1
|
Davion J, Tard C, Viard R, Fragoso L, Wilu‐Wilu A, Defebvre L, Kuchcinski G, Delbeuck X. Theory of Mind in Myotonic Dystrophy Type 1 Is Associated With Cortical Gyrification and White Matter Hyperintensities. Eur J Neurol 2025; 32:e70216. [PMID: 40407282 PMCID: PMC12100764 DOI: 10.1111/ene.70216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/26/2025] [Accepted: 05/08/2025] [Indexed: 05/26/2025]
Abstract
BACKGROUND Theory of Mind (ToM) Refers to the ability to infer other people's thoughts (Cognitive ToM) and emotions (Affective ToM). Myotonic Dystrophy Type 1 (DM1) Patients Showed an impairment of ToM capacities, but the underlying neural mechanisms remain poorly understood. METHODS We included 58 adult non-congenital DM1 patients from the DMVASCOG cohort, who underwent a ToM evaluation using the Movie for the Assessment of Social Cognition and a brain MRI. Association of ToM scores with cortical thickness and gyrification was assessed using FreeSurfer software, and associations with white matter hyperintensities were assessed using SVR-LSM. Finally, we included all the significantly associated parameters in a multivariate model. RESULTS The ToM total score and cognitive subscore were both associated with the local gyrification in the right superior parietal gyrus and with the hyperintensities in the bilateral temporopolar white matter. The ToM total score was also associated with hyperintensities in the bilateral temporo-parietal and left frontal white matter. Multivariate models based on these parameters allowed a better prediction of the ToM total score (R2 = 0.49) and cognitive subscore (R2 = 0.52) than univariate models. There was no association between ToM measures and cortical thickness, nor between brain MRI measures and affective subscore/error types. CONCLUSIONS The ToM cognitive involvement in DM1 is associated with both the gyrification in the right superior parietal gyrus and the volume of hyperintensities in the anterior-temporal white matter, suggesting the possible joint implication of a neurodevelopmental phenomenon and disconnections arising from white matter changes.
Collapse
Affiliation(s)
- Jean‐Baptiste Davion
- U1172 ‐ LilNCog ‐ Lille Neuroscience & CognitionUniv. Lille, Inserm, CHU LilleLilleFrance
- Department of NeurologyCHU LilleLilleFrance
- Reference Center for Neuromuscular Diseases Nord/Est/Ile‐de‐FranceCHU LilleLilleFrance
- Department of Pediatric NeurologyCHU LilleLilleFrance
| | - Céline Tard
- U1172 ‐ LilNCog ‐ Lille Neuroscience & CognitionUniv. Lille, Inserm, CHU LilleLilleFrance
- Department of NeurologyCHU LilleLilleFrance
- Reference Center for Neuromuscular Diseases Nord/Est/Ile‐de‐FranceCHU LilleLilleFrance
| | - Romain Viard
- U1172 ‐ LilNCog ‐ Lille Neuroscience & CognitionUniv. Lille, Inserm, CHU LilleLilleFrance
- LiiFEUniv. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 ‐ UAR 2014 ‐ PLBSLilleFrance
| | - Loren Fragoso
- Reference Center for Neuromuscular Diseases Nord/Est/Ile‐de‐FranceCHU LilleLilleFrance
| | - Amina Wilu‐Wilu
- Reference Center for Neuromuscular Diseases Nord/Est/Ile‐de‐FranceCHU LilleLilleFrance
| | - Luc Defebvre
- U1172 ‐ LilNCog ‐ Lille Neuroscience & CognitionUniv. Lille, Inserm, CHU LilleLilleFrance
- Department of NeurologyCHU LilleLilleFrance
| | - Grégory Kuchcinski
- U1172 ‐ LilNCog ‐ Lille Neuroscience & CognitionUniv. Lille, Inserm, CHU LilleLilleFrance
- LiiFEUniv. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 ‐ UAR 2014 ‐ PLBSLilleFrance
- Department of NeuroradiologyCHU LilleLilleFrance
| | - Xavier Delbeuck
- U1172 ‐ LilNCog ‐ Lille Neuroscience & CognitionUniv. Lille, Inserm, CHU LilleLilleFrance
- Department of NeurologyCHU LilleLilleFrance
- Lille‐Paris National Resource and Resilience Center (CN2R)LilleFrance
| |
Collapse
|
2
|
Andrews DS, Diers K, Lee JK, Harvey DJ, Heath B, Cordero D, Rogers SJ, Reuter M, Solomon M, Amaral DG, Nordahl CW. Sex differences in trajectories of cortical development in autistic children from 2-13 years of age. Mol Psychiatry 2024; 29:3440-3451. [PMID: 38755243 PMCID: PMC11541213 DOI: 10.1038/s41380-024-02592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Previous studies have reported alterations in cortical thickness in autism. However, few have included enough autistic females to determine if there are sex specific differences in cortical structure in autism. This longitudinal study aimed to investigate autistic sex differences in cortical thickness and trajectory of cortical thinning across childhood. Participants included 290 autistic (88 females) and 139 nonautistic (60 females) individuals assessed at up to 4 timepoints spanning ~2-13 years of age (918 total MRI timepoints). Estimates of cortical thickness in early and late childhood as well as the trajectory of cortical thinning were modeled using spatiotemporal linear mixed effects models of age-by-sex-by-diagnosis. Additionally, the spatial correspondence between cortical maps of sex-by-diagnosis differences and neurotypical sex differences were evaluated. Relative to their nonautistic peers, autistic females had more extensive cortical differences than autistic males. These differences involved multiple functional networks, and were mainly characterized by thicker cortex at ~3 years of age and faster cortical thinning in autistic females. Cortical regions in which autistic alterations were different between the sexes significantly overlapped with regions that differed by sex in neurotypical development. Autistic females and males demonstrated some shared differences in cortical thickness and rate of cortical thinning across childhood relative to their nonautistic peers, however these areas were relatively small compared to the widespread differences observed across the sexes. These results support evidence of sex-specific neurobiology in autism and suggest that processes that regulate sex differentiation in the neurotypical brain contribute to sex differences in the etiology of autism.
Collapse
Affiliation(s)
- Derek S Andrews
- Department of Psychiatry & Behavioral Sciences, the MIND Institute, University of California, Davis, CA, USA.
| | - Kersten Diers
- AI in Medical Imaging, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Joshua K Lee
- Department of Psychiatry & Behavioral Sciences, the MIND Institute, University of California, Davis, CA, USA
| | - Danielle J Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, University of California, Davis, CA, USA
| | - Brianna Heath
- Department of Psychiatry & Behavioral Sciences, the MIND Institute, University of California, Davis, CA, USA
| | - Devani Cordero
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Sally J Rogers
- Department of Psychiatry & Behavioral Sciences, the MIND Institute, University of California, Davis, CA, USA
| | - Martin Reuter
- AI in Medical Imaging, German Center for Neurodegenerative Diseases, Bonn, Germany
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Marjorie Solomon
- Department of Psychiatry & Behavioral Sciences, the MIND Institute, University of California, Davis, CA, USA
| | - David G Amaral
- Department of Psychiatry & Behavioral Sciences, the MIND Institute, University of California, Davis, CA, USA
| | - Christine Wu Nordahl
- Department of Psychiatry & Behavioral Sciences, the MIND Institute, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Zhou D, Hua T, Tang H, Yang R, Huang L, Gong Y, Zhang L, Tang G. Gender and age related brain structural and functional alterations in children with autism spectrum disorder. Cereb Cortex 2024; 34:bhae283. [PMID: 38997211 DOI: 10.1093/cercor/bhae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
To explore the effects of age and gender on the brain in children with autism spectrum disorder using magnetic resonance imaging. 185 patients with autism spectrum disorder and 110 typically developing children were enrolled. In terms of gender, boys with autism spectrum disorder had increased gray matter volumes in the insula and superior frontal gyrus and decreased gray matter volumes in the inferior frontal gyrus and thalamus. The brain regions with functional alterations are mainly distributed in the cerebellum, anterior cingulate gyrus, postcentral gyrus, and putamen. Girls with autism spectrum disorder only had increased gray matter volumes in the right cuneus and showed higher amplitude of low-frequency fluctuation in the paracentral lobule, higher regional homogeneity and degree centrality in the calcarine fissure, and greater right frontoparietal network-default mode network connectivity. In terms of age, preschool-aged children with autism spectrum disorder exhibited hypo-connectivity between and within auditory network, somatomotor network, and visual network. School-aged children with autism spectrum disorder showed increased gray matter volumes in the rectus gyrus, superior temporal gyrus, insula, and suboccipital gyrus, as well as increased amplitude of low-frequency fluctuation and regional homogeneity in the calcarine fissure and precentral gyrus and decreased in the cerebellum and anterior cingulate gyrus. The hyper-connectivity between somatomotor network and left frontoparietal network and within visual network was found. It is essential to consider the impact of age and gender on the neurophysiological alterations in autism spectrum disorder children when analyzing changes in brain structure and function.
Collapse
Affiliation(s)
- Di Zhou
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ting Hua
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Huan Tang
- Department of Radiology, Huadong Hospital of Fudan University, Shanghai 200040, China
| | - Rong Yang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Linsheng Huang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujiao Gong
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lin Zhang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Department of Radiology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 201103, China
| |
Collapse
|
4
|
Lacroix A, Harquel S, Mermillod M, Garrido M, Barbosa L, Vercueil L, Aleysson D, Dutheil F, Kovarski K, Gomot M. Sex modulation of faces prediction error in the autistic brain. Commun Biol 2024; 7:127. [PMID: 38273091 PMCID: PMC10810845 DOI: 10.1038/s42003-024-05807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Recent research suggests that autistic females may have superior socio-cognitive abilities compared to autistic males, potentially contributing to underdiagnosis in females. However, it remains unclear whether these differences arise from distinct neurophysiological functioning in autistic males and females. This study addresses this question by presenting 41 autistic and 48 non-autistic adults with a spatially filtered faces oddball paradigm. Analysis of event-related potentials from scalp electroencephalography reveal a neurophysiological profile in autistic females that fell between those of autistic males and non-autistic females, highlighting sex differences in autism from the initial stages of face processing. This finding underscores the urgent need to explore neurophysiological sex differences in autism and encourages efforts toward a better comprehension of compensation mechanism and a clearer definition of what is meant by camouflaging.
Collapse
Affiliation(s)
- Adeline Lacroix
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France.
| | - Sylvain Harquel
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, EPFL, Geneva, Switzerland
| | - Martial Mermillod
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - Marta Garrido
- Cognitive Neuroscience and Computational Psychiatry Lab, Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia
- Graeme Clark Institute for Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Leonardo Barbosa
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, 24016, USA
| | - Laurent Vercueil
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - David Aleysson
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, CHU Clermont-Ferrand, WittyFit, F-63000, Clermont-Ferrand, France
| | - Klara Kovarski
- Sorbonne Université, Faculté des Lettres, INSPE, Paris, France
- LaPsyDÉ, Université Paris-Cité, CNRS, Paris, France
| | - Marie Gomot
- UMR 1253 iBrain, Université de Tours, Inserm, Tours, France
| |
Collapse
|
5
|
Razzak R, Li J, He S, Sokhadze E. Investigating Sex-Based Neural Differences in Autism and Their Extended Reality Intervention Implications. Brain Sci 2023; 13:1571. [PMID: 38002531 PMCID: PMC10670246 DOI: 10.3390/brainsci13111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Autism Spectrum Disorder (ASD) affects millions of individuals worldwide, and there is growing interest in the use of extended reality (XR) technologies for intervention. Despite the promising potential of XR interventions, there remain gaps in our understanding of the neurobiological mechanisms underlying ASD, particularly in relation to sex-based differences. This scoping review synthesizes the current research on brain activity patterns in ASD, emphasizing the implications for XR interventions and neurofeedback therapy. We examine the brain regions commonly affected by ASD, the potential benefits and drawbacks of XR technologies, and the implications of sex-specific differences for designing effective interventions. Our findings underscore the need for ongoing research into the neurobiological underpinnings of ASD and sex-based differences, as well as the importance of developing tailored interventions that consider the unique needs and experiences of autistic individuals.
Collapse
Affiliation(s)
- Rehma Razzak
- Department of Computer Science, Kennesaw State University, Marietta, GA 30060, USA; (R.R.); (S.H.)
| | - Joy Li
- Department of Software Engineering and Game Development, Kennesaw State University, Marietta, GA 30060, USA;
| | - Selena He
- Department of Computer Science, Kennesaw State University, Marietta, GA 30060, USA; (R.R.); (S.H.)
| | - Estate Sokhadze
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
6
|
O'Reilly C, Huberty S, van Noordt S, Desjardins J, Wright N, Scorah J, Webb SJ, Elsabbagh M. EEG functional connectivity in infants at elevated familial likelihood for autism spectrum disorder. Mol Autism 2023; 14:37. [PMID: 37805500 PMCID: PMC10559476 DOI: 10.1186/s13229-023-00570-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Many studies have reported that autism spectrum disorder (ASD) is associated with atypical structural and functional connectivity. However, we know relatively little about the development of these differences in infancy. METHODS We used a high-density electroencephalogram (EEG) dataset pooled from two independent infant sibling cohorts, to characterize such neurodevelopmental deviations during the first years of life. EEG was recorded at 6 and 12 months of age in infants at typical (N = 92) or elevated likelihood for ASD (N = 90), determined by the presence of an older sibling with ASD. We computed the functional connectivity between cortical sources of EEG during video watching using the corrected imaginary part of phase-locking values. RESULTS Our main analysis found no significant association between functional connectivity and ASD, showing only significant effects for age, sex, age-sex interaction, and site. Given these null results, we performed an exploratory analysis and observed, at 12 months, a negative correlation between functional connectivity and ADOS calibrated severity scores for restrictive and repetitive behaviors (RRB). LIMITATIONS The small sample of ASD participants inherent to sibling studies limits diagnostic group comparisons. Also, results from our secondary exploratory analysis should be considered only as potential relationships to further explore, given their increased vulnerability to false positives. CONCLUSIONS These results are inconclusive concerning an association between EEG functional connectivity and ASD in infancy. Exploratory analyses provided preliminary support for a relationship between RRB and functional connectivity specifically, but these preliminary observations need corroboration on larger samples.
Collapse
Affiliation(s)
- Christian O'Reilly
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA.
- Artificial Intelligence Institute of South Carolina, University of South Carolina, 1112 Greene St, Columbia, SC, 29208, USA.
- Carolina Autism and Neurodevelopment Research Center, University of South Carolina, Columbia, SC, USA.
| | - Scott Huberty
- Azrieli Centre for Autism Research, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Stefon van Noordt
- Department of Psychology, Mount Saint Vincent University, Halifax, NS, Canada
| | | | - Nicky Wright
- Department of Psychology, Manchester Metropolitan University, Manchester, UK
| | - Julie Scorah
- Azrieli Centre for Autism Research, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | | | - Mayada Elsabbagh
- Azrieli Centre for Autism Research, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| |
Collapse
|
7
|
Neufeld J, Maier S, Revers M, Reisert M, Kuja-Halkola R, Tebartz van Elst L, Bölte S. Reduced brain connectivity along the autism spectrum controlled for familial confounding by co-twin design. Sci Rep 2023; 13:13124. [PMID: 37573391 PMCID: PMC10423238 DOI: 10.1038/s41598-023-39876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/01/2023] [Indexed: 08/14/2023] Open
Abstract
Previous studies on brain connectivity correlates of autism have often focused on selective connections and yielded inconsistent results. By applying global fiber tracking and utilizing a within-twin pair design, we aimed to contribute to a more unbiased picture of white matter connectivity in association with clinical autism and autistic traits. Eighty-seven twin pairs (n = 174; 55% monozygotic; 24 with clinical autism) underwent diffusion tensor imaging. Linear regressions assessed within-twin pair associations between structural brain connectivity of anatomically defined brain regions and both clinical autism and autistic traits. These were explicitly adjusted for IQ, other neurodevelopmental/psychiatric conditions and multiple testing, and implicitly for biological sex, age, and all genetic and environmental factors shared by twins. Both clinical autism and autistic traits were associated with reductions in structural connectivity. Twins fulfilling diagnostic criteria for clinical autism had decreased brainstem-cuneus connectivity compared to their co-twins without clinical autism. Further, twins with higher autistic traits had decreased connectivity of the left hippocampus with the left fusiform and parahippocampal areas. These associations were also significant in dizygotic twins alone. Reduced brainstem-cuneus connectivity might point towards alterations in low-level visual processing in clinical autism while higher autistic traits seemed to be more associated with reduced connectivity in networks involving the hippocampus and the fusiform gyrus, crucial especially for processing of faces and other (higher order) visual processing. The observed associations were likely influenced by both genes and environment.
Collapse
Affiliation(s)
- Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health & Stockholm Health Care Services, Karolinska Institutet & Region Stockholm, Stockholm, Sweden.
| | - Simon Maier
- Department for Psychiatry and Psychotherapy, Section for Experimental Neuropsychiatry, Medical Center University of Freiburg, Freiburg, Germany
| | - Mirian Revers
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health & Stockholm Health Care Services, Karolinska Institutet & Region Stockholm, Stockholm, Sweden
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Medical Faculty, University of Freiburg, Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center of the University of Freiburg, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ludger Tebartz van Elst
- Department for Psychiatry and Psychotherapy, Section for Experimental Neuropsychiatry, Medical Center University of Freiburg, Freiburg, Germany
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health & Stockholm Health Care Services, Karolinska Institutet & Region Stockholm, Stockholm, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| |
Collapse
|
8
|
Chen J, Wei Z, Xu C, Peng Z, Yang J, Wan G, Chen B, Gong J, Zhou K. Social visual preference mediates the effect of cortical thickness on symptom severity in children with autism spectrum disorder. Front Psychiatry 2023; 14:1132284. [PMID: 37398604 PMCID: PMC10311909 DOI: 10.3389/fpsyt.2023.1132284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/29/2023] [Indexed: 07/04/2023] Open
Abstract
Background Evidence suggests that there is a robust relationship between altered neuroanatomy and autistic symptoms in individuals with autism spectrum disorder (ASD). Social visual preference, which is regulated by specific brain regions, is also related to symptom severity. However, there were a few studies explored the potential relationships among brain structure, symptom severity, and social visual preference. Methods The current study investigated relationships among brain structure, social visual preference, and symptom severity in 43 children with ASD and 26 typically developing (TD) children (aged 2-6 years). Results Significant differences were found in social visual preference and cortical morphometry between the two groups. Decreased percentage of fixation time in digital social images (%DSI) was negatively related to not only the thickness of the left fusiform gyrus (FG) and right insula, but also the Calibrated Severity Scores for the Autism Diagnostic Observation Schedule-Social Affect (ADOS-SA-CSS). Mediation analysis showed that %DSI partially mediated the relationship between neuroanatomical alterations (specifically, thickness of the left FG and right insula) and symptom severity. Conclusion These findings offer initial evidence that atypical neuroanatomical alterations may not only result in direct effects on symptom severity but also lead to indirect effects on symptom severity through social visual preference. This finding enhances our understanding of the multiple neural mechanisms implicated in ASD.
Collapse
Affiliation(s)
- Jierong Chen
- Department of Child Psychiatry and Rehabilitation, Affliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhen Wei
- Department of Child Psychiatry and Rehabilitation, Affliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China
| | - Chuangyong Xu
- Department of Child Psychiatry and Rehabilitation, Affliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Ziwen Peng
- Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Junjie Yang
- Department of Child Health Care, Luohu District Maternal and Child Health Care Hospital, Shenzhen, China
| | - Guobin Wan
- Department of Child Psychiatry and Rehabilitation, Affliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Bin Chen
- Department of Child Psychiatry and Rehabilitation, Affliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jianhua Gong
- Department of Child Health Care, Luohu District Maternal and Child Health Care Hospital, Shenzhen, China
| | - Keying Zhou
- Department of Pediatrics, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Sex-Related Changes in the Clinical, Genetic, Electrophysiological, Connectivity, and Molecular Presentations of ASD: A Comparison between Human and Animal Models of ASD with Reference to Our Data. Int J Mol Sci 2023; 24:ijms24043287. [PMID: 36834699 PMCID: PMC9965966 DOI: 10.3390/ijms24043287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The etiology of autism spectrum disorder (ASD) is genetic, environmental, and epigenetic. In addition to sex differences in the prevalence of ASD, which is 3-4 times more common in males, there are also distinct clinical, molecular, electrophysiological, and pathophysiological differences between sexes. In human, males with ASD have more externalizing problems (i.e., attention-deficit hyperactivity disorder), more severe communication and social problems, as well as repetitive movements. Females with ASD generally exhibit fewer severe communication problems, less repetitive and stereotyped behavior, but more internalizing problems, such as depression and anxiety. Females need a higher load of genetic changes related to ASD compared to males. There are also sex differences in brain structure, connectivity, and electrophysiology. Genetic or non-genetic experimental animal models of ASD-like behavior, when studied for sex differences, showed some neurobehavioral and electrophysiological differences between male and female animals depending on the specific model. We previously carried out studies on behavioral and molecular differences between male and female mice treated with valproic acid, either prenatally or early postnatally, that exhibited ASD-like behavior and found distinct differences between the sexes, the female mice performing better on tests measuring social interaction and undergoing changes in the expression of more genes in the brain compared to males. Interestingly, co-administration of S-adenosylmethionine alleviated the ASD-like behavioral symptoms and the gene-expression changes to the same extent in both sexes. The mechanisms underlying the sex differences are not yet fully understood.
Collapse
|
10
|
Van't Westeinde A, Zimmermann M, Messina V, Karlsson L, Padilla N, Lajic S. Brain activity during visuospatial working memory in congenital adrenal hyperplasia. Cortex 2023; 159:1-15. [PMID: 36603403 DOI: 10.1016/j.cortex.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 06/30/2022] [Accepted: 10/06/2022] [Indexed: 12/23/2022]
Abstract
CONTEXT Patients with congenital adrenal hyperplasia (CAH) require life-long replacement of cortisol. Problems with cognitive function, especially working memory, have previously been identified, but the long-term effects of this disease on brain function are unknown. OBJECTIVE We investigate brain activity during working memory in CAH compared to controls. DESIGN, SETTING, AND PARTICIPANTS Twenty-nine individuals with CAH (17 females) and 40 healthy controls (24 females), 16-33 years, from a single research institute, underwent functional magnetic resonance imaging while doing a verbal and visuospatial working memory task. RESULTS Individuals with CAH responded faster on the verbal task. Although we found no differences in BOLD response over the whole group, there were significant interactions with sex: CAH males had increased activity in the bilateral lateral superior occipital cortex, left supramarginal and angular gyri, left precuneus, left posterior cingulate cortex and bilateral cerebellum during decoding of the visuospatial task, while females showed decreased activity in these regions. CONCLUSIONS Long-term cortisol imbalances do not seem to have a major impact on the functional brain responses during working memory in CAH. However, activity of the left dorsal visual stream in particular might be affected depending on sex. As the task employed may have been relatively easy, larger studies using more complex tasks are needed to further investigate this.
Collapse
Affiliation(s)
- Annelies Van't Westeinde
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (QB83), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Marius Zimmermann
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark; DK-2800 Kgs, Lyngby, Denmark
| | - Valeria Messina
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (QB83), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Leif Karlsson
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (QB83), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Nelly Padilla
- Department of Women's and Children's Health, Karolinska Institutet, Department of Neonatology, Karolinska Vägen 8 (S3:03), SE- 171 76 Stockholm, Sweden
| | - Svetlana Lajic
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (QB83), Karolinska University Hospital, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
11
|
Curtin P, Neufeld J, Curtin A, Arora M, Bölte S. Altered Periodic Dynamics in the Default Mode Network in Autism and Attention-Deficit/Hyperactivity Disorder. Biol Psychiatry 2022; 91:956-966. [PMID: 35227462 PMCID: PMC9119910 DOI: 10.1016/j.biopsych.2022.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Altered resting-state functional connectivity in the default mode network (DMN) is characteristic of both autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Standard analytical pipelines for resting-state functional connectivity focus on linear correlations in activation time courses between neural networks or regions of interest. These features may be insensitive to temporally lagged or nonlinear relationships. METHODS In a twin cohort study comprising 292 children, including 52 with a diagnosis of ASD and 70 with a diagnosis of ADHD, we applied nonlinear analytical methods to characterize periodic dynamics in the DMN. Using recurrence quantification analysis and related methods, we measured the prevalence, duration, and complexity of periodic processes within and between DMN regions of interest. We constructed generalized estimating equations to compare these features between neurotypical children and children with ASD and/or ADHD while controlling for familial relationships, and we leveraged machine learning algorithms to construct models predictive of ASD or ADHD diagnosis. RESULTS In within-pair analyses of twins with discordant ASD diagnoses, we found that DMN signal dynamics were significantly different in dizygotic twins but not in monozygotic twins. Considering our full sample, we found that these patterns allowed a robust predictive classification of both ASD (81.0% accuracy; area under the curve = 0.85) and ADHD (82% accuracy; area under the curve = 0.87) cases. CONCLUSIONS These findings indicate that synchronized periodicity among regions comprising the DMN relates both to neurotypical function and to ASD and/or ADHD, and they suggest generally that a dynamical analysis of network interconnectivity may be a useful methodology for future neuroimaging studies.
Collapse
Affiliation(s)
- Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders at Karolinska Institutet, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Austen Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sven Bölte
- Center of Neurodevelopmental Disorders at Karolinska Institutet, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden; Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden; Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
12
|
Denier N, Steinberg G, van Elst LT, Bracht T. The role of head circumference and cerebral volumes to phenotype male adults with autism spectrum disorder. Brain Behav 2022; 12:e2460. [PMID: 35112511 PMCID: PMC8933748 DOI: 10.1002/brb3.2460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) has been repeatedly associated with enlargements of head circumference in children with ASD. However, it is unclear if these enlargements persist into adulthood. This is the first study to investigate head circumference in a large sample of adults with ASD. METHODS We apply a fully automated magnetic resonance imaging (MRI) based measurement approach to compute head circumference by combining 3D and 2D image processing. Head circumference was compared between male adults with ASD (n = 120) and healthy male controls (n = 136), from the Autism Brain Imaging Data Exchange (ABIDE) database. To explain which brain alterations drive our results, secondary analyses were performed for 10 additional morphological brain metrics. RESULTS ASD subjects showed an increase in head circumference (p = .0018). In addition, ASD patients had increased ventricular surface area (SA) (p = .0013). Intracranial volume, subarachnoidal cerebrospinal fluid (CSF) volume, and gray matter volume explained 50% of head circumference variance. Using a linear support vector machine, we gained an ASD classification accuracy of 73% (sensitivity 92%, specificity 68%) using head circumference and brain-morphological metrics as input features. Head circumference, ventricular SA, ventricular CSF volume, and ventricular asymmetry index contributed to 85% of feature weighting relevant for classification. CONCLUSION Our results suggest that head circumference increases in males with ASD persist into adulthood. Results may be driven by morphological alterations of ventricular CSF. The presented approach for an automated head circumference measurement allows for the retrospective investigation of large MRI datasets in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Gerrit Steinberg
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Myers L, Pan P, Remnélius KL, Neufeld J, Marschik PB, Jonsson U, Bölte S. Behavioral and biological divergence in monozygotic twin pairs discordant for autism phenotypes: A systematic review. JCPP ADVANCES 2021. [DOI: 10.1111/jcv2.12017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Lynnea Myers
- Department of Women's and Children's Health Karolinska Institutet Center of Neurodevelopmental Disorders Centre for Psychiatry Research Karolinska Institutet & Stockholm Health Care Services Stockholm Sweden
- Department of Nursing Gustavus Adolphus College St. Peter Minnesota USA
| | - Pei‐Yin Pan
- Department of Women's and Children's Health Karolinska Institutet Center of Neurodevelopmental Disorders Centre for Psychiatry Research Karolinska Institutet & Stockholm Health Care Services Stockholm Sweden
| | - Karl Lundin Remnélius
- Department of Women's and Children's Health Karolinska Institutet Center of Neurodevelopmental Disorders Centre for Psychiatry Research Karolinska Institutet & Stockholm Health Care Services Stockholm Sweden
| | - Janina Neufeld
- Department of Women's and Children's Health Karolinska Institutet Center of Neurodevelopmental Disorders Centre for Psychiatry Research Karolinska Institutet & Stockholm Health Care Services Stockholm Sweden
| | - Peter B. Marschik
- Department of Women's and Children's Health Karolinska Institutet Center of Neurodevelopmental Disorders Centre for Psychiatry Research Karolinska Institutet & Stockholm Health Care Services Stockholm Sweden
- Department of Child and Adolescent Psychiatry and Psychotherapy University Medical Center Göttingen & Leibniz Science Campus Göttingen Germany
- Department of Phoniatrics D –Interdisciplinary Developmental Neuroscience Medical University of Graz Graz Steiermark Austria
| | - Ulf Jonsson
- Department of Women's and Children's Health Karolinska Institutet Center of Neurodevelopmental Disorders Centre for Psychiatry Research Karolinska Institutet & Stockholm Health Care Services Stockholm Sweden
- Department of Neuroscience, Child and Adolescent Psychiatry Uppsala University Uppsala Sweden
| | - Sven Bölte
- Department of Women's and Children's Health Karolinska Institutet Center of Neurodevelopmental Disorders Centre for Psychiatry Research Karolinska Institutet & Stockholm Health Care Services Stockholm Sweden
- Department of Child and Adolescent Psychiatry Stockholm Health Care Services Stockholm Sweden
- Curtin Autism Research Group School of Occupational Therapy, Social Work and Speech Pathology Curtin University Perth Western Australia Australia
| |
Collapse
|
14
|
Deng Z, Wang S. Sex differentiation of brain structures in autism: Findings from a gray matter asymmetry study. Autism Res 2021; 14:1115-1126. [PMID: 33769688 DOI: 10.1002/aur.2506] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 03/11/2021] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorder (ASD) is diagnosed much more often in males than females. This male predominance has prompted a number of studies to examine how sex differences are related to the neural expression of ASD. Different theories, such as the "extreme male brain" theory, the "female protective effect" (FPE) theory, and the gender incoherence (GI) theory, provide different explanations for the mixed findings of sex-related neural expression of ASD. This study sought to clarify whether either theory applies to the brain structure in individuals with ASD by analyzing a selective high-quality data subset from an open data resource (Autism Brain Imaging Data Exchange I and II) including 35 males/35 females with ASD and 86 male/86 female typical-controls (TCs). We examined the sex-related changes in ASD in gray matter asymmetry measures (i.e., asymmetry index, AI) derived from voxel-based morphometry using a 2 (diagnosis: ASD vs. TC) × 2 (sex: female vs. male) factorial design. A diagnosis-by-sex interaction effect was identified in the planum temporale/Heschl's gyrus: (i) compared to females, males exhibited decreased AI (indicating more leftward brain asymmetry) in the TC group, whereas AI was greater (indicating less leftward brain asymmetry) for males than for females in the ASD group; and (ii) females with ASD showed reduced AI (indicating more leftward brain asymmetry) compared to female TCs, whereas there were no differences between ASDs and TCs in the male group. This interaction pattern supports the FPE theory in showing greater brain structure changes (masculinization) in females with ASD. LAY SUMMARY: To understand the neural mechanisms underlying male predominance in autism spectrum disorder (ASD), we investigated the sex differences in ASD-related alterations in brain asymmetry. We found greater changes in females with ASD compared with males with ASD, revealing a female protective effect. These findings provide novel insights into the neurobiology of sex differences in ASD.
Collapse
Affiliation(s)
- Zhizhou Deng
- Department of Applied Psychology, Guangdong University of Finance and Economics, Guangzhou, China
| | - Suiping Wang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
15
|
Neufeld J, Taylor MJ, Lundin Remnélius K, Isaksson J, Lichtenstein P, Bölte S. A co-twin-control study of altered sensory processing in autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 25:1422-1432. [PMID: 33645260 PMCID: PMC8264631 DOI: 10.1177/1362361321991255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorder is associated with sensory processing alterations, such as sensory hyper- and hypo-responsiveness. Twin studies are scarce in this field, but they are necessary in order to disentangle the genetic and environmental contributions to this association. Furthermore, it is unclear how different neurodevelopmental/psychiatric conditions contribute to altering sensory processing. We investigated the association between autistic traits/autism spectrum disorder diagnosis and sensory processing alterations in twins (N = 269), using the adult/adolescent sensory profile, which differentiates four sub-domains: Low Registration, Sensation Seeking, Sensory Sensitivity, and Sensation Avoiding. While the associations between autistic traits and Low Registration and Sensation Avoiding persisted within monozygotic (genetically identical) twins, Sensory Sensitivity was only associated with autistic traits within dizygotic twins. In multivariate analyses with different neurodevelopmental/psychiatric diagnoses as predictor variables, autism spectrum disorder and attention deficit hyperactivity disorder were the strongest predictors for two adult/adolescent sensory profile sub-domains each. The results suggest that the association between autistic traits and Sensory Sensitivity is influenced by genetics while non-shared environmental factors influence the associations between autistic traits and Low Registration and Sensation Avoiding. They further indicate that altered sensory processing is not specific to autism spectrum disorder, while autism spectrum disorder is a strong predictor of certain sensory processing alterations, even when controlling for other (comorbid) neurodevelopmental/psychiatric conditions.
Collapse
Affiliation(s)
| | | | | | - Johan Isaksson
- Karolinska Institutet, Sweden.,Uppsala University, Sweden
| | | | - Sven Bölte
- Karolinska Institutet, Sweden.,Region Stockholm, Sweden.,Curtin University, Australia
| |
Collapse
|