1
|
Al Ghafari M, El Jaafari N, Mouallem M, Maassarani T, El-Sibai M, Abi-Habib R. Key genes altered in glioblastoma based on bioinformatics (Review). Oncol Lett 2025; 29:243. [PMID: 40182607 PMCID: PMC11966088 DOI: 10.3892/ol.2025.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/03/2025] [Indexed: 04/05/2025] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor with poor prognosis. Recent advancements in bioinformatics have contributed to uncovering the genetic alterations that underlie the development and progression of GBM. Analysis of extensive genomic data led to the identification of significant pathways involved in GBM, such as the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling pathways, alongside key genes such as EGFR, TP53 and TERT. These findings have enhanced our understanding of GBM biology and led to the identification of new therapeutic targets. Bioinformatics has become an indispensable tool in pinpointing the genetic modifications that drive GBM, paving the way for innovative treatment strategies. This approach not only aids in comprehending the complexities of GBM but also holds promise for improving outcomes in patients suffering from this devastating disease. The ongoing integration of bioinformatics in GBM research continues to be vital for advancing therapeutic options.
Collapse
Affiliation(s)
- Marcelino Al Ghafari
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Nour El Jaafari
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mariam Mouallem
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Tala Maassarani
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mirvat El-Sibai
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Ralph Abi-Habib
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| |
Collapse
|
2
|
Plant-Fox AS, Tabori U. Future perspective of targeted treatments in pediatric low-grade glioma (pLGG): the evolution of standard-of-care and challenges of a new era. Childs Nerv Syst 2024; 40:3291-3299. [PMID: 39085626 DOI: 10.1007/s00381-024-06504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 08/02/2024]
Abstract
While surgery, when possible, remains the mainstay of pediatric low-grade glioma (pLGG) management, adjuvant therapy has significantly evolved over time. Radiation therapy was commonly used in the late 1990s for tumors that could not be resected or recurred. This resulted in significant late morbidity in this population and mortality related to secondary malignancies and chronic health conditions. Chemotherapy became the mainstay of adjuvant therapy but children still experienced late morbidity secondary to exposure to multiple lines of treatment over time. Targeted therapies emerged after the identification of frequent genetic alterations in the mitogen activated protein kinase (MAPK) pathway including KIAA1549-BRAF fusions and BRAF-V600 mutations and the near universal upregulation of the MAPK pathway in these tumors. Both BRAF and MEK inhibitors have shown efficacy in the treatment of pLGG and have led to prolonged stability in some cases. Multiple phase III clinical trials are now comparing targeted therapy to standard-of-care chemotherapy regimens setting the stage for targeted therapy to replace chemotherapy as the first-line treatment in some cases. Targeted therapy, however, is not without its challenges. There are clear examples of resistance and mechanisms of resistance have not been fully elucidated. There is also no clear duration for these therapies and rebound growth is a well-known phenomenon especially in BRAF-V600 mutant tumors. Targeted therapies are also fairly recent developments and long-term toxicities and functional outcomes are still being monitored. Very young and adolescent/young adult LGGs also carry molecular features that may not be addressed by inhibition of the MAPK pathway. Adjuvant therapy for pLGG has evolved from radiation for all unresectable or residual tumors to molecularly driven targeted therapies with improved quality of life, late effects, and less off-target toxicities. While there is still much to learn in regard to newer targeted therapies for pLGG, the era of targeted therapies for pediatric LGG is upon us.
Collapse
Affiliation(s)
- Ashley S Plant-Fox
- Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Uri Tabori
- The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Tian X, Zhang C, Wang D, Li X, Wang Q. Ginseng polysaccharide promotes the apoptosis of colon cancer cells via activating the NLRP3 inflammasome. Immunopharmacol Immunotoxicol 2024:1-12. [PMID: 39219032 DOI: 10.1080/08923973.2024.2398472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Ginseng polysaccharide (GPS) is an ingredient of ginseng with documented anti-tumor properties. However, its effect on colon cancer and the underlying molecular mechanisms have not been investigated clearly. METHODS Cell viability of HT29 and CT26 cells treated with different concentrations of GPS was assessed using the Cell Counting Kit-8 (CCK-8) assay. Western blot assay was used to detect the expression of apoptotic proteins, while the mRNA levels were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). Transwell migration assays were used to examine the migration and invasion of cells. RESULTS The results revealed that GPS effectively suppressed the proliferation of HT29 and CT26 cells. We demonstrated an upregulation of apoptotic proteins in GPS-treated cells, including Bax, cleaved Caspase-3, and p-p53. GPS treatment also increased the mRNA levels of cytochrome C and Bax. Furthermore, the results showed that GPS treatment concurrently promoted the activation of nucleotide-binding domain leucine-rich family pyrin-containing 3 (NLRP3) inflammasome. Transwell migration assays showed that GPS inhibited the migratory and invasive abilities of colon cancer cells. As expected, inhibition of NLRP3 expression using INF39 attenuated the inhibitory effect of GPS on migration and invasion. Upon NLRP3 inhibition, GPS-induced apoptosis was dramatically alleviated, accompanied by a reduction in the expression of apoptotic proteins. CONCLUSION In conclusion, this research provides compelling evidence that the GPS-induced NLRP3 signaling pathway plays a pivotal role in apoptosis of colon cells, suggesting potential clinical implications for the therapeutic intervention of colon cancer. Thus, GPS might be a promising anti-tumor drug for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Xiaoyan Tian
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chuanqiang Zhang
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Daojuan Wang
- Department of Pain, The Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaowei Li
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qiang Wang
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Beccari S, Mohamed E, Voong V, Hilz S, Lafontaine M, Shai A, Lim Y, Martinez J, Switzman B, Yu RL, Lupo JM, Chang EF, Hervey-Jumper SL, Berger MS, Costello JF, Phillips JJ. Quantitative Assessment of Preanalytic Variables on Clinical Evaluation of PI3/AKT/mTOR Signaling Activity in Diffuse Glioma. Mod Pathol 2024; 37:100488. [PMID: 38588881 DOI: 10.1016/j.modpat.2024.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024]
Abstract
Biomarker-driven therapeutic clinical trials require the implementation of standardized, evidence-based practices for sample collection. In diffuse glioma, phosphatidylinositol 3 (PI3)-kinase/AKT/mTOR (PI3/AKT/mTOR) signaling is an attractive therapeutic target for which window-of-opportunity clinical trials could facilitate the identification of promising new agents. Yet, the relevant preanalytic variables and optimal tumor sampling methods necessary to measure pathway activity are unknown. To address this, we used a murine model for isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) and human tumor tissue, including IDH-wildtype GBM and IDH-mutant diffuse glioma. First, we determined the impact of delayed time-to-formalin fixation, or cold ischemia time (CIT), on the quantitative assessment of cellular expression of 6 phosphoproteins that are readouts of PI3K/AK/mTOR activity (phosphorylated-proline-rich Akt substrate of 40 kDa (p-PRAS40, T246), -mechanistic target of rapamycin (p-mTOR; S2448); -AKT (p-AKT, S473); -ribosomal protein S6 (p-RPS6, S240/244 and S235/236), and -eukaryotic initiation factor 4E-binding protein 1 (p-4EBP1, T37/46). With CITs ≥ 2 hours, typical of routine clinical handling, all had reduced or altered expression with p-RPS6 (S240/244) exhibiting relatively greater stability. A similar pattern was observed using patient tumor samples from the operating room with p-4EBP1 more sensitive to delayed fixation than p-RPS6 (S240/244). Many clinical trials utilize unstained slides for biomarker evaluation. Thus, we evaluated the impact of slide storage conditions on the detection of p-RPS6 (S240/244), p-4EBP1, and p-AKT. After 5 months, storage at -80°C was required to preserve the expression of p-4EBP1 and p-AKT, whereas p-RPS6 (240/244) expression was not stable regardless of storage temperature. Biomarker heterogeneity impacts optimal tumor sampling. Quantification of p-RPS6 (240/244) expression in multiple regionally distinct human tumor samples from 8 patients revealed significant intratumoral heterogeneity. Thus, the accurate assessment of PI3K/AKT/mTOR signaling in diffuse glioma must overcome intratumoral heterogeneity and multiple preanalytic factors, including time-to-formalin fixation, slide storage conditions, and phosphoprotein of interest.
Collapse
Affiliation(s)
- Sol Beccari
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Esraa Mohamed
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Viva Voong
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Marisa Lafontaine
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Anny Shai
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Yunita Lim
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Jerry Martinez
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Benjamin Switzman
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Ryon L Yu
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, California; Neuropathology Division, Department of Pathology, University of California, San Francisco, California.
| |
Collapse
|
5
|
Haas-Kogan DA, Aboian MS, Minturn JE, Leary SE, Abdelbaki MS, Goldman S, Elster JD, Kraya A, Lueder MR, Ramakrishnan D, von Reppert M, Liu KX, Rokita JL, Resnick AC, Solomon DA, Phillips JJ, Prados M, Molinaro AM, Waszak SM, Mueller S. Everolimus for Children With Recurrent or Progressive Low-Grade Glioma: Results From the Phase II PNOC001 Trial. J Clin Oncol 2024; 42:441-451. [PMID: 37978951 PMCID: PMC10824388 DOI: 10.1200/jco.23.01838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE The PNOC001 phase II single-arm trial sought to estimate progression-free survival (PFS) associated with everolimus therapy for progressive/recurrent pediatric low-grade glioma (pLGG) on the basis of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway activation as measured by phosphorylated-ribosomal protein S6 and to identify prognostic and predictive biomarkers. PATIENTS AND METHODS Patients, age 3-21 years, with progressive/recurrent pLGG received everolimus orally, 5 mg/m2 once daily. Frequency of driver gene alterations was compared among independent pLGG cohorts of newly diagnosed and progressive/recurrent patients. PFS at 6 months (primary end point) and median PFS (secondary end point) were estimated for association with everolimus therapy. RESULTS Between 2012 and 2019, 65 subjects with progressive/recurrent pLGG (median age, 9.6 years; range, 3.0-19.9; 46% female) were enrolled, with a median follow-up of 57.5 months. The 6-month PFS was 67.4% (95% CI, 60.0 to 80.0) and median PFS was 11.1 months (95% CI, 7.6 to 19.8). Hypertriglyceridemia was the most common grade ≥3 adverse event. PI3K/AKT/mTOR pathway activation did not correlate with clinical outcomes (6-month PFS, active 68.4% v nonactive 63.3%; median PFS, active 11.2 months v nonactive 11.1 months; P = .80). Rare/novel KIAA1549::BRAF fusion breakpoints were most frequent in supratentorial midline pilocytic astrocytomas, in patients with progressive/recurrent disease, and correlated with poor clinical outcomes (median PFS, rare/novel KIAA1549::BRAF fusion breakpoints 6.1 months v common KIAA1549::BRAF fusion breakpoints 16.7 months; P < .05). Multivariate analysis confirmed their independent risk factor status for disease progression in PNOC001 and other, independent cohorts. Additionally, rare pathogenic germline variants in homologous recombination genes were identified in 6.8% of PNOC001 patients. CONCLUSION Everolimus is a well-tolerated therapy for progressive/recurrent pLGGs. Rare/novel KIAA1549::BRAF fusion breakpoints may define biomarkers for progressive disease and should be assessed in future clinical trials.
Collapse
Affiliation(s)
- Daphne A. Haas-Kogan
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Mariam S. Aboian
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | - Jane E. Minturn
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sarah E.S. Leary
- Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | - Mohamed S. Abdelbaki
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO
| | - Stewart Goldman
- Phoenix Children's Hospital, Phoenix, AZ
- University of Arizona College of Medicine, Phoenix, AZ
| | - Jennifer D. Elster
- Division of Hematology Oncology, Department of Pediatrics, Rady Children's Hospital, University of California, San Diego, San Diego, CA
| | - Adam Kraya
- Division of Neurosurgery, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Matthew R. Lueder
- Division of Neurosurgery, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Divya Ramakrishnan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | - Marc von Reppert
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
- University of Leipzig, Leipzig, Germany
| | - Kevin X. Liu
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Jo Lynne Rokita
- Division of Neurosurgery, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Adam C. Resnick
- Division of Neurosurgery, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - David A. Solomon
- Department of Pathology, University of California, San Francisco, San Francisco, CA
| | - Joanna J. Phillips
- Department of Pathology, University of California, San Francisco, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
| | - Michael Prados
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA
| | - Annette M. Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
| | - Sebastian M. Waszak
- Laboratory of Computational Neuro-Oncology, Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Neurology, University of California, San Francisco, San Francisco, CA
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sabine Mueller
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA
- Department of Neurology, University of California, San Francisco, San Francisco, CA
- Department of Pediatrics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Deng J, Liao Y, Chen J, Chen A, Wu S, Huang Y, Qian H, Gao F, Wu G, Chen Y, Chen X, Zheng X. N6-methyladenosine demethylase FTO regulates synaptic and cognitive impairment by destabilizing PTEN mRNA in hypoxic-ischemic neonatal rats. Cell Death Dis 2023; 14:820. [PMID: 38092760 PMCID: PMC10719319 DOI: 10.1038/s41419-023-06343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) can result in significant global rates of neonatal death or permanent neurological disability. N6-methyladenosine (m6A) modification of RNA influences fundamental aspects of RNA metabolism, and m6A dysregulation is implicated in various neurological diseases. However, the biological roles and clinical significance of m6A in HIBD remain unclear. We currently evaluated the effect of HIBD on cerebral m6A methylation in RNAs in neonatal rats. The m6A dot blot assay showed a global augmentation in RNA m6A methylation post-HI. Herein, we also report on demethylase FTO, which is markedly downregulated in the hippocampus and is the main factor involved with aberrant m6A modification following HI. By conducting a comprehensive analysis of RNA-seq data and m6A microarray results, we found that transcripts with m6A modifications were more highly expressed overall than transcripts without m6A modifications. The overexpression of FTO resulted in the promotion of Akt/mTOR pathway hyperactivation, while simultaneously inhibiting autophagic function. This is carried out by the demethylation activity of FTO, which selectively demethylates transcripts of phosphatase and tensin homolog (PTEN), thus promoting its degradation and reduced protein expression after HI. Moreover, the synaptic and neurocognitive disorders induced by HI were effectively reversed through the overexpression of FTO in the hippocampus. Cumulatively, these findings demonstrate the functional importance of FTO-dependent hippocampal m6A methylome in cognitive function and provides novel mechanistic insights into the therapeutic potentials of FTO in neonatal HIBD.
Collapse
Affiliation(s)
- Jianhui Deng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Yanling Liao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Jianghu Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Andi Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Shuyan Wu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Yongxin Huang
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Haitao Qian
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Fei Gao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Guixi Wu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Yisheng Chen
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Xiaohui Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China.
| | - Xiaochun Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China.
- Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Co-Constructed Laboratory of Belt and Road, Fuzhou, China.
| |
Collapse
|
7
|
Noch EK, Palma LN, Yim I, Bullen N, Qiu Y, Ravichandran H, Kim J, Rendeiro A, Davis MB, Elemento O, Pisapia DJ, Zhai K, LeKaye HC, Koutcher JA, Wen PY, Ligon KL, Cantley LC. Insulin feedback is a targetable resistance mechanism of PI3K inhibition in glioblastoma. Neuro Oncol 2023; 25:2165-2176. [PMID: 37399061 PMCID: PMC10708938 DOI: 10.1093/neuonc/noad117] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Insulin feedback is a critical mechanism responsible for the poor clinical efficacy of phosphatidylinositol 3-kinase (PI3K) inhibition in cancer, and hyperglycemia is an independent factor associated with poor prognosis in glioblastoma (GBM). We investigated combination anti-hyperglycemic therapy in a mouse model of GBM and evaluated the association of glycemic control in clinical trial data from patients with GBM. METHODS The effect of the anti-hyperglycemic regimens, metformin and the ketogenic diet, was evaluated in combination with PI3K inhibition in patient-derived GBM cells and in an orthotopic GBM mouse model. Insulin feedback and the immune microenvironment were retrospectively evaluated in blood and tumor tissue from a Phase 2 clinical trial of buparlisib in patients with recurrent GBM. RESULTS We found that PI3K inhibition induces hyperglycemia and hyperinsulinemia in mice and that combining metformin with PI3K inhibition improves the treatment efficacy in an orthotopic GBM xenograft model. Through examination of clinical trial data, we found that hyperglycemia was an independent factor associated with poor progression-free survival in patients with GBM. We also found that PI3K inhibition increased insulin receptor activation and T-cell and microglia abundance in tumor tissue from these patients. CONCLUSION Reducing insulin feedback improves the efficacy of PI3K inhibition in GBM in mice, and hyperglycemia worsens progression-free survival in patients with GBM treated with PI3K inhibition. These findings indicate that hyperglycemia is a critical resistance mechanism associated with PI3K inhibition in GBM and that anti-hyperglycemic therapy may enhance PI3K inhibitor efficacy in GBM patients.
Collapse
Affiliation(s)
- Evan K Noch
- Division of Neuro-oncology, Department of Neurology, Weill Cornell Medicine, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, New York, New York, USA
| | - Laura N Palma
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, New York, New York, USA
| | - Isaiah Yim
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, New York, New York, USA
| | - Nayah Bullen
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, New York, New York, USA
| | - Yuqing Qiu
- Department of Population Health Sciences, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Hiranmayi Ravichandran
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Junbum Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Andre Rendeiro
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Medical University of Vienna, Vienna, Austria
| | - Melissa B Davis
- Department of Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kevin Zhai
- Division of Neuro-oncology, Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Hongbiao Carl LeKaye
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jason A Koutcher
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Patrick Y Wen
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Neuro-oncology, Boston, Massachusetts, USA
| | - Keith L Ligon
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Pathology, Boston, Massachusetts, USA
| | - Lewis C Cantley
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Fang W, Yang M, Liu M, Jin Y, Wang Y, Yang R, Wang Y, Zhang K, Fu Q. Review on Additives in Hydrogels for 3D Bioprinting of Regenerative Medicine: From Mechanism to Methodology. Pharmaceutics 2023; 15:1700. [PMID: 37376148 PMCID: PMC10302687 DOI: 10.3390/pharmaceutics15061700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The regeneration of biological tissues in medicine is challenging, and 3D bioprinting offers an innovative way to create functional multicellular tissues. One common way in bioprinting is bioink, which is one type of the cell-loaded hydrogel. For clinical application, however, the bioprinting still suffers from satisfactory performance, e.g., in vascularization, effective antibacterial, immunomodulation, and regulation of collagen deposition. Many studies incorporated different bioactive materials into the 3D-printed scaffolds to optimize the bioprinting. Here, we reviewed a variety of additives added to the 3D bioprinting hydrogel. The underlying mechanisms and methodology for biological regeneration are important and will provide a useful basis for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kaile Zhang
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| | - Qiang Fu
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| |
Collapse
|
9
|
Molecular Heterogeneity in BRAF-Mutant Gliomas: Diagnostic, Prognostic, and Therapeutic Implications. Cancers (Basel) 2023; 15:cancers15041268. [PMID: 36831610 PMCID: PMC9954401 DOI: 10.3390/cancers15041268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Over the last few decades, deciphering the alteration of molecular pathways in brain tumors has led to impressive changes in diagnostic refinement. Among the molecular abnormalities triggering and/or driving gliomas, alterations in the MAPK pathway reign supreme in the pediatric population, as it is encountered in almost all low-grade pediatric gliomas. Activating abnormalities in the MAPK pathway are also present in both pediatric and adult high-grade gliomas. Across those alterations, BRAF p.V600E mutations seem to define homogeneous groups of tumors in terms of prognosis. The recent development of small molecules inhibiting this pathway retains the attention of neurooncologists on BRAF-altered tumors, as conventional therapies showed no significant effect, nor prolonged efficiency on the high-grade or low-grade unresectable forms. Nevertheless, tumoral heterogeneity and especially molecular alteration(s) associated with MAPK-pathway abnormalities are not fully understood with respect to how they might lead to the specific dismal prognosis of those gliomas and/or affect their response to targeted therapies. This review is an attempt to provide comprehensive information regarding molecular alterations related to the aggressiveness modulation in BRAF-mutated gliomas and the current knowledge on how to use those targeted therapies in such situations.
Collapse
|
10
|
Li Q, Li Z, Luo T, Shi H. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. MOLECULAR BIOMEDICINE 2022; 3:47. [PMID: 36539659 PMCID: PMC9768098 DOI: 10.1186/s43556-022-00110-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR and RAF/MEK/ERK pathways are commonly activated by mutations and chromosomal translocation in vital targets. The PI3K/AKT/mTOR signaling pathway is dysregulated in nearly all kinds of neoplasms, with the component in this pathway alternations. RAF/MEK/ERK signaling cascades are used to conduct signaling from the cell surface to the nucleus to mediate gene expression, cell cycle processes and apoptosis. RAS, B-Raf, PI3K, and PTEN are frequent upstream alternative sites. These mutations resulted in activated cell growth and downregulated cell apoptosis. The two pathways interact with each other to participate in tumorigenesis. PTEN alterations suppress RAF/MEK/ERK pathway activity via AKT phosphorylation and RAS inhibition. Several inhibitors targeting major components of these two pathways have been supported by the FDA. Dozens of agents in these two pathways have attracted great attention and have been assessed in clinical trials. The combination of small molecular inhibitors with traditional regimens has also been explored. Furthermore, dual inhibitors provide new insight into antitumor activity. This review will further comprehensively describe the genetic alterations in normal patients and tumor patients and discuss the role of targeted inhibitors in malignant neoplasm therapy. We hope this review will promote a comprehensive understanding of the role of the PI3K/AKT/mTOR and RAF/MEK/ERK signaling pathways in facilitating tumors and will help direct drug selection for tumor therapy.
Collapse
Affiliation(s)
- Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, PR China
| | - Ting Luo
- Department of Breast, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| |
Collapse
|
11
|
Mohamed E, Kumar A, Zhang Y, Wang AS, Chen K, Lim Y, Shai A, Taylor JW, Clarke J, Hilz S, Berger MS, Solomon DA, Costello JF, Molinaro AM, Phillips JJ. PI3K/AKT/mTOR signaling pathway activity in IDH-mutant diffuse glioma and clinical implications. Neuro Oncol 2022; 24:1471-1481. [PMID: 35287169 PMCID: PMC9435510 DOI: 10.1093/neuonc/noac064] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND IDH-mutant diffuse gliomas are heterogeneous, and improved methods for optimal patient therapeutic stratification are needed. PI3K/AKT/mTOR signaling activity can drive disease progression and potential therapeutic inhibitors of the pathway are available. Yet, the prevalence of PI3K/AKT/mTOR signaling pathway activity in IDH-mutant glioma is unclear and few robust strategies to assess activity in clinical samples exist. METHODS PI3K/AKT/mTOR signaling pathway activity was evaluated in a retrospective cohort of 132 IDH-mutant diffuse glioma (91 astrocytoma and 41 oligodendroglioma, 1p/19q-codeleted) through quantitative multiplex immunoprofiling using phospho-specific antibodies for PI3K/AKT/mTOR pathway members, PRAS40, RPS6, and 4EBP1, and tumor-specific anti-IDH1 R132H. Expression levels were correlated with genomic evaluation of pathway intrinsic genes and univariate and multivariate Cox proportional hazard regression models were used to evaluate the relationship with outcome. RESULTS Tumor-specific expression of p-PRAS40, p-RPS6, and p-4EBP1 was common in IDH-mutant diffuse glioma and increased with CNS WHO grade from 2 to 3. Genomic analysis predicted pathway activity in 21.7% (13/60) while protein evaluation identified active PI3K/AKT/mTOR signaling in 56.6% (34/60). Comparison of expression in male versus female patients suggested sexual dimorphism. Of particular interest, when adjusting for clinical prognostic factors, the level of phosphorylation of RPS6 was strongly associated with PFS (P < .005). Phosphorylation levels of both PRAS40 and RPS6 showed an association with PFS in univariate analysis. CONCLUSIONS Our study emphasizes the value of proteomic assessment of signaling pathway activity in tumors as a means to identify relevant oncogenic pathways and potentially as a biomarker for identifying aggressive disease.
Collapse
Affiliation(s)
- Esraa Mohamed
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Anupam Kumar
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Yalan Zhang
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Albert S Wang
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Katharine Chen
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Yunita Lim
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Anny Shai
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Jennie W Taylor
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Jennifer Clarke
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Stephanie Hilz
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - David A Solomon
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA.,Division of Neuropathology, Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
12
|
Catanzaro G, Besharat ZM, Carai A, Jäger N, Splendiani E, Colin C, Po A, Chiacchiarini M, Citarella A, Gianno F, Cacchione A, Miele E, Diomedi Camassei F, Gessi M, Massimi L, Locatelli F, Jones DTW, Figarella-Branger D, Pfister SM, Mastronuzzi A, Giangaspero F, Ferretti E. MiR-1248: a new prognostic biomarker able to identify supratentorial hemispheric pediatric low-grade gliomas patients associated with progression. Biomark Res 2022; 10:44. [PMID: 35715818 PMCID: PMC9205050 DOI: 10.1186/s40364-022-00389-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/01/2022] [Indexed: 11/15/2022] Open
Abstract
Background Pediatric low-grade gliomas (pLGGs), particularly incompletely resected supratentorial tumours, can undergo progression after surgery. However to date, there are no predictive biomarkers for progression. Here, we aimed to identify pLGG-specific microRNA signatures and evaluate their value as a prognostic tool. Methods We identified and validated supratentorial incompletey resected pLGG-specific microRNAs in independent cohorts from four European Pediatric Neuro-Oncology Centres. Results These microRNAs demonstrated high accuracy in differentiating patients with or without progression. Specifically, incompletely resected supratentorial pLGGs with disease progression showed significantly higher miR-1248 combined with lower miR-376a-3p and miR-888-5p levels than tumours without progression. A significant (p < 0.001) prognostic performance for miR-1248 was reported with an area under the curve (AUC) of 1.00. We also highlighted a critical oncogenic role for miR-1248 in gliomas tumours. Indeed, high miR-1248 levels maintain low its validated target genes (CDKN1A (p21)/FRK/SPOP/VHL/MTAP) and consequently sustain the activation of oncogenic pathways. Conclusions Altogether, we provide a novel molecular biomarker able to successfully identify pLGG patients associated with disease progression that could support the clinicians in the decision-making strategy, advancing personalized medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-022-00389-x.
Collapse
Affiliation(s)
- Giuseppina Catanzaro
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Zein Mersini Besharat
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Natalie Jäger
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elena Splendiani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Carole Colin
- Institut de Neurophysiopathologie, Aix-Marseille Université, CNRS, Marseille, France
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Chiacchiarini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Anna Citarella
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Francesca Gianno
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Cacchione
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Marco Gessi
- Department of Women, Children and Public Health Sciences, Policlinico Universitario A. Gemelli, Catholic University Sacro Cuore, Rome, Italy
| | - Luca Massimi
- Pediatric Neurosurgery, Policlinico Universitario A. Gemelli, Catholic University Sacro Cuore, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Department of Gynecology/Obstetrics & Pediatrics, Sapienza University of Rome, Rome, Italy
| | - David T W Jones
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Dominique Figarella-Branger
- Service d'Anatomie Pathologique Et de Neuropathologie, Hôpital de La Timone, Institut de Neurophysiopathologie, Aix-Marseille Université, AP-HM, CNRS, Marseille, France
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), and Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Angela Mastronuzzi
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, IRCCS Neuromed, Pozzilli, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
13
|
Bisbee C, Campagne O, Gajjar A, Tinkle CL, Stewart CF. Population pharmacokinetics of crenolanib in children and young adults with brain tumors. Cancer Chemother Pharmacol 2022; 89:459-468. [PMID: 35212779 PMCID: PMC8957602 DOI: 10.1007/s00280-022-04412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/15/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Crenolanib, an oral inhibitor of platelet-derived growth factor receptor, was evaluated to treat children and young adults with brain tumors. Crenolanib population pharmacokinetics and covariate influence were characterized in this patient population. METHODS Patients enrolled on this phase I study (NCT01393912) received oral crenolanib once daily. Serial single-dose and steady-state serum pharmacokinetic samples were collected and analyzed using a validated LC-ESI-MS/MS method. Population modeling and covariate analysis evaluating demographics, laboratory values, and comedications were performed. The impact of significant covariates on crenolanib exposure was further explored using model simulations. RESULTS Crenolanib serum concentrations were analyzed for 55 patients (2.1-19.2 years-old) and best fitted with a linear two-compartment model, with delayed absorption modeled with a lag time. A typical patient [8-year-old, body surface area (BSA) 1 m2] had an apparent central clearance, volume, and absorption rate of 41 L/h, 54.3 L, and 0.19 /h, respectively. Patients taking acid reducers (histamine H2 antagonists or proton pump inhibitors) concomitantly exhibited about 2- and 1.7-fold lower clearance and volume (p < 0.0001 and p = 0.018, respectively). Crenolanib clearance increased with BSA (p < 0.0001), and absorption rate decreased with age (p < 0.0001). Model simulations showed cotreatment with an acid reducer was the only covariate significantly altering crenolanib exposure and supported the use of BSA-based crenolanib dosages vs flat-dosages for this population. CONCLUSIONS Crenolanib pharmacokinetics were adequately characterized in children and young adults with brain tumors. Despite marked increased drug exposure with acid reducer cotreatment, crenolanib therapy was well tolerated. No dosing adjustments are recommended for this population.
Collapse
Affiliation(s)
- Cora Bisbee
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Olivia Campagne
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Amar Gajjar
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher L Tinkle
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Clinton F Stewart
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA.
| |
Collapse
|
14
|
Martin A, Fernandez MC, Cattaneo ER, Schuster CD, Venara M, Clément F, Berenstein A, Lombardi MG, Bergadá I, Gutierrez M, Martí MA, Gonzalez-Baro MR, Pennisi PA. Type 1 Insulin-Like Growth Factor Receptor Nuclear Localization in High-Grade Glioma Cells Enhances Motility, Metabolism, and In Vivo Tumorigenesis. Front Endocrinol (Lausanne) 2022; 13:849279. [PMID: 35574033 PMCID: PMC9094447 DOI: 10.3389/fendo.2022.849279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Gliomas are the most frequent solid tumors in children. Among these, high-grade gliomas are less common in children than in adults, though they are similar in their aggressive clinical behavior. In adults, glioblastoma is the most lethal tumor of the central nervous system. Insulin-like growth factor 1 receptor (IGF1R) plays an important role in cancer biology, and its nuclear localization has been described as an adverse prognostic factor in different tumors. Previously, we have demonstrated that, in pediatric gliomas, IGF1R nuclear localization is significantly associated with high-grade tumors, worst clinical outcome, and increased risk of death. Herein we explore the role of IGF1R intracellular localization by comparing two glioblastoma cell lines that differ only in their IGF1R capacity to translocate to the nucleus. In vitro, IGF1R nuclear localization enhances glioblastoma cell motility and metabolism without affecting their proliferation. In vivo, IGF1R has the capacity to translocate to the nucleus and allows not only a higher proliferation rate and the earlier development of tumors but also renders the cells sensitive to OSI906 therapy. With this work, we provide evidence supporting the implications of the presence of IGF1R in the nucleus of glioma cells and a potential therapeutic opportunity for patients harboring gliomas with IGF1R nuclear localization.
Collapse
Affiliation(s)
- Ayelen Martin
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” CONICET—FEI—División de Endocrinología, Hospital de Niños R. Gutierrez, Buenos Aires, Argentina
| | - María Celia Fernandez
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” CONICET—FEI—División de Endocrinología, Hospital de Niños R. Gutierrez, Buenos Aires, Argentina
| | - Elizabeth R. Cattaneo
- Instituto de Investigaciones Bioquímicas de La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Claudio D. Schuster
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires, Argentina
| | - Marcela Venara
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” CONICET—FEI—División de Endocrinología, Hospital de Niños R. Gutierrez, Buenos Aires, Argentina
| | - Florencia Clément
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” CONICET—FEI—División de Endocrinología, Hospital de Niños R. Gutierrez, Buenos Aires, Argentina
| | - Ariel Berenstein
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” CONICET—FEI—División de Endocrinología, Hospital de Niños R. Gutierrez, Buenos Aires, Argentina
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, CONICET, Hospital de Niños R. Gutierrez, Buenos Aires, Argentina
| | | | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” CONICET—FEI—División de Endocrinología, Hospital de Niños R. Gutierrez, Buenos Aires, Argentina
| | - Mariana Gutierrez
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” CONICET—FEI—División de Endocrinología, Hospital de Niños R. Gutierrez, Buenos Aires, Argentina
| | - Marcelo A. Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires, Argentina
| | - María R. Gonzalez-Baro
- Instituto de Investigaciones Bioquímicas de La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Patricia A. Pennisi
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” CONICET—FEI—División de Endocrinología, Hospital de Niños R. Gutierrez, Buenos Aires, Argentina
- *Correspondence: Patricia A. Pennisi,
| |
Collapse
|
15
|
Differential Regulation of the EGFR/PI3K/AKT/PTEN Pathway between Low- and High-Grade Gliomas. Brain Sci 2021; 11:brainsci11121655. [PMID: 34942957 PMCID: PMC8699139 DOI: 10.3390/brainsci11121655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023] Open
Abstract
Gliomas represent 70% of all central system nervous tumors and are classified according to the degree of malignancy as low- or high-grade. The permanent activation of the EGFR/PI3K/AKT pathway by various genetic or post-translational alterations of EGFR, PI3KCA, and PTEN has been associated with increased proliferation and resistance to apoptosis. The present study aimed to analyze the molecular/genetic changes in the EGFR/PI3K/AKT/PTEN pathway between low-grade and high-grade gliomas in a sample of Colombian patients. A total of 30 samples were tested for PI3K and PTEN mutations, EGFR, PI3K, and AKT gene amplification, AKT, PI3K, BAX, Bcl2 expression levels, and phosphorylation of AKT and PTEN, EGFR and/or PI3K gene amplification was found in 50% of low-grade and 45% of high-grade ones. AKT amplification was found in 25% of the low-grade and 13.6% of the high-grade. The expression of PI3K, AKT, Bcl2, and BAX was increased particularly to a high degree. AKT phosphorylation was found in 66% of low-grade and 31.8% of high-grade. Increased phosphorylation of PTEN was found in 77% low-grade and 66% high-grade. Our results indicate that alterations in the EGFR/PI3K/AKT/PTEN pathway could be important in the initiation and malignant progression of this type of tumor.
Collapse
|
16
|
Basang Z, Zhang S, Yang L, Quzong D, Li Y, Ma Y, Hao M, Pu W, Liu X, Xie H, Liang M, Wang J, Danzeng Q. Correlation of DNA methylation patterns to the phenotypic features of Tibetan elite alpinists in extreme hypoxia. J Genet Genomics 2021; 48:928-935. [PMID: 34531147 DOI: 10.1016/j.jgg.2021.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 01/14/2023]
Abstract
High altitude is an extreme environment that imposes hypoxic pressure on physiological processes, and natives living at high altitudes are more adaptive in certain physiological processes. So far, epigenetic modifications under extreme changes in hypoxic pressures are relatively less understood. Here, we recruit 32 Tibetan elite alpinists (TEAs), who have successfully mounted Everest (8848 m) at least five times. Blood samples and physiological phenotypes of TEAs and 32 matched non-alpinist Tibetan volunteers (non-TEAs) are collected for analysis. Genome-wide DNA methylation analysis identifies 23,202 differentially methylated CpGs (Padj < 0.05, |β| > 0.1) between the two groups. Some differentially methylated CpGs are in hypoxia-related genes such as PPP1R13L, MAP3K7CL, SEPTI-9, and CUL2. In addition, Gene ontology enrichment analysis reveals several inflammation-related pathways. Phenotypic analysis indicates that 12 phenotypes are significantly different between the two groups. In particular, TEAs exhibit higher blood oxygen saturation levels and lower neutrophil count, platelet count, and heart rate. For DNA methylation association analysis, we find that two CpGs (cg16687447, cg06947206) upstream of PTEN were associated with platelet count. In conclusion, extreme hypoxia exposure leads to epigenetic modifications and phenotypic alterations of TEA, providing us clues for exploring the molecular mechanism underlying changes under extreme hypoxia conditions.
Collapse
Affiliation(s)
- Zhuoma Basang
- High Altitude Medical Research Center of Tibet University/Center of Tibetan Studies (Everest Research Institute), Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China; Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China
| | - Shixuan Zhang
- High Altitude Medical Research Center of Tibet University/Center of Tibetan Studies (Everest Research Institute), Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China; Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China
| | - La Yang
- High Altitude Medical Research Center of Tibet University/Center of Tibetan Studies (Everest Research Institute), Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China
| | - Deji Quzong
- High Altitude Medical Research Center of Tibet University/Center of Tibetan Studies (Everest Research Institute), Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China
| | - Yi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China; Institute for Six-sector Economy, Fudan University, Shanghai 200433, China
| | - Yanyun Ma
- Institute for Six-sector Economy, Fudan University, Shanghai 200433, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Meng Hao
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - WeiLin Pu
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Xiaoyu Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Hongjun Xie
- High Altitude Medical Research Center of Tibet University/Center of Tibetan Studies (Everest Research Institute), Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China
| | - Meng Liang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai 200438, China; Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China.
| | - Qiangba Danzeng
- High Altitude Medical Research Center of Tibet University/Center of Tibetan Studies (Everest Research Institute), Tibet University, 10 East Zangda Road, Lhasa, Tibet 850000, China.
| |
Collapse
|
17
|
He T, Zhang X, Hao J, Ding S. Phosphatase and Tensin Homolog in Non-neoplastic Digestive Disease: More Than Just Tumor Suppressor. Front Physiol 2021; 12:684529. [PMID: 34140896 PMCID: PMC8204087 DOI: 10.3389/fphys.2021.684529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
The Phosphatase and tensin homolog (PTEN) gene is one of the most important tumor suppressor genes, which acts through its unique protein phosphatase and lipid phosphatase activity. PTEN protein is widely distributed and exhibits complex biological functions and regulatory modes. It is involved in the regulation of cell morphology, proliferation, differentiation, adhesion, and migration through a variety of signaling pathways. The role of PTEN in malignant tumors of the digestive system is well documented. Recent studies have indicated that PTEN may be closely related to many other benign processes in digestive organs. Emerging evidence suggests that PTEN is a potential therapeutic target in the context of several non-neoplastic diseases of the digestive tract. The recent discovery of PTEN isoforms is expected to help unravel more biological effects of PTEN in non-neoplastic digestive diseases.
Collapse
Affiliation(s)
- Tianyu He
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Xiaoyun Zhang
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
18
|
Haase S, Nuñez FM, Gauss JC, Thompson S, Brumley E, Lowenstein P, Castro MG. Hemispherical Pediatric High-Grade Glioma: Molecular Basis and Therapeutic Opportunities. Int J Mol Sci 2020; 21:ijms21249654. [PMID: 33348922 PMCID: PMC7766684 DOI: 10.3390/ijms21249654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss the molecular characteristics, development, evolution, and therapeutic perspectives for pediatric high-grade glioma (pHGG) arising in cerebral hemispheres. Recently, the understanding of biology of pHGG experienced a revolution with discoveries arising from genomic and epigenomic high-throughput profiling techniques. These findings led to identification of prevalent molecular alterations in pHGG and revealed a strong connection between epigenetic dysregulation and pHGG development. Although we are only beginning to unravel the molecular biology underlying pHGG, there is a desperate need to develop therapies that would improve the outcome of pHGG patients, as current therapies do not elicit significant improvement in median survival for this patient population. We explore the molecular and cell biology and clinical state-of-the-art of pediatric high-grade gliomas (pHGGs) arising in cerebral hemispheres. We discuss the role of driving mutations, with a special consideration of the role of epigenetic-disrupting mutations. We will also discuss the possibilities of targeting unique molecular vulnerabilities of hemispherical pHGG to design innovative tailored therapies.
Collapse
Affiliation(s)
- Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Fernando M. Nuñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jessica C. Gauss
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sarah Thompson
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily Brumley
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pedro Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (S.H.); (F.M.N.); (J.C.G.); (S.T.); (E.B.); (P.L.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
19
|
Fan MD, Zhao XY, Qi JN, Jiang Y, Liu BY, Dun ZP, Zhang R, Wang CW, Pang Q. TRIM31 enhances chemoresistance in glioblastoma through activation of the PI3K/Akt signaling pathway. Exp Ther Med 2020; 20:802-809. [PMID: 32765650 PMCID: PMC7388422 DOI: 10.3892/etm.2020.8782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Temozolomide (TMZ) resistance is a complication of treatment of glioma, and new strategies are urgently required to overcome chemoresistance in glioma cells. In the present study, it was demonstrated that tripartite motif-containing 31 (TRIM31) was abnormally upregulated in glioma tissues and cell lines compared with normal samples. Furthermore, the role of TRIM31 was assessed by overexpressing and knocking down its expression. Overexpression of TRIM31 increased cell viability, increased TMZ IC50 values and inhibited apoptosis in A172 and U251 cells; whereas overexpression of TRIM31 decreased the expression of the apoptosis-associated protein p53. Knockdown of TRIM31 increased apoptosis in cells treated with TMZ. Additionally, the mechanisms by which TRIM31 affected glioma cells treated with TMZ were determined. Overexpression of TRIM31 increased phosphorylation of AKT and inhibiting the PI3K/AKT signaling pathway abolished the increase in cell viability and decreased phospho-Akt protein expression in TRIM31 overexpressing A172 cells treated with TMZ. Together, the findings suggest that TRIM31 may be a potentially novel target for glioma chemotherapy.
Collapse
Affiliation(s)
- Ming-De Fan
- Department of Neurosurgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China.,Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xue-Ying Zhao
- Department of Transfusion, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jian-Ni Qi
- Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yang Jiang
- Department of Hematology and Cellular Therapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Bing-Yu Liu
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Biomedical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhi-Ping Dun
- Department of Neurosurgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Cheng-Wei Wang
- Department of Neurosurgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
20
|
Zhang H, Zhou Y, Cui B, Liu Z, Shen H. Novel insights into astrocyte-mediated signaling of proliferation, invasion and tumor immune microenvironment in glioblastoma. Biomed Pharmacother 2020; 126:110086. [PMID: 32172060 DOI: 10.1016/j.biopha.2020.110086] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) continues to be the most aggressive cancer of the brain. The dismal prognosis is largely attributed to the microenvironment surrounding tumor cells. Astrocytes, the main component of the GBM microenvironment, play several fundamental physiological roles in the central nervous system. During the development of GBM, tumor-associated astrocytes (TAAs) directly contact GBM cells, which activate astrocytes to form reactive astrocytes, facilitating tumor progression, proliferation and migration through multiple well-understood signaling pathways. Notably, TAAs also influence GBM cell behaviors via suppressing immune responses and enhancing the chemoradiotherapy resistance of tumor cells. These new activities are closely linked with the treatment and prognosis of GBM. In this review, we discuss recent advances regarding new functions of reactive astrocytes, including TAA-cancer cell interactions, mechanisms involved in immunosuppressive regulation, and chemoradiotherapy resistance. It is expected that these updated experimental or clinical studies of TAAs may provide a promising approach for GBM treatment in the near future.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yulai Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Biqi Cui
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
21
|
Chu L, Yu L, Liu J, Song S, Yang H, Han F, Liu F, Hu Y. Long intergenic non-coding LINC00657 regulates tumorigenesis of glioblastoma by acting as a molecular sponge of miR-190a-3p. Aging (Albany NY) 2020; 11:1456-1470. [PMID: 30837348 PMCID: PMC6428093 DOI: 10.18632/aging.101845] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/22/2019] [Indexed: 12/14/2022]
Abstract
To detect the aberrantly expressed long non-coding RNAs in glioblastoma, two pairs of glioblastoma and adjacent normal tissues were firstly analyzed by RNA sequencing. Long intergenic non-coding RNA LINC00657 was considered to play a vital role in glioblastoma based on the results of RNA sequencing. Hence, we aimed to investigate the mechanisms by which LINC00657 regulated the tumorigenesis of glioblastoma. The level of LINC00657 in 40 glioblastoma samples and glioblastoma cell lines was detected by RT-qPCR. LINC00657 was significantly decreased in patients with glioblastoma compared with adjacent normal tissues. Overexpression of LINC00657 inhibited proliferation, colony formation, invasion and migration in glioma cells via inducing apoptosis. Dual luciferase report assay indicated LINC00657 was the target of miR-190a-3p. Overexpression of LINC00657 greatly inhibited the relative amount of miR-190a-3p. Besides, miR-190a-3p was found to be a negative regulator of PTEN. Additionally, active-caspase 3 was increased in cells transfected with pcDNA3.1-LINC00657. Finally, in vitro results were further confirmed by in vivo studies using nude mice bearing with glioblastoma tumors. In conclusion, LINC00657 was effective in inhibiting glioblastoma by acting as a molecular sponge of miR-190a-3p to regulate PTEN expression. Therefore, targeting LINC00657 may serve as a potential strategy for the treatment of patients with glioblastoma.
Collapse
Affiliation(s)
- Liangzhao Chu
- Department of Neurosurgery, Hospital affiliated to Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Lei Yu
- Prenatal Diagnosis Center, Hospital affiliated to Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jian Liu
- Department of Neurosurgery, Hospital affiliated to Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shibin Song
- Department of Neurosurgery, Hospital affiliated to Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Hua Yang
- Department of Neurosurgery, Hospital affiliated to Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Feng Han
- Department of Neurosurgery, Hospital affiliated to Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Fen Liu
- Department of Neurosurgery, Hospital affiliated to Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yaxin Hu
- Prenatal Diagnosis Center, Hospital affiliated to Guizhou Medical University, Guiyang 550004, Guizhou, China
| |
Collapse
|
22
|
Haddadi N, Travis G, Nassif NT, Simpson AM, Marsh DJ. Toward Systems Pathology for PTEN Diagnostics. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037127. [PMID: 31615872 DOI: 10.1101/cshperspect.a037127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Germline alterations of the tumor suppressor PTEN have been extensively characterized in patients with PTEN hamartoma tumor syndromes, encompassing subsets of Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome, Proteus and Proteus-like syndromes, as well as autism spectrum disorder. Studies have shown an increase in the risk of developing specific cancer types in the presence of a germline PTEN mutation. Furthermore, outside of the familial setting, somatic variants of PTEN occur in numerous malignancies. Here we introduce and discuss the prospect of moving toward a systems pathology approach for PTEN diagnostics, incorporating clinical and molecular pathology data with the goal of improving the clinical management of patients with a PTEN mutation. Detection of a germline PTEN mutation can inform cancer surveillance and in the case of somatic mutation, have value in predicting disease course. Given that PTEN functions in the PI3K/AKT/mTOR pathway, identification of a PTEN mutation may highlight new therapeutic opportunities and/or inform therapeutic choices.
Collapse
Affiliation(s)
- Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Glena Travis
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Najah T Nassif
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.,Centre for Health Technologies, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Ann M Simpson
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.,Centre for Health Technologies, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Deborah J Marsh
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.,Centre for Health Technologies, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.,Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.,Northern Clinical School, Kolling Institute, Faculty of Medicine and Health, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
23
|
Poore B, Yuan M, Arnold A, Price A, Alt J, Rubens JA, Slusher BS, Eberhart CG, Raabe EH. Inhibition of mTORC1 in pediatric low-grade glioma depletes glutathione and therapeutically synergizes with carboplatin. Neuro Oncol 2020; 21:252-263. [PMID: 30239952 DOI: 10.1093/neuonc/noy150] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Pediatric low-grade glioma (pLGG) often initially responds to front-line therapies such as carboplatin, but more than 50% of treated tumors eventually progress and require additional therapy. With the discovery that pLGG often contains mammalian target of rapamycin (mTOR) activation, new treatment modalities and combinations are now possible for patients. The purpose of this study was to determine if carboplatin is synergistic with the mTOR complex 1 inhibitor everolimus in pLGG. METHODS We treated 4 pLGG cell lines and 1 patient-derived xenograft line representing various pLGG genotypes, including neurofibromatosis type 1 loss, proto-oncogene B-Raf (BRAF)-KIAA1549 fusion, and BRAFV600E mutation, with carboplatin and/or everolimus and performed assays for growth, cell proliferation, and cell death. Immunohistochemistry as well as in vivo and in vitro metabolomics studies were also performed. RESULTS Carboplatin synergized with everolimus in all of our 4 pLGG cell lines (combination index <1 at Fa 0.5). Combination therapy was superior at inhibiting tumor growth in vivo. Combination treatment increased levels of apoptosis as well as gamma-H2AX phosphorylation compared with either agent alone. Everolimus treatment suppressed the conversion of glutamine and glutamate into glutathione both in vitro and in vivo. Exogenous glutathione reversed the effects of carboplatin and everolimus. CONCLUSIONS The combination of carboplatin and everolimus was effective at inducing cell death and slowing tumor growth in pLGG models. Everolimus decreased the amount of available glutathione inside the cell, preventing the detoxification of carboplatin and inducing increased DNA damage and apoptosis.
Collapse
Affiliation(s)
- Brad Poore
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ming Yuan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Antje Arnold
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Antoinette Price
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeffrey A Rubens
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eric H Raabe
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
24
|
Howarth A, Madureira PA, Lockwood G, Storer LCD, Grundy R, Rahman R, Pilkington GJ, Hill R. Modulating autophagy as a therapeutic strategy for the treatment of paediatric high-grade glioma. Brain Pathol 2019; 29:707-725. [PMID: 31012506 PMCID: PMC8028648 DOI: 10.1111/bpa.12729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
Paediatric high-grade gliomas (pHGG) represent a therapeutically challenging group of tumors. Despite decades of research, there has been minimal improvement in treatment and the clinical prognosis remains poor. Autophagy, a highly conserved process for recycling metabolic substrates is upregulated in pHGG, promoting tumor progression and evading cell death. There is significant crosstalk between autophagy and a plethora of critical cellular pathways, many of which are dysregulated in pHGG. The following article will discuss our current understanding of autophagy signaling in pHGG and the potential modulation of this network as a therapeutic target.
Collapse
Affiliation(s)
- Alison Howarth
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, IBBSUniversity of PortsmouthPortsmouthUK
| | - Patricia A. Madureira
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, IBBSUniversity of PortsmouthPortsmouthUK
- Centre for Biomedical Research (CBMR)University of AlgarveFaroPortugal
| | - George Lockwood
- Children’s Brain Tumour Research Centre, School of Medicine, Queen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Lisa C. D. Storer
- Children’s Brain Tumour Research Centre, School of Medicine, Queen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Richard Grundy
- Children’s Brain Tumour Research Centre, School of Medicine, Queen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Ruman Rahman
- Children’s Brain Tumour Research Centre, School of Medicine, Queen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Geoffrey J. Pilkington
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, IBBSUniversity of PortsmouthPortsmouthUK
| | - Richard Hill
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, IBBSUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
25
|
Chen J, Hou C, Zheng Z, Lin H, Lv G, Zhou D. Identification of Secreted Phosphoprotein 1 (SPP1) as a Prognostic Factor in Lower-Grade Gliomas. World Neurosurg 2019; 130:e775-e785. [PMID: 31295606 DOI: 10.1016/j.wneu.2019.06.219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Secreted phosphoprotein 1 (SPP1) is an important extracellular glycoprotein that is associated with immune regulation, tumorigenesis, and cell signaling. However, the prognostic value of SPP1 in patients with glioma has not yet been clarified, especially in lower-grade gliomas. The objective of this study is to evaluate the prognostic merit of SPP1 in lower-grade gliomas. METHODS The messenger RNA (mRNA) expression of SPP1 in about 1000 cancer cell lines was explored by using the data from the Cancer Cell Line Encyclopedia database. The Oncomine database was mined to evaluate the mRNA expression of SPP1 in lower-grade glioma, glioblastoma, and normal brain tissues. The correlation between SPP1 mRNA expression and overall survival of patients with glioma from The Cancer Genome Atlas database was analyzed. RESULTS SPP1 mRNA expression of glioma was ranked as the eighth highest of all cancer cell lines in the Cancer Cell Line Encyclopedia database. The data from the Oncomine database suggested that SPP1 expression was significantly high in glioblastoma compared with normal brain tissues but was not significantly high in lower-grade glioma compared with normal brain tissue. Analysis of the RNA-Seq data from The Cancer Genome Atlas database showed that the increased SPP1 mRNA expression in lower-grade glioma was significantly associated with poor survival outcomes in patients with lower-grade glioma. Multivariate Cox regression analysis showed that SPP1 might be considered as an independent prognostic factor in lower-grade gliomas. CONCLUSIONS The present study showed that SPP1 overexpression is related to worse overall survival in patients with lower-grade glioma. Moreover, SPP1 could be considered as an independent factor in lower-grade gliomas.
Collapse
Affiliation(s)
- Jiawei Chen
- Shantou University Medical College, Shantou, Guangdong, China; Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chongxian Hou
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Zongtai Zheng
- Shantou University Medical College, Shantou, Guangdong, China; Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Han Lin
- Shantou University Medical College, Shantou, Guangdong, China; Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guangzhao Lv
- Shantou University Medical College, Shantou, Guangdong, China; Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
26
|
Zhong B, Campagne O, Tinkle CL, Stewart CF. An LC/ESI-MS/MS method to quantify the PI3K inhibitor GDC-0084 in human plasma and cerebrospinal fluid: Validation and clinical application. Biomed Chromatogr 2019; 34:e4697. [PMID: 31495945 DOI: 10.1002/bmc.4697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 11/09/2022]
Abstract
A liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method was developed and validated to measure GDC-0084 in human plasma and cerebrospinal fluid (CSF). Reverse-phase chromatography with gradient elution was performed using a C18 column (50 × 2.0 mm, 3 μm). Solid-phase extraction of plasma and CSF was employed to give excellent recovery. MS detection was performed with positive ion screening in multiple reaction monitoring mode. The precursor to the product ions (Q1 → Q3) selected for GDC-0084 and GDC-0084-d6 were 383.2 → 353.2 and 389.2 → 353.2, respectively. A separate calibration curve was established for human plasma and CSF. Both calibration curves, ranging from 0.2 to 200 ng/mL, were linear and had acceptable intra- and inter-day precision and accuracy. The lower limit of quantitation and limit of detection for GDC-0084 in human plasma were 0.2 ng/mL (signal/noise ≥47) and 0.005 ng/mL (signal/noise ≥3.5), respectively, and for GDC-0084 in human CSF were 0.2 ng/mL (signal/noise ≥19.7) and 0.04 ng/mL (signal/noise ≥7.2). This method was successfully applied to analyze serial plasma samples obtained from children with diffuse intrinsic pontine gliomas and other midline gliomas who participated in pharmacokinetic studies as part of a phase I clinical trial of GDC-0084.
Collapse
Affiliation(s)
- Bo Zhong
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Olivia Campagne
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher L Tinkle
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Clinton F Stewart
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Optic pathway gliomas are low-grade neoplasms that affect the precortical visual pathway of children and adolescents. They can affect the optic nerve, optic chiasm, optic tracts and radiations and can either be sporadic or associated with neurofibromatosis type one. Gliomas isolated to the optic nerve (ONG) represent a subgroup of optic pathway gliomas, and their treatment remains controversial. New developments in ONG treatment have emerged in recent years, and it is necessary for clinicians to have a current understanding of available therapies. RECENT FINDINGS The current review of the literature covers the background of and recent developments in ONG treatment, with a focus on standard chemotherapy, new molecularly targeted therapies, radiation therapy and surgical resection and debulking. SUMMARY Although standard chemotherapy remains the mainstay of ONG treatment, newer molecularly targeted therapies such as mitogen-activated protein kinase kinase inhibitors and bevacizumab represent a promising new treatment modality, and clinical studies are ongoing.
Collapse
|
28
|
Zeng JD, Wu WKK, Wang HY, Li XX. Serine and one-carbon metabolism, a bridge that links mTOR signaling and DNA methylation in cancer. Pharmacol Res 2019; 149:104352. [PMID: 31323332 DOI: 10.1016/j.phrs.2019.104352] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022]
Abstract
Mammalian / mechanistic target of rapamycin (mTOR) is a critical sensor of environmental cues that regulates cellular macromolecule synthesis and metabolism in eukaryotes. DNA methylation is the most well-studied epigenetic modification that is capable of regulating gene transcription and affecting genome stability. Both dysregulation of mTOR signaling and DNA methylation patterns have been shown to be closely linked to tumor progression and serve as promising targets for cancer therapy. Although their respective roles in tumorigenesis have been extensively studied, whether molecular interplay exists between them is still largely unknown. In this review, we provide a brief overview of mTOR signaling, DNA methylation as well as related serine and one-carbon metabolism, one of the most critical aspects of metabolic reprogramming in cancer. Based on the latest understanding regarding the regulation of metabolic processes by mTOR signaling as well as interaction between metabolism and epigenetics, we further discuss how serine and one-carbon metabolism may serve as a bridge that links mTOR signaling and DNA methylation to promote tumor growth. Elucidating their relationship may provide novel insight for cancer therapy in the future.
Collapse
Affiliation(s)
- Ju-Deng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation center for Cancer Medicine, Sun Yat-sen University cancer center, Guangzhou, Guangdong, China; Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation center for Cancer Medicine, Sun Yat-sen University cancer center, Guangzhou, Guangdong, China.
| | - Xiao-Xing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation center for Cancer Medicine, Sun Yat-sen University cancer center, Guangzhou, Guangdong, China.
| |
Collapse
|
29
|
Zhang S, Hu B, Lv X, Chen S, Liu W, Shao Z. The Prognostic Role of Ribosomal Protein S6 Kinase 1 Pathway in Patients With Solid Tumors: A Meta-Analysis. Front Oncol 2019; 9:390. [PMID: 31139572 PMCID: PMC6527894 DOI: 10.3389/fonc.2019.00390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Recent studies supported the predictive role of ribosomal protein S6 kinase 1 (S6K1), phosphorylated S6K1 (p-S6K1), and phosphorylated ribosomal protein S6 (p-S6) for the outcome of cancer patients. However, inconsistent results were acquired across different researches. To comprehensively and quantitatively elucidate their prognostic significance in solid malignancies, the current meta-analysis was carried out utilizing the results of clinical studies. Methods: We conducted the literature retrieval by searching PubMed, Web of Science, EMBASE, and Cochrane library to identify eligible publications. Data were collected from included articles to calculate pooled overall survival (OS), disease-free survival (DFS), recurrence-free survival (RFS), and progression-free survival (PFS). Hazard ratios (HRs) with 95% confidence intervals (CIs) served as appropriate parameters to assess prognostic significance. Results: Forty-four original studies were included, of which 7 studies were analyzed for S6K1, 24 for p-S6K1, and 16 for p-S6. The overexpression of p-S6K1 was significantly associated with poorer prognosis of solid tumor patients in OS (HR = 1.706, 95%CI: 1.369–2.125, p < 0.001), DFS (HR = 1.665, 95%CI: 1.002–2.768, p = 0.049). However, prognostic role of p-S6K1 in RFS and PFS was not found. The result also revealed that S6K1 and p-S6 were significantly associated with reduced OS (HR = 1.691, 95%CI: 1.306–2.189, p < 0.001; HR = 2.019, 95%CI: 1.775–2.296, p < 0.001, respectively). Conclusions: The present meta-analysis demonstrated that elevated expression of S6K1, p-S6K1, or p-S6 might indicate worse prognosis of patients with solid tumors, and supported a promising clinical test to predict solid tumor prognosis based on the level of S6K1 pathway.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
CD164 regulates proliferation, progression, and invasion of human glioblastoma cells. Oncotarget 2019; 10:2041-2054. [PMID: 31007847 PMCID: PMC6459350 DOI: 10.18632/oncotarget.26724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/15/2019] [Indexed: 02/02/2023] Open
Abstract
Grade IV astrocytoma, also known as glioblastoma multiforme (GBM), is the most common and aggressive intracranial glial tumor. GBM is associated with very poor survival and effective treatments have remained elusive so far. Mounting evidence indicates that CD164 contributes to stemness and tumorigenesis in normal cells and is overexpressed in various tumor types, including glioblastoma. Using tissue microarray immunohistochemistry, we show that there is a significant correlation between CD164 expression and glioma type and grade. Depletion of CD164 expression in human glioblastoma cells with siRNA reduced proliferation, migration, and invasiveness. In parallel, immunoblotting showed that downregulation of CD164 expression decreased Akt activation and modified the expression of autophagy markers by upregulating Beclin-1 and LC3B and downregulating p62. These effects were mimicked by inhibition of Akt with MK2206, which suggests that CD164 induces autophagy via Akt/Beclin-1 signaling. We propose that CD164 may serve as a GBM molecular marker and a potential target in therapeutic strategies aimed to improve outcomes for this devastating brain tumor.
Collapse
|
31
|
Protein Phosphatases-A Touchy Enemy in the Battle Against Glioblastomas: A Review. Cancers (Basel) 2019; 11:cancers11020241. [PMID: 30791455 PMCID: PMC6406705 DOI: 10.3390/cancers11020241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor arising from brain parenchyma. Although many efforts have been made to develop therapies for GBM, the prognosis still remains poor, mainly because of the difficulty in total resection of the tumor mass from brain tissue and the resistance of the residual tumor against standard chemoradiotherapy. Therefore, novel adjuvant therapies are urgently needed. Recent genome-wide analyses of GBM cases have clarified molecular signaling mechanisms underlying GBM biology. However, results of clinical trials targeting phosphorylation-mediated signaling have been unsatisfactory to date. Protein phosphatases are enzymes that antagonize phosphorylation signaling by dephosphorylating phosphorylated signaling molecules. Recently, the critical roles of phosphatases in the regulation of oncogenic signaling in malignant tumor cells have been reported, and tumorigenic roles of deregulated phosphatases have been demonstrated in GBM. However, a detailed mechanism underlying phosphatase-mediated signaling transduction in the regulation of GBM has not been elucidated, and such information is necessary to apply phosphatases as a therapeutic target for GBM. This review highlights and summarizes the phosphatases that have crucial roles in the regulation of oncogenic signaling in GBM cells.
Collapse
|
32
|
Down-regulation of ABCE1 inhibits temozolomide resistance in glioma through the PI3K/Akt/NF-κB signaling pathway. Biosci Rep 2018; 38:BSR20181711. [PMID: 30455394 PMCID: PMC6294624 DOI: 10.1042/bsr20181711] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/04/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023] Open
Abstract
The ATP binding cassette (ABC) E1 (ABCE1), a member of the ABC family, was originally described as the RNase L inhibitor. Through forming a heterodimer with RNase L, ABCE1 participates in the negative regulation of the 2-5A/RNase L system and thus mediates a wide range of biological functions. Recent evidence has shown the new roles of ABCE1 in tumorigenesis. However, there have been no investigations on the specific effect of ABCE1 on glioma. In the present study, we examined the expression pattern and possible role of ABCE1 in glioma. Our study demonstrated that ABCE1 was up-regulated in glioma tissues and cell lines. Down-regulation of ABCE1 inhibited temozolomide (TMZ) resistance of glioma cells in vitro and in vivo In addition, we found that the PI3K/Akt/NF-κB pathway was involved in ABCE1-mediated chemoresistance of glioma cells. Taken together, our study suggested ABCE1 as a promising target for glioma chemotherapy.
Collapse
|
33
|
Abstract
Pediatric brain tumors are the primary cause of cancer-related death during childhood. Unfortunately, the number of primary and metastatic brain tumors is steadily increasing while the mortality rates for many central nervous system (CNS) lesions have remained stagnant. Molecularly defined tumor classes have been added to the most recent 2016 World Health Organization (WHO) Classification System of Central Nervous System Brain Tumors, driving potential new treatments and identifying targets to improve survival for these patients. Focusing on the genetic mutations most commonly seen in the pediatric CNS tumor population provides the ability to better define tumors based on shared molecular characteristics. Consequently, there is the potential for greater efficacy in targeted therapy to treat these identified genetic aberrations. Understanding the growing importance of molecular diagnosis in pediatric CNS tumors is vital to successfully using novel targeted therapies and improving patient outcomes.
Collapse
|
34
|
Yin XF, Zhang Q, Chen ZY, Wang HF, Li X, Wang HX, Li HX, Kang CM, Chu S, Li KF, Li Y, Qiu YR. NLRP3 in human glioma is correlated with increased WHO grade, and regulates cellular proliferation, apoptosis and metastasis via epithelial-mesenchymal transition and the PTEN/AKT signaling pathway. Int J Oncol 2018; 53:973-986. [PMID: 30015880 PMCID: PMC6065456 DOI: 10.3892/ijo.2018.4480] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
Glioma is the most prevalent and fatal primary tumor of the central nervous system in adults, while the development of effective therapeutic strategies in clinical practice remain a challenge. Nucleotide-binding domain leucine-rich family pyrin-containing 3 (NLRP3) has been reported to be associated with tumorigenesis and progression; however, its expression and function in human glioma remain unclear. The present study was designed to explore the biological role and potential mechanism of NLRP3 in human glioma. The results demonstrated that overexpression of NLRP3, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), caspase-1 and interleukin (IL)-1β protein in human glioma tissues were significantly correlated with higher World Health Organization grades. The in vitro biological experiments demonstrated that NLRP3 downregulation significantly inhibited the proliferation, migration and invasion, and promoted the apoptosis of SHG44 and A172 glioma cell lines. Furthermore, western blot assays revealed that the downregulation of NLRP3 significantly reduced the expression of ASC, caspase-1 and IL-1β protein. Furthermore, NLRP3 knockdown caused the inhibition of epithelial-mesenchymal transition (EMT), and inhibited the phosphorylation of AKT serine/threonine kinase (AKT) and phosphorylation of phosphatase and tensin homolog (PTEN). Consistently, the upregulation of NLRP3 significantly increased the expression of ASC, caspase-1, IL-1β and phosphorylated-PTEN, promoted proliferation, migration, invasion and EMT, inhibited apoptosis, and activated the AKT signaling pathway. The data of the present study indicate that NLRP3 affects human glioma progression and metastasis through multiple pathways, including EMT and PTEN/AKT signaling pathway regulation, enhanced inflammasome activation, and undefined inflammasome-independent mechanisms. Understanding the biological effects of NLRP3 in human glioma and the underlying mechanisms may offer novel insights for the development of glioma clinical therapeutic strategies.
Collapse
Affiliation(s)
- Xiao-Feng Yin
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiong Zhang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhuo-Yu Chen
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hai-Fang Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xin Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hong-Xia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hai-Xia Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chun-Min Kang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shuai Chu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kai-Fei Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yao Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
35
|
Sasanakietkul T, Murtha TD, Javid M, Korah R, Carling T. Epigenetic modifications in poorly differentiated and anaplastic thyroid cancer. Mol Cell Endocrinol 2018; 469:23-37. [PMID: 28552796 DOI: 10.1016/j.mce.2017.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/12/2017] [Accepted: 05/21/2017] [Indexed: 12/25/2022]
Abstract
Well-differentiated thyroid cancer accounts for the majority of endocrine malignancies and, in general, has an excellent prognosis. In contrast, the less common poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC) are two of the most aggressive human malignancies. Recently, there has been an increased focus on the epigenetic alterations underlying thyroid carcinogenesis, including those that drive PDTC and ATC. Dysregulated epigenetic candidates identified include the Aurora group, KMT2D, PTEN, RASSF1A, multiple non-coding RNAs (ncRNA), and the SWI/SNF chromatin-remodeling complex. A deeper understanding of the signaling pathways affected by epigenetic dysregulation may improve prognostic testing and support the advancement of thyroid-specific epigenetic therapies. This review outlines the current understanding of epigenetic alterations observed in PDTC and ATC and explores the potential for exploiting this understanding in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Thanyawat Sasanakietkul
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Timothy D Murtha
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mahsa Javid
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Reju Korah
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tobias Carling
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
36
|
Pal S, Kozono D, Yang X, Fendler W, Fitts W, Ni J, Alberta JA, Zhao J, Liu KX, Bian J, Truffaux N, Weiss WA, Resnick AC, Bandopadhayay P, Ligon KL, DuBois SG, Mueller S, Chowdhury D, Haas-Kogan DA. Dual HDAC and PI3K Inhibition Abrogates NFκB- and FOXM1-Mediated DNA Damage Response to Radiosensitize Pediatric High-Grade Gliomas. Cancer Res 2018; 78:4007-4021. [PMID: 29760046 DOI: 10.1158/0008-5472.can-17-3691] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/14/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022]
Abstract
Aberrant chromatin remodeling and activation of the PI3K pathway have been identified as important mediators of pediatric high-grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) pathogenesis. As inhibition of these pathways are promising therapeutic avenues and radiation is the only modality to prolong survival of patients with DIPG, we sought to explore radiosensitizing functions of such inhibition and to explore mechanisms of action of such agents. Here, we demonstrate that combined treatment with radiotherapy and CUDC-907, a novel first-in-class dual inhibitor of histone deacetylases (HDAC) and PI3K, evokes a potent cytotoxic response in pHGG and DIPG models. CUDC-907 modulated DNA damage response by inhibiting radiation-induced DNA repair pathways including homologous recombination and nonhomologous end joining. The radiosensitizing effects of CUDC-907 were mediated by decreased NFκB/Forkhead box M1 (FOXM1) recruitment to promoters of genes involved in the DNA damage response; exogenous expression of NFκB/FOXM1 protected from CUDC-907-induced cytotoxicity. Together, these findings reveal CUDC-907 as a novel radiosensitizer with potent antitumor activity in pHGG and DIPG and provide a preclinical rationale for the combination of CUDC-907 with radiotherapy as a novel therapeutic strategy against pHGG and DIPG. More globally, we have identified NFκB and FOXM1 and their downstream transcriptional elements as critical targets for new treatments for pHGG and DIPG.Significance: These findings describe the radiosensitizing effect of a novel agent in pediatric high-grade gliomas, addressing a critical unmet need of increasing the radiation sensitivity of these highly aggressive tumors. Cancer Res; 78(14); 4007-21. ©2018 AACR.
Collapse
Affiliation(s)
- Sharmistha Pal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiaodong Yang
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Wojciech Fendler
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biostatistics and Translational Medicine, Medical University of Lodz, Poland
| | | | - Jing Ni
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - John A Alberta
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jean Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Kevin X Liu
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jie Bian
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nathalene Truffaux
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, San Francisco, California.,Department of Neurosurgery, University of California, San Francisco, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Adam C Resnick
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Keith L Ligon
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Sabine Mueller
- Department of Neurology, University of California, San Francisco, San Francisco, California.,Department of Neurosurgery, University of California, San Francisco, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
37
|
Catanzaro G, Besharat ZM, Miele E, Chiacchiarini M, Po A, Carai A, Marras CE, Antonelli M, Badiali M, Raso A, Mascelli S, Schrimpf D, Stichel D, Tartaglia M, Capper D, von Deimling A, Giangaspero F, Mastronuzzi A, Locatelli F, Ferretti E. The miR-139-5p regulates proliferation of supratentorial paediatric low-grade gliomas by targeting the PI3K/AKT/mTORC1 signalling. Neuropathol Appl Neurobiol 2018; 44:687-706. [PMID: 29478280 DOI: 10.1111/nan.12479] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/06/2018] [Indexed: 12/25/2022]
Abstract
AIMS Paediatric low-grade gliomas (pLGGs) are a heterogeneous group of brain tumours associated with a high overall survival: however, they are prone to recur and supratentorial lesions are difficult to resect, being associated with high percentage of disease recurrence. Our aim was to shed light on the biology of pLGGs. METHODS We performed microRNA profiling on 45 fresh-frozen grade I tumour samples of various histological classes, resected from patients aged ≤16 years. We identified 93 microRNAs specifically dysregulated in tumours as compared to non-neoplastic brain tissue. Pathway analysis of the microRNAs signature revealed PI3K/AKT signalling as one of the centrally enriched oncogenic signalling. To date, activation of the PI3K/AKT pathway in pLGGs has been reported, although activation mechanisms have not been fully investigated yet. RESULTS One of the most markedly down-regulated microRNAs in our supratentorial pLGGs cohort was miR-139-5p, whose targets include the gene encoding the PI3K's (phosphatidylinositol 3-kinase) catalytic unit, PIK3CA. We investigated the role of miR-139-5p in regulating PI3K/AKT signalling by the use of human cell cultures derived from supratentorial pLGGs. MiR-139-5p overexpression inhibited pLGG cell proliferation and decreased the phosphorylation of PI3K target AKT and phosphorylated-p70 S6 kinase (p-p70 S6K), a hallmark of PI3K/AKT/mTORC1 signalling activation. The effect of miR-139-5p was mediated by PI3K inhibition, as suggested by the decrease in proliferation and phosphorylation of AKT and p70 S6K after treatment with the direct PI3K inhibitor LY294002. CONCLUSIONS These findings provide the first evidence that down-regulation of miR-139-5p in supratentorial pLGG drives cell proliferation by derepressing PI3K/AKT signalling.
Collapse
Affiliation(s)
- G Catanzaro
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Z M Besharat
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - E Miele
- Center for Life NanoScience@Sapienza, IIT, Rome, Italy
| | - M Chiacchiarini
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- Center for Life NanoScience@Sapienza, IIT, Rome, Italy
| | - A Po
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - A Carai
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - C E Marras
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M Antonelli
- Department of Radiological, Oncological and Pathological Science, Sapienza University, Rome, Italy
| | - M Badiali
- Bone Marrow Transplantation Unit, Microcitemico Children's Hospital, Cagliari, Italy
| | - A Raso
- Giannina Gaslini Institute, Genoa, Italy
| | - S Mascelli
- Giannina Gaslini Institute, Genoa, Italy
| | - D Schrimpf
- Department of Neuropathology, Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU) Neuropathology, Heidelberg, Germany
| | - D Stichel
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU) Neuropathology, Heidelberg, Germany
| | - M Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - D Capper
- Department of Neuropathology, Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU) Neuropathology, Heidelberg, Germany
- Department of Neuropathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - A von Deimling
- Department of Neuropathology, Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU) Neuropathology, Heidelberg, Germany
| | - F Giangaspero
- Department of Radiological, Oncological and Pathological Science, Sapienza University, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - A Mastronuzzi
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - F Locatelli
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- University of Pavia, Pavia, Italy
| | - E Ferretti
- Department of Experimental Medicine, Sapienza University, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
38
|
The therapeutic potential of targeting the PI3K pathway in pediatric brain tumors. Oncotarget 2018; 8:2083-2095. [PMID: 27926496 PMCID: PMC5356782 DOI: 10.18632/oncotarget.13781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/22/2016] [Indexed: 01/12/2023] Open
Abstract
Central nervous system tumors are the most common cancer type in children and the leading cause of cancer related deaths. There is therefore a need to develop novel treatments. Large scale profiling studies have begun to identify alterations that could be targeted therapeutically, including the phosphoinositide 3-kinase (PI3K) signaling pathway, which is one of the most commonly activated pathways in cancer with many inhibitors under clinical development. PI3K signaling has been shown to be aberrantly activated in many pediatric CNS neoplasms. Pre-clinical analysis supports a role for PI3K signaling in the control of tumor growth, survival and migration as well as enhancing the cytotoxic effects of current treatments. Based on this evidence agents targeting PI3K signaling have begun to be tested in clinical trials of pediatric cancer patients. Overall, targeting the PI3K pathway presents as a promising strategy for the treatment of pediatric CNS tumors. In this review we examine the genetic alterations found in the PI3K pathway in pediatric CNS tumors and the pathological role it plays, as well as summarizing the current pre-clinical and clinical data supporting the use of PI3K pathway inhibitors for the treatment of these tumors.
Collapse
|
39
|
Pearson ADJ, Federico SM, Aerts I, Hargrave DR, DuBois SG, Iannone R, Geschwindt RD, Wang R, Haluska FG, Trippett TM, Geoerger B. A phase 1 study of oral ridaforolimus in pediatric patients with advanced solid tumors. Oncotarget 2018; 7:84736-84747. [PMID: 27713169 PMCID: PMC5356695 DOI: 10.18632/oncotarget.12450] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/16/2016] [Indexed: 11/25/2022] Open
Abstract
Purpose Ridaforolimus is an investigational, potent, selective mTOR inhibitor. This study was conducted to determine the recommended phase 2 dose (RP2D), maximum tolerated dose, safety, pharmacokinetics, and antitumor activity of oral ridaforolimus in children with advanced solid tumors. Experimental Design In this phase 1, multicenter, open-label study in children aged 6 to <18 years with advanced solid tumors, ridaforolimus was administered orally for 5 consecutive days/week in 28-day cycles until progression, unacceptable toxicity, or consent withdrawal. Dose started at 22 mg/m2 and increased to 28 mg/m2 and 33 mg/m2, followed by expansion at the RP2D. Results Twenty patients were treated; 18 were evaluable for dose-limiting toxicities. One dose-limiting toxicity (grade 3 increased alanine aminotransferase) occurred in 1 patient at 33 mg/m2. Dose escalation concluded at 33 mg/m2; the maximum tolerated dose was not determined. The most common treatment-related adverse events (frequency ≥40%) were manageable grade 1–2 stomatitis, thrombocytopenia, hypertriglyceridemia, increased alanine aminotransferase, fatigue, hypercholesterolemia, anemia, and increased aspartate aminotransferase. Ridaforolimus exposure at 28 mg/m2 and 33 mg/m2 exceeded adult target levels. The RP2D for oral ridaforolimus in children was defined as 33 mg/m2. Four patients received at least 4 cycles; 2 with pineoblastoma and diffuse intrinsic pontine glioma had stable disease for 12 and 46 cycles, respectively. Conclusions Ridaforolimus is orally bioavailable and well tolerated in children with advanced solid tumors. The RP2D (33 mg/m2, 5 days/week) exceeds the adult RP2D. The favorable toxicity and pharmacokinetic profiles may allow for combination therapy, a promising therapeutic option in pediatric malignancies.
Collapse
Affiliation(s)
- Andrew D J Pearson
- Paediatric Drug Development Unit, Children and Young People's Unit, Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Sara M Federico
- Department of Pediatric Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Isabelle Aerts
- Department of Pediatric, Adolescent and Young Adult Oncology, Institut Curie, Paris, France
| | - Darren R Hargrave
- Haematology and Oncology Department, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Steven G DuBois
- Department of Pediatrics, University of California San Francisco School of Medicine, and Benioff Children's Hospital, San Francisco, CA, USA.,Current affiliation: Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, USA
| | - Robert Iannone
- Clinical Research, Merck & Co., Inc., North Wales, PA, USA
| | | | - Ruixue Wang
- BARDS, MSD R&D (China) Co. Ltd., Beijing, China
| | - Frank G Haluska
- Clinical Research & Development, ARIAD Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Tanya M Trippett
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Birgit Geoerger
- Department of Childhood and Adolescent Oncology, Gustave Roussy, University Paris-Sud, Villejuif, France
| |
Collapse
|
40
|
Ohno K, Saito Y, Tamasaki-Kondo A, Kambe A, Horie Y, Kato S, Maegaki Y. Cerebellar Ganglioglioma in Childhood: Histopathologic Implications for Management During Long-term Survival: A Case Report. Yonago Acta Med 2018; 60:255-259. [PMID: 29434497 DOI: 10.24563/yam.2017.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/29/2017] [Indexed: 11/12/2022]
Abstract
We report the case of a 19-year-old female with cerebellar ganglioglioma that was diagnosed at 4 years of age. Despite treatment with partial resection, radiation, and chemotherapy, residual tumor slowly expanded into the brainstem and upper cervical cord, resulting in nocturnal hypopnea, progressive tetraparesis, and feeding difficulty during 8-10 years of age. Initiation of temozolomide and bevacizumab was effective in preventing further expansion of the tumor, and the patient has been treated at home and in school with noninvasive positive pressure ventilation and gastrostomy. Histopathologic examination of the resected tumor tissue revealed phospho-S6-positive tumor cells of either neuronal or astroglial appearance. This suggests that a higher proportion of cells of glial lineage could be linked to the progression of cerebellar ganglioglioma in childhood. Possible treatment options with mammalian target of rapamycin inhibitors are discussed.
Collapse
Affiliation(s)
- Koyo Ohno
- Division of Child Neurology, Department of Brain and Neurosciences, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Yoshiaki Saito
- Division of Child Neurology, Department of Brain and Neurosciences, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Akiko Tamasaki-Kondo
- Division of Child Neurology, Department of Brain and Neurosciences, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Atsushi Kambe
- †Division of Neurosurgery, Department of Brain and Neurosciences, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Yasushi Horie
- ‡Division of Organ Pathology, Department of Pathology, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Shinsuke Kato
- §Division of Neuropathology, Department of Brain and Neuroscience, Faculty of Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Yoshihiro Maegaki
- Division of Child Neurology, Department of Brain and Neurosciences, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| |
Collapse
|
41
|
Mochizuki AY, Frost IM, Mastrodimos MB, Plant AS, Wang AC, Moore TB, Prins RM, Weiss PS, Jonas SJ. Precision Medicine in Pediatric Neurooncology: A Review. ACS Chem Neurosci 2018; 9:11-28. [PMID: 29199818 PMCID: PMC6656379 DOI: 10.1021/acschemneuro.7b00388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Central nervous system tumors are the leading cause of cancer related death in children. Despite much progress in the field of pediatric neurooncology, modern combination treatment regimens often result in significant late effects, such as neurocognitive deficits, endocrine dysfunction, secondary malignancies, and a host of other chronic health problems. Precision medicine strategies applied to pediatric neurooncology target specific characteristics of individual patients' tumors to achieve maximal killing of neoplastic cells while minimizing unwanted adverse effects. Here, we review emerging trends and the current literature that have guided the development of new molecularly based classification schemas, promising diagnostic techniques, targeted therapies, and delivery platforms for the treatment of pediatric central nervous system tumors.
Collapse
Affiliation(s)
- Aaron Y. Mochizuki
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Isaura M. Frost
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Melina B. Mastrodimos
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ashley S. Plant
- Division
of Pediatric Oncology, Children’s Hospital of Orange County, Orange, California 92868, United States
| | - Anthony C. Wang
- Department
of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Theodore B. Moore
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Robert M. Prins
- Department
of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University of California, Los Angeles, Los
Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Steven J. Jonas
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, United States
- Children’s
Discovery and Innovation Institute, University of California, Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|
42
|
Machado LE, Alvarenga AW, da Silva FF, Roffé M, Begnami MD, Torres LFB, da Cunha IW, Martins VR, Hajj GNM. Overexpression of mTOR and p(240-244)S6 in IDH1 Wild-Type Human Glioblastomas Is Predictive of Low Survival. J Histochem Cytochem 2018; 66:403-414. [PMID: 29328863 DOI: 10.1369/0022155417750838] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PI3K/Akt/mTOR pathway activation is a hallmark of high-grade gliomas, which prompted clinical trials for the use of PI3K and mTOR inhibitors. However, the poor results in the original trials suggested that better patient profiling was needed for such drugs. Thus, accurate and reproducible monitoring of mTOR complexes can lead to improved therapeutic strategies. In this work, we evaluated the expression and phosphorylation of mTOR, RAPTOR, and rpS6 in 195 human astrocytomas and 30 normal brain tissue samples. The expression of mTOR increased in glioblastomas, whereas mTOR phosphorylation, expression of RAPTOR, and expression and phosphorylation of rpS6 were similar between grades. Interestingly, the overexpression of total and phosphorylated mTOR as well as phosphorylated rpS6 (residues 240-244) were associated with wild-type IDH1 only glioblastomas. The expression and phosphorylation of mTOR and phosphorylation of rpS6 at residues 240-244 were associated with a worse prognosis in glioblastomas. Our results suggest that mTOR and rpS6 could be used as markers of overactivation of the PI3K-mTOR pathway and are predictive factors for overall survival in glioblastomas. Our study thus suggests that patients who harbor IDH1 wild-type glioblastomas might have increased benefit from targeted therapy against mTOR.
Collapse
Affiliation(s)
- Luis Eduardo Machado
- International Research Center, A.C.Camargo Cancer Center, National Institute of Science and Technology in Oncogenomics, São Paulo, Brazil
| | - Arthur William Alvarenga
- International Research Center, A.C.Camargo Cancer Center, National Institute of Science and Technology in Oncogenomics, São Paulo, Brazil
| | - Fernanda Ferreira da Silva
- International Research Center, A.C.Camargo Cancer Center, National Institute of Science and Technology in Oncogenomics, São Paulo, Brazil
| | - Martín Roffé
- International Research Center, A.C.Camargo Cancer Center, National Institute of Science and Technology in Oncogenomics, São Paulo, Brazil
| | - Maria Dirlei Begnami
- Pathology Department, A.C.Camargo Cancer Center, National Institute of Science and Technology in Oncogenomics, São Paulo, Brazil
| | | | - Isabela Werneck da Cunha
- Pathology Department, A.C.Camargo Cancer Center, National Institute of Science and Technology in Oncogenomics, São Paulo, Brazil
| | - Vilma Regina Martins
- International Research Center, A.C.Camargo Cancer Center, National Institute of Science and Technology in Oncogenomics, São Paulo, Brazil
| | - Glaucia Noeli Maroso Hajj
- International Research Center, A.C.Camargo Cancer Center, National Institute of Science and Technology in Oncogenomics, São Paulo, Brazil
| |
Collapse
|
43
|
Meta-analysis of the prognostic value of p-4EBP1 in human malignancies. Oncotarget 2017; 9:2761-2769. [PMID: 29416809 PMCID: PMC5788677 DOI: 10.18632/oncotarget.23031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/20/2017] [Indexed: 01/16/2023] Open
Abstract
Phosphorylated 4E-binding protein 1 (p-4EBP1) is the inactivated form of 4EBP1, which is a downstream mediator in the mTOR signaling pathway and a vital factor in the synthesis of some oncogenic proteins. This meta-analysis was conducted to assess the predicative value of p-4EBP1 expression in human malignancies. The PubMed and Embase databases were carefully searched. Articles comparing the prognostic worthiness of different p-4EBP1 levels in human malignancies were collected for pooled analyses and methodologically appraised using the Newcastle-Ottawa Scale (NOS). A total of 39 retrospective cohorts with an overall sample size of 3,980 were selected. Patients with lower p-4EBP1 expression had better 3-year (P < 0.00001), 5-year (P < 0.00001), and 10-year (P = 0.03) overall survival and better 3-year (P < 0.0001) and 5-year (P = 0.0005) disease-free survival. Subgroup analyses confirmed the unfavorable prognosis associated with p-4EBP1 overexpression. These findings were further validated by sensitivity analyses. Harbord and Peters tests revealed no publication bias within the included studies. It thus appears higher expression of p-4EBP1 indicates a poor prognosis in human malignancies.
Collapse
|
44
|
Jain P, Silva A, Han HJ, Lang SS, Zhu Y, Boucher K, Smith TE, Vakil A, Diviney P, Choudhari N, Raman P, Busch CM, Delaney T, Yang X, Olow AK, Mueller S, Haas-Kogan D, Fox E, Storm PB, Resnick AC, Waanders AJ. Overcoming resistance to single-agent therapy for oncogenic BRAF gene fusions via combinatorial targeting of MAPK and PI3K/mTOR signaling pathways. Oncotarget 2017; 8:84697-84713. [PMID: 29156677 PMCID: PMC5689567 DOI: 10.18632/oncotarget.20949] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022] Open
Abstract
Pediatric low-grade gliomas (PLGGs) are frequently associated with activating BRAF gene fusions, such as KIAA1549-BRAF, that aberrantly drive the mitogen activated protein kinase (MAPK) pathway. Although RAF inhibitors (RAFi) have been proven effective in BRAF-V600E mutant tumors, we have previously shown how the KIAA1549-BRAF fusion can be paradoxically activated by RAFi. While newer classes of RAFi, such as PLX8394, have now been shown to inhibit MAPK activation by KIAA1549-BRAF, we sought to identify alternative MAPK pathway targeting strategies using clinically relevant MEK inhibitors (MEKi), along with potential escape mechanisms of acquired resistance to single-agent MAPK pathway therapies. We demonstrate effectiveness of multiple MEKi against diverse BRAF-fusions with novel N-terminal partners, with trametinib being the most potent. However, resistance to MEKi or PLX8394 develops via increased RTK expression causing activation of PI3K/mTOR pathway in BRAF-fusion expressing resistant clones. To circumvent acquired resistance, we show potency of combinatorial targeting with trametinib and everolimus, an mTOR inhibitor (mTORi) against multiple BRAF-fusions. While single-agent mTORi and MEKi PLGG clinical trials are underway, our study provides preclinical rationales for using MEKi and mTORi combinatorial therapy to stave off or prevent emergent drug-resistance in BRAF-fusion driven PLGGs.
Collapse
Affiliation(s)
- Payal Jain
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Center for Data Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amanda Silva
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Harry J Han
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shih-Shan Lang
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yuankun Zhu
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center for Data Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katie Boucher
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Center for Data Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tiffany E Smith
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Center for Data Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aesha Vakil
- The Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Patrick Diviney
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Namrata Choudhari
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Center for Data Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pichai Raman
- Center for Data Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christine M Busch
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tim Delaney
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Center for Data Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiaodong Yang
- Division of Neurology, University of California, San Francisco, CA, USA
| | | | - Sabine Mueller
- Division of Neurology, University of California, San Francisco, CA, USA.,Department of Neurosurgery, University of California, San Francisco, CA, USA.,Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Harvard Medical School, Boston, MA, USA
| | - Elizabeth Fox
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Phillip B Storm
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Center for Data Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adam C Resnick
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Center for Data Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Angela J Waanders
- Center for Data Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
45
|
Prostate cancer, PI3K, PTEN and prognosis. Clin Sci (Lond) 2017; 131:197-210. [PMID: 28057891 DOI: 10.1042/cs20160026] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/12/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
Loss of function of the PTEN tumour suppressor, resulting in dysregulated activation of the phosphoinositide 3-kinase (PI3K) signalling network, is recognized as one of the most common driving events in prostate cancer development. The observed mechanisms of PTEN loss are diverse, but both homozygous and heterozygous genomic deletions including PTEN are frequent, and often accompanied by loss of detectable protein as assessed by immunohistochemistry (IHC). The occurrence of PTEN loss is highest in aggressive metastatic disease and this has driven the development of PTEN as a prognostic biomarker, either alone or in combination with other factors, to distinguish indolent tumours from those likely to progress. Here, we discuss these factors and the consequences of PTEN loss, in the context of its role as a lipid phosphatase, as well as current efforts to use available inhibitors of specific components of the PI3K/PTEN/TOR signalling network in prostate cancer treatment.
Collapse
|
46
|
Becher OJ, Millard NE, Modak S, Kushner BH, Haque S, Spasojevic I, Trippett TM, Gilheeney SW, Khakoo Y, Lyden DC, De Braganca KC, Kolesar JM, Huse JT, Kramer K, Cheung NKV, Dunkel IJ. A phase I study of single-agent perifosine for recurrent or refractory pediatric CNS and solid tumors. PLoS One 2017; 12:e0178593. [PMID: 28582410 PMCID: PMC5459446 DOI: 10.1371/journal.pone.0178593] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/13/2017] [Indexed: 12/19/2022] Open
Abstract
The PI3K/Akt/mTOR signaling pathway is aberrantly activated in various pediatric tumors. We conducted a phase I study of the Akt inhibitor perifosine in patients with recurrent/refractory pediatric CNS and solid tumors. This was a standard 3+3 open-label dose-escalation study to assess pharmacokinetics, describe toxicities, and identify the MTD for single-agent perifosine. Five dose levels were investigated, ranging from 25 to 125 mg/m2/day for 28 days per cycle. Twenty-three patients (median age 10 years, range 4-18 years) with CNS tumors (DIPG [n = 3], high-grade glioma [n = 5], medulloblastoma [n = 2], ependymoma [n = 3]), neuroblastoma (n = 8), Wilms tumor (n = 1), and Ewing sarcoma (n = 1) were treated. Only one DLT occurred (grade 4 hyperuricemia at dose level 4). The most common grade 3 or 4 toxicity at least possibly related to perifosine was neutropenia (8.7%), with the remaining grade 3 or 4 toxicities (fatigue, hyperglycemia, fever, hyperuricemia, and catheter-related infection) occurring in one patient each. Pharmacokinetics was dose-saturable at doses above 50 mg/m2/day with significant inter-patient variability, consistent with findings reported in adult studies. One patient with DIPG (dose level 5) and 4 of 5 patients with high-grade glioma (dose levels 2 and 3) experienced stable disease for two months. Five subjects with neuroblastoma (dose levels 1 through 4) achieved stable disease which was prolonged (≥11 months) in three. No objective responses were noted. In conclusion, the use of perifosine was safe and feasible in patients with recurrent/refractory pediatric CNS and solid tumors. An MTD was not defined by the 5 dose levels investigated. Our RP2D is 50 mg/m2/day.
Collapse
Affiliation(s)
- Oren J. Becher
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Pediatrics, Northwestern University, Chicago, Illinois, United States of America
| | - Nathan E. Millard
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Brian H. Kushner
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Sofia Haque
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Department of Radiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Tanya M. Trippett
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Stephen W. Gilheeney
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Yasmin Khakoo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Departments of Pediatrics, Weill Cornell Medical College, New York, New York, United States of America
| | - David C. Lyden
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Departments of Pediatrics, Weill Cornell Medical College, New York, New York, United States of America
| | - Kevin C. De Braganca
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Jill M. Kolesar
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jason T. Huse
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Nai-Kong V. Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Ira J. Dunkel
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Departments of Pediatrics, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Packer RJ, Pfister S, Bouffet E, Avery R, Bandopadhayay P, Bornhorst M, Bowers DC, Ellison D, Fangusaro J, Foreman N, Fouladi M, Gajjar A, Haas-Kogan D, Hawkins C, Ho CY, Hwang E, Jabado N, Kilburn LB, Lassaletta A, Ligon KL, Massimino M, Meeteren SV, Mueller S, Nicolaides T, Perilongo G, Tabori U, Vezina G, Warren K, Witt O, Zhu Y, Jones DT, Kieran M. Pediatric low-grade gliomas: implications of the biologic era. Neuro Oncol 2017; 19:750-761. [PMID: 27683733 PMCID: PMC5464436 DOI: 10.1093/neuonc/now209] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For the past decade, it has been recognized that pediatric low-grade gliomas (LGGs) and glial-neuronal tumors carry distinct molecular alterations with resultant aberrant intracellular signaling in the Ras-mitogen-activated protein kinase pathway. The conclusions and recommendations of a consensus conference of how best to integrate the growing body of molecular genetic information into tumor classifications and, more importantly, for future treatment of pediatric LGGs are summarized here. There is uniform agreement that molecular characterization must be incorporated into classification and is increasingly critical for appropriate management. Molecular-targeted therapies should be integrated expeditiously, but also carefully into the management of these tumors and success measured not only by radiographic responses or stability, but also by functional outcomes. These trials need to be carried out with the caveat that the long-term impact of molecularly targeted therapy on the developing nervous system, especially with long duration treatment, is essentially unknown.
Collapse
Affiliation(s)
- Roger J Packer
- Center for Neuroscience and Behavioral Medicine, Washington, District of Columbia, USA
- Gilbert Family Neurofibromatosis Institute, Washington, District of Columbia, USA
- Brain Tumor Institute, Washington, District of Columbia, USA
| | - Stephan Pfister
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Eric Bouffet
- Paediatric Neuro-Oncology Program, Research Institute and The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Robert Avery
- Center for Neuroscience and Behavioral Medicine, Washington, District of Columbia, USA
- Gilbert Family Neurofibromatosis Institute, Washington, District of Columbia, USA
- Brain Tumor Institute, Washington, District of Columbia, USA
| | - Pratiti Bandopadhayay
- Department of Pediatrics, Brigham and Women's Hospital, Harvard Medical School, and the Broad Institute, Dana-Farber/Boston Children's Cancer and Blood Disorders Centre, Boston, Massachusetts, USA
| | - Miriam Bornhorst
- Center for Neuroscience and Behavioral Medicine, Washington, District of Columbia, USA
- Gilbert Family Neurofibromatosis Institute, Washington, District of Columbia, USA
- Brain Tumor Institute, Washington, District of Columbia, USA
- Center for Cancer and Immunology Research, Washington, District of Columbia, USA
| | - Daniel C Bowers
- Department of Pediatrics, UT Southwestern Medical School, Dallas, Texas, USA
| | - David Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee. USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jason Fangusaro
- Ann and Robert H. Lurie Children's Hospital of Chicago Department of Pediatric Hematology/Oncology and Stem Cell Transplantation, University of Colorado, Aurora, Colorado, USA
| | - Nicholas Foreman
- Northwestern Feinberg School of Medicine, Chicago, Illinois; Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| | - Maryam Fouladi
- Brain Tumor Center, Brain Tumor Translational Research, UC Department of Pediatrics, Cincinnati, Ohio, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, and the Broad Institute, Dana-Farber/Boston Children's Cancer and Blood Disorders Centre, Boston, Massachusetts, USA
| | - Cynthia Hawkins
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee. USA
| | - Cheng-Ying Ho
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Eugene Hwang
- Center for Neuroscience and Behavioral Medicine, Washington, District of Columbia, USA
- Brain Tumor Institute, Washington, District of Columbia, USA
- Center for Cancer and Immunology Research, Washington, District of Columbia, USA
| | - Nada Jabado
- Ann and Robert H. Lurie Children's Hospital of Chicago Department of Pediatric Hematology/Oncology and Stem Cell Transplantation, University of Colorado, Aurora, Colorado, USA
| | - Lindsay B Kilburn
- Brain Tumor Institute, Washington, District of Columbia, USA
- Center for Cancer and Immunology Research, Washington, District of Columbia, USA
| | - Alvaro Lassaletta
- Northwestern Feinberg School of Medicine, Chicago, Illinois; Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| | - Keith L Ligon
- Brain Tumor Center, Brain Tumor Translational Research, UC Department of Pediatrics, Cincinnati, Ohio, USA
- Brain Tumor Center, Brain Tumor Translational Research, UC Department of Pediatrics, Cincinnati, Ohio, USA
| | - Maura Massimino
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, and the Broad Institute, Dana-Farber/Boston Children's Cancer and Blood Disorders Centre, Boston, Massachusetts, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, and the Broad Institute, Dana-Farber/Boston Children's Cancer and Blood Disorders Centre, Boston, Massachusetts, USA
| | | | - Sabine Mueller
- Department of Neurology, Pediatrics and Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Theo Nicolaides
- Department of Neurology, Pediatrics and Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Giorgio Perilongo
- Department of Woman's and Child's Health, University of Padua, Padua, Italy
| | - Uri Tabori
- Division of Haematology/Oncology, Research Institute and The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Gilbert Vezina
- Gilbert Family Neurofibromatosis Institute, Washington, District of Columbia, USA
- Brain Tumor Institute, Washington, District of Columbia, USA
- Division of Neuroradiology, Washington, District of Columbia, USA
| | - Katherine Warren
- National Cancer Institute, Pediatric Oncology and Neuro-Oncology Branches, Bethesda, Maryland, USA
| | - Olaf Witt
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yuan Zhu
- Center for Neuroscience and Behavioral Medicine, Washington, District of Columbia, USA
- Gilbert Family Neurofibromatosis Institute, Washington, District of Columbia, USA
- Center for Cancer and Immunology Research, Washington, District of Columbia, USA
| | - David T Jones
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark Kieran
- Brain Tumor Center, Brain Tumor Translational Research, UC Department of Pediatrics, Cincinnati, Ohio, USA
| |
Collapse
|
48
|
Pediatric high-grade glioma: current molecular landscape and therapeutic approaches. J Neurooncol 2017; 134:541-549. [PMID: 28357536 DOI: 10.1007/s11060-017-2393-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/24/2017] [Indexed: 01/06/2023]
Abstract
High-grade pediatric central nervous system glial tumors are comprised primarily of anaplastic astrocytomas (AA, WHO grade III) and glioblastomas (GBM, WHO grade IV). High-grade gliomas are most commonly diagnosed in the primary setting in children, but as in adults, they can also arise as a result of transformation of a low-grade malignancy, though with limited frequency in the pediatric population. The molecular genetics of high-grade gliomas in the pediatric population are distinct from their adult counterparts. In contrast to the adult population, high-grade gliomas in children are relatively infrequent, representing less than 20% of cases.
Collapse
|
49
|
Nguyen A, Moussallieh FM, Mackay A, Cicek AE, Coca A, Chenard MP, Weingertner N, Lhermitte B, Letouzé E, Guérin E, Pencreach E, Jannier S, Guenot D, Namer IJ, Jones C, Entz-Werlé N. Characterization of the transcriptional and metabolic responses of pediatric high grade gliomas to mTOR-HIF-1α axis inhibition. Oncotarget 2017; 8:71597-71617. [PMID: 29069732 PMCID: PMC5641075 DOI: 10.18632/oncotarget.16500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/16/2017] [Indexed: 12/12/2022] Open
Abstract
Pediatric high grade glioma (pHGGs), including sus-tentorial and diffuse intrinsic pontine gliomas, are known to have a very dismal prognosis. For instance, even an increased knowledge on molecular biology driving this brain tumor entity, there is no treatment able to cure those patients. Therefore, we were focusing on a translational pathway able to increase the cell resistance to treatment and to reprogram metabolically tumor cells, which are, then, adapting easily to a hypoxic microenvironment. To establish, the crucial role of the hypoxic pathways in pHGGs, we, first, assessed their protein and transcriptomic deregulations in a pediatric cohort of pHGGs and in pHGG's cell lines, cultured in both normoxic and hypoxic conditions. Secondly, based on the concept of a bi-therapy targeting in pHGGs mTORC1 (rapamycin) and HIF-1α (irinotecan), we hypothesized that the balanced expressions between RAS/ERK, PI3K/AKT and HIF-1α/HIF-2α/MYC proteins or genes may provide a modulation of the cell response to this double targeting. Finally, we could evidence three protein, genomic and metabolomic profiles of response to rapamycin combined with irinotecan. The pattern of highly sensitive cells to mTOR/HIF-1α targeting was linked to a MYC/ERK/HIF-1α over-expression and the cell resistance to a major hyper-expression of HIF-2α.
Collapse
Affiliation(s)
- Aurélia Nguyen
- Laboratory EA 3430, Progression Tumorale et Micro-Environnement, Approches Translationnelles et Epidémiologie, University of Strasbourg, Strasbourg, France
| | | | - Alan Mackay
- Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - A Ercument Cicek
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA.,Computer Engineering Department, Bilkent University, Cankaya, Ankara, Turkey
| | - Andres Coca
- Department of Neurosurgery, University Hospital of Strasbourg, Strasbourg, France
| | - Marie Pierre Chenard
- Department of Pathology, University Hospital of Strasbourg, Strasbourg, France.,Centre de Ressources Biologiques, University Hospital of Strasbourg, Strasbourg, France
| | - Noelle Weingertner
- Department of Pathology, University Hospital of Strasbourg, Strasbourg, France
| | - Benoit Lhermitte
- Department of Pathology, University Hospital of Strasbourg, Strasbourg, France
| | - Eric Letouzé
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre Le Cancer, Paris, France
| | - Eric Guérin
- Laboratory EA 3430, Progression Tumorale et Micro-Environnement, Approches Translationnelles et Epidémiologie, University of Strasbourg, Strasbourg, France
| | - Erwan Pencreach
- Laboratory EA 3430, Progression Tumorale et Micro-Environnement, Approches Translationnelles et Epidémiologie, University of Strasbourg, Strasbourg, France
| | - Sarah Jannier
- Laboratory EA 3430, Progression Tumorale et Micro-Environnement, Approches Translationnelles et Epidémiologie, University of Strasbourg, Strasbourg, France.,Department of Pediatric Onco-hematology, University Hospital of Strasbourg, Strasbourg, France
| | - Dominique Guenot
- Laboratory EA 3430, Progression Tumorale et Micro-Environnement, Approches Translationnelles et Epidémiologie, University of Strasbourg, Strasbourg, France
| | - Izzie Jacques Namer
- Department of Nuclear Medicine, University Hospital of Strasbourg, Strasbourg, France
| | - Chris Jones
- Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Natacha Entz-Werlé
- Laboratory EA 3430, Progression Tumorale et Micro-Environnement, Approches Translationnelles et Epidémiologie, University of Strasbourg, Strasbourg, France.,Department of Pediatric Onco-hematology, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
50
|
Ohno K, Saito Y, Tamasaki-Kondo A, Kambe A, Horie Y, Kato S, Maegaki Y. Cerebellar Ganglioglioma in Childhood: Histopathologic Implications for Management During Long-term Survival: A Case Report. Yonago Acta Med 2017. [DOI: 10.33160/yam.2017.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Koyo Ohno
- Division of Child Neurology, Department of Brain and Neurosciences, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Yoshiaki Saito
- Division of Child Neurology, Department of Brain and Neurosciences, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Akiko Tamasaki-Kondo
- Division of Child Neurology, Department of Brain and Neurosciences, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Atsushi Kambe
- Division of Neurosurgery, Department of Brain and Neurosciences, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Yasushi Horie
- Division of Organ Pathology, Department of Pathology, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Shinsuke Kato
- Division of Neuropathology, Department of Brain and Neuroscience, Faculty of Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Yoshihiro Maegaki
- Division of Child Neurology, Department of Brain and Neurosciences, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| |
Collapse
|