as a transcriptional repressor in mouse embryogenesis.
Collapse
Affiliation(s)
- Pawel Nowialis
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Katarina Lopusna
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Jana Opavska
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Staci L Haney
- Department of Internal Medicine, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ajay Abraham
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 263, Gainesville, FL, 32610, USA
| | - Alberto Riva
- ICBR Bioinformatics, Cancer and Genetics Research Complex, University of Florida, P.O. Box 103622, Gainesville, FL, 32610, USA
| | - Amarnath Natarajan
- University of Nebraska Medical Center, The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, 986805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Olga Guryanova
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 260, Gainesville, FL, 32610, USA
| | - Melanie Simpson
- Molecular and Structural Biochemistry, NC State University, Raleigh, NC, 27695, USA
| | - Ryan Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55901, USA
| | - Mingyi Xie
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 263, Gainesville, FL, 32610, USA
| | - Rene Opavsky
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
15
|
Gebuijs IGE, Raterman ST, Metz JR, Swanenberg L, Zethof J, Van den Bos R, Carels CEL, Wagener FADTG, Von den Hoff JW. Fgf8a mutation affects craniofacial development and skeletal gene expression in zebrafish larvae. Biol Open 2019; 8:bio.039834. [PMID: 31471293 PMCID: PMC6777363 DOI: 10.1242/bio.039834] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Craniofacial development is tightly regulated and therefore highly vulnerable to disturbance by genetic and environmental factors. Fibroblast growth factors (FGFs) direct migration, proliferation and survival of cranial neural crest cells (CNCCs) forming the human face. In this study, we analyzed bone and cartilage formation in the head of five dpf fgf8ati282 zebrafish larvae and assessed gene expression levels for 11 genes involved in these processes. In addition, in situ hybridization was performed on 8 and 24 hours post fertilization (hpf) larvae (fgf8a, dlx2a, runx2a, col2a1a). A significant size reduction of eight out of nine craniofacial cartilage structures was found in homozygous mutant (6–36%, P<0.01) and heterozygous (7–24%, P<0.01) larvae. Also, nine mineralized structures were not observed in all or part of the homozygous (0–71%, P<0.0001) and heterozygous (33–100%, P<0.0001) larvae. In homozygote mutants, runx2a and sp7 expression was upregulated compared to wild type, presumably to compensate for the reduced bone formation. Decreased col9a1b expression may compromise cartilage formation. Upregulated dlx2a in homozygotes indicates impaired CNCC function. Dlx2a expression was reduced in the first and second stream of CNCCs in homozygous mutants at 24 hpf, as shown by in situ hybridization. This indicates an impairment of CNCC migration and survival by fgf8 mutation. Summary: A function-blocking mutation in fgf8a causes craniofacial malformations in zebrafish larvae due to impaired cranial neural crest cell migration and survival.
Collapse
Affiliation(s)
- I G E Gebuijs
- Department of Orthodontics and Craniofacial Biology, Radboudumc, Nijmegen, The Netherlands.,Department of Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - S T Raterman
- Department of Orthodontics and Craniofacial Biology, Radboudumc, Nijmegen, The Netherlands.,Department of Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - J R Metz
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - L Swanenberg
- Department of Orthodontics and Craniofacial Biology, Radboudumc, Nijmegen, The Netherlands.,Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - J Zethof
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - R Van den Bos
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - C E L Carels
- Department of Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands.,Department of Oral Health Sciences and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - F A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboudumc, Nijmegen, The Netherlands.,Department of Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | - J W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboudumc, Nijmegen, The Netherlands .,Department of Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Hao Y, Tang S, Yuan Y, Liu R, Chen Q. Roles of FGF8 subfamily in embryogenesis and oral‑maxillofacial diseases (Review). Int J Oncol 2019; 54:797-806. [PMID: 30628659 DOI: 10.3892/ijo.2019.4677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/19/2018] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factors (FGFs) are diffusible polypeptides released by a variety of cell types. FGF8 subfamily members regulate embryonic development processes through controlling progenitor cell growth and differentiation, and are also functional in adults in tissue repair to maintain tissue homeostasis. FGF8 family members exhibit unique binding affinities with FGF receptors and tissue distribution patterns. Increasing evidence suggests that, by regulating multiple cellular signaling pathways, alterations in the FGF8 subfamily are involved in craniofacial development, odontogenesis, tongue development and salivary gland branching morphogenesis. Aberrant FGF signaling transduction, caused by mutations as well as abnormal expression or isoform splicing, plays an important role in the development of oral diseases. Targeting FGF8 subfamily members provides a new promising strategy for the treatment of oral diseases. The aim of this review was to summarize the aberrant regulations of FGF8 subfamily members and their potential implications in oral‑maxillofacial diseases.
Collapse
Affiliation(s)
- Yilong Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shuya Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
17
|
Thier MC, Hommerding O, Panten J, Pinna R, García-González D, Berger T, Wörsdörfer P, Assenov Y, Scognamiglio R, Przybylla A, Kaschutnig P, Becker L, Milsom MD, Jauch A, Utikal J, Herrmann C, Monyer H, Edenhofer F, Trumpp A. Identification of Embryonic Neural Plate Border Stem Cells and Their Generation by Direct Reprogramming from Adult Human Blood Cells. Cell Stem Cell 2018; 24:166-182.e13. [PMID: 30581079 DOI: 10.1016/j.stem.2018.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/30/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023]
Abstract
We report the direct reprogramming of both adult human fibroblasts and blood cells into induced neural plate border stem cells (iNBSCs) by ectopic expression of four neural transcription factors. Self-renewing, clonal iNBSCs can be robustly expanded in defined media while retaining multilineage differentiation potential. They generate functional cell types of neural crest and CNS lineages and could be used to model a human pain syndrome via gene editing of SCN9A in iNBSCs. NBSCs can also be derived from human pluripotent stem cells and share functional and molecular features with NBSCs isolated from embryonic day 8.5 (E8.5) mouse neural folds. Single-cell RNA sequencing identified the anterior hindbrain as the origin of mouse NBSCs, with human iNBSCs sharing a similar regional identity. In summary, we identify embryonic NBSCs and report their generation by direct reprogramming in human, which may facilitate insights into neural development and provide a neural stem cell source for applications in regenerative medicine.
Collapse
Affiliation(s)
- Marc Christian Thier
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Oliver Hommerding
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, Universität Bonn Life and Brain Center and Hertie Foundation, Sigmund-Freud Strasse 25, 53105 Bonn, Germany
| | - Jasper Panten
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Roberta Pinna
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Diego García-González
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Berger
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Philipp Wörsdörfer
- Stem Cell and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany
| | - Yassen Assenov
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roberta Scognamiglio
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Adriana Przybylla
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Paul Kaschutnig
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Experimental Hematology, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lisa Becker
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Michael D Milsom
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Experimental Hematology, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University Hospital of Heidelberg, Heidelberg, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology, and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Carl Herrmann
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Health Data Science Unit and Bioquant Center, Medical Faculty of Heidelberg University, 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Frank Edenhofer
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, Universität Bonn Life and Brain Center and Hertie Foundation, Sigmund-Freud Strasse 25, 53105 Bonn, Germany; Leopold-Franzens-University Innsbruck, Institute of Molecular Biology & CMBI, Department Genomics, Stem Cell Biology & Regenerative Medicine, 6020 Innsbruck, Austria
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
18
|
Jamal M, Lewandowski SL, Lawton ML, Huang GTJ, Ikonomou L. Derivation and characterization of putative craniofacial mesenchymal progenitor cells from human induced pluripotent stem cells. Stem Cell Res 2018; 33:100-109. [PMID: 30340089 PMCID: PMC6294687 DOI: 10.1016/j.scr.2018.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/28/2018] [Accepted: 10/08/2018] [Indexed: 12/23/2022] Open
Abstract
The introduction and widespread adoption of induced pluripotent stem cell (iPSC) technology has opened new avenues for craniofacial regenerative medicine. Neural crest cells (NCCs) are the precursor population to many craniofacial structures, including dental and periodontal structures, and iPSC-derived NCCs may, in the near future, offer an unlimited supply of patient-specific cells for craniofacial repair interventions. Here, we used an established protocol involving simultaneous Wnt signaling activation and TGF-β signaling inhibition to differentiate three human iPSC lines to cranial NCCs. We then derived a mesenchymal progenitor cell (NCC-MPCs) population with chondrogenic and osteogenic potential from cranial NCCs and investigated their similarity to widely studied human postnatal dental or periodontal stem/progenitor cells. NCC-MPCs were quite distinct from both their precursor cells (NCCs) and bone-marrow mesenchymal stromal cells, a stromal population of mesodermal origin. Despite their similarity with dental stem/progenitor cells, NCC-MPCs were clearly differentiated by a core set of 43 genes, including ACKR3 (CXCR7), whose expression (both at transcript and protein level) appear to be specific to NCC-MPCs. Altogether, our data demonstrate the feasibility of craniofacial mesenchymal progenitor derivation from human iPSCs through a neural crest-intermediate and set the foundation for future studies regarding their full differentiation repertoire and their in vivo existence.
Collapse
Affiliation(s)
- Mohamed Jamal
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Sara L Lewandowski
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Matthew L Lawton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - George T-J Huang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Laertis Ikonomou
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA; Pulmonary Center, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
19
|
da Costa MC, Trentin AG, Calloni GW. FGF8 and Shh promote the survival and maintenance of multipotent neural crest progenitors. Mech Dev 2018; 154:251-258. [PMID: 30075227 DOI: 10.1016/j.mod.2018.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
The developmental mechanisms that control the building of the complex head of vertebrates and particularly, facial skeletogenesis, remain poorly known. Progenitor cells derived from the embryonic neural crest (NC) are the major constituents and players of facial tissue development. Deciphering the cellular and molecular machinery that controls NC cell (NCC) differentiation into bone, cartilage, fat and other mesenchymal tissues, is thus a main issue for understanding vertebrate facial variations. In this work, we investigated the effects of fibroblast growth factor 8 (FGF8) and Sonic Hedgehog (Shh), two signaling molecules essential for craniofacial development, on the in vitro differentiation and multipotentiality of mesencephalic NCCs (MNCCs) isolated from the quail embryo. Comparison of distinct temporal treatments with FGF8 and/or Shh showed that both promoted chondrogenesis of MNCCs by increasing the amount and size of cartilage nodules. Higher rates of chondrogenesis were observed when MNCCs were treated with FGF8 during the migration phase, thus mimicking the in vivo exposure of migrating NCCs to FGF8 secreted by the isthmic brain signaling center. An in vitro cell cloning assay revealed that, after concomitant treatment with FGF8 and Shh, about 80% of NC progenitors displayed chondrogenic potential, while in untreated cultures, only 18% exhibited this potential. In addition, colony analysis showed for the first time the existence of a highly multipotent progenitor able to clonally give rise to adipocytes in addition to other cephalic NC phenotypes (i.e. glial cells, neurons, melanocytes, smooth muscle cells and chondrocytes) (GNMFCA progenitor). This progenitor was observed only when clonal cultures were treated with both FGF8 and Shh. Several other types of multipotent cells, which generated four, five or six distinct phenotypes, accounted for 55% of the progenitors in FGF8 and Shh treated cultures, versus 13,5% in the untreated ones. Together, these data reveal an essential role for both FGF8 and Shh together in maintenance of MNCC multipotentiality by favoring the development of NC progenitors endowed with a broad array of mesectodermal potentials.
Collapse
Affiliation(s)
- Meline Coelho da Costa
- Laboratório de Plasticidade e Diferenciação de Células da Crista Neural, Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis, SC, Brazil; Laboratório de Células Tronco e Regeneração Tecidual, Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Andréa Gonçalves Trentin
- Laboratório de Células Tronco e Regeneração Tecidual, Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Giordano Wosgrau Calloni
- Laboratório de Plasticidade e Diferenciação de Células da Crista Neural, Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
20
|
Evaluation and Immunolocalization of BMP4 and FGF8 in Odontogenic Cyst and Tumors. Anal Cell Pathol (Amst) 2018; 2018:1204549. [PMID: 30079292 PMCID: PMC6069700 DOI: 10.1155/2018/1204549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/05/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Growth factors like bone morphogenetic protein 4 (BMP4) and fibroblast growth factor 8 (FGF8) play a major role in organogenesis and specifically in odontogenesis. They are also believed to have a role in oncogenesis. Thus, any discrepancies in their standard behavior and activity would lead to serious abnormalities including odontogenic cyst and tumors. The present research work investigated the expression of BMP4 and FGF8 in odontogenic tumors (OT) and cyst as well as developing tooth germs to elucidate their roles. Dental organs of various odontogenic stages and 30 OTs including solid multicystic ameloblastomas (SMA, 10 cases), ameloblastic fibroma (AF, 10 cases), odontogenic myxoma (OM, 10 cases), and odontogenic cysts: odontogenic keratocyst (OKC, 10 cases) were evaluated in both epithelial and mesenchymal components for the expression of BMP4 and FGF8 using immunohistochemistry. The epithelial nuclear expression of BMP4 was highest in OKC (9 cases) while FGF8 was highest in SMA (10 cases). The mesenchymal nuclear expression of both BMP4 (8 cases) (p = 0.001) and FGF8 (9 cases) (p = 0.045) were significantly high in OMs among all OTs. Both growth factors were actively expressed in different stages of tooth development. The expression of BMP4 and FGF8 corelates well with the proliferative component of the pathologies, indicating a possible role in the pathogenesis and progression.
Collapse
|
21
|
Tsikandelova R, Mladenov P, Planchon S, Kalenderova S, Praskova M, Mihaylova Z, Stanimirov P, Mitev V, Renaut J, Ishkitiev N. Proteome response of dental pulp cells to exogenous FGF8. J Proteomics 2018; 183:14-24. [PMID: 29758290 DOI: 10.1016/j.jprot.2018.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022]
Abstract
FGF8 specifies early tooth development by directing the migration of the early tooth founder cells to the site of tooth emergence. To date the effect of the FGF8 in adult dental pulp has not been studied. We have assessed the regenerative potential of FGF8 by evaluating changes in the proteome landscape of dental pulp following short- and long-term exposure to recombinant FGF8 protein. In addition, we carried out qRT PCR analysis to determine extracellular/adhesion gene marker expression and assessed cell proliferation and mineralization in response to FGF8 treatment. 2D and mass spectrometry data showed differential expression of proteins implicated in cytoskeleton/ECM remodeling and migration, cell proliferation and odontogenic differentiation as evidenced by the upregulation of gelsolin, moesin, LMNA, WDR1, PLOD2, COPS5 and downregulation of P4HB. qRT PCR showed downregulation of proteins involved in cell-matrix adhesion such as ADAMTS8, LAMB3 and ANOS1 and increased expression of the angiogenesis marker PECAM1. We have observed that, FGF8 treatment was able to boost dental pulp cell proliferation and to enhance dental pulp mineralization. Collectively, our data suggest that, FGF8 treatment could promote endogenous healing of the dental pulp via recruitment of dental pulp progenitors as well as by promoting their angiogenic and odontogenic differentiation. SIGNIFICANCE Dental pulp cells (DP) have been studied extensively for the purposes of mineralized tissue repair, particularly for the reconstruction of hard and soft tissue maxillofacial defects. Canonical FGF signaling has been implicated throughout multiple stages of tooth development by regulating cell proliferation, differentiation, survival as well as cellular migration. FGF8 expression is indispensible for normal tooth development and particularly for the migration of early tooth progenitors to the sites of tooth emergence. The present study provides proteome and qRT PCR data with regard to the future application and biological relevance of FGF8 in dental regenerative medicine. AUTHORS WITH ORCID Rozaliya Tsikandelova - 0000-0003-0178-3767 Zornitsa Mihaylova - 0000-0003-1748-4489 Sébastien Planchon - 0000-0002-0455-0574 Nikolay Ishkitiev - 0000-0002-4351-5579.
Collapse
Affiliation(s)
- Rozaliya Tsikandelova
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria
| | - Petko Mladenov
- Agrobioinstitute, Agricultural Academy, Dr. Tsankov Blvd 8, 1164 Sofia, Bulgaria
| | - Sébastien Planchon
- Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Silvia Kalenderova
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria
| | - Maria Praskova
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria
| | - Zornitsa Mihaylova
- Medical University Sofia, Dept. of Oral and Maxillofacial Surgery, 1 G. Sofiyski str. Sofia, 1431, Bulgaria
| | - Pavel Stanimirov
- Medical University Sofia, Dept. of Oral and Maxillofacial Surgery, 1 G. Sofiyski str. Sofia, 1431, Bulgaria
| | - Vanyo Mitev
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Nikolay Ishkitiev
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria.
| |
Collapse
|
22
|
Xu J, Huang Z, Wang W, Tan X, Li H, Zhang Y, Tian W, Hu T, Chen YP. FGF8 Signaling Alters the Osteogenic Cell Fate in the Hard Palate. J Dent Res 2018; 97:589-596. [PMID: 29342370 DOI: 10.1177/0022034517750141] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factor (FGF) signaling has been implicated in the regulation of osteogenesis in both intramembranous and endochondral ossifications. In the developing palate, the anterior bony palate forms by direct differentiation of cranial neural crest (CNC)-derived mesenchymal cells, but the signals that regulate the osteogenic cell fate in the developing palate remain unclear. In the present study, we investigated the potential role of FGF signaling in osteogenic fate determination of the palatal mesenchymal cells. We showed that locally activated FGF8 signaling in the anterior palate using a Shox2Cre knock-in allele and an R26RFgf8 allele leads to a unique palatal defect: a complete loss of the palatine process of the maxilla as well as formation of ectopic cartilaginous tissues in the anterior palate. This aberrant developmental process was accompanied by a significantly elevated level of cell proliferation, which contributes to an abnormally thickened palatal tissue, where the palatine process of the maxilla would normally form, and by a complete inhibition of Osterix expression, which accounts for the lack of bone formation. The coexpression of Runx2 initially with Sox9 and subsequently with Col II in the ectopic cartilaginous tissues indicates a conversion of osteogenic fate to a chondrogenic one. Consistent with the unique palatal phenotype, RNA-Sequencing analysis revealed that the augmented FGF8 signaling downregulated genes involved in ossification, biomineral tissue development, and bone mineralization but upregulated genes involved in cell proliferation, cartilage development, and cell fate commitment, which was further supported by quantitative real-time reverse transcription polymerase chain reaction validation of selected genes. Our results demonstrate that FGF8 signaling functions as a negative regulator of osteogenic fate and is sufficient to convert a subset of CNC cell-derived mesenchymal cells into cartilage in the anterior hard palate, which will have implications in future directed differentiation of CNC-derived precursor cells for clinical application.
Collapse
Affiliation(s)
- J Xu
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, and Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,2 Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Z Huang
- 3 Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, P.R. China
| | - W Wang
- 3 Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, P.R. China
| | - X Tan
- 3 Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, P.R. China
| | - H Li
- 3 Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, P.R. China
| | - Y Zhang
- 3 Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, P.R. China
| | - W Tian
- 4 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - T Hu
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, and Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Y P Chen
- 2 Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA.,3 Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, P.R. China
| |
Collapse
|
23
|
Balasubramanian R, Crowley WF. Reproductive endocrine phenotypes relating to CHD7 mutations in humans. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2017; 175:507-515. [PMID: 29152903 DOI: 10.1002/ajmg.c.31585] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022]
Abstract
Mutations in the gene CHD7 cause CHARGE syndrome, a rare multi-organ syndromic disorder. Gonadal defects are common in individuals with CHARGE syndrome (seen in ∼60-80% of cases) and represent the letter "G" in the CHARGE syndrome acronym. The gonadal defect in CHARGE syndrome results from congenital deficiency of the hypothalamic hormone Gonadotropin-releasing hormone (GnRH), which manifests clinically as pubertal failure and infertility, and biochemically as hypogonadotropic hypogonadism (low sex steroid hormone levels with inappropriately normal or low gonadotropin levels). In addition to the gonadal endocrine abnormalities, in a small minority of individuals with CHARGE, additional endocrine defects including growth hormone deficiency, multiple pituitary hormone deficits and primary hypothyroidism may also be seen. CHD7 mutations disrupt the targeting of olfactory axons and the migration of GnRH-synthesizing neurons during embryonic development, resulting in congenital idiopathic hypogonadotropic hypogonadism (IHH) and anosmia (or hyposmia), two features that define human Kallmann syndrome. Since Kallmann syndrome is one of the constituent phenotypes within CHARGE, recent studies have investigated the role of CHD7 mutations in individuals with IHH and established that deleterious missense mutations in CHD7 are associated with Kallmann syndrome as well as normosmic form of IHH. These missense mutations affect the ATPase and nucleosome remodeling activities of the CHD7 protein. These observations suggest that CHD7 protein function is critical for the ontogeny of GnRH neurons and neuroendocrine regulation of GnRH secretion.
Collapse
Affiliation(s)
- Ravikumar Balasubramanian
- Harvard Reproductive Endocrine Sciences Center of Excellence in Translation Research & Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - William F Crowley
- Harvard Reproductive Endocrine Sciences Center of Excellence in Translation Research & Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Daniel K. Podolsky Professor of Medicine, Harvard Medical School, Harvard Reproductive Endocrine Sciences Center, Massachusetts General Hospital, Bartlett Hall Extension, Boston, Massachusetts
| |
Collapse
|
24
|
Kurosaka H, Wang Q, Sandell L, Yamashiro T, Trainor PA. Rdh10 loss-of-function and perturbed retinoid signaling underlies the etiology of choanal atresia. Hum Mol Genet 2017; 26:1268-1279. [PMID: 28169399 PMCID: PMC5390677 DOI: 10.1093/hmg/ddx031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/19/2017] [Indexed: 12/12/2022] Open
Abstract
Craniofacial development is a complex process that involves sequential growth and fusion of the facial prominences. When these processes fail, congenital craniofacial anomalies can occur. For example, choanal atresia (CA) is a congenital craniofacial anomaly in which the connection between the nasal airway and nasopharynx is completely blocked. CA occurs in approximately 1/5000 live births and is a frequent component of congenital disorders such as CHARGE, Treacher Collins, Crouzon and Pfeiffer syndromes. However, the detailed cellular and molecular mechanisms underpinning the etiology and pathogenesis of CA remain elusive. In this study, we discovered that mice with mutations in retinol dehydrogenase 10 (Rdh10), which perturbs Vitamin A metabolism and retinoid signaling, exhibit fully penetrant CA. Interestingly, we demonstrate Rdh10 is specifically required in non-neural crest cells prior to E10.5 for proper choanae formation, and that in the absence of Rdh10, Fgf8 is ectopically expressed in the nasal fin. Furthermore, we found that defects in choanae development are associated with decreased cell proliferation and increased cell death in the epithelium of the developing nasal cavity, which retards invagination of the nasal cavity, and thus appears to contribute to the pathogenesis of CA. Taken together, our findings demonstrate that RDH10 is essential during the early stages of facial morphogenesis for the formation of a functional nasal airway, and furthermore establish Rdh10 mutant mice as an important model system to study CA.
Collapse
Affiliation(s)
- Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Qi Wang
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Lisa Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Louisville, KY, USA
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA and.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
25
|
Cheng X, Li H, Yan Y, Wang G, Berman Z, Chuai M, Yang X. From the Cover: Usage of Dexamethasone Increases the Risk of Cranial Neural Crest Dysplasia in the Chick Embryo. Toxicol Sci 2017; 158:36-47. [DOI: 10.1093/toxsci/kfx073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|