1
|
Shi H, Zhang Y, Yang Y, Zhang H, Li W, Zhong Z, Lv L. Serum S100B protein and white matter changes in schizophrenia before and after medication. Brain Res Bull 2024; 210:110927. [PMID: 38485004 DOI: 10.1016/j.brainresbull.2024.110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Schizophrenia patients have abnormalities in white matter (WM) integrity in brain regions. S100B has been shown to be a marker protein for glial cells. The atypical antipsychotics have neuroprotective effects on the brain. It is not clear whether antipsychotics can induce S100B changes and improve symptoms by protecting oligodendrocytes. To investigate WM and S100B changes and associations and determine the effect of quetiapine on WM and S100B in schizophrenia patients, we determined serum S100B levels with solid phase immunochromatography and fractional anisotropy(FA)values of 36 patients and 40 healthy controls. Patients exhibited significantly higher serum concentrations of S100B and decreased FA values in left postcentral,right superior frontal,right thalamus, and left inferior occipital gyrus, while higher in right temporal cortex WM compared with healthy controls. Following treatment with quetiapine, patients had decreased S100B and higher FA values in right cerebellum,right superior frontal,right thalamus, and left parietal cortex,and decreased FA values in right temporal cortex WM compared with pre-treatment values. Furthermore, S100B were negatively correlated with PANSS positive scores and positively correlated with FA values in the left postcentral cortex. In addition,the percentage change in FA values in the right temporal cortex was positively correlated with the percentage change in the S100B, percentage reduction in PANSS scores, and percentage reduction in PANSS-positive scores. Our findings demonstrated abnormalities in S100B and WM microstructure in patients with schizophrenia. These abnormalities may be partly reversed by quetiapine treatment.
Collapse
Affiliation(s)
- Han Shi
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Yan Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Haisan Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Zhaoxi Zhong
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China.
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China.
| |
Collapse
|
2
|
Seitz-Holland J, Nägele FL, Kubicki M, Pasternak O, Cho KIK, Hough M, Mulert C, Shenton ME, Crow TJ, James ACD, Lyall AE. Shared and distinct white matter abnormalities in adolescent-onset schizophrenia and adolescent-onset psychotic bipolar disorder. Psychol Med 2023; 53:4707-4719. [PMID: 35796024 PMCID: PMC11119277 DOI: 10.1017/s003329172200160x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND While adolescent-onset schizophrenia (ADO-SCZ) and adolescent-onset bipolar disorder with psychosis (psychotic ADO-BPD) present a more severe clinical course than their adult forms, their pathophysiology is poorly understood. Here, we study potentially state- and trait-related white matter diffusion-weighted magnetic resonance imaging (dMRI) abnormalities along the adolescent-onset psychosis continuum to address this need. METHODS Forty-eight individuals with ADO-SCZ (20 female/28 male), 15 individuals with psychotic ADO-BPD (7 female/8 male), and 35 healthy controls (HCs, 18 female/17 male) underwent dMRI and clinical assessments. Maps of extracellular free-water (FW) and fractional anisotropy of cellular tissue (FAT) were compared between individuals with psychosis and HCs using tract-based spatial statistics and FSL's Randomise. FAT and FW values were extracted, averaged across all voxels that demonstrated group differences, and then utilized to test for the influence of age, medication, age of onset, duration of illness, symptom severity, and intelligence. RESULTS Individuals with adolescent-onset psychosis exhibited pronounced FW and FAT abnormalities compared to HCs. FAT reductions were spatially more widespread in ADO-SCZ. FW increases, however, were only present in psychotic ADO-BPD. In HCs, but not in individuals with adolescent-onset psychosis, FAT was positively related to age. CONCLUSIONS We observe evidence for cellular (FAT) and extracellular (FW) white matter abnormalities in adolescent-onset psychosis. Although cellular white matter abnormalities were more prominent in ADO-SCZ, such alterations may reflect a shared trait, i.e. neurodevelopmental pathology, present across the psychosis spectrum. Extracellular abnormalities were evident in psychotic ADO-BPD, potentially indicating a more dynamic, state-dependent brain reaction to psychosis.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Felix L. Nägele
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kang Ik K. Cho
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Morgan Hough
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Highfield Unit, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
- Centre for Psychiatry and Psychotherapy, Justus-Liebig-University, Giessen, Germany
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy J. Crow
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Anthony C. D. James
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Highfield Unit, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Amanda E. Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Luttenbacher I, Phillips A, Kazemi R, Hadipour AL, Sanghvi I, Martinez J, Adamson MM. Transdiagnostic role of glutamate and white matter damage in neuropsychiatric disorders: A Systematic Review. J Psychiatr Res 2022; 147:324-348. [PMID: 35151030 DOI: 10.1016/j.jpsychires.2021.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 12/09/2022]
Abstract
Neuropsychiatric disorders including generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ) have been considered distinct categories of diseases despite their overlapping characteristics and symptomatology. We aimed to provide an in-depth review elucidating the role of glutamate/Glx and white matter (WM) abnormalities in these disorders from a transdiagnostic perspective. The PubMed online database was searched for studies published between 2010 and 2021. After careful screening, 401 studies were included. The findings point to decreased levels of glutamate in the Anterior Cingulate Cortex in both SZ and BD, whereas Glx is elevated in the Hippocampus in SZ and MDD. With regard to WM abnormalities, the Corpus Callosum and superior Longitudinal Fascicle were the most consistently identified brain regions showing decreased fractional anisotropy (FA) across all the reviewed disorders, except GAD. Additionally, the Uncinate Fasciculus displayed decreased FA in all disorders, except OCD. Decreased FA was also found in the inferior Longitudinal Fasciculus, inferior Fronto-Occipital Fasciculus, Thalamic Radiation, and Corona Radiata in SZ, BD, and MDD. Decreased FA in the Fornix and Corticospinal Tract were found in BD and SZ patients. The Cingulum and Anterior Limb of Internal Capsule exhibited decreased FA in MDD and SZ patients. The results suggest a gradual increase in severity from GAD to SZ defined by the number of brain regions with WM abnormality which may be partially caused by abnormal glutamate levels. WM damage could thus be considered a potential marker of some of the main neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ines Luttenbacher
- Department of Social & Behavioral Sciences, University of Amsterdam, Amsterdam, Netherlands; Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Angela Phillips
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Reza Kazemi
- Department of Cognitive Psychology, Institute for Cognitive Science Studies, Tehran, Iran
| | - Abed L Hadipour
- Department of Cognitive Sciences, University of Messina, Messina, Italy
| | - Isha Sanghvi
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neuroscience, University of Southern California, Los Angeles, CA, USA
| | - Julian Martinez
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Palo Alto University, Palo Alto, CA, USA
| | - Maheen M Adamson
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Wang Z, Wang H, Mwansisya TE, Sheng Y, Shan B, Liu Z, Xue Z, Chen X. The integrity of the white matter in first-episode schizophrenia patients with auditory verbal hallucinations: An atlas-based DTI analysis. Psychiatry Res Neuroimaging 2021; 315:111328. [PMID: 34260985 DOI: 10.1016/j.pscychresns.2021.111328] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/31/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
Auditory verbal hallucination (AVH) is one of the most remarkable symptoms of schizophrenia, with great impact on patients' lives and unclear pathogenesis. Neuroimaging studies have indicated that the development of AVHs is associated with white matter alteration, however, there are still inconsistencies in specific findings across previous investigations. The present study aimed to investigate the characteristics of the microstructural integrity of white matter (WM) in first-episode schizophrenia patients who experience auditory hallucinations. Atlas-based Diffusion Tensor Imaging (DTI) analysis was performed to evaluate the white matter integrity in 37 first-episode schizophrenia patients with AVH, 60 schizophrenia patients without AVH, and 50 healthy controls. Compared with the healthy controls group, AVH showed decreased mean fractional anisotropy (FA) in the genu and body of corpus callosum, right posterior corona radiata, left superior corona radiata, left external capsule, right superior fronto-occipital fasciculus, and higher mean diffusivity (MD) in genu of corpus callosum and left fornix and stria terminalis; whereas the nAVH group showed a much more significant reduction of FA and increased MD in broader brain regions. In addition, a significant positive correlation between FA and the severity of AVHs was observed in right posterior corona radiate. These observations collectively demonstrated that a certain degree of preserved fronto-temporal and interhemispheric connectivity in the early stage of schizophrenia might be associated with the brain capability to generate AVHs.
Collapse
Affiliation(s)
- Zhiyu Wang
- School of Public Health, Central South University, Changsha, China; Department of Communicable Disease Prevention and Management, Centers for Disease Control and Prevention(CDC) of Changsha City, Changsha, China
| | - Hui Wang
- Department of Geriatrics, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | | | - Yaoyao Sheng
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Baoci Shan
- Key Laboratory of Nuclear Analysis, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Zhening Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, National Technology Institute of Psychiatry, Changsha, China; Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhimin Xue
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, National Technology Institute of Psychiatry, Changsha, China; Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xudong Chen
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, National Technology Institute of Psychiatry, Changsha, China; Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Cheng W, Luo N, Zhang Y, Zhang X, Tan H, Zhang D, Sui J, Yue W, Yan H. DNA Methylation and Resting Brain Function Mediate the Association between Childhood Urbanicity and Better Speed of Processing. Cereb Cortex 2021; 31:4709-4718. [PMID: 33987663 PMCID: PMC8408435 DOI: 10.1093/cercor/bhab117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
Urbanicity has been suggested to affect cognition, but the underlying mechanism remains unknown. We examined whether epigenetic modification (DNA methylation, DNAm), and brain white matter fiber integrity (fractional anisotropy, FA) or local spontaneous brain function activity (regional homogeneity, ReHo) play roles in the association between childhood urbanicity and cognition based on 497 healthy Chinese adults. We found significant correlation between childhood urbanicity and better cognitive performance. Multiset canonical correlation analysis (mCCA) identified an intercorrelated DNAm-FA-ReHo triplet, which showed significant pairwise correlations (DNAm-FA: Bonferroni-adjusted P, Pbon = 4.99E-03, rho = 0.216; DNAm-ReHo: Pbon = 4.08E-03, rho = 0.239; ReHo-FA: Pbon = 1.68E-06, rho = 0.328). Causal mediation analysis revealed that 1) ReHo mediated 10.86% childhood urbanicity effects on the speed of processing and 2) childhood urbanicity alters ReHo through DNA methylation in the cadherin and Wnt signaling pathways (mediated effect: 48.55%). The mediation effect of increased ReHo in the superior temporal gyrus underlying urbanicity impact on a better speed of processing was further validated in an independent cohort. Our work suggests a mediation role for ReHo, particularly increased brain activity in the superior temporal gyrus, in the urbanicity-associated speed of processing.
Collapse
Affiliation(s)
- Weiqiu Cheng
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Na Luo
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiao Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Haoyang Tan
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dai Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Jing Sui
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| |
Collapse
|
6
|
Rajasekaran A, Shivakumar V, Kalmady SV, Parlikar R, Chhabra H, Prabhu A, Subbanna M, Venugopal D, Amaresha AC, Agarwal SM, Bose A, Narayanaswamy JC, Debnath M, Venkatasubramanian G. Impact of NRG1 HapICE gene variants on digit ratio and dermatoglyphic measures in schizophrenia. Asian J Psychiatr 2020; 54:102363. [PMID: 33271685 DOI: 10.1016/j.ajp.2020.102363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
Multiple lines of evidence have suggested a potential role of Neuregulin-1 (NRG1) in the neurodevelopmental pathogenesis of schizophrenia. Interaction between genetic risk variants present within NRG1 locus and non-specific gestational putative insults can significantly impair crucial processes of brain development. Such genetic effects can be analyzed through the assessment of digit ratio and dermatoglyphic patterns. We examined the role of two well-replicated polymorphisms of NRG1 (SNP8NRG221533 and SNP8NRG243177) on schizophrenia risk and its probable impact on the digit ratio and dermatoglyphic measures in patients (N = 221) and healthy controls (N = 200). In schizophrenia patients, but not in healthy controls, a significant association between NRG1 SNP8NRG221533 C/C genotype with lower left 2D:4D ratio, as well as with higher FA_TbcRC and DA_TbcRC. The substantial effect of SNP8NRG221533 on both digit ratio and dermatoglyphic measures suggest a potential role for NRG1 gene variants on neurodevelopmental pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Ashwini Rajasekaran
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Venkataram Shivakumar
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sunil V Kalmady
- Canadian VIGOUR Centre, University of Alberta, Edmonton, AB, Canada
| | - Rujuta Parlikar
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Harleen Chhabra
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ananya Prabhu
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Manjula Subbanna
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Deepthi Venugopal
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anekal C Amaresha
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sri Mahavir Agarwal
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anushree Bose
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Janardhanan C Narayanaswamy
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Monojit Debnath
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
7
|
Barth C, Lonning V, Gurholt TP, Andreassen OA, Myhre AM, Agartz I. Exploring white matter microstructure and the impact of antipsychotics in adolescent-onset psychosis. PLoS One 2020; 15:e0233684. [PMID: 32470000 PMCID: PMC7259775 DOI: 10.1371/journal.pone.0233684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/10/2020] [Indexed: 01/11/2023] Open
Abstract
White matter abnormalities are well-established in adult patients with psychosis. Less is known about abnormalities in the rarely occurring adolescent early onset psychosis (EOP). In particular, whether antipsychotic medication might impact white matter microstructure is not known. Using 3T diffusion weighted imaging, we investigated differences in white matter microstructure and the impact of antipsychotic medication status in medicated (n = 11) and unmedicated (n = 11) EOP patients relative to healthy controls (n = 33), aged between 12–18 years. Using Tract-based Spatial Statistics, we calculate case-control differences in scalar diffusion measures, i.e. fractional anisotropy (FA), axial diffusion (AD) and radial diffusion (RD), and investigated their association with antipsychotic medication in patients. We found significantly lower FA in the left genu of the corpus callosum, the left anterior corona radiata (ACR) and the right superior longitudinal fasciculus in EOP patients relative to healthy controls. AD values were also lower in the left ACR, largely overlapping with the FA findings. Mean FA in the left ACR was significantly associated with antipsychotic medication status (Cohen's d = 1.37, 95% CI [0.01, 2.68], p = 0.008), showing higher FA values in medicated compared to unmedicated EOP patients. The present study is the first to link antipsychotic medication status to altered regional FA in the left ACR, a region hypothesized to contribute to the etiology of psychosis. Replications are warranted to draw firm conclusions about putatively enhancing effects of antipsychotic medication on white matter microstructure in adolescent-onset psychosis.
Collapse
Affiliation(s)
- Claudia Barth
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Vera Lonning
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tiril Pedersen Gurholt
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne M. Myhre
- Child & Adolescent Mental Health Research Unit, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
8
|
Li M, Becker B, Zheng J, Zhang Y, Chen H, Liao W, Duan X, Liu H, Zhao J, Chen H. Dysregulated Maturation of the Functional Connectome in Antipsychotic-Naïve, First-Episode Patients With Adolescent-Onset Schizophrenia. Schizophr Bull 2019; 45:689-697. [PMID: 29850901 PMCID: PMC6483582 DOI: 10.1093/schbul/sby063] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Schizophrenia has been conceptualized as a brain network disorder rooted in dysregulated neurodevelopmental processes. Recent neuroimaging studies revealed disrupted brain connectomic organization in adult schizophrenia patients. However, altered developmental trajectories of the functional connectome during the adolescent maturational stage have not been examined. METHODS The present study combined functional MRI with a graph theoretical approach to examine functional network topology and its age-related development in 39 medication naïve, first-episode patients with adolescent-onset schizophrenia and 31 matched controls (age range: 12-18 years). RESULTS Patients demonstrated impaired large-scale integration as reflected by reduced global efficiency as well as decreased regional nodal efficiency in highly integrative network hubs, most consistently the hippocampal formation and the precuneus. Furthermore, the left hippocampus showed opposite age-efficiency associations in healthy controls and patients, indicating dysregulated maturational trajectories in adolescent schizophrenia and a particular vulnerability of this region during early pathological attack. CONCLUSIONS The findings allow an integrative perspective on network and neurodevelopmental perspectives on schizophrenia, suggesting that dysregulated maturation of the functional connectome during adolescence might reflect an early marker for the disorder.
Collapse
Affiliation(s)
- Meiling Li
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjie Zheng
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Zhang
- Department of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Heng Chen
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Jingping Zhao
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China,To whom correspondence should be addressed; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China; tel: 86 13808003171, fax: 86 2883208238, e-mail:
| |
Collapse
|
9
|
Ganella EP, Bartholomeusz CF, Seguin C, Whittle S, Bousman C, Phassouliotis C, Everall I, Pantelis C, Zalesky A. Functional brain networks in treatment-resistant schizophrenia. Schizophr Res 2017; 184:73-81. [PMID: 28011131 DOI: 10.1016/j.schres.2016.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Up to 20% of individuals with schizophrenia show minimal or no response to medication and are considered to have 'treatment-resistant' schizophrenia (TRS). Unlike early and established schizophrenia, few studies have investigated resting-state functional connectivity (rs-FC) in TRS. Here, we test for disruptions in FC and altered efficiency of functional brain networks in a well-characterized cohort of TRS patients. METHODS Resting-state functional magnetic resonance imaging was used to investigate functional brain networks in 42 TRS participants prescribed clozapine (30 males, mean age=41.3(10)) and 42 healthy controls (24 males, mean age=38.4(10)). Graph analysis was used to characterize between-group differences in local and global efficiency of functional brain network organization as well as the strength of FC. RESULTS Global brain FC was reduced in TRS patients (p=0.0001). Relative to controls, 3.4% of all functional connections showed reduced strength in TRS (p<0.001), predominantly involving fronto-temporal, fronto-occipital and temporo-occipital connections. Global efficiency was reduced in TRS (p=0.0015), whereas local efficiency was increased (p=0.0042). CONCLUSIONS TRS is associated with widespread reductions in rs-FC and altered network topology. Increased local functional network efficiency coupled with decreased global efficiency suggests that hub-to-hub connections are preferentially affected in TRS. These findings further our understanding of the neurobiological impairments in TRS.
Collapse
Affiliation(s)
- Eleni P Ganella
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Victoria, Australia; The Centre for Youth Mental Health, The University of Melbourne, Victoria, Australia; The Cooperative Research Centre (CRC) for Mental Health, Victoria, Australia; North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia.
| | - Cali F Bartholomeusz
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Victoria, Australia; The Centre for Youth Mental Health, The University of Melbourne, Victoria, Australia
| | - Caio Seguin
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Chad Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia; The Cooperative Research Centre (CRC) for Mental Health, Victoria, Australia; Florey Institute for Neurosciences and Mental Health, Parkville, Victoria, Australia; Swinburne University of Technology, Centre for Human Psychopharmacology, Hawthorne, Victoria, Australia; The University of Melbourne, Department of General Practice, Parkville, Victoria, Australia
| | - Christina Phassouliotis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Ian Everall
- The Cooperative Research Centre (CRC) for Mental Health, Victoria, Australia; North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia; Florey Institute for Neurosciences and Mental Health, Parkville, Victoria, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, Victoria, Australia; Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia; The Cooperative Research Centre (CRC) for Mental Health, Victoria, Australia; North Western Mental Health, Melbourne Health, Parkville, Victoria, Australia; Florey Institute for Neurosciences and Mental Health, Parkville, Victoria, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, Victoria, Australia; Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia; Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Waltzman D, Knowlton BJ, Cohen JR, Bookheimer SY, Bilder RM, Asarnow RF. DTI microstructural abnormalities in adolescent siblings of patients with childhood-onset schizophrenia. Psychiatry Res Neuroimaging 2016; 258:23-29. [PMID: 27829189 DOI: 10.1016/j.pscychresns.2016.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Dana Waltzman
- War Related Illness and Injury Study Center, Veterans Affairs Palo Alto Health Care System (VAPAHCS), United States; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, United States.
| | | | - Jessica Rachel Cohen
- Department of Psychology and Neurosciences, University of North Carolina at Chapel Hill, United States
| | - Susan Yost Bookheimer
- David Geffen School of Medicine at University of California Los Angeles, United States
| | - Robert Martin Bilder
- David Geffen School of Medicine at University of California Los Angeles, United States
| | - Robert Franklin Asarnow
- Department of Psychology, University of California Los Angeles, United States; David Geffen School of Medicine at University of California Los Angeles, United States
| |
Collapse
|
11
|
Diffusion-weighted imaging uncovers likely sources of processing-speed deficits in schizophrenia. Proc Natl Acad Sci U S A 2016; 113:13504-13509. [PMID: 27834215 DOI: 10.1073/pnas.1608246113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Schizophrenia, a devastating psychiatric illness with onset in the late teens to early 20s, is thought to involve disrupted brain connectivity. Functional and structural disconnections of cortical networks may underlie various cognitive deficits, including a substantial reduction in the speed of information processing in schizophrenia patients compared with controls. Myelinated white matter supports the speed of electrical signal transmission in the brain. To examine possible neuroanatomical sources of cognitive deficits, we used a comprehensive diffusion-weighted imaging (DWI) protocol and characterized the white matter diffusion signals using diffusion kurtosis imaging (DKI) and permeability-diffusivity imaging (PDI) in patients (n = 74), their nonill siblings (n = 41), and healthy controls (n = 113). Diffusion parameters that showed significant patient-control differences also explained the patient-control differences in processing speed. This association was also found for the nonill siblings of the patients. The association was specific to processing-speed abnormality but not specific to working memory abnormality or psychiatric symptoms. Our findings show that advanced diffusion MRI in white matter may capture microstructural connectivity patterns and mechanisms that govern the association between a core neurocognitive measure-processing speed-and neurobiological deficits in schizophrenia that are detectable with in vivo brain scans. These non-Gaussian diffusion white matter metrics are promising surrogate imaging markers for modeling cognitive deficits and perhaps, guiding treatment development in schizophrenia.
Collapse
|
12
|
Neuroimaging findings from childhood onset schizophrenia patients and their non-psychotic siblings. Schizophr Res 2016; 173:124-131. [PMID: 25819937 PMCID: PMC4583796 DOI: 10.1016/j.schres.2015.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 12/14/2022]
Abstract
Childhood onset schizophrenia (COS), with onset of psychosis before age 13, is a rare form of schizophrenia that represents a more severe and chronic form of the adult onset illness. In this review we examine structural and functional magnetic resonance imaging (MRI) studies of COS and non-psychotic siblings of COS patients in the context of studies of schizophrenia as a whole. Studies of COS to date reveal progressive loss of gray matter volume and cortical thinning, ventricular enlargement, progressive decline in cerebellar volume and a significant but fixed deficit in hippocampal volume. COS is also associated with a slower rate of white matter growth and disrupted local connectivity strength. Sibling studies indicate that non-psychotic siblings of COS patients share many of these brain abnormalities, including decreased cortical thickness and disrupted white matter growth, yet these abnormalities normalize with age. Cross-sectional and longitudinal neuroimaging studies remain some of the few methods for assessing human brain function and play a pivotal role in the quest for understanding the neurobiology of schizophrenia as well as other psychiatric disorders. Parallel studies in non-psychotic siblings provide a unique opportunity to understand both risk and resilience in schizophrenia.
Collapse
|
13
|
van Dellen E, Bohlken MM, Draaisma L, Tewarie PK, van Lutterveld R, Mandl R, Stam CJ, Sommer IE. Structural Brain Network Disturbances in the Psychosis Spectrum. Schizophr Bull 2016; 42:782-9. [PMID: 26644605 PMCID: PMC4838099 DOI: 10.1093/schbul/sbv178] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Individuals with subclinical psychotic symptoms provide a unique window on the pathophysiology of psychotic experiences as these individuals are free of confounders such as hospitalization, negative and cognitive symptoms and medication use. Brain network disturbances of white matter connections are thought to play a central role in the pathophysiology of psychosis. Based on the structural network disconnection hypothesis in schizophrenia, we expect less and weaker connections, and altered brain network organization in individuals with clinical and those with subclinical psychotic symptoms. METHODS We used diffusion tensor imaging to study 35 patients with a psychotic disorder, 35 subjects with subclinical psychotic symptoms, and 36 healthy controls. The structural brain network was analyzed on 3 levels: connection density, white matter microstructure (fractional anisotropy, mean diffusivity, and magnetic transfer ratio), and network organization. Network organization was studied with minimum spanning tree analysis, a method to reconstruct a backbone of structural highways in the brain. RESULTS Decreased fractional anisotropy and increased mean diffusivity was found in both groups with psychotic symptoms, while their network topology showed decreased overlap with a healthy reference network. Decreased centrality was found in several brain regions, including parietal hubs and language areas, in both groups with psychotic symptoms. Deviation of network characteristics was more apparent in clinical subjects than in subclinical subjects. DISCUSSION Weaker connections and decreased centrality of parietal hubs characterize the structural brain network in subjects with psychotic symptoms. These differences are more notable in clinical than in subclinical subjects with psychotic experiences.
Collapse
Affiliation(s)
- Edwin van Dellen
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Psychiatry, Brain Center Rudolf Magnus, Utrecht, The Netherlands;
| | - Marc M. Bohlken
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands;,Department of Psychiatry, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Laurijn Draaisma
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands;,Department of Psychiatry, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Prejaas K. Tewarie
- Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Remko van Lutterveld
- Center for Mindfulness, University of Massachusetts School of Medicine, Shrewsbury, MA
| | - René Mandl
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands;,Department of Psychiatry, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Cornelis J. Stam
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Iris E. Sommer
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands;,Department of Psychiatry, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| |
Collapse
|
14
|
Tamnes CK, Agartz I. White Matter Microstructure in Early-Onset Schizophrenia: A Systematic Review of Diffusion Tensor Imaging Studies. J Am Acad Child Adolesc Psychiatry 2016; 55:269-79. [PMID: 27015717 DOI: 10.1016/j.jaac.2016.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Neurodevelopmental processes and neural connectivity are thought to play pivotal roles in schizophrenia. This article reviews diffusion tensor imaging (DTI) studies of brain white matter connections and microstructure and their development in patients with early-onset schizophrenia (EOS), that is, schizophrenia with an age of onset before 18 years. METHOD A systematic literature search revealed 21 original case-control DTI studies of children and/or adolescents with EOS. RESULTS Nearly all studies report significantly lower regional fractional anisotropy (FA) in patients with EOS than in healthy control participants. However, the anatomical locations and extent of these differences are highly variable across studies. Furthermore, consistent evidence for associations between DTI indices and age of onset, medication variables, and measures of symptomatology and cognition in EOS is lacking. Only 3 available studies have investigated cross-sectional age-related differences or longitudinal changes in DTI measures in adolescents with EOS. The results are mixed, with different studies indicating diverging, converging, or parallel developmental FA trajectories between patients and controls. CONCLUSION The study of brain structural connectivity, as inferred from DTI, and its development in EOS may inform us on the origin and ontogeny of schizophrenia. We suggest some directions for future research in this field and argue for increased focus on developmental questions. Specifically, further investigations of age of onset effects and multimethod longitudinal studies of structural and functional connectivity development before, at, and after onset of schizophrenia and related syndromes in children and adolescents are called for.
Collapse
Affiliation(s)
- Christian K Tamnes
- Research Group for Lifespan Changes in Brain and Cognition, University of Oslo, Norway.
| | - Ingrid Agartz
- NORMENT (Norwegian Centre for Mental Disorders Research), KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Norway and with Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
15
|
White matter structure in young adults with familial risk for psychosis - The Oulu Brain and Mind Study. Psychiatry Res 2015; 233:388-93. [PMID: 26231121 DOI: 10.1016/j.pscychresns.2015.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/21/2015] [Accepted: 06/27/2015] [Indexed: 01/05/2023]
Abstract
According to the disconnectivity model, disruptions in neural connectivity play an essential role in the pathology of schizophrenia. The aim of this study was to determine whether these abnormalities are present in young adults with familial risk (FR) for psychosis in the general population based sample. We used diffusion tensor imaging (DTI) and tract-based spatial statistics to compare whole-brain fractional anisotropy, mean diffusivity, and axial and radial diffusion in 47 (17 males) FR subjects to 51 controls (17 males). All the participants were aged between 20 and 25 years and were members of the Northern Finland Birth Cohort 1986 (Oulu Brain and Mind Study). Region of interest analyses were conducted for 12 tracts. Separately, we analysed whole-brain FA for the subgroup with FR for schizophrenia (n=13) compared with 13 gender-matched controls. Contrary to our expectations there were no differences in any of the DTI measures between FR and control groups. This suggests that white matter abnormalities may not be a genetic feature for risk of psychosis and preceding the onset of a psychotic disorder. Our findings do not support the theory of disconnectivity as a primary sign of psychosis in young adults with FR for the illness.
Collapse
|
16
|
Abstract
Childhood-onset schizophrenia is a rare pediatric onset psychiatric disorder continuous with and typically more severe than its adult counterpart. Neuroimaging research conducted on this population has revealed similarly severe neural abnormalities. When taken as a whole, neuroimaging research in this population shows generally decreased cortical gray matter coupled with white matter connectivity abnormalities, suggesting an anatomical basis for deficits in executive function. Subcortical abnormalities are pronounced in limbic structures, where volumetric deficits are likely related to social skill deficits, and cerebellar deficits that have been correlated to cognitive abnormalities. Structures relevant to motor processing also show a significant alteration, with volumetric increase in basal ganglia structures likely due to antipsychotic administration. Neuroimaging of this disorder shows an important clinical image of exaggerated cortical loss, altered white matter connectivity, and differences in structural development of subcortical areas during the course of development and provides important background to the disease state.
Collapse
|
17
|
Chavarria-Siles I, White T, de Leeuw C, Goudriaan A, Lips E, Ehrlich S, Turner JA, Calhoun VD, Gollub RL, Magnotta VA, Ho BC, Smit AB, Verheijen MHG, Posthuma D. Myelination-related genes are associated with decreased white matter integrity in schizophrenia. Eur J Hum Genet 2015; 24:381-6. [PMID: 26014434 DOI: 10.1038/ejhg.2015.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 03/24/2015] [Accepted: 04/17/2015] [Indexed: 01/01/2023] Open
Abstract
Disruptions in white matter (WM) tract structures have been implicated consistently in the pathophysiology of schizophrenia. Global WM integrity--as measured by fractional anisotropy (FA)--is highly heritable and may provide a good endophenotype for genetic studies of schizophrenia. WM abnormalities in schizophrenia are not localized to one specific brain region but instead reflect global low-level decreases in FA coupled with focal abnormalities. In this study, we sought to investigate whether functional gene sets associated with schizophrenia are also associated with WM integrity. We analyzed FA and genetic data from the Mind Research Network Clinical Imaging Consortium to study the effect of multiple oligodendrocyte gene sets on schizophrenia and WM integrity using a functional gene set analysis in 77 subjects with schizophrenia and 104 healthy controls. We found that a gene set involved in myelination was significantly associated with schizophrenia and FA. This gene set includes 17 genes that are expressed in oligodendrocytes and one neuronal gene (NRG1) that is known to regulate myelination. None of the genes within the gene set were associated with schizophrenia or FA individually, suggesting that no single gene was driving the association of the gene set. Our findings support the hypothesis that multiple genetic variants in myelination-related genes contribute to the observed correlation between schizophrenia and decreased WM integrity as measured by FA.
Collapse
Affiliation(s)
- Ivan Chavarria-Siles
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands.,Department of Complex Trait Genetics, VU University Medical Center, Amsterdam, The Netherlands.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tonya White
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Christiaan de Leeuw
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands.,Department of Complex Trait Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Andrea Goudriaan
- Department of Molecular and Cellular Neurobiology, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Esther Lips
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Stefan Ehrlich
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.,Department of Child and Adolescent Psychiatry, TU Dresden, Germany
| | - Jessica A Turner
- Department of Psychology and Neuroscience Institute, Georgia State University, Atlanta, GA, USA.,The Mind Research Network, Albuquerque, NM, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, USA.,Department of Psychiatry, University of New Mexico, New Mexico, NM, USA.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Randy L Gollub
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.,Departments of Psychiatry and Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Vincent A Magnotta
- Department of Radiology, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Beng-Choon Ho
- Department of Psychiatry, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands.,Department of Complex Trait Genetics, VU University Medical Center, Amsterdam, The Netherlands.,Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Local-to-remote cortical connectivity in early- and adulthood-onset schizophrenia. Transl Psychiatry 2015; 5:e566. [PMID: 25966366 PMCID: PMC4471290 DOI: 10.1038/tp.2015.59] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/12/2015] [Accepted: 02/23/2015] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia is increasingly thought of as a brain network or connectome disorder and is associated with neurodevelopmental processes. Previous studies have suggested the important role of anatomical distance in developing a connectome with optimized performance regarding both the cost and efficiency of information processing. Distance-related disturbances during development have not been investigated in schizophrenia. To test the distance-related miswiring profiles of connectomes in schizophrenia, we acquired resting-state images from 20 adulthood-onset (AOS) and 26 early-onset schizophrenia (EOS) patients, as well as age-matched healthy controls. All patients were drug naive and had experienced their first psychotic episode. A novel threshold-free surface-based analytic framework was developed to examine local-to-remote functional connectivity profiles in both AOS and EOS patients. We observed consistent increases of local connectivity across both EOS and AOS patients in the right superior frontal gyrus, where the connectivity strength was correlated with a positive syndrome score in AOS patients. In contrast, EOS but not AOS patients exhibited reduced local connectivity within the right postcentral gyrus and the left middle occipital cortex. These regions' remote connectivity with their interhemispheric areas and brain network hubs was altered. Diagnosis-age interactions were detectable for both local and remote connectivity profiles. The functional covariance between local and remote homotopic connectivity was present in typically developing controls, but was absent in EOS patients. These findings suggest that a distance-dependent miswiring pattern may be one of the key neurodevelopmental features of the abnormal connectome organization in schizophrenia.
Collapse
|
19
|
Reduced fronto-striatal white matter integrity in schizophrenia patients and unaffected siblings: a DTI study. NPJ SCHIZOPHRENIA 2015; 1:15001. [PMID: 27336028 PMCID: PMC4849442 DOI: 10.1038/npjschz.2015.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 01/03/2023]
Abstract
Background: Schizophrenia is characterized by impairments in the fronto–striatal network. Underlying these impairments may be disruptions in anatomical pathways connecting frontal and striatal regions. However, the specifics of these disruptions remain unclear and whether these impairments are related to the genetic vulnerability of schizophrenia is not known. Methods: Here, we investigated fronto–striatal tract connections in 24 schizophrenia patients, 30 unaffected siblings, and 58 healthy controls using diffusion tensor imaging. Mean fractional anisotropy (FA) was calculated for tracts connecting the striatum with frontal cortex regions including the dorsolateral prefrontal cortex (DLPFC), medial orbital frontal cortex, and inferior frontal gyrus. Specifically, the striatum was divided into three subregions (caudate nucleus, putamen, and nucleus accumbens) and mean FA was computed for tracts originating from these striatal subregions. Results: We found no differences between patients, siblings, and controls in mean FA when taking the whole striatum as a seed region. However, subregion analyses showed reduced FA in the tract connecting the left nucleus accumbens and left DLPFC in both patients (P=0.0003) and siblings (P=0.0008) compared with controls. Conclusions: The result of reduced FA in the tract connecting the left nucleus accumbens and left DLPFC indicates a possible reduction of white matter integrity, commonly associated with schizophrenia. As both patients and unaffected siblings show reduced FA, this may represent a vulnerability factor for schizophrenia.
Collapse
|