1
|
Du H, Tan L, Wei C, Li S, Xu Z, Wang Q, Yu Q, Ryan PR, Li H, Wang A. Transcriptomic and metabolomic analyses of Tartary buckwheat roots during cadmium stress. Sci Rep 2025; 15:5100. [PMID: 39934262 PMCID: PMC11814136 DOI: 10.1038/s41598-025-89462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Cadmium (Cd) can adversely damage plant growth. Therefore, understanding the control molecular mechanisms of Cd accumulation will benefit the development of strategies to reduce Cd accumulation in plants. This study performed transcriptomic and metabolomic analyses on the roots of a Cd-tolerant Tartary buckwheat cultivar following 0 h (CK), 6 h (T1), and 48 h (T2) of Cd treatment. The fresh weight and root length were not significantly inhibited under the T1 treatment but they were in the T2 treatment. The root's ultrastructure was seriously damaged in T2 but not in T1 treatment. This was evidenced by deformed cell walls, altered shape and number of organelles. A total of 449, 999 differentially expressed genes (DEGs) and eight, 37 differentially expressed metabolites (DEMs) were identified in the CK versus T1 and CK versus T2 comparison, respectively. DEGs analysis found that the expression of genes related to cell wall function, glutathione (GSH) metabolism, and phenylpropanoid biosynthesis changed significantly during Cd stress. Several WRKY, MYB, ERF, and bHLH transcription factors and transporters also responded to Cd treatment. Our results indicate that Cd stress affects cell wall function and GSH metabolism and that changes in these pathways might contribute to mechanisms of Cd tolerance in Tartary buckwheat.
Collapse
Affiliation(s)
- Hanmei Du
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China.
| | - Lu Tan
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Changhe Wei
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Shengchun Li
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Zhou Xu
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Qinghai Wang
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Qiuzhu Yu
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Peter R Ryan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, People's Republic of China
| | - An'hu Wang
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China.
| |
Collapse
|
2
|
Dai MJ, Zhang LD, Li J, Zhu CQ, Song LY, Huang HZ, Xu CQ, Li QH, Chen L, Jiang CK, Lu HL, Ling QT, Jiang QH, Wei J, Shen GX, Zhu XY, Zheng HL, Hu WJ. Calcium regulates the physiological and molecular responses of Morus alba roots to cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136210. [PMID: 39437474 DOI: 10.1016/j.jhazmat.2024.136210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/10/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Heavy metal cadmium (Cd) is toxic to organisms. Mulberry (Morus alba L.) is a fast-growing perennial that is also an economical Cd phytoremediation material with large biomass. However, the molecular mechanisms underlying its Cd tolerance remain unclear. Here, we reveal the physiological and molecular mechanisms underlying Cd toxicity under varying calcium (Ca) treatments. First, under low-Ca treatment (0.1 mM Ca), mulberry growth was severely inhibited and the root surface structure was damaged by Cd stress. Second, electrophysiological data demonstrated that 0.1 mM Ca induced an increased Cd2+ influx, leading to its accumulation in the entire root and root cell walls. Third, high-Ca treatment (10 mM Ca) largely alleviated growth inhibition, activated antioxidant enzymes, increased Ca content, decreased Cd2+ flux, and inhibited Cd uptake by roots. Finally, 0.1 mM Ca resulted in the activation of metal transporters and the disruption of Ca signaling-related gene expression, which facilitated Cd accumulation in the roots, aggravating oxidative stress. These adverse effects were reversed by treatment with 10 mM Ca. This study preliminarily revealed the mechanism by which varying Ca levels regulate Cd uptake and accumulation in mulberry roots, provided an insight into the interrelationships between Ca and Cd in the ecological and economic tree mulberry and offered a theoretical basis for Ca application in managing Cd pollution.
Collapse
Affiliation(s)
- Ming-Jin Dai
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China; Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China; Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030000, PR China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Chun-Quan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, PR China
| | - Ling-Yu Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - He-Zi Huang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Chao-Qun Xu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Qing-Hua Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Lin Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Chen-Kai Jiang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Hong-Ling Lu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Qiu-Tong Ling
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Qi-Hong Jiang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Jia Wei
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Guo-Xin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Xue-Yi Zhu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China.
| | - Wen-Jun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| |
Collapse
|
3
|
Chen K, Yu B, Xue W, Sun Y, Zhang C, Gao X, Zhou X, Deng Y, Yang J, Zhang B. Citric Acid Inhibits Cd Absorption and Transportation by Improving the Antagonism of Essential Elements in Rice Organs. TOXICS 2024; 12:431. [PMID: 38922111 PMCID: PMC11209394 DOI: 10.3390/toxics12060431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Excessive cadmium (Cd) in rice is a global environmental problem. Therefore, reducing Cd content in rice is of great significance for ensuring food security and human health. A field experiment was conducted to study the effects of foliar application of citric acid (CA) on Cd absorption and transportation in rice under high Cd-contaminated soils (2.04 mg·kg-1). This study revealed that there was a negative correlation between Cd content in vegetative organs and CA content, and that foliar spraying of CA (1 mM and 5 mM) significantly increased CA content and reduced Cd content in vegetative organs. The Cd reduction effect of 5 mM CA was better than that of 1 mM, and 5 mM CA reduced Cd content in grains and spikes by 52% and 37%, respectively. CA significantly increased Mn content in vegetative organs and increased Ca/Mn ratios in spikes, flag leaves, and roots. CA significantly reduced soluble Cd content in vegetative organs and promoted the transformation of Cd into insoluble Cd, thus inhibiting the transport of Cd from vegetative organs to grains. The foliar field application of 1 mM and 5 mM CA could inhibit Cd absorption and transportation by reducing Cd bioactivity and increasing the antagonistic of essential elements in rice vegetative organs. These results provide technical support and a theoretical basis for solving the problem of excessive Cd in rice.
Collapse
Affiliation(s)
- Kexin Chen
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Bozhen Yu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Xusheng Gao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Xiaojia Zhou
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (K.C.); (B.Y.); (Y.S.); (C.Z.); (X.G.); (X.Z.)
| | - Yun Deng
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China;
| | - Jiarun Yang
- College of Water Conservancy Engineering, Tianjin Agricultural University, Tianjin 300392, China; (J.Y.); (B.Z.)
| | - Boqian Zhang
- College of Water Conservancy Engineering, Tianjin Agricultural University, Tianjin 300392, China; (J.Y.); (B.Z.)
| |
Collapse
|
4
|
Xin J. Enhancing soil health to minimize cadmium accumulation in agro-products: the role of microorganisms, organic matter, and nutrients. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123890. [PMID: 38554840 DOI: 10.1016/j.envpol.2024.123890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Agro-products accumulate Cd from the soil and are the main source of Cd in humans. Their use must therefore be minimized using effective strategies. Large soil beds containing low-to-moderate Cd-contamination are used to produce agro-products in many developing countries to keep up with the demand of their large populations. Improving the health of Cd-contaminated soils could be a cost-effective method for minimizing Cd accumulation in crops. In this review, the latest knowledge on the physiological and molecular mechanisms of Cd uptake and translocation in crops is presented, providing a basis for developing advanced technologies for producing Cd-safe agro-products. Inoculation of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi, application of organic matter, essential nutrients, beneficial elements, regulation of soil pH, and water management are efficient techniques used to decrease soil Cd bioavailability and inhibiting the uptake and accumulation of Cd in crops. In combination, these strategies for improving soil health are environmentally friendly and practical for reducing Cd accumulation in crops grown in lightly to moderately Cd-contaminated soil.
Collapse
Affiliation(s)
- Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Heng Hua Road 18, Hengyang 421002, China.
| |
Collapse
|
5
|
Ma C, Zhang Q, Guo Z, Guo X, Song W, Ma H, Zhou Z, Zhuo R, Zhang H. Copper-dependent control of uptake, translocation and accumulation of cadmium in hyperaccumlator Sedum alfredii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171024. [PMID: 38387586 DOI: 10.1016/j.scitotenv.2024.171024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Cadmium (Cd) is detrimental to plant growth and threatens human health. Here, we investigated the potential for remediation of Cd-contaminated soil with high copper (Cu) background using Cd hyperaccumulator ecotype (HE) Sedum alfredii. We assessed effects of Cu on Cd accumulation, compartmentation and translocation in HE S. alfredii, and compared with those in a related non-accumulator ecotype (NHE). We found that Cu supply significantly induced Cd accumulation in roots and shoots of long-term soil-cultivated HE S. alfredii. A large fraction of root Cd was accumulated in the organelles, but a small fraction was stored in the cell wall. Importantly, Cu addition reduced Cd accumulation in the cell wall and the organelles in root cells. Furthermore, leaf cell capacity to sequestrate Cd in the organelles was greatly improved upon Cu exposure. We also found that genes involving metal transport and cell wall remodeling were distinctly regulated to mediate Cd accumulation in HE S. alfredii. These findings indicate that Cu-dependent decrease of root cell-wall-bound Cd, and stimulation of efflux/influx of organelle Cd transport in root and leaf cells plays a role in the dramatic Cd hyperaccumulation expressed in naturally survived HE S. alfredii.
Collapse
Affiliation(s)
- Chunjie Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Qi Zhang
- Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Zhaoyuan Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Xiaonuo Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wenhua Song
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Hanhan Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Zhongle Zhou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Renying Zhuo
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Haiyan Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
6
|
Chen X, Yang S, Ma J, Huang Y, Wang Y, Zeng J, Li J, Li S, Long D, Xiao X, Sha L, Wu D, Fan X, Kang H, Zhang H, Zhou Y, Cheng Y. Manganese and copper additions differently reduced cadmium uptake and accumulation in dwarf Polish wheat (Triticum polonicum L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130998. [PMID: 36860063 DOI: 10.1016/j.jhazmat.2023.130998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the effects of manganese (Mn) and copper (Cu) on dwarf Polish wheat under cadmium (Cd) stress by evaluating plant growth, Cd uptake, translocation, accumulation, subcellular distribution, and chemical forms, and the expression of genes participating in cell wall synthesis, metal chelation, and metal transport. Compared with the control, Mn deficiency and Cu deficiency increased Cd uptake and accumulation in roots, and Cd levels in root cell wall and soluble fractions, but inhibited Cd translocation to shoots. Mn addition reduced Cd uptake and accumulation in roots, and Cd level in root soluble fraction. Cu addition did not affect Cd uptake and accumulation in roots, while it caused a decrease and an increase of Cd levels in root cell wall and soluble fractions, respectively. The main Cd chemical forms (water-soluble Cd, pectates and protein integrated Cd, and undissolved Cd phosphate) in roots were differently changed. Furthermore, all treatments distinctly regulated several core genes that control the main component of root cell walls. Several Cd absorber (COPT, HIPP, NRAMP, and IRT) and exporter genes (ABCB, ABCG, ZIP, CAX, OPT, and YSL) were differently regulated to mediate Cd uptake, translocation, and accumulation. Overall, Mn and Cu differently influenced Cd uptake and accumulation; Mn addition is an effective treatment for reducing Cd accumulation in wheat.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Shan Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yiwen Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Jinjiang 610066, Sichuan, China
| | - Siyu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xue Xiao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.
| |
Collapse
|
7
|
Huang B, Liao Q, Fu H, Ye Z, Mao Y, Luo J, Wang Y, Yuan H, Xin J. Effect of potassium intake on cadmium transporters and root cell wall biosynthesis in sweet potato. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114501. [PMID: 36603483 DOI: 10.1016/j.ecoenv.2023.114501] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Large areas of farmland soil in southern China are deficient in potassium (K) and are contaminated with cadmium (Cd). Previously, we suggested that the K supplementation could reduce Cd accumulation in sweet potatoes (Ipomoea batatas (L.) Lam). In the present study, we investigated the underlying physiological and molecular mechanisms. A hydroponic experiment with different K and Cd treatments was performed to compare the transcriptome profile and the cell wall structure in the roots of sweet potato using RNA sequencing, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The results showed that K supply inhibits the expressions of IRT1 and YSL3, which are responsible for root Cd uptake under Cd exposure. Furthermore, the expressions of COPT5 and Nramp3 were downregulated by K, which increased Cd retention in the root vacuoles. The upregulation of POD, CAD, INT1 and SUS by K contributed to lignin and cellulose biosynthesis and thickening of root xylem cell wall, which further reduced Cd translocation to the shoot. In addition, K affected the expressions of LHT, ACS, TPS and TPP associated with the production of ethylene and trehalose, which involved in plant resistance to Cd toxicity. In general, K application could decrease the uptake and translocation of Cd in sweet potatoes by regulating the expression of genes associated with Cd transporters and root cell wall components.
Collapse
Affiliation(s)
- Baifei Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Qiong Liao
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Huiling Fu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Ziyi Ye
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yixiao Mao
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jiemei Luo
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yating Wang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Haiwei Yuan
- Hunan Huanbaoqiao Ecology and Environment Engineering Co., Ltd., Changsha 410221, China
| | - Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| |
Collapse
|
8
|
Yao Q, Li W, Liu Y, Cheng Y, Xiao X, Long D, Zeng J, Wu D, Sha L, Fan X, Kang H, Zhang H, Zhou Y, Wang Y. FeCl 3 and Fe 2(SO 4) 3 differentially reduce Cd uptake and accumulation in Polish wheat (Triticum polonicum L.) seedlings by exporting Cd from roots and limiting Cd binding in the root cell walls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120762. [PMID: 36471548 DOI: 10.1016/j.envpol.2022.120762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/05/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Wheat grown in cadmium (Cd)-contaminated soils easily accumulates more Cd in edible parts than the Chinese safety limit (0.1 mg/kg). FeCl3 and Fe2(SO4)3 have been used to extract Cd from Cd-contaminated soils. Thus, we hypothesized that FeCl3 and Fe2(SO4)3, used as iron (Fe) fertilizers, can reduce Cd uptake and accumulation in wheat. Here, a hydroponic experiment was performed with three FeCl3 and Fe2(SO4)3 concentrations under 80 μM CdCl2 stress on dwarf Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB) seedlings. Compared with Fe deficiency, FeCl3 and Fe2(SO4)3 additions competitively reduced Cd concentrations. The reductions were not associated with changes in dry weight and root morphological parameters. FeCl3 and Fe2(SO4)3 additions reduced Cd concentrations in the following order from smallest to largest reduction: 25 μM Fe2(SO4)3 < 200 μM FeCl3 < 50 μM FeCl3 < 100 μM Fe2(SO4)3. Investigation of subcellular distributions showed that the four Fe fertilizers differentially reduced Cd binding in the root cell walls and enhanced root sucrose and trehalose. Cd chemical form analysis revealed that Fe fertilizer addition also differentially reduced root FE, FW, and FNaCl. Transcriptomic analysis revealed that addition of FeCl3 and Fe2(SO4)3 differentially up-regulated several genes that hydrolyze cell wall polysaccharides and metal transporter genes for Cd uptake (IRT1 and CAX19) and export (ZIP1, ABCG11, ABCG14, ABCG28, ABCG37, ABCG44, and ABCG48) reducing Cd uptake and accumulation. Our results demonstrated that FeCl3 and Fe2(SO4)3 can reduce Cd accumulation in wheat, and 50 μM FeCl3 is the most effective treatment.
Collapse
Affiliation(s)
- Qin Yao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Weiping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Ying Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xue Xiao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Dan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
9
|
Li S, Li G, Huang X, Chen Y, Lv C, Bai L, Zhang K, He H, Dai J. Cultivar-specific response of rhizosphere bacterial community to uptake of cadmium and mineral elements in rice (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114403. [PMID: 36508785 DOI: 10.1016/j.ecoenv.2022.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Toxic metal-contaminated farmland from Cadmium (Cd) can enhance the accumulation of Cd and impair the absorption of mineral elements in brown rice. Although several studies have been conducted on Cd exposure on rice, little has been reported on the relationship between Cd and mineral elements in brown rice and the regulatory mechanism of rhizosphere microorganisms during element uptake. Thus, a field study was undertaken to screen japonica rice cultivars with low Cd and high mineral elements levels, analyze the quantitative relationship between Cd and seven mineral elements, and investigate the cultivar-specific response of rice rhizosphere bacterial communities to differences in Cd and mineral uptake in japonica rice. Results showed that Huaidao-9 and Xudao-7 had low Cd absorption and high amounts of mineral nutrient elements (Fe, Zn, Mg, and Ca, LCHM group), whereas Zhongdao-1 and Xinkedao-31 showed opposite accumulation characteristics (HCLM group). Stepwise regression analysis showed that zinc, iron, and potassium are the key minerals that affect Cd accumulation in japonica rice and zinc was the most important factor, accounting for 68.99 %. The accumulation of Cd and mineral elements is potentially associated with rhizosphere soil bacteria. Taxa enriched in the LCHM rhizosphere (phyla Acidobacteriota and MBNT15) indicated the high nutrient characteristics of the soil and reduced activity of Cd in soil. The HCLM rhizosphere was highly colonized by metal-activating bacteria (Actinobacteria), lignin-degrading bacteria (Actinobacteria and Chlorofexi), and bacteria scavenging nutrients and trace elements (Anaerolinea and Ketobacter). Moreover, the differences in the uptake of Cd and mineral elements affected predicted functions of microbial communities, including sulfur oxidation and sulfur derivative formation, human or plant pathogen, and functions related to the iron oxidation and nitrate reduction. The results indicate a potential association of Cd and mineral elements uptake and accumulation with rhizosphere bacteria in rice, thus providing theoretical basis and a new perspective on the maintenance of rice security and high quality simultaneously.
Collapse
Affiliation(s)
- Shuangshuang Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Guangxian Li
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xianmin Huang
- Shandong General Station of Agricultural Environmental Protection and Rural Energy, Jinan 250100, China
| | - Yihui Chen
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Cheng Lv
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Liyong Bai
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ke Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Huan He
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jiulan Dai
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
10
|
Physiological and Molecular Mechanisms of Plant Responses to Copper Stress. Int J Mol Sci 2022; 23:ijms232112950. [PMID: 36361744 PMCID: PMC9656524 DOI: 10.3390/ijms232112950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 11/25/2022] Open
Abstract
Copper (Cu) is an essential micronutrient for humans, animals, and plants, and it participates in various morphological, physiological, and biochemical processes. Cu is a cofactor for a variety of enzymes, and it plays an important role in photosynthesis, respiration, the antioxidant system, and signal transduction. Many studies have demonstrated the adverse effects of excess Cu on crop germination, growth, photosynthesis, and antioxidant activity. This review summarizes the biological functions of Cu, the toxicity of excess Cu to plant growth and development, the roles of Cu transport proteins and chaperone proteins, and the transport process of Cu in plants, as well as the mechanisms of detoxification and tolerance of Cu in plants. Future research directions are proposed, which provide guidelines for related research.
Collapse
|
11
|
Liu X, Wang H, He F, Du X, Ren M, Bao Y. The TaWRKY22–TaCOPT3D Pathway Governs Cadmium Uptake in Wheat. Int J Mol Sci 2022; 23:ijms231810379. [PMID: 36142291 PMCID: PMC9499326 DOI: 10.3390/ijms231810379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cadmium (Cd) is a heavy metal nonessential for plants; this toxic metal accumulation in crops has significant adverse effects on human health. The crosstalk between copper (Cu) and Cd has been reported; however, the molecular mechanisms remain unknown. The present study investigated the function of wheat Cu transporter 3D (TaCOPT3D) in Cd tolerance. The TaCOPT3D transcripts significantly accumulated in wheat roots under Cd stress. Furthermore, TaCOPT3D-overexpressing lines were compared to wildtype (WT) plants to test the role of TaCOPT3D in Cd stress response. Under 20 mM Cd treatment, TaCOPT3D-overexpressing lines exhibited more biomass and lower root, shoot, and grain Cd accumulation than the WT plants. In addition, overexpression of TaCOPT3D decreased the reactive oxygen species (ROS) levels and increased the active antioxidant enzymes under Cd conditions. Moreover, the transcription factor (TF) TaWRKY22, which targeted the TaCOPT3D promoter, was identified in the regulatory pathway of TaCOPT3D under Cd stress. Taken together, these results show that TaCOPT3D plays an important role in regulating plant adaptation to cadmium stress through bound by TaWRKY22. These findings suggest that TaCOPT3D is a potential candidate for decreasing Cd accumulation in wheat through genetic engineering.
Collapse
Affiliation(s)
- Xiaojuan Liu
- College of Agriculture, Guizhou University, Guiyang 550004, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Fang He
- College of Agriculture, Guizhou University, Guiyang 550004, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Mingjian Ren
- College of Agriculture, Guizhou University, Guiyang 550004, China
- Correspondence: (M.R.); (Y.B.)
| | - Yinguang Bao
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai’an 271000, China
- Correspondence: (M.R.); (Y.B.)
| |
Collapse
|
12
|
Zhu Y, Qiu W, Li Y, Tan J, Han X, Wu L, Jiang Y, Deng Z, Wu C, Zhuo R. Quantitative proteome analysis reveals changes of membrane transport proteins in Sedum plumbizincicola under cadmium stress. CHEMOSPHERE 2022; 287:132302. [PMID: 34563781 DOI: 10.1016/j.chemosphere.2021.132302] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Sedum plumbizincicola is an herbaceous species tolerant of excessive cadmium accumulation in above-ground tissues. The implications of membrane proteins, especially integrative membrane proteins, in Cd detoxification of plants have received attention in recent years, but a comprehensive profiling of Cd-responsive membrane proteins from Cd hyperaccumulator plants is lacking. In this study, the membrane proteins of root, stem, and leaf tissues of S. plumbizincicola seedlings treated with Cd solution for 0, 1 or 4 days were analyzed by Tandem Mass Tag (TMT) labeling-based proteome quantification (Data are available via ProteomeXchange with identifier PXD025302). Total 3353 proteins with predicted transmembrane helices were identified and quantified in at least one tissue group. 1667 proteins were defined as DAPs (differentially abundant proteins) using fold change >1.5 with p-values <0.05. The number of DAPs involved in metabolism, transport protein, and signal transduction was significantly increased after exposure to Cd, suggesting that the synthesis and decomposition of organic compounds and the transport of ions were actively involved in the Cd tolerance process. The number of up-regulated transport proteins increased significantly from 1-day exposure to 4-day exposure, from 5 to 112, 16 to 42, 18 to 44, in root, stem, and leaf, respectively. Total 352 Cd-regulated transport proteins were identified, including ABC transporters, ion transport proteins, aquaporins, proton pumps, and organic transport proteins. Heterologous expression of SpABCB28, SpMTP5, SpNRAMP5, and SpHMA2 in yeast and subcellular localization showed the Cd-specific transport activity. The results will enhance our understanding of the molecular mechanism of Cd hypertolerance and hyperaccumulation in S. plumbizincicola and will be benefit for future genetic engineering in phytoremediation.
Collapse
Affiliation(s)
- Yue Zhu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, PR China; Forestry Faculty, Nanjing Forestry University, Nanjing, 210037, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, PR China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, PR China
| | - Yuhong Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, PR China
| | - Jinjuan Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, PR China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, PR China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Yugen Jiang
- Agricultural Technology Extension Center of Fuyang District, Hangzhou, Zhejiang, 311400, PR China
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, PR China.
| | - Chao Wu
- Institute of Horticulture, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang, 310021, PR China.
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, PR China.
| |
Collapse
|
13
|
Cheng Y, Yang T, Xiang W, Li S, Fan X, Sha L, Kang H, Wu D, Zhang H, Zeng J, Zhou Y, Wang Y. Ammonium-nitrogen addition at the seedling stage does not reduce grain cadmium concentration in two common wheat (Triticum aestivum L.) cultivars. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117575. [PMID: 34130116 DOI: 10.1016/j.envpol.2021.117575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/26/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
High cadmium (Cd) concentration in common wheat (Triticum aestivum L.) grains poses potential health risks. Several management strategies have been used to reduce grain Cd concentration. However, limited information is available on the use of ammonium-nitrogen (NH4+-N) as a strategy to manage Cd concentration in wheat grains. In this study, NH4+-N addition at the seedling stage unchanged the grain Cd concentration in the high-Cd accumulator, Zhoumai 18 (ZM18), but dramatically increased that in the low-Cd accumulator, Yunmai 51 (YM51). Further analysis revealed that the effects of NH4+-N addition on whole-plant Cd absorption, root-to-shoot Cd translocation, and shoot-to-grain Cd remobilization were different between the two wheat cultivars. In ZM18, NH4+-N addition did not change whole-plant Cd absorption, but inhibited root-to-shoot Cd translocation and Cd remobilization from lower internodes, lower leaves, node 1, and internode 1 to grains via the down-regulation of yellow stripe-like transporters (YSL), zinc transporters (ZIP5, ZIP7, and ZIP10), and heavy-metal transporting ATPases (HMA2). This inhibition decreased the grain Cd content by 29.62%, which was consistent with the decrease of the grain dry weight by 23.26%, leading to unchanged grain Cd concentration in ZM18. However, in YM51, NH4+-N addition promoted continuous Cd absorption during grain filling, root-to-shoot Cd translocation and whole-plant Cd absorption. The absorbed Cd was directly transported to internode 1 via the xylem and then re-transported to grains via the phloem by up-regulated YSL, ZIP5, and copper transporters (COPT4). This promotion increased the grain Cd content by 245.35%, which was higher than the increased grain dry weight by 132.89%, leading to increased grain Cd concentration in YM51. Our findings concluded that the addition of NH4+-N fertilizer at the seedling stage is not suitable for reducing grain Cd concentration in common wheat cultivars.
Collapse
Affiliation(s)
- Yiran Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Tian Yang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Wenhui Xiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Siyu Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dandan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.
| |
Collapse
|
14
|
Perea-García A, Andrés-Bordería A, Huijser P, Peñarrubia L. The Copper-microRNA Pathway Is Integrated with Developmental and Environmental Stress Responses in Arabidopsis thaliana. Int J Mol Sci 2021; 22:9547. [PMID: 34502449 PMCID: PMC8430956 DOI: 10.3390/ijms22179547] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
As an essential nutrient, copper (Cu) scarcity causes a decrease in agricultural production. Cu deficiency responses include the induction of several microRNAs, known as Cu-miRNAs, which are responsible for degrading mRNAs from abundant and dispensable cuproproteins to economize copper when scarce. Cu-miRNAs, such as miR398 and miR408 are conserved, as well as the signal transduction pathway to induce them under Cu deficiency. The Arabidopsis thaliana SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) family member SPL7 binds to the cis-regulatory motifs present in the promoter regions of genes expressed under Cu deficiency, including Cu-miRNAs. The expression of several other SPL transcription factor family members is regulated by miR156. This regulatory miR156-SPL module plays a crucial role in developmental phase transitions while integrating internal and external cues. Here, we show that Cu deficiency also affects miR156 expression and that SPL3 overexpressing plants, resistant to miR156 regulation, show a severe decrease in SPL7-mediated Cu deficiency responses. These include the expression of Cu-miRNAs and their targets and is probably due to competition between SPL7 and miR156-regulated SPL3 in binding to cis-regulatory elements in Cu-miRNA promoters. Thus, the conserved SPL7-mediated Cu-miRNA pathway could generally be affected by the miR156-SPL module, thereby underscoring the integration of the Cu-miRNA pathway with developmental and environmental stress responses in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Ana Perea-García
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain; (A.P.-G.); (A.A.-B.)
| | - Amparo Andrés-Bordería
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain; (A.P.-G.); (A.A.-B.)
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany;
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain; (A.P.-G.); (A.A.-B.)
| |
Collapse
|
15
|
Cheng Y, Bao Y, Chen X, Yao Q, Wang C, Chai S, Zeng J, Fan X, Kang H, Sha L, Zhang H, Zhou Y, Wang Y. Different nitrogen forms differentially affect Cd uptake and accumulation in dwarf Polish wheat (Triticum polonicum L.) seedlings. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123209. [PMID: 32947742 DOI: 10.1016/j.jhazmat.2020.123209] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 05/22/2023]
Abstract
This study investigated the effects of different nitrogen (N) forms on Cadmium (Cd) uptake and accumulation in dwarf Polish wheat (DPW) seedlings, which were grown under Cd stress with N-Null, NH4+-N, NO3--N and NH4+-N + NO3--N. We measured plant growth and determined Cd uptake, translocation, accumulation, subcellular distribution and chemical forms in the roots and shoots of DPW seedlings. We also analyzed saccharide concentrations, and the transcript levels of genes encoding metal transporters in the roots of DPW seedlings. In the absence of NO3--N, addition of NH4+-N reduced roots Cd concentration, FCW (Cd in cell wall), FS (Cd in soluble fraction) and FE (inorganic Cd) concentrations, and induced the expression of four genes encoding metal transporters in roots, while it promoted Cd translocation to shoots. In the presence of NO3--N, addition of NH4+-N increased roots Cd concentration, FCW and FW concentrations, and induced the expression of 22 genes encoding metal transporters in roots. Regardless of NH4+-N level, addition of NO3--N increased roots Cd concentration, FCW, FS, FW (water-soluble Cd), FNaCl (pectates and protein Cd), FHAc (undissolved Cd phosphate) and lactose concentrations, and also induced the expression of genes encoding metal transporters in roots. Overall, NH4+-N differently regulated Cd uptake and accumulation in DPW seedlings in the absence or presence of NO3--N, while NO3--N greatly increased Cd uptake and accumulation in the presence of NH4+-N compared to the absence of NH4+-N. These patterns of Cd alteration likely arose due to different N forms altering Cd subcellular distribution and chemical forms, lactose concentration and the expression of metal transporter genes.
Collapse
Affiliation(s)
- Yiran Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yunjing Bao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Qin Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Chao Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Songyue Chai
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
16
|
Casarrubia S, Martino E, Daghino S, Kohler A, Morin E, Khouja HR, Murat C, Barry KW, Lindquist EA, Martin FM, Perotto S. Modulation of Plant and Fungal Gene Expression Upon Cd Exposure and Symbiosis in Ericoid Mycorrhizal Vaccinium myrtillus. Front Microbiol 2020; 11:341. [PMID: 32210940 PMCID: PMC7075258 DOI: 10.3389/fmicb.2020.00341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/17/2020] [Indexed: 01/09/2023] Open
Abstract
The success of Ericaceae in stressful habitats enriched in heavy metals has been ascribed to the distinctive abilities of their mycorrhizal fungal partners to withstand heavy metal stress and to enhance metal tolerance in the host plant. Whereas heavy metal tolerance has been extensively investigated in some ericoid mycorrhizal (ERM) fungi, the molecular and cellular mechanisms that extend tolerance to the host plant are currently unknown. Here, we show a reduced Cd content in Cd-exposed mycorrhizal roots of Vaccinium myrtillus colonized by a metal tolerant isolate of the fungus Oidiodendron maius as compared to non-mycorrhizal roots. To better understand this phenotype, we applied Next Generation Sequencing technologies to analyze gene expression in V. myrtillus and O. maius Zn grown under normal and Cd-stressed conditions, in the free living and in the mycorrhizal status. The results clearly showed that Cd had a stronger impact on plant gene expression than symbiosis, whereas fungal gene expression was mainly regulated by symbiosis. The higher abundance of transcripts coding for stress related proteins in non-mycorrhizal roots may be related to the higher Cd content. Regulated plant metal transporters have been identified that may play a role in reducing Cd content in mycorrhizal roots exposed to this metal.
Collapse
Affiliation(s)
- Salvatore Casarrubia
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Elena Martino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
| | - Stefania Daghino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
| | | | - Claude Murat
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
| | - Kerrie W. Barry
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Erika A. Lindquist
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Francis M. Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
17
|
Terrón-Camero LC, Del Val C, Sandalio LM, Romero-Puertas MC. Low endogenous NO levels in roots and antioxidant systems are determinants for the resistance of Arabidopsis seedlings grown in Cd. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113411. [PMID: 31672356 DOI: 10.1016/j.envpol.2019.113411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/11/2019] [Accepted: 10/14/2019] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd), which is a toxic non-essential heavy metal capable of entering plants and thus the food chain, constitutes a major environmental and health concern worldwide. An understanding of the tools used by plants to overcome Cd stress could lead to the production of food crops with lower Cd uptake capacity and of plants with greater Cd uptake potential for phytoremediation purposes in order to restore soil efficiency in self-sustaining ecosystems. The signalling molecule nitric oxide (NO), whose function remains unclear, has recently been involved in responses to Cd stress. Using different mutants, such as nia1nia2, nox1, argh1-1 and Atnoa1, which were altered in NO metabolism, we analysed various parameters related to reactive oxygen and nitrogen species (ROS/RNS) metabolism and seedling fitness following germination and growth under Cd treatment conditions for seven days. Seedling roots were the most affected, with an increase in ROS and RNS observed in wild type (WT) seedling roots, leading to increased oxidative damage and fitness loss. Mutants that showed lower NO levels in seedling roots under Cd stress were more resistant than WT seedlings due to the maintenance of antioxidant systems which protect against oxidative damage.
Collapse
Affiliation(s)
- Laura C Terrón-Camero
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - Coral Del Val
- Department of Artificial Intelligence, University of Granada, E-18071, Granada, Spain; Andalusian Data Science and Computational Intelligence (DaSCI) Research Institute, University of Granada, E-18071, Granada, Spain
| | - Luisa M Sandalio
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - María C Romero-Puertas
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Granada, Spain.
| |
Collapse
|
18
|
Perea-García A, Andrés-Bordería A, Vera-Sirera F, Pérez-Amador MA, Puig S, Peñarrubia L. Deregulated High Affinity Copper Transport Alters Iron Homeostasis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:1106. [PMID: 32793263 PMCID: PMC7390907 DOI: 10.3389/fpls.2020.01106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/06/2020] [Indexed: 05/08/2023]
Abstract
The present work describes the effects on iron homeostasis when copper transport was deregulated in Arabidopsis thaliana by overexpressing high affinity copper transporters COPT1 and COPT3 (COPTOE ). A genome-wide analysis conducted on COPT1OE plants, highlighted that iron homeostasis gene expression was affected under both copper deficiency and excess. Among the altered genes were those encoding the iron uptake machinery and their transcriptional regulators. Subsequently, COPTOE seedlings contained less iron and were more sensitive than controls to iron deficiency. The deregulation of copper (I) uptake hindered the transcriptional activation of the subgroup Ib of basic helix-loop-helix (bHLH-Ib) factors under copper deficiency. Oppositely, copper excess inhibited the expression of the master regulator FIT but activated bHLH-Ib expression in COPTOE plants, in both cases leading to the lack of an adequate iron uptake response. As copper increased in the media, iron (III) was accumulated in roots, and the ratio iron (III)/iron (II) was increased in COPTOE plants. Thus, iron (III) overloading in COPTOE roots inhibited local iron deficiency responses, aimed to metal uptake from soil, leading to a general lower iron content in the COPTOE seedlings. These results emphasized the importance of appropriate spatiotemporal copper uptake for iron homeostasis under non-optimal copper supply. The understanding of the role of copper uptake in iron metabolism could be applied for increasing crops resistance to iron deficiency.
Collapse
Affiliation(s)
- Ana Perea-García
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Amparo Andrés-Bordería
- Departament de Bioquímica i Biologia Molecular and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| | - Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Miguel Angel Pérez-Amador
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
- *Correspondence: Lola Peñarrubia,
| |
Collapse
|
19
|
Belykh ES, Maystrenko TA, Velegzhaninov IO. Recent Trends in Enhancing the Resistance of Cultivated Plants to Heavy Metal Stress by Transgenesis and Transcriptional Programming. Mol Biotechnol 2019; 61:725-741. [DOI: 10.1007/s12033-019-00202-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Copper transporter COPT5 participates in the crosstalk between vacuolar copper and iron pools mobilisation. Sci Rep 2019; 9:4648. [PMID: 30874615 PMCID: PMC6420658 DOI: 10.1038/s41598-018-38005-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/17/2018] [Indexed: 11/12/2022] Open
Abstract
Copper (Cu) deficiency affects iron (Fe) homeostasis in several plant processes, including the increased Fe requirements due to cuproprotein substitutions for the corresponding Fe counterpart. Loss-of-function mutants from Arabidopsis thaliana high affinity copper transporter COPT5 and Fe transporters NATURAL RESISTANCE-ASSOCIATED MACROPHAGE PROTEIN 3/4 (NRAMP3 and NRAMP4) were used to study the interaction between metals internal pools. A physiological characterisation showed that the copt5 mutant is sensitive to Fe deficiency, and that nramp3nramp4 mutant growth was severely affected under limiting Cu. By a transcriptomic analysis, we observed that NRAMP4 expression was highly induced in the copt5 mutant under Cu deficiency, while COPT5 was overexpressed in the nramp3nramp4 mutant. As a result, an enhanced mobilisation of the vacuolar Cu or Fe pools, when the other metal export through the tonoplast is impaired in the mutants, has been postulated. However, metals coming from internal pools are not used to accomplish the increased requirements that derive from metalloprotein substitution under metal deficiencies. Instead, the metal concentrations present in aerial parts of the copt5 and nramp3nramp4 mutants conversely show compensated levels of these two metals. Together, our data uncover an interconnection between Cu and Fe vacuolar pools, whose aim is to fulfil interorgan metal translocation.
Collapse
|
21
|
Hu Y, Xu L, Tian S, Lu L, Lin X. Site-specific regulation of transcriptional responses to cadmium stress in the hyperaccumulator, Sedum alfredii: based on stem parenchymal and vascular cells. PLANT MOLECULAR BIOLOGY 2019; 99:347-362. [PMID: 30644059 DOI: 10.1007/s11103-019-00821-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
We compared the transcriptomes of parenchymal and vascular cells of Sedum alfredii stem under Cd stress to reveal gene regulatory networks underlying Cd hyperaccumulation. Cadmium (Cd) hyperaccumulation in plants is a complex biological process controlled by gene regulatory networks. Efficient transport through vascular systems and storage by parenchymal cells are vital for Cd hyperaccumulation in the Cd hyperaccumulator Sedum alfredii, but the genes involved are poorly understood. We investigated the spatial gene expression profiles of transport and storage sites in S. alfredii stem using laser-capture microdissection coupled with RNA sequencing. Gene expression patterns in response to Cd were distinct in vascular and parenchymal cells, indicating functional divisions that corresponded to Cd transportation and storage, respectively. In vascular cells, plasma membrane-related terms enriched a large number of differentially-expressed genes (DEGs) for foundational roles in Cd transportation. Parenchymal cells contained considerable DEGs specifically concentrated on vacuole-related terms associated with Cd sequestration and detoxification. In both cell types, DEGs were classified into different metabolic pathways in a similar way, indicating the role of Cd in activating a systemic stress signalling network where ATP-binding cassette transporters and Ca2+ signal pathways were probably involved. This study identified site-specific regulation of transcriptional responses to Cd stress in S. alfredii and analysed a collection of genes that possibly function in Cd transportation and detoxification, thus providing systemic information and direction for further investigation of Cd hyperaccumulation molecular mechanisms.
Collapse
Affiliation(s)
- Yan Hu
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Lingling Xu
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Shengke Tian
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Lingli Lu
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China.
| | - Xianyong Lin
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
22
|
Chi Y, Li F, Tam NFY, Liu C, Ouyang Y, Qi X, Li WC, Ye Z. Variations in grain cadmium and arsenic concentrations and screening for stable low-accumulating rice cultivars from multi-environment trials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1314-1324. [PMID: 30189548 DOI: 10.1016/j.scitotenv.2018.06.288] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/21/2018] [Accepted: 06/23/2018] [Indexed: 06/08/2023]
Abstract
In order to help mitigate widespread cadmium (Cd) and arsenic (As) co-contamination in paddy soils in China, screening and breeding of low-accumulating rice (Oryza sativa L.) cultivars (excluders) have been widely adopted. However, the performance of rice cultivars for grain Cd and As accumulation may vary in different growing environments. The inability to identify stable low-accumulating cultivars has largely hindered their application. In this study, 51 rice cultivars were evaluated at four Cd- and As-contaminated paddy sites in two crop seasons in northern Guangdong Province, China. The aim was to investigate the effects of cultivar, environment and their interactions in determining grain Cd and As concentrations, and so to identify stable low-accumulating cultivars. Results showed that environment effects dominated the Cd and As concentrations in rice grains, explaining 87% of the total variations. The crop season played a vital role; compared to early season, grain Cd levels increased and As levels lowered significantly in late season. Large variations in grain Cd, total As, inorganic As concentrations and the percentage of inorganic As were observed between different cultivars. Conventional japonica cultivars exhibited lower Cd levels but higher As levels in the grains than did indica cultivars. The cultivar × environment interaction (CEI) was significant, and its importance was comparable to the cultivar effect. By measuring and interpreting such an interaction, stable Cd and As excluder cultivars were identified based upon the yield, grain Cd and As levels as well as the stabilities of cultivars across the trial environments. Two stable Cd and As co-excluders were found among the hybrid indica cultivars. These results demonstrated that the variations in grain Cd and As concentrations could mainly be attributed to the environment effects and cultivar selection practices should include the analysis of CEI to identify stable low-accumulating rice cultivars.
Collapse
Affiliation(s)
- Yihan Chi
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China.
| | - Nora Fung-Yee Tam
- Department of Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region.
| | - Chuanping Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China.
| | - Yun Ouyang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoli Qi
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Wai Chin Li
- Department of Science and Environmental Studies, the Education University of Hong Kong, Hong Kong Special Administrative Region.
| | - Zhihong Ye
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
23
|
Andrés-Colás N, Carrió-Seguí A, Abdel-Ghany SE, Pilon M, Peñarrubia L. Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor. FRONTIERS IN PLANT SCIENCE 2018; 9:910. [PMID: 30018625 PMCID: PMC6037871 DOI: 10.3389/fpls.2018.00910] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/08/2018] [Indexed: 05/23/2023]
Abstract
Copper is an essential element in plants. When scarce, copper is acquired from extracellular environment or remobilized from intracellular sites, through members of the high affinity copper transporters family COPT located at the plasma membrane and internal membrane, respectively. Here, we show that COPT3 is an intracellular copper transporter, located at a compartment of the secretory pathway, that is mainly expressed in pollen grains and vascular bundles. Contrary to the COPT1 plasma membrane member, the expression of the internal COPT3 membrane transporter was higher at 12 h than at 0 h of a neutral photoperiod day under copper deficiency. The screening of a library of conditionally overexpressed transcription factors implicated members of the TCP family in the COPT3 differential temporal expression pattern. Particularly, in vitro, TCP16 was found to bind to the COPT3 promoter and down-regulated its expression. Accordingly, TCP16 was mainly expressed at 0 h under copper deficiency and induced at 12 h by copper excess. Moreover, TCP16 overexpression resulted in increased sensitivity to copper deficiency, whereas the tcp16 mutant was sensitive to copper excess. Both copper content and the expression of particular copper status markers were altered in plants with modified levels of TCP16. Consistent with TCP16 affecting pollen development, the lack of COPT3 function led to altered pollen morphology. Furthermore, analysis of copt3 and COPT3 overexpressing plants revealed that COPT3 function exerted a negative effect on TCP16 expression. Taken together, these results suggest a differential daily regulation of copper uptake depending on the external and internal copper pools, in which TCP16 inhibits copper remobilization at dawn through repression of intracellular transporters.
Collapse
Affiliation(s)
- Nuria Andrés-Colás
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Angela Carrió-Seguí
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Salah E. Abdel-Ghany
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Marinus Pilon
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| |
Collapse
|
24
|
Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K, Sharma D, Sinha AK. Traversing the Links between Heavy Metal Stress and Plant Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:12. [PMID: 29459874 PMCID: PMC5807407 DOI: 10.3389/fpls.2018.00012] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 01/03/2018] [Indexed: 05/17/2023]
Abstract
Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alok K. Sinha
- Plant Signaling, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
25
|
Zhang B, Liu H, Ding X, Qiu J, Zhang M, Chu Z. Arabidopsis thalianaACS8 plays a crucial role in the early biosynthesis of ethylene elicited by Cu 2+ ions. J Cell Sci 2018; 131:jcs.202424. [PMID: 28775152 DOI: 10.1242/jcs.202424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022] Open
Abstract
Cu2+ ions are required by all living organisms and play important roles in many bactericides and fungicides. We previously reported that Cu2+ can elicit defense responses, which are dependent on the ethylene signaling pathway in Arabidopsis However, the mechanism by which Cu2+ elicits the biosynthesis of ethylene remains unclear. Here, we show that CuSO4 treatment rapidly increases the production of ethylene. In addition, it upregulates the expression of several defense-related genes and ethylene biosynthesis genes, including genes encoding S-adenosylmethionine synthase, 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) and ACC oxidase. Among these genes, Arabidopsis thaliana (At)ACS8 was identified as essential for the defense response and early ethylene biosynthesis induced by Cu2+ Furthermore, Cu2+-induced AtACS8 expression depended on the copper-response cis-element (CuRE) in the promoter of AtACS8 Our study indicates that Cu2+ specifically activates the expression of AtACS8 to promote the early biosynthesis of ethylene that elicits plant immunity in Arabidopsis plants.
Collapse
Affiliation(s)
- Baogang Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai an, 271018, Shandong, PR China.,Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018, Shandong, PR China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai an, 271018, Shandong, PR China
| | - Xinhua Ding
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018, Shandong, PR China
| | - Jiajia Qiu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai an, 271018, Shandong, PR China
| | - Min Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai an, 271018, Shandong, PR China
| |
Collapse
|
26
|
Yu R, Li D, Du X, Xia S, Liu C, Shi G. Comparative transcriptome analysis reveals key cadmium transport-related genes in roots of two pak choi (Brassica rapa L. ssp. chinensis) cultivars. BMC Genomics 2017; 18:587. [PMID: 28789614 PMCID: PMC5549386 DOI: 10.1186/s12864-017-3973-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/31/2017] [Indexed: 01/08/2023] Open
Abstract
Background Cadmium translocation from roots to shoots is a complex biological process that is controlled by gene regulatory networks. Pak choi exhibits wide cultivar variations in Cd accumulation. However, the molecular mechanism involved in cadmium translocation and accumulation is still unclear. To isolate differentially expressed genes (DEGs) involved in transporter-mediated regulatory mechanisms of Cd translocation in two contrasting pak choi cultivars, Baiyewuyueman (B, high Cd accumulator) and Kuishan’aijiaoheiye (K, low Cd accumulator), eight cDNA libraries from the roots of two cultivars were constructed and sequenced by RNA-sequencing. Results A total of 244,190 unigenes were obtained. Of them, 6827 DEGs, including BCd10 vs. BCd0 (690), KCd10 vs. KCd0 (2733), KCd0 vs. BCd0 (2919), and KCd10 vs. BCd10 (3455), were identified. Regulatory roles of these DEGs were annotated and clarified through GO and KEEG enrichment analysis. Interestingly, 135 DEGs encoding ion transport (i.e. ZIPs, P1B-type ATPase and MTPs) related proteins were identified. The expression patterns of ten critical genes were validated using RT-qPCR analysis. Furthermore, a putative model of cadmium translocation regulatory network in pak choi was proposed. Conclusions High Cd cultivar (Baiyewuyueman) showed higher expression levels in plasma membrane-localized transport genes (i.e., ZIP2, ZIP3, IRT1, HMA2 and HMA4) and tonoplast-localized transport genes (i.e., CAX4, HMA3, MRP7, MTP3 and COPT5) than low Cd cultivar (Kuishan’aijiaoheiye). These genes, therefore, might be involved in root-to-shoot Cd translocation in pak choi. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3973-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rugang Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Dan Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Xueling Du
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Shenglan Xia
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Caifeng Liu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Gangrong Shi
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China.
| |
Collapse
|
27
|
Feng X, Han L, Chao D, Liu Y, Zhang Y, Wang R, Guo J, Feng R, Xu Y, Ding Y, Huang B, Zhang G. Ionomic and transcriptomic analysis provides new insight into the distribution and transport of cadmium and arsenic in rice. JOURNAL OF HAZARDOUS MATERIALS 2017; 331:246-256. [PMID: 28273574 DOI: 10.1016/j.jhazmat.2017.02.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 05/27/2023]
Abstract
To identify the key barrier parts and relevant elements during Cd/As transport into brown rice, 16 elements were measured in 14 different parts of 21 rice genotypes; moreover, transcriptomic of different nodes was analyzed. Cd/As contents in root and nodes were significantly higher than those other parts. Node I had the highest Cd content among nodes, leading an increase in gene expressions involved in glycolytic and Cd detoxification. The Cu/Zn/Co distribution and transport to various parts was similar to that of Cd, and Fe/Sb distribution and transport to various parts was similar to that of As. Moreover, Cu/Zn/Co/Mg was correlated with Cd in root and nodes, as well as Fe with As. Besides, the ionomic profile showed the different parts of an organ were closely related, and the spatial distribution of different organs was consistent with the growth morphology of rice. Therefore, root and nodes are two key barriers to Cd/As transport into brown rice. Moreover, Node I has the highest Cd accumulation capacities among nodes. The ionomic profile reflects relationships among plant parts and correlations between the elements, suggesting that nodes are hubs for element distribution, as well as the correlation between Cd with Zn/Cu/Co/Mg, between Fe with As.
Collapse
Affiliation(s)
- Xuemin Feng
- Innovative Team of Heavy Metal Remediation Contaminated Farmland Soil of Chinese Academy of Agricultural Sciences, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PR China; Key Laboratory of Original Agro-environmental Quality, Ministry of Agriculture, Tianjin 300191, PR China
| | - Lei Han
- Innovative Team of Heavy Metal Remediation Contaminated Farmland Soil of Chinese Academy of Agricultural Sciences, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PR China; Key Laboratory of Original Agro-environmental Quality, Ministry of Agriculture, Tianjin 300191, PR China
| | - Daiyin Chao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese academy of Sciences, Shanghai 200032, PR China
| | - Yan Liu
- Innovative Team of Heavy Metal Remediation Contaminated Farmland Soil of Chinese Academy of Agricultural Sciences, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PR China; Key Laboratory of Original Agro-environmental Quality, Ministry of Agriculture, Tianjin 300191, PR China
| | - Yajing Zhang
- Innovative Team of Heavy Metal Remediation Contaminated Farmland Soil of Chinese Academy of Agricultural Sciences, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PR China; Key Laboratory of Original Agro-environmental Quality, Ministry of Agriculture, Tianjin 300191, PR China
| | - Ruigang Wang
- Innovative Team of Heavy Metal Remediation Contaminated Farmland Soil of Chinese Academy of Agricultural Sciences, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PR China; Key Laboratory of Original Agro-environmental Quality, Ministry of Agriculture, Tianjin 300191, PR China.
| | - Junkang Guo
- Innovative Team of Heavy Metal Remediation Contaminated Farmland Soil of Chinese Academy of Agricultural Sciences, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PR China; Key Laboratory of Original Agro-environmental Quality, Ministry of Agriculture, Tianjin 300191, PR China
| | - Renwei Feng
- Innovative Team of Heavy Metal Remediation Contaminated Farmland Soil of Chinese Academy of Agricultural Sciences, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PR China; Key Laboratory of Original Agro-environmental Quality, Ministry of Agriculture, Tianjin 300191, PR China
| | - Yingming Xu
- Innovative Team of Heavy Metal Remediation Contaminated Farmland Soil of Chinese Academy of Agricultural Sciences, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PR China; Key Laboratory of Original Agro-environmental Quality, Ministry of Agriculture, Tianjin 300191, PR China
| | - Yongzhen Ding
- Innovative Team of Heavy Metal Remediation Contaminated Farmland Soil of Chinese Academy of Agricultural Sciences, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PR China; Key Laboratory of Original Agro-environmental Quality, Ministry of Agriculture, Tianjin 300191, PR China
| | - Biyan Huang
- Rural Energy and Environment Agency, Guangxi, Nanning 530022, PR China
| | - Guilong Zhang
- Innovative Team of Heavy Metal Remediation Contaminated Farmland Soil of Chinese Academy of Agricultural Sciences, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PR China; Key Laboratory of Original Agro-environmental Quality, Ministry of Agriculture, Tianjin 300191, PR China
| |
Collapse
|
28
|
Keunen E, Schellingen K, Vangronsveld J, Cuypers A. Ethylene and Metal Stress: Small Molecule, Big Impact. FRONTIERS IN PLANT SCIENCE 2016; 7:23. [PMID: 26870052 PMCID: PMC4735362 DOI: 10.3389/fpls.2016.00023] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/08/2016] [Indexed: 05/18/2023]
Abstract
The phytohormone ethylene is known to mediate a diverse array of signaling processes during abiotic stress in plants. Whereas many reports have demonstrated enhanced ethylene production in metal-exposed plants, the underlying molecular mechanisms are only recently investigated. Increasing evidence supports a role for ethylene in the regulation of plant metal stress responses. Moreover, crosstalk appears to exist between ethylene and the cellular redox balance, nutrients and other phytohormones. This review highlights our current understanding of the key role ethylene plays during responses to metal exposure. Moreover, particular attention is paid to the integration of ethylene within the broad network of plant responses to metal stress.
Collapse
|
29
|
Ma C, Burd S, Lers A. miR408 is involved in abiotic stress responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:169-87. [PMID: 26312768 DOI: 10.1111/tpj.12999] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/08/2015] [Accepted: 08/13/2015] [Indexed: 05/22/2023]
Abstract
MicroRNAs (miRNAs) are small RNAs that regulate the expression of target genes post-transcriptionally; they are known to play major roles in development and responses to abiotic stress. miR408 is a highly conserved miRNA in plants that responds to the availability of copper and targets genes encoding copper-containing proteins. It was recently recognized to be an important component of the HY5-SPL7 gene network that mediates a coordinated response to light and copper, illustrating its central role in the response of plants to the environment. Expression of miR408 is significantly affected by a variety of developmental and environmental conditions; however, its biological function is unknown. Involvement of miR408 in the abiotic stress response was investigated in Arabidopsis. Expression of miR408, as well as its target genes, was investigated in response to salinity, cold, oxidative stress, drought and osmotic stress. Analyses of transgenic plants with modulated miR408 expression revealed that higher miR408 expression leads to improved tolerance to salinity, cold and oxidative stress, but enhanced sensitivity to drought and osmotic stress. Cellular antioxidant capacity was enhanced in plants with elevated miR408 expression, as manifested by reduced levels of reactive oxygen species and induced expression of genes associated with antioxidative functions, including Cu/Zn superoxide dismutases (CSD1 and CSD2) and glutathione-S-transferase (GST-U25), as well as auxiliary genes: the copper chaperone CCS1 and the redox stress-associated gene SAP12. Overall, the results demonstrate significant involvement of miR408 in abiotic stress responses, emphasizing the central function of miR408 in plant survival.
Collapse
Affiliation(s)
- Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Bet Dagan, 50250, Israel
| | - Shaul Burd
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Bet Dagan, 50250, Israel
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Bet Dagan, 50250, Israel
| |
Collapse
|
30
|
Thao NP, Khan MIR, Thu NBA, Hoang XLT, Asgher M, Khan NA, Tran LSP. Role of Ethylene and Its Cross Talk with Other Signaling Molecules in Plant Responses to Heavy Metal Stress. PLANT PHYSIOLOGY 2015; 169:73-84. [PMID: 26246451 PMCID: PMC4577409 DOI: 10.1104/pp.15.00663] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/05/2015] [Indexed: 05/18/2023]
Abstract
Excessive heavy metals (HMs) in agricultural lands cause toxicities to plants, resulting in declines in crop productivity. Recent advances in ethylene biology research have established that ethylene is not only responsible for many important physiological activities in plants but also plays a pivotal role in HM stress tolerance. The manipulation of ethylene in plants to cope with HM stress through various approaches targeting either ethylene biosynthesis or the ethylene signaling pathway has brought promising outcomes. This review covers ethylene production and signal transduction in plant responses to HM stress, cross talk between ethylene and other signaling molecules under adverse HM stress conditions, and approaches to modify ethylene action to improve HM tolerance. From our current understanding about ethylene and its regulatory activities, it is believed that the optimization of endogenous ethylene levels in plants under HM stress would pave the way for developing transgenic crops with improved HM tolerance.
Collapse
Affiliation(s)
- Nguyen Phuong Thao
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| | - M Iqbal R Khan
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| | - Nguyen Binh Anh Thu
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| | - Xuan Lan Thi Hoang
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| | - Mohd Asgher
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| | - Nafees A Khan
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| | - Lam-Son Phan Tran
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); andSignaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
| |
Collapse
|
31
|
Hu SF, Huang YH, Lin CP, Liu LYD, Hong SF, Yang CY, Lo HF, Tseng TY, Chen WY, Lin SS. Development of a Mild Viral Expression System for Gain-Of-Function Study of Phytoplasma Effector In Planta. PLoS One 2015; 10:e0130139. [PMID: 26076458 PMCID: PMC4468105 DOI: 10.1371/journal.pone.0130139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/18/2015] [Indexed: 11/19/2022] Open
Abstract
PHYL1 and SAP54 are orthologs of pathogenic effectors of Aster yellow witches'-broom (AYWB) phytoplasma and Peanut witches'-broom (PnWB) phytoplasma, respectively. These effectors cause virescence and phyllody symptoms (hereafter leafy flower) in phytoplasma-infected plants. T0 lines of transgenic Arabidopsis expressing the PHYL1 or SAP54 genes (PHYL1 or SAP54 plants) show a leafy flower phenotype and result in seedless, suggesting that PHYL1 and SAP54 interfere with reproduction stage that restrict gain-of-function studies in the next generation of transgenic plants. Turnip mosaic virus (TuMV) mild strain (TuGK) has an Arg182Lys mutation in the helper-component proteinase (HC-ProR182K) that blocks suppression of the miRNA pathway and prevents symptom development in TuGK-infected plants. We exploited TuGK as a viral vector for gain-of-function studies of PHYL1 and SAP54 in Arabidopsis plants. TuGK-PHYL1- and TuGK-SAP54-infected Arabidopsis plants produced identical leafy flower phenotypes and similar gene expression profiles as PHYL1 and SAP54 plants. In addition, the leafy flower formation rate was enhanced in TuGK-PHYL1- or TuGK-SAP54-infected Arabidopsis plants that compared with the T0 lines of PHYL1 plants. These results provide more evidence and novel directions for further studying the mechanism of PHYL1/SAP54-mediated leafy flower development. In addition, the TuGK vector is a good alternative in transgenic plant approaches for rapid gene expression in gain-of-function studies.
Collapse
Affiliation(s)
- Sin-Fen Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsin Huang
- Departement of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chan-Pin Lin
- Departement of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Li-Yu Daisy Liu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Syuan-Fei Hong
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Chiao-Yin Yang
- Departement of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Feng Lo
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Tseng
- Joint Center for Instruments and Researches, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Wei-Yao Chen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|