1
|
Mei Z, Liu G, Zhao B, He Z, Gu S. Emerging roles of epigenetics in lead-induced neurotoxicity. ENVIRONMENT INTERNATIONAL 2023; 181:108253. [PMID: 37864902 DOI: 10.1016/j.envint.2023.108253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/19/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Lead is a common environmental heavy metal contaminant. Humans are highly susceptible to lead accumulation in the body, which causes nervous system damage and leads to a variety of nervous system diseases, such as Alzheimer's disease, Parkinson's disease, and autism spectrum disorder. Recent research has focused on the mechanisms of lead-induced neurotoxicity at multiple levels, including DNA methylation, histone modifications, and non-coding RNAs, which are involved in various lead-induced nervous system diseases. We reviewed the latest articles and summarised the emerging roles of DNA methylation, histone modification, and non-coding RNAs in lead-induced neurotoxicity. Our summary provides a theoretical basis and directions for future research on the prevention, diagnosis, and treatment of lead-induced neurological diseases.
Collapse
Affiliation(s)
- Zongqin Mei
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China
| | - Guofen Liu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China
| | - Bo Zhao
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China
| | - Zuoshun He
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China.
| | - Shiyan Gu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China.
| |
Collapse
|
2
|
Guo B, Li T, Wang L, Liu F, Chen B. Long non-coding RNAs regulate heavy metal-induced apoptosis in embryo-derived cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121956. [PMID: 37271361 DOI: 10.1016/j.envpol.2023.121956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Heavy metal pollution has been a worldwide prevalent problem, and particularly a threat to ecosystem integrity and animals' health. Previous studies on the mechanisms of heavy metal toxicity have focused on protein-coding genes, whereas most genomic transcripts are long non-coding RNAs (lncRNAs). Although lncRNAs are known to play important regulatory roles in biological processes, their role in heavy metal stress regulation is still not fully understood. We here developed an insect embryo cell model for studying metal toxicity and the underlying regulatory mechanisms. We performed genome-wide screening and functional characterization of lncRNAs induced by two essential and two non-essential heavy metals in Drosophila embryo-derived S2 cells. We identified 4894 lncRNAs, of which 1410 were novel. Forty-one lncRNAs, together with 328 mRNAs, were induced by all the four heavy metals. LncRNA-mRNA co-expression network and pathway enrichment analysis showed that detoxification metabolism, circadian rhythm, and apoptosis regulation pathways were activated in response to heavy metal stress. LncRNA CR44138 was remarkably upregulated in cells exposed to the four heavy metals and was associated with the apoptosis pathway. Expression interference confirmed that CR44138 aggravated cytotoxicity-induced apoptosis in cells under heavy metals stress. This study highlights the important role of lncRNAs in regulating the cellular response to heavy metals. This study also lays the foundation for discovering the novel regulatory mechanisms and developing diagnostic biomarkers of the toxic effects of heavy metal pollutants on organisms.
Collapse
Affiliation(s)
- Boyang Guo
- College of Life Science, Hebei University, Baoding 071002, China
| | - Ting Li
- School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, 271016, Shandong Province, China
| | - Lingyan Wang
- College of Life Science, Hebei University, Baoding 071002, China
| | - Fengsong Liu
- College of Life Science, Hebei University, Baoding 071002, China
| | - Bing Chen
- College of Life Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Wei M, Tang W, Lv D, Liu M, Wang G, Liu Q, Qin L, Huang B, Zhang D. Long-chain noncoding RNA sequencing analysis reveals the molecular profiles of chemically induced mammary epithelial cells. Front Genet 2023; 14:1189487. [PMID: 37745843 PMCID: PMC10514351 DOI: 10.3389/fgene.2023.1189487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) were important regulators affecting the cellular reprogramming process. Previous studies from our group have demonstrated that small molecule compounds can induce goat ear fibroblasts to reprogram into mammary epithelial cells with lactation function. In this study, we used lncRNA-Sequencing (lncRNA-seq) to analyze the lncRNA expression profile of cells before and after reprogramming (CK vs. 5i8 d). The results showed that a total of 3,970 candidate differential lncRNAs were detected, 1,170 annotated and 2,800 new lncRNAs. Compared to 0 d cells, 738 lncRNAs were significantly upregulated and 550 were significantly downregulated in 8 d cells. Heat maps of lncrnas and target genes with significant differences showed that the fate of cell lineages changed. Functional enrichment analysis revealed that these differently expressed (DE) lncRNAs target genes were mainly involved in signaling pathways related to reprogramming and mammary gland development, such as the Wnt signaling pathway, PI3K-Akt signaling pathway, arginine and proline metabolism, ECM-receptor interaction, and MAPK signaling pathway. The accuracy of sequencing was verified by real-time fluorescence quantification (RT-qPCR) of lncRNAs and key candidate genes, and it was also demonstrated that the phenotype and genes of the cells were changed. Therefore, this study offers a foundation for explaining the molecular mechanisms of lncRNAs in chemically induced mammary epithelial cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ben Huang
- Guangxi Key Laboratory of Eye Health, Guangxi Academy of Medical Sciences, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Dandan Zhang
- Guangxi Key Laboratory of Eye Health, Guangxi Academy of Medical Sciences, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
4
|
Liu X, Mi S, Li W, Zhang J, Augustino SMA, Zhang Z, Zhang R, Xiao W, Yu Y. Molecular regulatory mechanism of key LncRNAs in subclinical mastitic cows with folic acid supplementation. BMC Genomics 2023; 24:464. [PMID: 37592228 PMCID: PMC10436419 DOI: 10.1186/s12864-023-09466-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 06/20/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Folic acid is a water-soluble B vitamin (B9), which is closely related to the body's immune and other metabolic pathways. The folic acid synthesized by rumen microbes has been unable to meet the needs of high-yielding dairy cows. The incidence rate of subclinical mastitis in dairy herds worldwide ranged between 25%~65% with no obvious symptoms, but it significantly causes a decrease in lactation and milk quality. Therefore, this study aims at exploring the effects of folic acid supplementation on the expression profile of lncRNAs, exploring the molecular mechanism by which lncRNAs regulate immunity in subclinical mastitic dairy cows. RESULTS The analysis identified a total of 4384 lncRNA transcripts. Subsequently, differentially expressed lncRNAs in the comparison of two groups (SF vs. SC, HF vs. HC) were identified to be 84 and 55 respectively. Furthermore, the weighted gene co-expression network analysis (WGCNA) and the KEGG enrichment analysis result showed that folic acid supplementation affects inflammation and immune response-related pathways. The two groups have few pathways in common. One important lncRNA MSTRG.11108.1 and its target genes (ICAM1, CCL3, CCL4, etc.) were involved in immune-related pathways. Finally, through integrated analysis of lncRNAs with GWAS data and animal QTL database, we found that differential lncRNA and its target genes could be significantly enriched in SNPs and QTLs related to somatic cell count (SCC) and mastitis, such as MSTRG.11108.1 and its target gene ICAM1, CXCL3, GRO1. CONCLUSIONS For subclinical mastitic cows, folic acid supplementation can significantly affect the expression of immune-related pathway genes such as ICAM1 by regulating lncRNAs MSTRG.11108.1, thereby affecting related immune phenotypes. Our findings laid a ground foundation for theoretical and practical application for feeding folic acid supplementation in subclinical mastitic cows.
Collapse
Affiliation(s)
- Xueqin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenlong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinning Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Serafino M A Augustino
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- School of Natural Resources and Environmental Studies, University of Juba, P. O. Box 82, Juba, South Sudan
| | - Zhichao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ruiqiang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Xiao
- Beijing Animal Husbandry Station, Beijing, 100029, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Altered genome-wide hippocampal gene expression profiles following early life lead exposure and their potential for reversal by environmental enrichment. Sci Rep 2022; 12:11937. [PMID: 35879375 PMCID: PMC9314447 DOI: 10.1038/s41598-022-15861-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Early life lead (Pb) exposure is detrimental to neurobehavioral development. The quality of the environment can modify negative influences from Pb exposure, impacting the developmental trajectory following Pb exposure. Little is known about the molecular underpinnings in the brain of the interaction between Pb and the quality of the environment. We examined relationships between early life Pb exposure and living in an enriched versus a non-enriched postnatal environment on genome-wide transcription profiles in hippocampus CA1. RNA-seq identified differences in the transcriptome of enriched vs. non-enriched Pb-exposed animals. Most of the gene expression changes associated with Pb exposure were reversed by enrichment. This was also true for changes in upstream regulators, splicing events and long noncoding RNAs. Non-enriched rats also had memory impairments; enriched rats had no deficits. The results demonstrate that an enriched environment has a profound impact on behavior and the Pb-modified CA1 transcriptome. These findings show the potential for interactions between Pb exposure and the environment to result in significant transcriptional changes in the brain and, to the extent that this may occur in Pb-exposed children, could influence neuropsychological/educational outcomes, underscoring the importance for early intervention and environmental enrichment for Pb-exposed children.
Collapse
|
6
|
Yang W, Qian Y, Gao K, Zheng W, Wu G, He Q, Chen Q, Song Y, Wang L, Wang Y, Gu P, Chen B, Zhai R. LncRNA BRCAT54 inhibits the tumorigenesis of non-small cell lung cancer by binding to RPS9 to transcriptionally regulate JAK-STAT and calcium pathway genes. Carcinogenesis 2021; 42:80-92. [PMID: 32459848 DOI: 10.1093/carcin/bgaa051] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/12/2020] [Accepted: 05/24/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Increasing evidence suggest that long non-coding RNAs (lncRNAs) play critical roles in cancers. However, the expression pattern and underlying mechanisms of lncRNAs in non-small cell lung cancer (NSCLC) remain incompletely understood. This study aimed to elucidate the functions and molecular mechanisms of a certain lncRNA in NSCLC. METHODS LncRNA microarray was performed to identify differential expressed lncRNAs between pre- and postoperation plasma in NSCLC patients. The expression level of candidate lncRNA in NSCLC tissues, plasma and cells was determined by quantitative real-time PCR (qRT-PCR) and in situ hybridization. The functional roles of lncRNA were assessed in vitro and in vivo. Furthermore, RNA pull-down, RNA immunoprecipitation, microarray, qRT-PCR and rescue assays were conducted to explore the mechanism action of lncRNA in NSCLC cells. RESULTS We identified a novel lncRNA (BRCAT54), which was significantly upregulated in preoperative plasma, NSCLC tissues and NSCLC cells, and its higher expression was associated with better prognosis in patients with NSCLC. Overexpression of BRCAT54 inhibited proliferation, migration and activated apoptosis in NSCLC cells. Conversely, knockdown of BRCAT54 reversed the suppressive effects of BRCAT54. Moreover, overexpression of BRCAT54 repressed NSCLC cell growth in vivo. Mechanistically, BRCAT54 directly bound to RPS9. Knockdown of RPS9 substantially reversed the promoting effects of si-BRCAT54 on cell proliferation and enhanced the inhibitive effect of si-BRCAT54 on BRCAT54 expression. In addition, silencing of RPS9 activated JAK-STAT pathway and suppressed calcium signaling pathway gene expressions. CONCLUSION This study identified BRCAT54 as a tumor suppressor in NSCLC. Targeting the BRCAT54 and RPS9 feedback loop might be a novel therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Wenhan Yang
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China.,Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Youhui Qian
- Department of Thoracic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Kaiping Gao
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Wenjing Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Guodong Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qihan He
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China.,Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Qianqian Chen
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China.,Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Yi Song
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China.,Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Liang Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Yejun Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Peigui Gu
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Bin Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Rihong Zhai
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China.,Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
7
|
Jia Y, Li X, Nan A, Zhang N, Chen L, Zhou H, Zhang H, Qiu M, Zhu J, Ling Y, Jiang Y. Circular RNA 406961 interacts with ILF2 to regulate PM 2.5-induced inflammatory responses in human bronchial epithelial cells via activation of STAT3/JNK pathways. ENVIRONMENT INTERNATIONAL 2020; 141:105755. [PMID: 32388272 DOI: 10.1016/j.envint.2020.105755] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/28/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate matter (PM2.5) has been verified to augmented the incidence of pneumonia, asthma, pulmonary fibrosis, and other pulmonary diseases. Airway inflammation is the pathological basis of the respiratory system, and understanding the molecular mechanisms responsible for airway inflammation may thus support the diagnosis and treatment of respiratory diseases. In our study, human bronchial epithelial cells (BEAS-2B) were exposed to various concentrations of PM2.5 for 48 h. PM2.5 entered the cells, resulting in increased production of interleukin 6 (IL-6) and interleukin 8 (IL-8) and decreased the expression of circular RNA 406961 (circ_406961). Further, PM2.5 with a concentration of 75 μg/mL was applied to mechanism study. Functional experiments further confirmed that circ_406961 inhibited PM2.5-induced BEAS-2B cell inflammation. RNA pull-down and mass spectrometry showed that circ_406961 interacted with interleukin enhancer-binding factor 2 (ILF2), which could regulate phosphorylation of signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase 8 (MAPK8, JNK). Our studies showed that circ_406961 inhibited activation of STAT3/JNK pathways via interacting with ILF2 protein, thereby inhibiting the PM2.5-induced inflammatory reaction.
Collapse
Affiliation(s)
- Yangyang Jia
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Aruo Nan
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Nan Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Lijian Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Hanyu Zhou
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Han Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Miaoyun Qiu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Jialu Zhu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
8
|
Wang T, Zhang J, Xu Y. Epigenetic Basis of Lead-Induced Neurological Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134878. [PMID: 32645824 PMCID: PMC7370007 DOI: 10.3390/ijerph17134878] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Environmental lead (Pb) exposure is closely associated with pathogenesis of a range of neurological disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), attention deficit/hyperactivity disorder (ADHD), etc. Epigenetic machinery modulates neural development and activities, while faulty epigenetic regulation contributes to the diverse forms of CNS (central nervous system) abnormalities and diseases. As a potent epigenetic modifier, lead is thought to cause neurological disorders through modulating epigenetic mechanisms. Specifically, increasing evidence linked aberrant DNA methylations, histone modifications as well as ncRNAs (non-coding RNAs) with AD cases, among which circRNA (circular RNA) stands out as a new and promising field for association studies. In 23-year-old primates with developmental lead treatment, Zawia group discovered a variety of epigenetic changes relating to AD pathogenesis. This is a direct evidence implicating epigenetic basis in lead-induced AD animals with an entire lifespan. Additionally, some epigenetic molecules associated with AD etiology were also known to respond to chronic lead exposure in comparable disease models, indicating potentially interlaced mechanisms with respect to the studied neurotoxic and pathological events. Of note, epigenetic molecules acted via globally or selectively influencing the expression of disease-related genes. Compared to AD, the association of lead exposure with other neurological disorders were primarily supported by epidemiological survey, with fewer reports connecting epigenetic regulators with lead-induced pathogenesis. Some pharmaceuticals, such as HDAC (histone deacetylase) inhibitors and DNA methylation inhibitors, were developed to deal with CNS disease by targeting epigenetic components. Still, understandings are insufficient regarding the cause–consequence relations of epigenetic factors and neurological illness. Therefore, clear evidence should be provided in future investigations to address detailed roles of novel epigenetic factors in lead-induced neurological disorders, and efforts of developing specific epigenetic therapeutics should be appraised.
Collapse
Affiliation(s)
| | | | - Yi Xu
- Correspondence: ; Tel.: +86-183-2613-5046
| |
Collapse
|
9
|
Nie J, Wu J, Chen Z, Jiao Y, Zhang J, Tian H, Li J, Tong J. Expression profiles of long non-coding RNA in mouse lung tissue exposed to radon. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:854-861. [PMID: 31496446 DOI: 10.1080/15287394.2019.1664011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Long non-coding RNAs (lncRNA) exert biological functions by interacting with RNAs, proteins, and DNA. Although lung damage associated with radon exposure was attributed to disturbances in microRNA and protein expression, the influence of radon on lncRNA is at present not known. The aim of this study was to (1) examine the effect of radon on lncRNA-mediated expression of transcription factors in mRNA in mouse lung tissue and (2) determine potential function and targets. Female BALB/c mice were divided into two groups: control and radon exposure to approximately 100,000 Bq/m3 (equivalent up to 60 working level month, WLM).RNA was extracted from lung tissue and used for high through-put lncRNA microarray analysis. A total of 1256 lncRNA transcripts were differentially expressed between the two groups of mice. Among these, the top 200 lncRNA-mRNA sets, with fold change of >2 and p-value <.05, were selected for KEGG analysis. Functional analysis via bioinformatics prediction in this study also suggested involvement of ErbB and Notch pathways in radon-induced mouse pulmonary injury. The results from immunohistochemical and Western blot analysis indicated that EbB2 and k-Ras protein expressions were significantly increased. In conclusion, approximately 1,000 dysregulated lncRNA transcripts were found in radon-exposed mice and these lncRNA may play an important role in lung damage following radon exposure. The observations in this study also suggested that ErbB2 and Notch pathways are activated and may be involved in radon-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Jihua Nie
- School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases , Suzhou , China
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University , Suzhou , China
| | - Jing Wu
- School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases , Suzhou , China
| | - Zhihai Chen
- School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases , Suzhou , China
| | - Yang Jiao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University , Suzhou , China
| | - Jie Zhang
- School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases , Suzhou , China
| | - Hailin Tian
- School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases , Suzhou , China
| | - Jianxiang Li
- School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases , Suzhou , China
| | - Jian Tong
- School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases , Suzhou , China
| |
Collapse
|
10
|
Mechanism of Snhg8/miR-384/Hoxa13/FAM3A axis regulating neuronal apoptosis in ischemic mice model. Cell Death Dis 2019; 10:441. [PMID: 31165722 PMCID: PMC6549185 DOI: 10.1038/s41419-019-1631-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/21/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Long noncoding RNAs, a subgroup of noncoding RNAs, are implicated in ischemic brain injury. The expression levels of Snhg8, miR-384, Hoxa13, and FAM3A were measured in chronic cerebral ischemia-induced HT22 cells and hippocampal tissues. The role of the Snhg8/miR-384/Hoxa13/FAM3A axis was evaluated in chronic cerebral ischemia models in vivo and in vitro. In this study, we found that Snhg8 and Hoxa13 were downregulated, while miR-384 was upregulated in chronic cerebral ischemia-induced HT22 cells and hippocampal tissues. Overexpression of Snhg8 and Hoxa13, and silencing of miR-384, all inhibited chronic cerebral ischemia-induced apoptosis of HT22 cells. Moreover, Snhg8 bound to miR-384 in a sequence-dependent manner and there was a reciprocal repression between Snhg8 and miR-384. Besides, overexpression of miR-384 impaired Hoxa13 expression by targeting its 3'UTR and regulated chronic cerebral ischemia-induced neuronal apoptosis. Hoxa13 bound to the promoter of FAM3A and enhanced its promotor activity, which regulated chronic cerebral ischemia-induced neuronal apoptosis. Remarkably, the in vivo experiments demonstrated that Snhg8 overexpression combined with miR-384 knockdown led to an anti-apoptosis effect. These results reveal that the Snhg8/miR-384/Hoxa13/FAM3A axis plays a critical role in the regulation of chronic cerebral ischemia-induced neuronal apoptosis.
Collapse
|
11
|
Hu G, Feng H, Long C, Zhou D, Li P, Gao X, Chen Z, Wang T, Jia G. LncRNA expression profiling and its relationship with DNA damage in Cr(VI)-treated 16HBE cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:622-632. [PMID: 30476843 DOI: 10.1016/j.scitotenv.2018.11.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Compounds containing hexavalent chromium [Cr(VI)] were Group I human carcinogens which were mutagenic and can induce DNA damage. Cr(VI) exposure could cause a lot of changes in mRNA, protein and microRNA expression as well as DNA methylation. There were still few studies on the role of long non-coding RNA (lncRNA) in the carcinogenic process of Cr(VI). In current study, lncRNA expression profiling and bioinformatics analysis in 16HBE cells treated by Cr(VI) were performed. The cell counting kit-8 (CCK-8) assay and the comet assay were done to assess the cell viability and DNA damage in Cr(VI)-treated 16HBE cells respectively. The lncRNA expression profile was performed by Arraystar Microarray V3.0 in 16HBE cells treated with 0.00 and 10.00 μmol/L Cr(VI). Real-time quantitative polymerase chain reaction (RT-qPCR) was applied to verify some significantly altered lncRNAs. Gene ontology (GO), kyoto encyclopedia of genes and genomes (KEGG) analysis and mRNA-lncRNA network analysis were conducted to identify related biological processes, signal pathway and critical lncRNAs. It was found that Cr(VI) could induce cells viability decline and alter lncRNA expression profile of 16HBE cells. 1868 lncRNAs were significantly up-regulated and 2203 lncRNAs were significantly down-regulated which formed a complex regulation network. With the increase of Cr(VI) concentration, some lncRNAs increased or decreased gradually. The differentially expressed LncRNA profiling induced by Cr(VI) were associated with immune response, cell cycle, DNA damage and repair and so on. RP11-388M20.9 and AC092620.3 were nonlinearly decreasing with the change of the DNA content of comet tails (Tail DNA), tail length (TLL), tail moment (TM) and Olive Tail Moment (OTM), and the fitting results of Tail DNA and TM were statistically significant (P < 0.05). It was possible for RP11-388M20.9 to regulate DNA damage by interacting with the target gene after Cr(VI) exposure, and was likely to be a potential biomarker of DNA damage in Cr(VI)-treated 16HBE cells.
Collapse
Affiliation(s)
- Guiping Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Huimin Feng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Changmao Long
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Di Zhou
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Ping Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xin Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Tiancheng Wang
- Department of Clinical Laboratory, Third Hospital of Peking University, Beijing, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
12
|
Wen C, Yang S, Zheng S, Feng X, Chen J, Yang F. Analysis of long non-coding RNA profiled following MC-LR-induced hepatotoxicity using high-throughput sequencing. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1165-1172. [PMID: 30430930 DOI: 10.1080/15287394.2018.1532717] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The occurrence of microcystin-LR(MC-LR) variant a known hepatotoxin constitutes a global public health concern. However, the molecular mechanisms underlying MC-LR-induced hepatotoxicity remain to be determined. The aim of this study was to investigate whether long noncoding RNAs (lncRNA) were involved in MC-LR-mediated hepatotoxicity using human normal liver cell line HL7702 to profile lncRNAs after 24 hr treatment with MC-LR. With the use of high-throughput sequencing techniques, data showed that the expression levels of 37, 33, 34, 35 lncRNA were significantly altered following exposure to 1, 2.5, 5, or 10 μM MC-LR, respectively. In particular, the expression levels of LINC00847, MIR22HG and LNC_00027 were markedly increased in all treatment groups. It is of interest that LNC_00027 was identified as a novel lncRNA. Quantitative real-time PCR (qPCR) was employed to determine the differentially expressed lncRNA levels. Analysis using Gene Ontology (GO) enrichment identified the functions of target genes involved in systems development, metabolism, and protein binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that MC-LR exposure upregulated some important signaling pathways including pathway in cancer, PI3K-AKT signaling and MAPK pathway. In summary, data indicate that the MC-LR-induced alterations in lncRNA may be associated with hepatotoxicity and that upregulation of LINC00847, MIR22HG and LNC_00027 may play important roles in the observed MC-mediated liver damage.
Collapse
Affiliation(s)
- Cong Wen
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , Hunan , China
| | - Shu Yang
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , Hunan , China
| | - Shuilin Zheng
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , Hunan , China
| | - Xiangling Feng
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , Hunan , China
| | - Jihua Chen
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , Hunan , China
| | - Fei Yang
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , Hunan , China
- b Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing , China
- c Key laboratory of Hunan Province for Water Environment and Agriculture Product Safety , Central South University , Changsha , China
| |
Collapse
|