1
|
Wongveerakul P, Cheaha D, Kumarnsit E, Samerphob N. Circuit-specific neural perturbations and recovery in methamphetamine addiction in a mouse model. Neurosci Lett 2025; 853:138201. [PMID: 40101836 DOI: 10.1016/j.neulet.2025.138201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 01/29/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Drug addiction is characterized by profound brain adaptations, including altered neural circuit dynamics in reward-related regions, which reinforce compulsive drug-seeking behavior. This study investigated the effects of 5 mg/kg methamphetamine (METH) administration on brain activity measured by local field potentials (LFPs) in the nucleus accumbens (NAc) and dorsal hippocampus (dHP) of C57BL/6 mice. The study further examined the sensitivity of these brain regions during an abstinent period on day 8 and following a low-dose METH challenge. METH administration reduced theta power activity and enhanced gamma activity in the NAc, but decreased alpha2 power with specific high gamma increases in the dHP during conditioning and challenge phases. The sleep analysis revealed a reduction in NREM during the conditioning and challenge phases, however, these parameters returned to normal after 8 days abstinence from METH. These findings suggest that repeated METH administration induces neural sensitization and alters sleep architecture. However, the minimization of adverse neural changes, particularly in sleep regulation, highlights potential avenues for therapeutic applications in managing addiction and promoting recovery.
Collapse
Affiliation(s)
- Pongpanot Wongveerakul
- Division of Health and Applied Sciences Physiology Program, Faculty of Science, Prince of Songkla University, Thailand
| | - Dania Cheaha
- Division of Biological Science Biology Program, Faculty of Science, Prince of Songkla University, Thailand
| | - Ekkasit Kumarnsit
- Division of Health and Applied Sciences Physiology Program, Faculty of Science, Prince of Songkla University, Thailand
| | - Nifareeda Samerphob
- Division of Health and Applied Sciences Physiology Program, Faculty of Science, Prince of Songkla University, Thailand.
| |
Collapse
|
2
|
Bandala C, Cárdenas-Rodríguez N, Mendoza-Torreblanca JG, Contreras-García IJ, Martínez-López V, Cruz-Hernández TR, Carro-Rodríguez J, Vargas-Hernández MA, Ignacio-Mejía I, Alfaro-Rodriguez A, Lara-Padilla E. Therapeutic Potential of Dopamine and Related Drugs as Anti-Inflammatories and Antioxidants in Neuronal and Non-Neuronal Pathologies. Pharmaceutics 2023; 15:pharmaceutics15020693. [PMID: 36840015 PMCID: PMC9966027 DOI: 10.3390/pharmaceutics15020693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Dopamine (DA), its derivatives, and dopaminergic drugs are compounds widely used in the management of diseases related to the nervous system. However, DA receptors have been identified in nonneuronal tissues, which has been related to their therapeutic potential in pathologies such as sepsis or septic shock, blood pressure, renal failure, diabetes, and obesity, among others. In addition, DA and dopaminergic drugs have shown anti-inflammatory and antioxidant properties in different kinds of cells. AIM To compile the mechanism of action of DA and the main dopaminergic drugs and show the findings that support the therapeutic potential of these molecules for the treatment of neurological and non-neurological diseases considering their antioxidant and anti-inflammatory actions. METHOD We performed a review article. An exhaustive search for information was carried out in specialized databases such as PubMed, PubChem, ProQuest, EBSCO, Scopus, Science Direct, Web of Science, Bookshelf, DrugBank, Livertox, and Clinical Trials. RESULTS We showed that DA and dopaminergic drugs have emerged for the management of neuronal and nonneuronal diseases with important therapeutic potential as anti-inflammatories and antioxidants. CONCLUSIONS DA and DA derivatives can be an attractive treatment strategy and a promising approach to slowing the progression of disorders through repositioning.
Collapse
Affiliation(s)
- Cindy Bandala
- Neurociencia Básica, Instituto Nacional de Rehabilitación LGII, Secretaría de Salud, Mexico City 14389, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Correspondence: (C.B.); (E.L.-P.); Tel.: +52-(55)-5999-1000 (ext. 19307) (C.B.); +52-(55)-57296000 (ext. 62712) (E.L.-P.)
| | - Noemi Cárdenas-Rodríguez
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | | | | | - Valentín Martínez-López
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
| | | | - Jazmín Carro-Rodríguez
- Escuela de Biología Experimental, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico
| | | | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, Mexico City 11200, Mexico
| | - Alfonso Alfaro-Rodriguez
- Neurociencia Básica, Instituto Nacional de Rehabilitación LGII, Secretaría de Salud, Mexico City 14389, Mexico
| | - Eleazar Lara-Padilla
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Correspondence: (C.B.); (E.L.-P.); Tel.: +52-(55)-5999-1000 (ext. 19307) (C.B.); +52-(55)-57296000 (ext. 62712) (E.L.-P.)
| |
Collapse
|
3
|
Solriamfetol Titration & AdministRaTion (START) in Patients With Narcolepsy. Clin Ther 2022; 44:1356-1369. [PMID: 36171171 DOI: 10.1016/j.clinthera.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE Solriamfetol, a dopamine/norepinephrine reuptake inhibitor, is approved (in the United States and European Union) to treat excessive daytime sleepiness (EDS) in adults with narcolepsy (75-150 mg/d) or obstructive sleep apnea (OSA) (37.5-150 mg/d). This study characterized real-world titration strategies for patients with narcolepsy (with or without comorbid OSA) initiating solriamfetol therapy. METHODS This virtual, descriptive study included a retrospective medical record review and qualitative survey. US-based physicians prescribing solriamfetol for EDS associated with narcolepsy or OSA participated. Data are reported for patients with narcolepsy with or without comorbid OSA (OSA alone reported separately). On the basis of medical record review, titration strategies were classified de novo (EDS medication naive), transition (switched or switching from existing EDS medication[s] to solriamfetol), or add-on (adding solriamfetol to current EDS medication[s]). The survey included open-ended questions regarding a hypothetical patient-a 32-year-old woman with narcolepsy (Epworth Sleepiness Scale score of 8) treated with 35 mg/d of amphetamine and 6 g per night of sodium oxybate who experiences non-use-limiting adverse events from amphetamine. FINDINGS Twenty-six physicians participated: 23 provided data from 70 patients with narcolepsy (type 1, n = 24; type 2, n = 46; mean [SD] age, 40 [11] years; 57% female; 6 with comorbid OSA), and 26 responded to the hypothetical patient scenario. From the medical record review, solriamfetol therapy initiation was de novo for 19 of 70 patients (27%), transition for 31 of 70 patients (44%), and add-on for 20 of 70 patients (29%). Efficacy profile of solriamfetol was the primary reason for de novo (12 of 19 [63%]), transition (18 of 31 [58%]), and add-on (19 of 20 [95%]) initiation. Most (86%) initiated use of solriamfetol at 75 mg/d and were stable at 150 mg/d (76%). Most (67%) had 1 dose adjustment, reaching a stable dose over a median (range) of 14 (1-60) days. Physicians most often considered EDS severity (44%) when titrating. Among transitioning patients, 14 of 22 (64%) using wake-promoting agents discontinued their use abruptly, and 5 of 9 (56%) using stimulants were tapered off. At data collection, 90% continued to take solriamfetol. Regarding the hypothetical patient scenario, most physicians (81%) thought solriamfetol was appropriate, highlighting tolerability issues with current treatment and lack of symptom control as drivers for switching; however, 3 physicians (12%) did not think solriamfetol was appropriate, noting current symptoms were not severe enough and/or symptoms could be managed by increasing sodium oxybate dose; 2 (8%) thought it would depend on other factors. Physicians emphasized managing withdrawal symptoms while maintaining EDS symptom control when titrating off a stimulant and starting solriamfetol therapy. IMPLICATIONS In a real-world study, physicians initiated solriamfetol therapy at 75 mg/d for most patients with narcolepsy, adjusted dosages once, tapered stimulants, and abruptly discontinued therapy with wake-promoting agents. (Clin Ther. 2022;XX:XXX-XXX) © 2022 Elsevier HS Journals, Inc.
Collapse
|
4
|
Singh H, Hyman D, Parks GS, Chen A, Foley C, Baldys B, Ito D, Thorpy MJ. Solriamfetol Titration and AdministRaTion (START) in Patients with Obstructive Sleep Apnea: A Retrospective Chart Review and Hypothetical Patient Scenario. Adv Ther 2022; 39:4359-4373. [PMID: 35927541 PMCID: PMC9402730 DOI: 10.1007/s12325-022-02249-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Introduction Solriamfetol (Sunosi™), a dopamine/norepinephrine reuptake inhibitor, is approved (USA and EU) to treat excessive daytime sleepiness (EDS) in adults with obstructive sleep apnea (OSA) (37.5–150 mg/day). Real-world research on solriamfetol initiation is limited. The objective of this study was to describe dosing and titration strategies used when initiating solriamfetol and to assess whether and how patient factors affected these strategies. Methods This descriptive study, featuring a quantitative retrospective patient chart review and hypothetical patient scenario, enrolled US-based physicians prescribing solriamfetol for EDS associated with OSA and/or narcolepsy. Initiation of solriamfetol was classified as: (1) de novo (EDS medication-naive); (2) transition (switched/switching from existing EDS medication[s] to solriamfetol), or (3) add-on (adding solriamfetol to current EDS medication[s]). Study fielding occurred 3–19 June 2020. Data were summarized descriptively. Results Twenty-six physicians participated in the study, of whom 24 provided data from 50 patients with OSA (mean ± standard deviation [SD] age, 51.9 ± 9.1 years; 62% male). Mean apnea–hypopnea index at diagnosis indicated that most patients had severe OSA and 92% were adherent to positive airway pressure therapy. EDS was primarily moderate (56%) or severe (36%). Solriamfetol initiation was de novo for 44% of patients, transition for 52%, and add-on for 4%. Efficacy (including the need for better efficacy) was the primary reason for the initiation of solriamfetol as de novo (82%), transition (58%), and add-on (100%) therapy. Starting doses were predominantly 37.5 mg/day (48%) or 75 mg/day (48%); stable doses were typically 75 mg/day (56%) or 150 mg/day (40%). Most patients (64%) adjusted dosages once, reaching stable doses over a median (range) of 14 (1–74) days. Physicians considered EDS severity (32% of patients) when titrating, but more commonly no specific patient factors caused them to alter their titration (44% of patients). Physicians abruptly discontinued wake-promoting agents (WPAs; 17/18, 94%) and stimulants (6/9, 67%) for transitioning patients. The hypothetical patient scenario showed that physicians discontinuing prior WPAs commonly considered the current dose (23%) and potential adverse events (15%). Most patients (96%) were stable on solriamfetol at data collection. Conclusions In a real-world study, most physicians initiated solriamfetol at 37.5 or 75 mg/day and titrated to 75 or 150 mg/day for patients with EDS associated with OSA, adjusted dosages once, and abruptly discontinued prior WPAs. At data collection, most patients remained on solriamfetol. Graphical abstract ![]()
Collapse
Affiliation(s)
- Haramandeep Singh
- Sleep Medicine Specialists of California, 5201 Norris Canyon Rd UNIT 120, San Ramon, CA, 94583, USA.
| | | | | | - Abby Chen
- Jazz Pharmaceuticals, Palo Alto, CA, USA
| | | | | | | | - Michael J Thorpy
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
5
|
Bjorness TE, Greene RW. Arousal-Mediated Sleep Disturbance Persists During Cocaine Abstinence in Male Mice. Front Neurosci 2022; 16:868049. [PMID: 35812231 PMCID: PMC9260276 DOI: 10.3389/fnins.2022.868049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Acute cocaine disturbs sleep on a dose-dependent basis; however, the consequences of chronic cocaine remain unclear. While the arousal promotion following cocaine has been well-established, effects of cocaine on sleep after termination of chronic cocaine exposure appear variable in human subjects with few studies in non-human subjects. Here, a within-subjects design (outcomes normalized to baseline, undisturbed behavior) and between-subjects design (repeated experimenter-administered cocaine vs. experimenter-administered saline) was used to investigate sleep homeostasis and sleep/waking under repeated cocaine/saline exposure and prolonged forced abstinence conditions in mice. Overall, during the forced abstinence period increases in arousal, as determined by sleep latency and gamma energy, persisted for 2 weeks. However, the sleep response to externally enforced sleep deprivation was unchanged suggesting that sleep disruptions during the forced abstinence period were driven by enhancement of arousal in the absence of changes in sleep homeostatic responses.
Collapse
Affiliation(s)
- Theresa E. Bjorness
- Research Service, Veterans Affairs (VA) North Texas Health Care System, Dallas, TX, United States
- Department of Psychiatry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern, Dallas, TX, United States
- *Correspondence: Theresa E. Bjorness,
| | - Robert W. Greene
- Department of Psychiatry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern, Dallas, TX, United States
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
6
|
Dauvilliers Y, Bogan RK, Šonka K, Partinen M, Foldvary-Schaefer N, Thorpy MJ. Calcium, Magnesium, Potassium, and Sodium Oxybates Oral Solution: A Lower-Sodium Alternative for Cataplexy or Excessive Daytime Sleepiness Associated with Narcolepsy. Nat Sci Sleep 2022; 14:531-546. [PMID: 35378745 PMCID: PMC8976528 DOI: 10.2147/nss.s279345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Lower-sodium oxybate (LXB) is an oxybate medication approved to treat cataplexy or excessive daytime sleepiness (EDS) in patients with narcolepsy 7 years of age and older in the United States. LXB was developed as an alternative to sodium oxybate (SXB), because the incidence of cardiovascular comorbidities is higher in patients with narcolepsy and there is an elevated cardiovascular risk associated with high sodium consumption. LXB has a unique formulation of calcium, magnesium, potassium, and sodium ions, containing 92% less sodium than SXB. Whereas the active oxybate moiety is the same for LXB and SXB, their pharmacokinetic profiles are not bioequivalent; therefore, a phase 3 trial in participants with narcolepsy was conducted for LXB. This review summarizes the background on oxybate as a therapeutic agent and its potential mechanism of action on the gamma-aminobutyric acid type B (GABAB) receptor at noradrenergic and dopaminergic neurons, as well as at thalamocortical neurons. The rationale leading to the development of LXB as a lower-sodium alternative to SXB and the key efficacy and safety data supporting its approval for both adult and pediatric patients with narcolepsy are also discussed. LXB was approved in August 2021 in the United States for the treatment of idiopathic hypersomnia in adults. Potential future developments in the field of oxybate medications may include novel formulations and expanded indications for other diseases.
Collapse
Affiliation(s)
- Yves Dauvilliers
- Sleep and Wake Disorders Centre, Department of Neurology, Gui de Chauliac Hospital, Montpellier, France.,University of Montpellier, INSERM Institute Neuroscience Montpellier (INM), Montpellier, France
| | - Richard K Bogan
- University of South Carolina School of Medicine, Columbia, SC, USA
| | - Karel Šonka
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Markku Partinen
- Helsinki Sleep Clinic, Terveystalo Healthcare, and Department of Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | | | - Michael J Thorpy
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
7
|
Vrajová M, Šlamberová R, Hoschl C, Ovsepian SV. Methamphetamine and sleep impairments: neurobehavioral correlates and molecular mechanisms. Sleep 2021; 44:6066541. [PMID: 33406259 DOI: 10.1093/sleep/zsab001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Methamphetamine is a potent and highly addictive psychostimulant, and one of the most widely used illicit drugs. Over recent years, its global usage and seizure have been on a rapid rise, with growing detrimental effects on mental and physical health, and devastating psychosocial impact pressing for intervention. Among the unwanted effects of methamphetamine, acute and long-term sleep impairments are of major concern, posing a significant therapeutic challenge, and a cause of addiction relapse. Unraveling mechanisms and functional correlates of methamphetamine-related sleep and circadian disruption are, therefore, of key relevance to translational and clinical psychiatry. In this article, we review the mounting evidence for the acute and long-term impairements of sleep-wake behavior and circadian activity caused by single or recurring methamphetamine usage and withdrawal. Factors contributing to the severity of sleep loss and related cognitive deficit, with risks of relapse are discussed. Key molecular players mediating methamphetamine-induced dopamine release and neuromodulation are considered, with wake-promoting effects in mesolimbic circuits. The effects on various sleep phases and related changes in dopamine levels in selected subcortical structures are reviewed and compared to other psychostimulants with similar action mechanisms. A critical appraisal is presented of the therapeutic use of modafinil, countering sleep, and circadian rhythm impairments. Finally, emerging knowledge gaps and methodical limitations are highlighted along with the areas for future research and therapeutic translation.
Collapse
Affiliation(s)
- Monika Vrajová
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Cyril Hoschl
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Klecany, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Klecany, Czech Republic
| |
Collapse
|
8
|
García-García F, Priego-Fernández S, López-Muciño LA, Acosta-Hernández ME, Peña-Escudero C. Increased alcohol consumption in sleep-restricted rats is mediated by delta FosB induction. Alcohol 2021; 93:63-70. [PMID: 33662520 DOI: 10.1016/j.alcohol.2021.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
The reduction of sleep hours is a public health problem in contemporary society. It is estimated that humans sleep between 1.5 and 2 h less, per night, than 100 years ago. The reduction of sleep hours is a risk factor for developing cardiovascular, metabolic, and psychiatric problems. Previous studies have shown that low sleep quality is a factor that favors relapse in addicted patients. In rodents, sleep deprivation increases the preference for methylphenidate and the self-administration of cocaine. However, it is unknown whether chronic sleep restriction induces voluntary alcohol consumption in rats and whether alcohol intake is associated with delta FosB expression in the brain reward circuit. Potentially, chronic sleep restriction could make the brain vulnerable and consequently promote addictive behavior. Therefore, the present study's objective was to evaluate alcohol consumption in a chronic sleep restriction model and determine the expression of delta FosB in brains of adult rats. For this purpose, male Wistar rats (300-350 g body weight) were divided into four experimental groups (n = 6 each group): control (without manipulation), sleep restriction (SR) for 7 days, SR and ethanol exposure (Ethanol + SR), and a group with just ethanol exposure (Ethanol). At the end of the management, rats were sacrificed, and the brains were dissected and processed for immunohistochemical detection of delta FosB. The results showed that SR stimulates alcohol consumption compared to unrestricted-sleep rats and induces a significant increase in the number of delta FosB-positive cells in brain nuclei within the motivation/brain reward circuit. These results suggest that chronic reduction of sleep hours is a risk factor for developing a preference for alcohol consumption.
Collapse
Affiliation(s)
- Fabio García-García
- Biomedicine Department, Health Sciences Institute, Veracruzana University, Xalapa, VER, Mexico.
| | - Sergio Priego-Fernández
- Health Sciences Program, Health Sciences Institute, Veracruzana University, Xalapa, VER, Mexico
| | - Luis Angel López-Muciño
- Health Sciences Program, Health Sciences Institute, Veracruzana University, Xalapa, VER, Mexico
| | | | - Carolina Peña-Escudero
- Health Sciences Program, Health Sciences Institute, Veracruzana University, Xalapa, VER, Mexico
| |
Collapse
|
9
|
Bjorness TE, Greene RW. Interaction between cocaine use and sleep behavior: A comprehensive review of cocaine's disrupting influence on sleep behavior and sleep disruptions influence on reward seeking. Pharmacol Biochem Behav 2021; 206:173194. [PMID: 33940055 DOI: 10.1016/j.pbb.2021.173194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022]
Abstract
Dopamine, orexin (hypocretin), and adenosine systems have dual roles in reward and sleep/arousal suggesting possible mechanisms whereby drugs of abuse may influence both reward and sleep/arousal. While considerable variability exists across studies, drugs of abuse such as cocaine induce an acute sleep loss followed by an immediate recovery pattern that is consistent with a normal response to loss of sleep. Under more chronic cocaine exposure conditions, an abnormal recovery pattern is expressed that includes a retention of sleep disturbance under withdrawal and into abstinence conditions. Conversely, experimentally induced sleep disturbance can increase cocaine seeking. Thus, complementary, sleep-related therapeutic approaches may deserve further consideration along with development of non-human models to better characterize sleep disturbance-reward seeking interactions across drug experience.
Collapse
Affiliation(s)
- Theresa E Bjorness
- Research Service, VA North Texas Health Care System, Dallas, TX 75126, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Robert W Greene
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, 305-8577, Japan
| |
Collapse
|
10
|
Weaver TE, Drake CL, Benes H, Stern T, Maynard J, Thein SG, Andry JM, Hudson JD, Chen D, Carter LP, Bron M, Lee L, Black J, Bogan RK. Effects of Solriamfetol on Quality-of-Life Measures from a 12-Week Phase 3 Randomized Controlled Trial. Ann Am Thorac Soc 2020; 17:998-1007. [PMID: 32353246 PMCID: PMC7393785 DOI: 10.1513/annalsats.202002-136oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023] Open
Abstract
Rationale: Excessive daytime sleepiness in patients with obstructive sleep apnea is associated with substantial burden of illness.Objectives: To assess treatment effects of solriamfetol, a dopamine/norepinephrine reuptake inhibitor, on daily functioning, health-related quality of life, and work productivity in participants with obstructive sleep apnea and excessive daytime sleepiness as additional outcomes in a 12-week phase 3 trial (www.clinicaltrials.gov identifier NCT02348606).Methods: Participants (N = 476) were randomized to solriamfetol 37.5, 75, 150, or 300 mg or to placebo. Outcome measures included the Functional Outcomes of Sleep Questionnaire short version, Work Productivity and Activity Impairment Questionnaire: Specific Health Problem, and 36-item Short Form Health Survey version 2. A mixed-effects model with repeated measures was used for comparisons with placebo.Results: Demographics, baseline disease characteristics, daily functioning, health-related quality of life, and work productivity were similar across groups. At Week 12, increased functioning and decreased impairment were observed with solriamfetol 150 and 300 mg (mean difference from placebo [95% confidence interval]) on the basis of Functional Outcomes of Sleep Questionnaire total score (1.22 [0.57 to 1.88] and 1.47 [0.80 to 2.13], respectively), overall work impairment (-11.67 [-19.66 to -3.69] and -11.75 [-19.93 to -3.57], respectively), activity impairment (-10.42 [-16.37 to -4.47] and -10.51 [-16.59 to -4.43], respectively), physical component summary (2.07 [0.42 to 3.72] and 1.91 [0.22 to 3.59], respectively), and mental component summary (150 mg only, 2.05 [0.14 to 3.96]). Common adverse events were headache, nausea, decreased appetite, and anxiety.Conclusions: Solriamfetol improved measures of functioning, quality of life, and work productivity in participants with obstructive sleep apnea and excessive daytime sleepiness. Safety was consistent with previous studies.Clinical trial registered with www.clinicaltrials.gov (NCT02348606).
Collapse
Affiliation(s)
- Terri E. Weaver
- University of Illinois at Chicago College of Nursing, Chicago, Illinois
| | | | - Heike Benes
- Somni Bene Institut für Medizinische Forschung und Schlafmedizin Schwerin GmbH, Schwerin, Germany
- Medical Center, University of Rostock, Rostock, Germany
| | - Thomas Stern
- Advanced Respiratory and Sleep Medicine, PLLC, Huntersville, North Carolina
| | | | - Stephen G. Thein
- Pacific Research Network, Evolution Research Group, LLC, San Diego, California
| | | | | | - Dan Chen
- Jazz Pharmaceuticals, Palo Alto, California
| | - Lawrence P. Carter
- Jazz Pharmaceuticals, Palo Alto, California
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | | | - Jed Black
- Jazz Pharmaceuticals, Palo Alto, California
- Stanford Center for Sleep Sciences and Medicine, Palo Alto, California
| | - Richard K. Bogan
- SleepMed, Inc., Columbia, South Carolina; and
- University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
11
|
Shokry IM, Shields CJ, Callanan JJ, Ma Z, Tao R. Differential role of dose and environment in initiating and intensifying neurotoxicity caused by MDMA in rats. BMC Pharmacol Toxicol 2019; 20:47. [PMID: 31383036 PMCID: PMC6683525 DOI: 10.1186/s40360-019-0326-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 07/18/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND MDMA causes serotonin (5-HT) syndrome immediately after administration and serotonergic injury in a few days or weeks. However, a serotonin syndrome is not always followed by serotonergic injury, indicating different mechanisms responsible for two adverse effects. The goal of present study was to determine causes for two adverse events and further test that dose and environment have a differential role in initiating and intensifying MDMA neurotoxicity. METHODS Initiation and intensification were examined by comparing neurotoxic effects of a high-dose (10 mg/kg × 3 at 2 h intervals) with a low-dose (2 mg/kg × 3) under controlled-environmental conditions. Initiation of a serotonin syndrome was estimated by measuring extracellular 5-HT, body-core temperature, electroencephalogram and MDMA concentrations in the cerebrospinal fluid, while intensification determined in rats examined under modified environment. Initiation and intensification of the serotonergic injury were assessed in rats by measuring tissue 5-HT content, SERT density and functional integrity of serotonergic retrograde transportation. RESULTS Both low- and high-dose could cause increases in extracellular 5-HT to elicit a serotonin syndrome at the same intensity. Modification of environmental conditions, which had no impact on MDMA-elicited increases in 5-HT levels, markedly intensified the syndrome intensity. Although either dose would cause the severe syndrome under modified environments, only the high-dose that resulted in high MDMA concentrations in the brain could cause serotonergic injury. CONCLUSION Our results reveal that extracellular 5-HT is the cause of a syndrome and activity of postsynaptic receptors critical for the course of syndrome intensification. Although the high-dose has the potential to initiate serotonergic injury due to high MDMA concentrations present in the brain, whether an injury is observed depends upon the drug environment via the levels of reactive oxygen species generated. This suggests that brain MDMA concentration is the determinant in the injury initiation while reactive oxygen species generation associated with the injury intensification. It is concluded that the two adverse events utilize distinctly different mediating molecules during the toxic initiation and intensification.
Collapse
Affiliation(s)
- Ibrahim M. Shokry
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 USA
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Connor J. Shields
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 USA
| | - John J. Callanan
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Zhiyuan Ma
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 USA
| | - Rui Tao
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 USA
| |
Collapse
|
12
|
Saporito MS, Gruner JA, DiCamillo A, Hinchliffe R, Barker-Haliski M, White HS. Intravenously Administered Ganaxolone Blocks Diazepam-Resistant Lithium-Pilocarpine-Induced Status Epilepticus in Rats: Comparison with Allopregnanolone. J Pharmacol Exp Ther 2019; 368:326-337. [PMID: 30552296 DOI: 10.1124/jpet.118.252155] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/12/2018] [Indexed: 03/08/2025] Open
Abstract
Ganaxolone (GNX) is the 3β-methylated synthetic analog of the naturally occurring neurosteroid, allopregnanolone (ALLO). GNX is effective in a broad range of epilepsy and behavioral animal models and is currently in clinical trials designed to assess its anticonvulsant and antidepressant activities. The current studies were designed to broaden the anticonvulsant profile of GNX by evaluating its potential anticonvulsant activities following i.v. administration in treatment-resistant models of status epilepticus (SE), to establish a pharmacokinetic (PK)/pharmacodynamic (PD) relationship, and to compare its PK and anticonvulsant activities to ALLO. In PK studies, GNX had higher exposure levels, a longer half-life, slower clearance, and higher brain penetrance than ALLO. Both GNX and ALLO produced a sedating response as characterized by loss of righting reflex, but neither compound produced a full anesthetic response as animals still responded to painful stimuli. Consistent with their respective PK properties, the sedative effect of GNX was longer than that of ALLO. Unlike other nonanesthetizing anticonvulsant agents indicated for SE, both GNX and ALLO produced anticonvulsant activity in models of pharmacoresistant SE with administration delay times of up to 1 hour after seizure onset. Again, consistent with their respective PK properties, GNX produced a significantly longer anticonvulsant response. These studies show that GNX exhibited improved pharmacological characteristics versus other agents used as treatments for SE and position GNX as a uniquely acting treatment of this indication.
Collapse
Affiliation(s)
- Michael S Saporito
- Marinus Pharmaceuticals, Radnor, Pennsylvania (M.S.S.); Melior Discovery, Exton, Pennsylvania (J.A.G., A.D., R.H.); and Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington (M.B.-H., H.S.W.)
| | - John A Gruner
- Marinus Pharmaceuticals, Radnor, Pennsylvania (M.S.S.); Melior Discovery, Exton, Pennsylvania (J.A.G., A.D., R.H.); and Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington (M.B.-H., H.S.W.)
| | - Amy DiCamillo
- Marinus Pharmaceuticals, Radnor, Pennsylvania (M.S.S.); Melior Discovery, Exton, Pennsylvania (J.A.G., A.D., R.H.); and Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington (M.B.-H., H.S.W.)
| | - Richard Hinchliffe
- Marinus Pharmaceuticals, Radnor, Pennsylvania (M.S.S.); Melior Discovery, Exton, Pennsylvania (J.A.G., A.D., R.H.); and Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington (M.B.-H., H.S.W.)
| | - Melissa Barker-Haliski
- Marinus Pharmaceuticals, Radnor, Pennsylvania (M.S.S.); Melior Discovery, Exton, Pennsylvania (J.A.G., A.D., R.H.); and Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington (M.B.-H., H.S.W.)
| | - H Steven White
- Marinus Pharmaceuticals, Radnor, Pennsylvania (M.S.S.); Melior Discovery, Exton, Pennsylvania (J.A.G., A.D., R.H.); and Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington (M.B.-H., H.S.W.)
| |
Collapse
|
13
|
Chronic Consumption of Fructose Induces Behavioral Alterations by Increasing Orexin and Dopamine Levels in the Rat Brain. Nutrients 2018; 10:nu10111722. [PMID: 30423806 PMCID: PMC6265759 DOI: 10.3390/nu10111722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 01/02/2023] Open
Abstract
It has been widely described that chronic intake of fructose causes metabolic alterations which can be associated with brain function impairment. In this study, we evaluated the effects of fructose intake on the sleep–wake cycle, locomotion, and neurochemical parameters in Wistar rats. The experimental group was fed with 10% fructose in drinking water for five weeks. After treatment, metabolic indicators were quantified in blood. Electroencephalographic recordings were used to evaluate the sleep architecture and the spectral power of frequency bands. Likewise, the locomotor activity and the concentrations of orexin A and monoamines were estimated. Our results show that fructose diet significantly increased the blood levels of glucose, cholesterol, and triglycerides. Fructose modified the sleep–wake cycle of rats, increasing the waking duration and conversely decreasing the non-rapid eye movement sleep. Furthermore, these effects were accompanied by increases of the spectral power at different frequency bands. Chronic consumption of fructose caused a slight increase in the locomotor activity as well as an increase of orexin A and dopamine levels in the hypothalamus and brainstem. Specifically, immunoreactivity for orexin A was increased in the ventral tegmental area after the intake of fructose. Our study suggests that fructose induces metabolic changes and stimulates the activity of orexinergic and dopaminergic neurons, which may be responsible for alterations of the sleep–wake cycle.
Collapse
|
14
|
Luca G, Bandarabadi M, Konofal E, Lecendreux M, Ferrié L, Figadère B, Tafti M. Lauflumide (NLS-4) Is a New Potent Wake-Promoting Compound. Front Neurosci 2018; 12:519. [PMID: 30158846 PMCID: PMC6104159 DOI: 10.3389/fnins.2018.00519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/11/2018] [Indexed: 11/13/2022] Open
Abstract
Psychostimulants are used for the treatment of excessive daytime sleepiness in a wide range of sleep disorders as well as in attention deficit hyperactivity disorder or cognitive impairment in neuropsychiatric disorders. Here, we tested in mice the wake-promoting properties of NLS-4 and its effects on the following sleep as compared with those of modafinil and vehicle. C57BL/6J mice were intraperitoneally injected with vehicle, NLS-4 (64 mg/kg), or modafinil (150 mg/kg) at light onset. EEG and EMG were recorded continuously for 24 h after injections and vigilance states as well as EEG power densities were analyzed. NLS-4 at 64 mg/kg induced significantly longer wakefulness duration than modafinil at 150 mg/kg. Although no significant sleep rebound was observed after sleep onset for both treatments as compared with their vehicles, modafinil-treated mice showed significantly more NREM sleep when compared to NLS-4. Spectral analysis of the NREM EEG after NLS-4 treatment indicated an increased power density in delta activity (0.75–3.5 Hz) and a decreased power in theta frequency range (6.25–7.25 Hz), while there was no differences after modafinil treatment. Also, time course analysis of the delta activity showed a significant increase only during the first 2 time intervals of sleep after NLS-4 treatment, while delta power was increased during the first 9 time intervals after modafinil. Our results indicate that NLS-4 is a highly potent wake-promoting drug with no sign of hypersomnia rebound. As opposed to modafinil, recovery sleep after NLS-4 treatment is characterized by less NREM amount and delta activity, suggesting a lower need for recovery despite longer drug-induced wakefulness.
Collapse
Affiliation(s)
- Gianina Luca
- Faculty of Biology and Medicine, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Centre Neuchâtelois de Psychiatrie, Neuchâtel, Switzerland
| | - Mojtaba Bandarabadi
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Eric Konofal
- Pediatric Sleep Disorders Center, AP-HP, Robert Debre Hospital, Paris, France
| | - Michel Lecendreux
- Pediatric Sleep Disorders Center, AP-HP, Robert Debre Hospital, Paris, France.,AP-HP, Pediatric Sleep Center and National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR Narcolepsie-Hypersomnie), CHU Robert-Debre, Paris, France
| | - Laurent Ferrié
- BioCIS, Université Paris-Sud, CNRS, Université Paris Saclay, Châtenay-Malabry, France
| | - Bruno Figadère
- BioCIS, Université Paris-Sud, CNRS, Université Paris Saclay, Châtenay-Malabry, France
| | - Mehdi Tafti
- Faculty of Biology and Medicine, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Yang SR, Hu ZZ, Luo YJ, Zhao YN, Sun HX, Yin D, Wang CY, Yan YD, Wang DR, Yuan XS, Ye CB, Guo W, Qu WM, Cherasse Y, Lazarus M, Ding YQ, Huang ZL. The rostromedial tegmental nucleus is essential for non-rapid eye movement sleep. PLoS Biol 2018; 16:e2002909. [PMID: 29652889 PMCID: PMC5919677 DOI: 10.1371/journal.pbio.2002909] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 04/26/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022] Open
Abstract
The rostromedial tegmental nucleus (RMTg), also called the GABAergic tail of the ventral tegmental area, projects to the midbrain dopaminergic system, dorsal raphe nucleus, locus coeruleus, and other regions. Whether the RMTg is involved in sleep-wake regulation is unknown. In the present study, pharmacogenetic activation of rat RMTg neurons promoted non-rapid eye movement (NREM) sleep with increased slow-wave activity (SWA). Conversely, rats after neurotoxic lesions of 8 or 16 days showed decreased NREM sleep with reduced SWA at lights on. The reduced SWA persisted at least 25 days after lesions. Similarly, pharmacological and pharmacogenetic inactivation of rat RMTg neurons decreased NREM sleep. Electrophysiological experiments combined with optogenetics showed a direct inhibitory connection between the terminals of RMTg neurons and midbrain dopaminergic neurons. The bidirectional effects of the RMTg on the sleep-wake cycle were mimicked by the modulation of ventral tegmental area (VTA)/substantia nigra compacta (SNc) dopaminergic neuronal activity using a pharmacogenetic approach. Furthermore, during the 2-hour recovery period following 6-hour sleep deprivation, the amount of NREM sleep in both the lesion and control rats was significantly increased compared with baseline levels; however, only the control rats showed a significant increase in SWA compared with baseline levels. Collectively, our findings reveal an essential role of the RMTg in the promotion of NREM sleep and homeostatic regulation.
Collapse
Affiliation(s)
- Su-Rong Yang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Zhen-Zhen Hu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yan-Jia Luo
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ya-Nan Zhao
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Huan-Xin Sun
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Dou Yin
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Chen-Yao Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yu-Dong Yan
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Dian-Ru Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xiang-Shan Yuan
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Chen-Bo Ye
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yu-Qiang Ding
- Department of Anatomy and Neurobiology, School of Medicine, Tongji University, Shanghai, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Schwartz MD, Palmerston JB, Lee DL, Hoener MC, Kilduff TS. Deletion of Trace Amine-Associated Receptor 1 Attenuates Behavioral Responses to Caffeine. Front Pharmacol 2018; 9:35. [PMID: 29456505 PMCID: PMC5801540 DOI: 10.3389/fphar.2018.00035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/12/2018] [Indexed: 12/18/2022] Open
Abstract
Trace amines (TAs), endogenous amino acid metabolites that are structurally similar to the biogenic amines, are endogenous ligands for trace amine-associated receptor 1 (TAAR1), a GPCR that modulates dopaminergic, serotonergic, and glutamatergic activity. Selective TAAR1 full and partial agonists exhibit similar pro-cognitive, antidepressant- and antipsychotic-like properties in rodents and non-human primates, suggesting TAAR1 as a novel target for the treatment of neurological and psychiatric disorders. We previously reported that TAAR1 partial agonists are wake-promoting in rats and mice, and that TAAR1 knockout (KO) and overexpressing mice exhibit altered sleep-wake and EEG spectral composition. Here, we report that locomotor and EEG spectral responses to the psychostimulants modafinil and caffeine are attenuated in TAAR1 KO mice. TAAR1 KO mice and WT littermates were instrumented for EEG and EMG recording and implanted with telemetry transmitters for monitoring locomotor activity (LMA) and core body temperature (Tb). Following recovery, mice were administered modafinil (25, 50, 100 mg/kg), caffeine (2.5, 10, 20 mg/kg) or vehicle p.o. at ZT6 in balanced order. In WT mice, both modafinil and caffeine dose-dependently increased LMA for up to 6 h following dosing, whereas only the highest dose of each drug increased LMA in KO mice, and did so for less time after dosing. This effect was particularly pronounced following caffeine, such that total LMA response was significantly attenuated in KO mice compared to WT at all doses of caffeine and did not differ from Vehicle treatment. Tb increased comparably in both genotypes in a dose-dependent manner. TAAR1 deletion was associated with reduced wake consolidation following both drugs, but total time in wakefulness did not differ between KO and WT mice. Furthermore, gamma band EEG activity following both modafinil and caffeine treatment was attenuated in TAAR1 KO compared to WT mice. Our results show that TAAR1 is a critical component of the behavioral and cortical arousal associated with two widely used psychostimulants with very different mechanisms of action. Together with our previous findings, these data suggest that TAAR1 is a previously unrecognized component of an endogenous wake-modulating system.
Collapse
Affiliation(s)
- Michael D Schwartz
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Jeremiah B Palmerston
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Diana L Lee
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| | - Marius C Hoener
- Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, United States
| |
Collapse
|
17
|
Selegiline induces a wake promoting effect in rats which is related to formation of its active metabolites. Pharmacol Biochem Behav 2016; 150-151:147-152. [PMID: 27984094 DOI: 10.1016/j.pbb.2016.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 11/23/2022]
Abstract
The goal of the present work was to characterise the effects of selegiline on the rat sleep pattern. Furthermore, for comparative purposes, the pharmacokinetics of selegiline and its metabolites in brain and plasma were investigated, and microdialysis experiments were performed to examine the resulting effect on dopamine, noradrenaline and serotonin levels. Selegiline (1, 5, 10 and 30mg/kg) was found to dose-dependently increase the time spent awake following acute dosing. The pharmacokinetic assessment of selegiline showed that, following an oral dose of 5mg/kg, low circulating levels of the parent compound were found relative to those of biotransformed l-methamphetamine and l-amphetamine. The time course of selegiline-induced wakefulness was shown to follow the time course of l-methamphetamine and l-amphetamine in brain, suggesting that these metabolites are responsible for the modulation of sleep architecture. Furthermore, selegiline (5mg/kg) caused a significant increase of extracellular levels of DA (250%) and NA (200%), but not of 5-HT, in the rat prefrontal cortex. In summary, an integrated experimental approach was undertaken here to evaluate selegiline's effect on sleep architecture in rats in relation to its pharmacokinetics and changes in monoaminergic neurotransmitter levels in the brain. The effect of selegiline on sleep was likely mediated by an increase of dopamine and noradrenaline levels in the brain caused by the formed metabolites.
Collapse
|
18
|
Williams MJ, Perland E, Eriksson MM, Carlsson J, Erlandsson D, Laan L, Mahebali T, Potter E, Frediksson R, Benedict C, Schiöth HB. Recurrent Sleep Fragmentation Induces Insulin and Neuroprotective Mechanisms in Middle-Aged Flies. Front Aging Neurosci 2016; 8:180. [PMID: 27531979 PMCID: PMC4969361 DOI: 10.3389/fnagi.2016.00180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/13/2016] [Indexed: 11/24/2022] Open
Abstract
Lack of quality sleep increases central nervous system oxidative stress and impairs removal of neurotoxic soluble metabolites from brain parenchyma. During aging poor sleep quality, caused by sleep fragmentation, increases central nervous system cellular stress. Currently, it is not known how organisms offset age-related cytotoxic metabolite increases in order to safeguard neuronal survival. Furthermore, it is not understood how age and sleep fragmentation interact to affect oxidative stress protection pathways. We demonstrate sleep fragmentation increases systems that protect against oxidative damage and neuroprotective endoplasmic reticulum molecular chaperones, as well as neuronal insulin and dopaminergic expression in middle-aged Drosophila males. Interestingly, even after sleep recovery the expression of these genes was still upregulated in middle-aged flies. Finally, sleep fragmentation generates higher levels of reactive oxygen species (ROS) in middle-aged flies and after sleep recovery these levels remain significantly higher than in young flies. The fact that neuroprotective pathways remain upregulated in middle-aged flies beyond sleep fragmentation suggests it might represent a strong stressor for the brain during later life.
Collapse
Affiliation(s)
- Michael J Williams
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Emelie Perland
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Mikaela M Eriksson
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Josef Carlsson
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Daniel Erlandsson
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Loora Laan
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Tabusi Mahebali
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Ella Potter
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Robert Frediksson
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Christian Benedict
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| |
Collapse
|
19
|
Sleep Problems in Children with Attention Deficit/Hyperactivity Disorder: Current Status of Knowledge and Appropriate Management. Curr Psychiatry Rep 2016; 18:76. [PMID: 27357497 DOI: 10.1007/s11920-016-0711-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) affects approximately 5 % of children and adolescents, and sleep problems are common in these patients. There is growing evidence informing the significant importance of sleep problems in youth with ADHD. The sleep problems in children with ADHD include specific sleep disorders and sleep disturbances due to comorbid psychiatric disorders or ADHD medications. The specific sleep disorders of ADHD children include behaviorally based insomnia, sleep-disordered breathing, and restless legs syndrome/periodic limb movement disorder. Current practices on the management of sleep problems for ADHD children are based mostly on expert consensus, whereas more evidence-based literature can be found only recently. Assessment of the sleep conditions in ADHD children before initiation of pharmacotherapy is the currently recommended guideline, and good sleep hygiene can be considered as the first-line treatment option. In addition to modifying the dose regimens, formulation, or alternative stimulants when sleep problems are encountered in ADHD children, atomoxetine, once daily guanfacine extended release, and melatonin are potential choices for ADHD children with more severe sleep problems. In this review, we aimed to provide the most updated information, preferably based on meta-analyses, systemic review, and randomized controlled trials published in the latest 3 years, in order to be clinically useful for practitioners and clinicians.
Collapse
|
20
|
Sagawa Y, Sato M, Sakai N, Chikahisa S, Chiba S, Maruyama T, Yamamoto J, Nishino S. Wake-promoting effects of ONO-4127Na, a prostaglandin DP1 receptor antagonist, in hypocretin/orexin deficient narcoleptic mice. Neuropharmacology 2016; 110:268-276. [PMID: 27474349 DOI: 10.1016/j.neuropharm.2016.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 11/28/2022]
Abstract
Prostaglandin (PG)D2 is an endogenous sleep substance, and a series of animal studies reported that PGD2 or PGD2 receptor (DP1) agonists promote sleep, while DP1 antagonists promote wakefulness. This suggests the possibility of use of PG DP1 antagonists as wake-promoting compounds. We therefore evaluated the wake-promoting effects of ONO-4127Na, a DP1 antagonist, in a mouse model of narcolepsy (i.e., orexin/ataxin-3 transgenic mice) and compared those to effects of modafinil. ONO-4127Na perfused in the basal forebrain (BF) area potently promoted wakefulness in both wild type and narcoleptic mice, and the wake-promoting effects of ONO-4127Na at 2.93 × 10(-4) M roughly corresponded to those of modafinil at 100 mg/kg (p.o.). The wake promoting effects of ONO-4127Na was observed both during light and dark periods, and much larger effects were seen during the light period when mice slept most of the time. ONO-4127Na, when perfused in the hypothalamic area, had no effects on sleep. We further demonstrated that wake-promoting effects of ONO-4127Na were abolished in DP1 KO mice, confirming that the wake-promoting effect of ONO-4127Na is mediated by blockade of the PG DP1 receptors located in the BF area. ONO-4127Na reduced DREM, an EEG/EMG assessment of behavioral cataplexy in narcoleptic mice, suggesting that ONO-4127Na is likely to have anticataplectic effects. DP1 antagonists may be a new class of compounds for the treatment of narcolepsy-cataplexy, and further studies are warranted.
Collapse
Affiliation(s)
- Yohei Sagawa
- Sleep and Circadian Neurobiology Laboratory, Stanford University, United States; Department of Neuropsychiatry, Akita University Graduate School of Medicine, Japan
| | - Masatoshi Sato
- Sleep and Circadian Neurobiology Laboratory, Stanford University, United States; Department of Neuropsychiatry, Akita University Graduate School of Medicine, Japan
| | - Noriaki Sakai
- Sleep and Circadian Neurobiology Laboratory, Stanford University, United States
| | - Sachiko Chikahisa
- Sleep and Circadian Neurobiology Laboratory, Stanford University, United States; Department of Integrative Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Japan
| | - Shintaro Chiba
- Sleep and Circadian Neurobiology Laboratory, Stanford University, United States; Department of Otorhinolaryngology, Jikei University School of Medicine, Japan
| | - Takashi Maruyama
- Sleep and Circadian Neurobiology Laboratory, Stanford University, United States
| | - Junki Yamamoto
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Stanford University, United States.
| |
Collapse
|
21
|
Jawinski P, Tegelkamp S, Sander C, Häntzsch M, Huang J, Mauche N, Scholz M, Spada J, Ulke C, Burkhardt R, Reif A, Hegerl U, Hensch T. Time to wake up: No impact of COMT Val158Met gene variation on circadian preferences, arousal regulation and sleep. Chronobiol Int 2016; 33:893-905. [PMID: 27148829 DOI: 10.1080/07420528.2016.1178275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dopamine has been implicated in the regulation of sleep-wake states and the circadian rhythm. However, there is no consensus on the impact of two established dopaminergic gene variants: the catechol-O-methyltransferase Val158Met (COMT Val158Met; rs4680) and the dopamine D4 receptor Exon III variable-number-of-tandem-repeat polymorphism (DRD4 VNTR). Pursuing a multi-method approach, we examined their potential effects on circadian preferences, arousal regulation and sleep. Subjects underwent a 7-day actigraphy assessment (SenseWear Pro3), a 20-minute resting EEG (analyzed using VIGALL 2.0) and a body mass index (BMI) assessment. Further, they completed the Morningness-Eveningness Questionnaire (MEQ), the Epworth Sleepiness Scale (ESS) and the Pittsburgh Sleep Quality Index (PSQI). The sample comprised 4625 subjects (19-82 years) genotyped for COMT Val158Met, and 689 elderly subjects (64-82 years) genotyped for DRD4 VNTR. The number of subjects varied across phenotypes. Power calculations revealed a minimum required phenotypic variance explained by genotype ranging between 0.5% and 1.5% for COMT Val158Met and between 3.3% and 6.0% for DRD4 VNTR. Analyses did not reveal significant genotype effects on MEQ, ESS, PSQI, BMI, actigraphy and EEG variables. Additionally, we found no compelling evidence in sex- and age-stratified subsamples. Few associations surpassed the threshold of nominal significance (p < .05), providing some indication for a link between DRD4 VNTR and daytime sleepiness. Taken together, in light of the statistical power obtained in the present study, our data particularly suggest no impact of the COMT Val158Met polymorphism on circadian preferences, arousal regulation and sleep. The suggestive link between DRD4 VNTR and daytime sleepiness, on the other hand, might be worth investigation in a sample enriched with younger adults.
Collapse
Affiliation(s)
- Philippe Jawinski
- a LIFE - Leipzig Research Center for Civilization Diseases , University of Leipzig , Leipzig , Germany.,b Department of Psychiatry and Psychotherapy , University of Leipzig , Leipzig , Germany.,c Depression Research Center of the German Depression Foundation , Leipzig , Germany
| | - Sophie Tegelkamp
- b Department of Psychiatry and Psychotherapy , University of Leipzig , Leipzig , Germany
| | - Christian Sander
- a LIFE - Leipzig Research Center for Civilization Diseases , University of Leipzig , Leipzig , Germany.,b Department of Psychiatry and Psychotherapy , University of Leipzig , Leipzig , Germany.,c Depression Research Center of the German Depression Foundation , Leipzig , Germany
| | - Madlen Häntzsch
- a LIFE - Leipzig Research Center for Civilization Diseases , University of Leipzig , Leipzig , Germany.,d Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics , University Hospital Leipzig , Leipzig , Germany
| | - Jue Huang
- b Department of Psychiatry and Psychotherapy , University of Leipzig , Leipzig , Germany
| | - Nicole Mauche
- a LIFE - Leipzig Research Center for Civilization Diseases , University of Leipzig , Leipzig , Germany.,b Department of Psychiatry and Psychotherapy , University of Leipzig , Leipzig , Germany
| | - Markus Scholz
- a LIFE - Leipzig Research Center for Civilization Diseases , University of Leipzig , Leipzig , Germany.,e Institute for Medical Informatics, Statistics and Epidemiology , University of Leipzig , Leipzig , Germany
| | - Janek Spada
- b Department of Psychiatry and Psychotherapy , University of Leipzig , Leipzig , Germany.,c Depression Research Center of the German Depression Foundation , Leipzig , Germany
| | - Christine Ulke
- a LIFE - Leipzig Research Center for Civilization Diseases , University of Leipzig , Leipzig , Germany.,c Depression Research Center of the German Depression Foundation , Leipzig , Germany
| | - Ralph Burkhardt
- a LIFE - Leipzig Research Center for Civilization Diseases , University of Leipzig , Leipzig , Germany.,d Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics , University Hospital Leipzig , Leipzig , Germany
| | - Andreas Reif
- f Department of Psychiatry , Psychosomatics and Psychotherapy, Goethe-Universität Frankfurt , Frankfurt , Germany
| | - Ulrich Hegerl
- a LIFE - Leipzig Research Center for Civilization Diseases , University of Leipzig , Leipzig , Germany.,b Department of Psychiatry and Psychotherapy , University of Leipzig , Leipzig , Germany.,c Depression Research Center of the German Depression Foundation , Leipzig , Germany
| | - Tilman Hensch
- a LIFE - Leipzig Research Center for Civilization Diseases , University of Leipzig , Leipzig , Germany.,b Department of Psychiatry and Psychotherapy , University of Leipzig , Leipzig , Germany
| |
Collapse
|
22
|
Hong SI, Kim MJ, You IJ, Kwon SH, Ma SX, Hwang JY, Seo JY, Ko YH, Lee BR, Lee SY, Jang CG. Phentermine induces conditioned rewarding effects via activation of the PI3K/Akt signaling pathway in the nucleus accumbens. Psychopharmacology (Berl) 2016; 233:1405-13. [PMID: 26887589 DOI: 10.1007/s00213-016-4231-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/02/2016] [Indexed: 01/18/2023]
Abstract
RATIONALE Phentermine is structurally similar to methamphetamine and is widely used as an anti-obesity drug in the USA and many other countries. The potential for reward of phentermine has been noted; however, the mechanisms of phentermine dependence have not been established. OBJECTIVES Here, we investigated the rewarding and dopaminergic behavioral responses to phentermine in mice and found that phentermine produced conditioned rewarding effects through the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway in the nucleus accumbens (NAc). METHODS The impact of phentermine was assessed using conditioned place preference (CPP) test, climbing behavior test, and western blot analysis. RESULTS Phentermine 1 and 3 mg/kg (i.p.) significantly increased CPP. Phentermine, a known dopamine releaser, boosted apomorphine-induced climbing behavior in mice, and methamphetamine (i.p.) also increased apomorphine-induced dopaminergic behavior. Phentermine and methamphetamine increased the level of expression of the dopamine transporter (DAT) and phospho-Akt proteins to a similar degree in the NAc of CPP mice. To determine whether the conditioned rewarding effects of phentermine were mediated through the PI3K/Akt pathway, we assessed the effects of the Akt inhibitor LY294002 on phentermine-induced place preference and climbing behavior. LY294002 (1 and 3 μg/site, i.c.v.) reduced phentermine-induced CPP and phentermine-increased climbing behavior. However, LY294002 did not change CPP and climbing behavior itself and also did not decrease apomorphine-induced climbing behavior in mice. Further, LY294002 decreased the phentermine-increased levels of DAT protein and phosphorylation of Akt in the NAc of CPP mice. CONCLUSIONS Thus, these findings suggest that phentermine induces conditioned rewarding effects via activation of the PI3K/Akt signaling pathway in the NAc.
Collapse
Affiliation(s)
- Sa-Ik Hong
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Min-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - In-Jee You
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Seung-Hwan Kwon
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Shi-Xun Ma
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Ji-Young Hwang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Jee-Yeon Seo
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Bo Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea.
| |
Collapse
|
23
|
Nakazawa S, Nakamichi K, Imai H, Ichihara J. Effect of dopamine D4 receptor agonists on sleep architecture in rats. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:6-13. [PMID: 25985889 DOI: 10.1016/j.pnpbp.2015.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/28/2015] [Accepted: 05/11/2015] [Indexed: 01/11/2023]
Abstract
Dopamine plays a key role in the regulation of sleep-wake states, as revealed by the observation that dopamine-releasing agents such as methylphenidate have wake-promoting effects. However, the precise mechanisms for the wake-promoting effect produced by the enhancement of dopamine transmission are not fully understood. Although dopamine D1, D2, and D3 receptors are known to have differential effects on sleep architecture, the role of D4 receptors (D4Rs), and particularly the influence of D4R activation on the sleep-wake state, has not been studied so far. In this study, we investigated for the first time the effects of two structurally different D4R agonists, Ro 10-5824 and A-412997, on the sleep-wake states in rats. We found that both D4R agonists generally increased waking duration, and conversely, reduced non-rapid eye movement (NREM) sleep duration in rats. The onset of NREM sleep was also generally delayed. However, only the A-412997 agonist (but not the Ro 10-5824) influenced rapid eye movement sleep onset and duration. Furthermore, these effects were accompanied with an enhancement of EEG spectral power in the theta and the gamma bands. Our results suggest the involvement of dopamine D4R in the regulation of sleep-wake states. The activation of the D4R could enhance the arousal states as revealed by the behavioral and electrophysiological patterns in this study. Dopamine D4R may contribute to the arousal effects of dopamine-releasing agents such as methylphenidate.
Collapse
Affiliation(s)
- Shunsuke Nakazawa
- Drug Development Research Laboratories, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan.
| | - Keiko Nakamichi
- Drug Development Research Laboratories, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Hideaki Imai
- Drug Development Research Laboratories, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Junji Ichihara
- Drug Development Research Laboratories, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| |
Collapse
|
24
|
Schmid Y, Rickli A, Schaffner A, Duthaler U, Grouzmann E, Hysek CM, Liechti ME. Interactions between bupropion and 3,4-methylenedioxymethamphetamine in healthy subjects. J Pharmacol Exp Ther 2015; 353:102-11. [PMID: 25655950 DOI: 10.1124/jpet.114.222356] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a popular recreational drug. The aim of the present study was to explore the role of dopamine in the psychotropic effects of MDMA using bupropion to inhibit the dopamine and norepinephrine transporters through which MDMA releases dopamine and norepinephrine by investigating. The pharmacodynamic and pharmacokinetic interactions between bupropion and MDMA in 16 healthy subjects were investigated using a double-blind, placebo-controlled, crossover design. Bupropion reduced the MDMA-induced elevations in plasma norepinephrine concentrations and the heart rate response to MDMA. In contrast, bupropion increased plasma MDMA concentrations and prolonged its subjective effects. Conversely, MDMA increased plasma bupropion concentrations. These results indicate a role for the transporter-mediated release of norepinephrine in the cardiostimulant effects of MDMA but do not support a modulatory role for dopamine in the mood effects of MDMA. These results also indicate that the use of MDMA during therapy with bupropion may result in higher plasma concentrations of both MDMA and bupropion and enhanced mood effects but also result in lower cardiac stimulation.
Collapse
Affiliation(s)
- Yasmin Schmid
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| | - Anna Rickli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| | - Antonia Schaffner
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| | - Urs Duthaler
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| | - Eric Grouzmann
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| | - Cédric M Hysek
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| |
Collapse
|
25
|
Abstract
Narcolepsy is a neurological disorder frequently occurring from childhood and persisting through adolescence and adulthood. Individuals suffering from narcolepsy exhibit excessive daytime somnolence, sleep attacks, cataplexy, dysomnia, metabolic perturbations including weight gain, and problems in social interaction and academic performance. The prevalence of narcolepsy in childhood is not known but can be estimated from adult studies to be greater than 20-60 per 100,000 in Western countries. The 2009 (A) H1N1 vaccination campaign led to an increase of narcoleptic cases both in children and in adults, supporting the autoimmune hypothesis of the disease. This article focuses on the epidemiology, etiology, and particularities of treatment in pediatric narcolepsy and details the effects of the drugs used to treat this condition, including recent trends in the field. Future therapeutic directions are also discussed. At present, medications used to treat children or adolescents have shown efficacy mostly based on clinical experience, given the lack of level 1 evidence-based studies in the pediatric population. Therefore, most compounds used in adult narcolepsy to target clinical symptoms such as wake-promoting or anticataplectic agents are prescribed off-label in pediatric patients. Published research shows the benefit of drug therapy for narcoleptic children, but these must be dispensed with caution in the absence of well conducted clinical trials.
Collapse
Affiliation(s)
- Michel Lecendreux
- Pediatric Sleep Center and National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Robert Debre University Hospital, 48 Boulevard Serurier, 75019, Paris, France,
| |
Collapse
|
26
|
Raineri M, González B, Rivero-Echeto C, Muñiz JA, Gutiérrez ML, Ghanem CI, Cadet JL, García-Rill E, Urbano FJ, Bisagno V. Differential effects of environment-induced changes in body temperature on modafinil's actions against methamphetamine-induced striatal toxicity in mice. Neurotox Res 2014; 27:71-83. [PMID: 25261212 DOI: 10.1007/s12640-014-9493-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022]
Abstract
Methamphetamine (METH) exposure can produce hyperthermia that might lead to toxicity and death. Modafinil is a wake-promoting compound that is also been prescribed off-label to treat METH dependence. Modafinil has shown neuroprotective properties against METH harmful effects in animal models. The goal of the present study was to test if the prevention of hyperthermia might play a role on the neuroprotective actions of modafinil against METH toxicity using various ambient temperatures. METH was administered to female C57BL/6 mice in a binge regimen: 4 × 5 mg/kg, 2 h apart; modafinil (90 mg/kg) was injected twice, 1 h before first and fourth METH injections. Drugs were given at cold ambient temperature (14 °C) or hot ambient temperature (29 °C). Body temperature was measured during treatments. Brains were dissected out 6 days after treatments and processed for tyrosine hydroxylase (TH), dopamine transporter (DAT), GFAP and c-Fos immunohistochemistry. Exposure to hot ambient temperature exacerbated METH toxicity evidenced by striatal reductions in TH and DAT and increased GFAP immmunoreactivity. Modafinil counteracted reductions in TH and DAT, but failed to block astroglial activation. At both ambient temperatures tested modafinil did induce increments in GFAP, but the magnitude was significantly lower than the one induced by METH. Both drugs induced increases in c-Fos positive nuclei; modafinil did not block this effect. Our results suggest that protective effects of modafinil against METH-induced neurotoxicity may be dependent, in part, to its hypothermic effects. Nevertheless, modafinil maintained some protective properties on METH-induced alterations in the striatum at different ambient temperatures.
Collapse
Affiliation(s)
- Mariana Raineri
- Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (ININFA-UBA-CONICET), Ciudad Autónoma de Buenos Aires, Junín 956, piso 5, C1113, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Simmler LD, Wandeler R, Liechti ME. Bupropion, methylphenidate, and 3,4-methylenedioxypyrovalerone antagonize methamphetamine-induced efflux of dopamine according to their potencies as dopamine uptake inhibitors: implications for the treatment of methamphetamine dependence. BMC Res Notes 2013; 6:220. [PMID: 23734766 PMCID: PMC3679734 DOI: 10.1186/1756-0500-6-220] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 05/28/2013] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Methamphetamine-abuse is a worldwide health problem for which no effective therapy is available. Inhibition of methamphetamine-induced transporter-mediated dopamine (DA) release could be a useful approach to treat methamphetamine-addiction. We assessed the potencies of bupropion, methylphenidate, and 3,4-methylenedioxypyrovalerone (MDPV) to block DA uptake or to inhibit methamphetamine-induced DA release in HEK-293 cells expressing the human DA transporter. FINDINGS Bupropion, methylphenidate, and MDPV inhibited methamphetamine-induced DA release with relative potencies corresponding to their potencies to block DA uptake (potency ranks: MDPV > methylphenidate > bupropion). CONCLUSIONS Bupropion and methylphenidate antagonize the effects of methamphetamine in vitro and may be potential candidates for the treatment of stimulant addiction. However, drugs that very potently antagonize the effect of methamphetamine are likely to also exhibit considerable abuse liability (MDPV > methylphenidate > bupropion).
Collapse
Affiliation(s)
- Linda D Simmler
- Psychopharmacology Research Group, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Internal Medicine, University Hospital Basel and University of Basel, Hebelstrasse 2, Basel CH-4031, Switzerland
| | - Rebecca Wandeler
- Psychopharmacology Research Group, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Internal Medicine, University Hospital Basel and University of Basel, Hebelstrasse 2, Basel CH-4031, Switzerland
| | - Matthias E Liechti
- Psychopharmacology Research Group, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Internal Medicine, University Hospital Basel and University of Basel, Hebelstrasse 2, Basel CH-4031, Switzerland
| |
Collapse
|
29
|
Raineri M, Gonzalez B, Goitia B, Garcia-Rill E, Krasnova IN, Cadet JL, Urbano FJ, Bisagno V. Modafinil abrogates methamphetamine-induced neuroinflammation and apoptotic effects in the mouse striatum. PLoS One 2012; 7:e46599. [PMID: 23056363 PMCID: PMC3464292 DOI: 10.1371/journal.pone.0046599] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/31/2012] [Indexed: 11/18/2022] Open
Abstract
Methamphetamine is a drug of abuse that can cause neurotoxic damage in humans and animals. Modafinil, a wake-promoting compound approved for the treatment of sleeping disorders, is being prescribed off label for the treatment of methamphetamine dependence. The aim of the present study was to investigate if modafinil could counteract methamphetamine-induced neuroinflammatory processes, which occur in conjunction with degeneration of dopaminergic terminals in the mouse striatum. We evaluated the effect of a toxic methamphetamine binge in female C57BL/6 mice (4 × 5 mg/kg, i.p., 2 h apart) and modafinil co-administration (2 × 90 mg/kg, i.p., 1 h before the first and fourth methamphetamine injections) on glial cells (microglia and astroglia). We also evaluated the striatal expression of the pro-apoptotic BAX and anti-apoptotic Bcl-2 proteins, which are known to mediate methamphetamine-induced apoptotic effects. Modafinil by itself did not cause reactive gliosis and counteracted methamphetamine-induced microglial and astroglial activation. Modafinil also counteracted the decrease in tyrosine hydroxylase and dopamine transporter levels and prevented methamphetamine-induced increases in the pro-apoptotic BAX and decreases in the anti-apoptotic Bcl-2 protein expression. Our results indicate that modafinil can interfere with methamphetamine actions and provide protection against dopamine toxicity, cell death, and neuroinflammation in the mouse striatum.
Collapse
Affiliation(s)
- Mariana Raineri
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Betina Gonzalez
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Belen Goitia
- Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Irina N. Krasnova
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, Maryland, United States of America
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, Maryland, United States of America
| | - Francisco J. Urbano
- Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Veronica Bisagno
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
30
|
Videnovic A, Golombek D. Circadian and sleep disorders in Parkinson's disease. Exp Neurol 2012; 243:45-56. [PMID: 22935723 DOI: 10.1016/j.expneurol.2012.08.018] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 01/17/2023]
Abstract
Impaired sleep and alertness, initially recognized by James Parkinson in his famous monograph "An Essay on the Shaking Palsy" in 1817, is one of the most common and disabling nonmotor symptoms of Parkinson's disease (PD). It is only recently, however, that sleep disturbances in PD have received the attention of medical and research community. Dopamine, the major neurotransmitter implicated in the pathogenesis of PD, plays a pivotal role in the regulation of sleep and circadian homeostasis. Sleep dysfunction affects up to 90% of patients with PD, and may precede the onset of the disease by decades. Sleep dysfunction in PD may be categorized into disturbances of overnight sleep and daytime alertness. Etiology of impaired sleep and alertness in PD is multifactorial. Co-existent primary sleep disorders, medication side effects, overnight re-emergence of motor symptoms, and primary neurodegeneration itself, are main causes of sleep disruption and excessive daytime sleepiness among patients with PD. Increasing body of evidence suggests that the circadian system becomes dysregulated in PD, which may lead to poor sleep and alertness. Treatment options are limited and frequently associated with unwanted side effects. Further studies that will examine pathophysiology of sleep dysfunction in PD, and focus on novel treatment approaches are therefore very much needed. In this article we review the role of dopamine in regulation of sleep and alertness and discuss main sleep and circadian disturbances associated with PD.
Collapse
Affiliation(s)
- Aleksandar Videnovic
- PD and Movement Disorders Center, Circadian Rhythms and Sleep Research Laboratory, Department of Neurology, Northwestern University, 710 N Lake Shore Dr #1106, Chicago, IL 60611, USA.
| | | |
Collapse
|
31
|
Andersen ML, Sawyer EK, Carroll FI, Howell LL. Influence of chronic dopamine transporter inhibition by RTI-336 on motor behavior, sleep, and hormone levels in rhesus monkeys. Exp Clin Psychopharmacol 2012; 20:77-83. [PMID: 22023668 PMCID: PMC3302935 DOI: 10.1037/a0026034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dopamine transporter (DAT) inhibitors have been developed as a promising treatment approach for cocaine dependence. However, the stimulant effects of DAT inhibitors have the potential to disrupt sleep patterns, and the influence of long-term treatment on dopamine neurochemistry is still unknown. The objectives of this study were to (1) explore the stimulant-related effects of chronic DAT inhibitor (RTI-336) treatment on motor activity and sleep-like measures in male rhesus monkeys (Macaca mulatta; n = 4) and (2) to determine the effect of drug treatment on prolactin and cortisol levels. Subjects were fitted with a collar-mounted activity monitor to evaluate their motor activity, with 4 days of baseline recording preceding 21 days of daily saline or RTI-336 (1 mg/kg/day; intramuscular) injections. Blood samples were collected immediately prior to and following chronic treatment to assess hormone levels. RTI-336 produced a significant increase in locomotor activity at the end of the daytime period compared to saline administration. During the 3-week treatment period, sleep efficiency was decreased and the fragmentation index and latency to sleep onset were significantly increased. Hormone levels were not changed throughout the study. Chronic treatment with RTI-336 has a mild but significant stimulant effect, as evidenced by the significant increase in activity during the evening period which may cause minor disruptions in sleep measures.
Collapse
Affiliation(s)
- Monica L. Andersen
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA,Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Eileen K. Sawyer
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - F. Ivy Carroll
- Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC, USA
| | - Leonard L. Howell
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA,Corresponding Author: Leonard L. Howell, PhD, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd, Atlanta, GA 30329, P: 404-727-7786, F: 404-727-1266,
| |
Collapse
|
32
|
Gruner JA, Mathiasen JR, Flood DG, Gasior M. Characterization of pharmacological and wake-promoting properties of the dopaminergic stimulant sydnocarb in rats. J Pharmacol Exp Ther 2011; 337:380-90. [PMID: 21300706 DOI: 10.1124/jpet.111.178947] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Sydnocarb is a psychomotor stimulant structurally similar to d-amphetamine (D-AMPH) and is used in Russia for the treatment of a variety of neuropsychiatric comorbidities. The nature of sydnocarb-induced facilitation of dopamine (DA) neurotransmission [DA release versus DA transporter (DAT) inhibition] is not clear. The present study characterized the pharmacological actions and behavioral effects of intraperitoneal sydnocarb in male Sprague-Dawley rats. Where relevant, comparisons were made with intraperitoneal D-AMPH. Unlike D-AMPH, which causes release of DA from rat synaptosomes (EC(50) = 0.10 μM; 95% confidence limits, 0.06-0.18), sydnocarb (up to 100 μM) did not. Sydnocarb potently (K(i) = 8.3 ± 0.7 nM) blocked recombinant human DAT expressed in Chinese hamster ovary-K1 cells and less potently blocked the norepinephrine transporter (K(i) = 10.1 ± 1.5 μM). Sydnocarb at 10 μM did not bind to 64 other targets. In rats, 10 and 30 mg/kg sydnocarb showed a 2-fold longer half-life in plasma and brain and a 5-fold lower brain-to-plasma ratio compared with 0.3 and 1 mg/kg D-AMPH. In the Irwin assay, sydnocarb was well tolerated up to 30 mg/kg; D-AMPH-like stereotypic behaviors were evident at 100 mg/kg. Behavioral effects of 30 mg/kg sydnocarb and 0.3 mg/kg D-AMPH were comparable. In a sleep/wake assay, 10 mg/kg sydnocarb and 1 mg/kg D-AMPH increased wakefulness comparably; however, sydnocarb (up to 30 mg/kg) did not induce D-AMPH-like rebound hypersomnolence (RHS). Like D-AMPH, sydnocarb enhanced theta power, an electrophysiological measure of cognitive function. In conclusion, sydnocarb is a selective and potent DAT inhibitor that produces robust increases in the wake state without RHS, and with potential cognitive-enhancing properties.
Collapse
Affiliation(s)
- John A Gruner
- CNS Biology, Worldwide Discovery Research, Cephalon, Inc., West Chester, Pennsylvania, USA
| | | | | | | |
Collapse
|
33
|
Wisor JP, Schmidt MA, Clegern WC. Cerebral microglia mediate sleep/wake and neuroinflammatory effects of methamphetamine. Brain Behav Immun 2011; 25:767-76. [PMID: 21333736 DOI: 10.1016/j.bbi.2011.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/27/2011] [Accepted: 02/04/2011] [Indexed: 02/06/2023] Open
Abstract
Methamphetamine and modafinil exert their wake-promoting effects by elevating monoaminergic tone. The severity of hypersomnolence that occurs subsequent to induced wakefulness differs between these two agents. Microglia detects and modulates CNS reactions to agents such as D-methamphetamine that induce cellular stress. We therefore hypothesized that changes in the sleep/wake cycle that occur subsequent to administration of D-methamphetamine are modulated by cerebral microglia. In CD11b-herpes thymidine kinase transgenic mice (CD11b-TK(mt-30)), activation of the inducible transgene by intracerebroventricular (icv) ganciclovir results in toxicity to CD11b-positive cells (i.e. microglia), thereby reducing cerebral microglial cell counts. CD11b-TK(mt-30)and wild type mice were subjected to chronic icv ganciclovir or vehicle administration with subcutaneous mini-osmotic pumps. D-methamphetamine (1 and 2 mg/kg), modafinil (30 and 100 mg/kg) and vehicle were administered intraperitoneally to these animals. In CD11b-TK(mt-30) mice, but not wild type, icv infusion of ganciclovir reduced the duration of wake produced by D-methamphetamine at 2 mg/kg by nearly 1h. Nitric oxide synthase (NOS) activity, studied ex vivo, and NOS expression were elevated in CD11b-positive cerebral microglia from wild type mice acutely exposed to d-methamphetamine. Additionally, CD11b-positive microglia, but not other cerebral cell populations, exhibited changes in sleep-regulatory cytokine expression in response to d-METH. Finally, CD11b-positive microglia exposed to d-methamphetamine in vitro exhibited increased NOS activity relative to pharmacologically-naïve cells. CD11b-positive microglia from the brains of neuronal NOS (nNOS)-knockout mice failed to exhibit this effect. We propose that the effects of D-METH on sleep/wake cycles are mediated in part by actions on microglia, including possibly nNOS activity and cytokine synthesis.
Collapse
Affiliation(s)
- Jonathan P Wisor
- Department of Veterinary Comparative Anatomy, Pharmacology and Physiology, WWAMI Medical Education Program, Washington State University, Spokane, WA 99202, USA.
| | | | | |
Collapse
|
34
|
Kaufling J, Waltisperger E, Bourdy R, Valera A, Veinante P, Freund-Mercier MJ, Barrot M. Pharmacological recruitment of the GABAergic tail of the ventral tegmental area by acute drug exposure. Br J Pharmacol 2011; 161:1677-91. [PMID: 21087442 DOI: 10.1111/j.1476-5381.2010.00984.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE The tail of the ventral tegmental area (tVTA), also called the rostromedial tegmental nucleus, is a newly defined brain structure and a potential control centre for dopaminergic activity. It was identified by the induction of DeltaFosB following chronic cocaine exposure. In this work, we screened 20 drugs for their ability to induce FosB/DeltaFosB in the tVTA. EXPERIMENTAL APPROACH Immunohistochemistry following systemic drug administration was used to study FosB/DeltaFosB induction in the tVTA of adult rats. Double-staining was used to determine whether dopamine or GABA neurones are involved in this induction. KEY RESULTS The acute injection of the psychostimulant drugs cocaine, D-amphetamine, (+/-)-3,4-methylenedioxymethamphetamine (MDMA), methylphenidate or caffeine, induced the expression of FosB/DeltaFosB in the tVTA GABAergic cells. No induction was observed following exposure to ethanol, diazepam, γ-hydroxybutyric acid (GHB), morphine, ketamine, phencyclidine (PCP), Δ(9)-tetrahydrocannabinol (THC), sodium valproic acid or gabapentin. To evaluate the role of monoamine transporters in the psychostimulant-induced expression of FosB/DeltaFosB, we tested the antidepressant drugs reboxetine, nortriptyline, fluoxetine and venlafaxine (which target the noradrenaline and/or the 5-hydroxytryptamine transporters), the 5-hydroxytryptamine releasing agent dexfenfluramine, and the dopamine transporter inhibitor GBR12909. Only GBR12909 was able to induce FosB/DeltaFosB expression in the tVTA, showing that this induction is mediated by dopamine. CONCLUSIONS AND IMPLICATIONS Newly described brain structures may help to increase our knowledge of brain function, pathology and targets for treatments. FosB/DeltaFosB induction in the tVTA is a common feature of drugs sharing psychostimulant properties but not of drugs sharing risk of abuse.
Collapse
Affiliation(s)
- Jennifer Kaufling
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Nishino S. Rebound hypersomnolence, stimulant abuse, and DAT-mediated dopamine release. Sleep 2010; 32:1407-9. [PMID: 19928377 DOI: 10.1093/sleep/32.11.1407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Center for Narcolepsy, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| |
Collapse
|