1
|
Pereira-Bazurdo A, Cadavid-Restrepo G, Arango-Isaza R, Moreno-Herrera C. Assessment of microbial antagonistic activity and Quorum Sensing Signal Molecule (Cyclopeptides-DKPs and N-Acyl Homoserine Lactones) detection in bacterial strains obtained from avocado thrips (Thysanoptera: Thripidae). BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00866. [PMID: 39691102 PMCID: PMC11650279 DOI: 10.1016/j.btre.2024.e00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
The control of avocado pests and diseases heavily relies on the use of several types of pesticides, some of which are strictly monitored or not internationally accepted. New sources of bioactive molecules produced by phytopathogen-inhibiting microorganisms offer an excellent alternative for the control of pests and diseases. This study explores the potential antagonistic action against phytopathogenic microorganisms, using bacterial strains obtained from avocado thrips. In addition, we detected and identified quorum sensing (QS) signaling molecules that are related to virulence factors and antibiotic production. The results showed that Bacillus, Pantoea, and Serratia strains exhibited antagonism against five fungal phytopathogens. Additionally, some bacteria also produce specific signaling molecules like N-3-(oxododecanoyl)-l-homoserine lactone (OdDHL), N-(3-oxo)-hexanoyl l-HL (OHHL), 4‑hydroxy-2-heptylquinoline (HHQ) or 2-heptyl-3,4-dihydroxyquinoline (PQS, Pseudomonas quinolone signal), cyclo(L-Phe-l-Pro), and cyclo(L-Pro-l-Tyr, which might give them antimicrobial properties. This research explores the biotechnological potential of these bacteria in fighting the diseases affecting avocados in Colombia.
Collapse
Affiliation(s)
- A.N. Pereira-Bazurdo
- Microbiodiversity and bioprospection research group, Laboratorio de Biología Celular 19A-310, Molecular, Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, 050034, Colombia
| | - G.E. Cadavid-Restrepo
- Microbiodiversity and bioprospection research group, Laboratorio de Biología Celular 19A-310, Molecular, Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, 050034, Colombia
| | - R.E. Arango-Isaza
- Plant Biotechnology UNALMED-CIB group, Laboratorio de Ecología y Evolución de Insectos 16-223, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, 050034, Colombia
| | - C.X. Moreno-Herrera
- Microbiodiversity and bioprospection research group, Laboratorio de Biología Celular 19A-310, Molecular, Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, 050034, Colombia
| |
Collapse
|
2
|
Gan HM, Dailey L, Wengert P, Halliday N, Williams P, Hudson AO, Savka MA. Quorum sensing signals of the grapevine crown gall bacterium, Novosphingobium sp. Rr2-17: use of inducible expression and polymeric resin to sequester acyl-homoserine lactones. PeerJ 2024; 12:e18657. [PMID: 39735558 PMCID: PMC11674143 DOI: 10.7717/peerj.18657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/17/2024] [Indexed: 12/31/2024] Open
Abstract
Background A grapevine crown gall tumor strain, Novosphingobium sp. strain Rr2-17 was previously reported to accumulate copious amounts of diverse quorum sensing signals during growth. Genome sequencing identified a single luxI homolog in strain Rr2-17, suggesting that it may encode for a AHL synthase with broad substrate range, pending functional validation. The exact identity of the complete suite of AHLs formed by novIspR1 is largely unknown. Methods This study validates the function of novIspR1 through inducible expression in Escherichia coli and in the wild-type parental strain Rr2-17. We further enhanced the capture of acyl homoserine lactone (AHL) signals produced by novIspR1 using polymeric resin XAD-16 and separated the AHLs by one- and two-dimensional thin layer chromatography followed by detection using AHL-dependent whole cell biosensor strains. Lastly, the complete number of AHLs produced by novIspR1 in our system was identified by LC-MS/MS analyses. Results The single LuxI homolog of N. sp. Rr2-17, NovIspR1, is able to produce up to eleven different AHL signals, including AHLs: C8-, C10-, C12-, C14-homoserine lactone (HSL) as well as AHLs with OH substitutions at the third carbon and includes 3-OH-C6-, 3-OH-C8-, 3-OH-C10-, 3-OH-C12- and 3-OH-C14-HSL. The most abundant AHL produced was identified as 3-OH-C8-HSL and isopropyl-D-1-thiogalactopyranoside (IPTG) induction of novIspR1 expression in wild type parental Rr2-17 strain increased its concentration by 6.8-fold when compared to the same strain with the vector only control plasmid. Similar increases were identified with the next two most abundant AHLs, 3-OH-C10- and unsubstituted C8-HSL. The presence of 2% w/v of XAD-16 resin in the growth culture bound 99.3 percent of the major AHL (3-OH-C8-HSL) produced by IPTG-induced overexpression of novIspR1 in Rr2-17 strain. This study significantly adds to our understanding of the AHL class of quorum sensing system in a grapevine crown gall tumor associated Novosphingobium sp. Rr2-17 strain. The identity of nine AHL signals produced by this bacterium will provide a framework to identify the specific function(s) of the AHL-mediated quorum-sensing associated genes in this bacterium.
Collapse
Affiliation(s)
- Han Ming Gan
- Patriot Biotech Sdn Bhd, Subang Jaya, Selangor, Malaysia
- Department of Biological Sciences, Sunway University, Bandar Sunway, Petaling Jaya, Malaysia
| | - Lucas Dailey
- The Thomas H. Gosnell School of Life Sciences, Biotechnology and Molecular Bioscience Program, College of Science, Rochester Institute of Technology, Rochester, New York, United States
| | - Peter Wengert
- The Thomas H. Gosnell School of Life Sciences, Biotechnology and Molecular Bioscience Program, College of Science, Rochester Institute of Technology, Rochester, New York, United States
| | - Nigel Halliday
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paul Williams
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - André O. Hudson
- The Thomas H. Gosnell School of Life Sciences, Biotechnology and Molecular Bioscience Program, College of Science, Rochester Institute of Technology, Rochester, New York, United States
| | - Michael A. Savka
- The Thomas H. Gosnell School of Life Sciences, Biotechnology and Molecular Bioscience Program, College of Science, Rochester Institute of Technology, Rochester, New York, United States
| |
Collapse
|
3
|
Tuttobene MR, Arango Gil BS, Di Venanzio G, Mariscotti JF, Sieira R, Feldman MF, Ramirez MS, García Véscovi E. Unraveling the role of UilS, a urea-induced acyl-homoserine lactonase that enhances Serratia marcescens fitness, interbacterial competition, and urinary tract infection. mBio 2024; 15:e0250524. [PMID: 39475236 PMCID: PMC11633161 DOI: 10.1128/mbio.02505-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024] Open
Abstract
Serratia marcescens, a member of the Enterobacteriaceae family, is an opportunistic human pathogen and a frequent cause of urinary tract infections. Clinical isolates often exhibit resistance to multiple antibiotics, posing challenges for successful treatment. Understanding its pathogenic mechanisms is crucial for elucidating new potential targets to develop effective therapeutic interventions and manage S. marcescens infections. This work identifies urea-induced lactonase of Serratia (UilS), a lactonase encoded in the S. marcescens RM66262 strain isolated from a patient with a urinary tract infection. The study explores the bacterium's response to urea, a major component of urine, and its impact on uilS expression. We found that UilS degrades acyl-homoserine lactones (AHL) autoinducers traditionally associated with quorum sensing mechanisms. Surprisingly, UilS is able to degrade self and non-self AHL, exhibiting quorum-quenching activity toward Pseudomonas aeruginosa. We found that LuxR regulates uilS expression that is enhanced in the presence of AHL. In addition, urea-dependent induction of UilS expression is controlled by the transcriptional response regulator CpxR. UilS confers fitness advantage to S. marcescens, especially in the presence of urea, emphasizing the adaptive plasticity of strains to modulate gene expression based on environmental signals and population density. We also discovered a novel bacterial killing capacity of S. marcescens that involves UilS, indicating its importance in the interspecies interaction of Serratia. Finally, we found that a uilS mutant strain displays attenuated colonization in a mouse model of catheter-associated urinary tract infection. uilS is present in clinical but absent in environmental isolates, suggesting an evolutionary adaptation to host-specific selective pressures. IMPORTANCE This work reveals the acyl-homoserine lactonase urea-induced lactonase of Serratia as a novel virulence factor of Serratia marcescens, unraveling a potential target to develop antimicrobial strategies and shedding light on the complex regulatory network governing pathogenicity and adaptation to host environments.
Collapse
Affiliation(s)
- Marisel R. Tuttobene
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Brayan S. Arango Gil
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Javier F. Mariscotti
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Rodrigo Sieira
- Fundación Instituto Leloir—IIBBA CONICET, Buenos Aires, Argentina
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - María Soledad Ramirez
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
4
|
Alimiran F, David S, Birks S, Oldham A, Henderson D. N-Acyl Homoserine Lactone Production by the Marine Isolate, Dasania marina. Microorganisms 2024; 12:1496. [PMID: 39065264 PMCID: PMC11279243 DOI: 10.3390/microorganisms12071496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Dasania marina (isolate SD1D, with 98.5% sequence similarity to Dasania marina DMS 21967 KOPRI 20902) is a marine bacterium that was isolated from ballast tank fluids as part of a biofilm study in 2014. Our previous work indicated that although this strain produced no detectable biofilm, it was the only isolate to produce N-acyl homoserine lactones (AHLs) in assays using the broad-range reporter strain, Agrobacterium tumefaciens KYC55. The goal of the current study was to determine the types of AHL molecules produced by the D. marina isolate using gas chromatography-mass spectroscopy (GCMS) and C4- to C14-AHL as standards. A time course assay indicated that the D. marina strain produced the highest level of AHLs at 20 h of growth. When extracts were subjected to GCMS, detectable levels of C8- and C10-AHL and higher levels of C12-AHL were observed. Interestingly, several biofilm-forming isolates obtained from the same source also produced detectable amounts of several AHLs. Of the isolates tested, a strain designated SD5, with 99.83% sequence similarity to Alteromonas tagae BCRC 17571, produced unstable biofilms, yet detectable levels of C6-, C8-, C10- and C12-AHL, and isolate SD8, an Alteromonas oceani S35 strain (98.85% sequence similarity), produced robust and stable biofilms accompanied by detectable levels of C8- and C12-AHL. All isolates tested produced C12-AHL at higher levels than the other AHLs. Results from this study suggest that quorum sensing and biofilm formation are uncoupled in D. marina. Whether the suite of AHLs produced by this isolate could modulate biofilm formation in other strains requires further study.
Collapse
Affiliation(s)
- Fnu Alimiran
- Department of Biology, University of Texas of the Permian Basin, Odessa, TX 79762, USA; (F.A.); (A.O.)
| | - Samuel David
- Department of Chemistry, Southern Oregon University, Ashland, OR 97520, USA; (S.D.)
| | - Scott Birks
- Department of Chemistry, Southern Oregon University, Ashland, OR 97520, USA; (S.D.)
| | - Athenia Oldham
- Department of Biology, University of Texas of the Permian Basin, Odessa, TX 79762, USA; (F.A.); (A.O.)
| | - Douglas Henderson
- Department of Biology, University of Texas of the Permian Basin, Odessa, TX 79762, USA; (F.A.); (A.O.)
| |
Collapse
|
5
|
Chiquito-Contreras CJ, Meza-Menchaca T, Guzmán-López O, Vásquez EC, Ricaño-Rodríguez J. Molecular Insights into Plant-Microbe Interactions: A Comprehensive Review of Key Mechanisms. Front Biosci (Elite Ed) 2024; 16:9. [PMID: 38538528 DOI: 10.31083/j.fbe1601009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/25/2024] [Accepted: 02/18/2024] [Indexed: 10/22/2024]
Abstract
In most ecosystems, plants establish complex symbiotic relationships with organisms, such as bacteria and fungi, which significantly influence their health by promoting or inhibiting growth. These relationships involve biochemical exchanges at the cellular level that affect plant physiology and have evolutionary implications, such as species diversification, horizontal gene transfer, symbiosis and mutualism, environmental adaptation, and positive impacts on community structure and biodiversity. For these reasons, contemporary research, moving beyond observational studies, seeks to elucidate the molecular basis of these interactions; however, gaps in knowledge remain. This is particularly noticeable in understanding how plants distinguish between beneficial and antagonistic microorganisms. In light of the above, this literature review aims to address some of these gaps by exploring the key mechanisms in common interspecies relationships. Thus, our study presents novel insights into these evolutionary archetypes, focusing on the antibiosis process and microbial signaling, including chemotaxis and quorum sensing. Additionally, it examined the biochemical basis of endophytism, pre-mRNA splicing, and transcriptional plasticity, highlighting the roles of transcription factors and epigenetic regulation in the functions of the interacting organisms. These findings emphasize the importance of understanding these confluences in natural environments, which are crucial for future theoretical and practical applications, such as improving plant nutrition, protecting against pathogens, developing transgenic crops, sustainable agriculture, and researching disease mechanisms. It was concluded that because of the characteristics of the various biomolecules involved in these biological interactions, there are interconnected molecular networks in nature that give rise to different ecological scaffolds. These networks integrate a myriad of functionally organic units that belong to various kingdoms. This interweaving underscores the complexity and multidisciplinary integration required to understand plant-microbe interactions at the molecular level. Regarding the limitations inherent in this study, it is recognized that researchers face significant obstacles. These include technical difficulties in experimentation and fieldwork, as well as the arduous task of consolidating and summarizing findings for academic articles. Challenges range from understanding complex ecological and molecular dynamics to unbiased and objective interpretation of diverse and ever-changing literature.
Collapse
Affiliation(s)
| | | | - Oswaldo Guzmán-López
- Faculty of Chemical Sciences, University of Veracruz, 96538 Coatzacoalcos, Veracruz, Mexico
| | | | - Jorge Ricaño-Rodríguez
- Center for Ecoliteracy and Knowledge Dialogue, University of Veracruz, 91060 Xalapa, Veracruz, Mexico
| |
Collapse
|
6
|
Kang J, Yoon HM, Jung J, Yu S, Choi SY, Bae HW, Cho YH, Chung EH, Lee Y. Pleiotropic effects of N-acylhomoserine lactone synthase ExpI on virulence, competition, and transmission in Pectobacterium carotovorum subsp. carotovorum Pcc21. PEST MANAGEMENT SCIENCE 2024; 80:687-697. [PMID: 37758685 DOI: 10.1002/ps.7797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Pectobacterium species are necrotrophic phytopathogenic bacteria that cause soft rot disease in economically important crops. The successful infection of host plants relies on interactions among virulence factors, competition, and transmission within hosts. Pectobacteria primarily produce and secrete plant cell-wall degrading enzymes (PCWDEs) for virulence. The regulation of PCWDEs is controlled by quorum sensing (QS). Thus, the QS system is crucial for disease development in pectobacteria through PCWDEs. RESULTS In this study, we identified a Tn-insertion mutant, M2, in the expI gene from a transposon mutant library of P. carotovorum subsp. carotovorum Pcc21 (hereafter Pcc21). The mutant exhibited reduced production and secretion of PCWDEs, impaired flagellar motility, and increased sensitivity to hydrogen peroxide, resulting in attenuated soft rot symptoms in cabbage and potato tubers. Transcriptomic analysis revealed the down-regulation of genes involved in the production and secretion in the mutant, consistent with the observed phenotype. Furthermore, the Pcc21 wild-type transiently colonized in the gut of Drosophila melanogaster within 12 h after feeding, while the mutant compromised colonization phenotype. Interestingly, Pcc21 produces a bacteriocin, carocin D, to compete with other bacteria. The mutant exhibited up-regulation of carocin D-encoding genes (caroDK) and inhibited the growth of a closely related bacterium, P. wasabiae. CONCLUSION Our results demonstrated the significance of ExpI in the overall pathogenic lifestyle of Pcc21, including virulence, competition, and colonization in plant and insect hosts. These findings suggest that disease outcome is a result of complex interactions mediated by ExpI across multiple steps. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jihee Kang
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Hye Min Yoon
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seonmi Yu
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Shin-Yae Choi
- Department of Pharmacy, and Institutes of Pharmaceutical Sciences, CHA University, Seongnam, Republic of Korea
| | - Hee-Won Bae
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - You-Hee Cho
- Department of Pharmacy, and Institutes of Pharmaceutical Sciences, CHA University, Seongnam, Republic of Korea
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yunho Lee
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| |
Collapse
|
7
|
Moréra S, Vigouroux A, Aumont-Nicaise M, Ahmar M, Meyer T, El Sahili A, Deicsics G, González-Mula A, Li S, Doré J, Sirigu S, Legrand P, Penot C, André F, Faure D, Soulère L, Queneau Y, Vial L. A highly conserved ligand-binding site for AccA transporters of antibiotic and quorum-sensing regulator in Agrobacterium leads to a different specificity. Biochem J 2024; 481:93-117. [PMID: 38058289 DOI: 10.1042/bcj20230273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Plants genetically modified by the pathogenic Agrobacterium strain C58 synthesize agrocinopines A and B, whereas those modified by the pathogenic strain Bo542 produce agrocinopines C and D. The four agrocinopines (A, B, C and D) serve as nutrients by agrobacteria and signaling molecule for the dissemination of virulence genes. They share the uncommon pyranose-2-phosphate motif, represented by the l-arabinopyranose moiety in agrocinopines A/B and the d-glucopyranose moiety in agrocinopines C/D, also found in the antibiotic agrocin 84. They are imported into agrobacterial cytoplasm via the Acc transport system, including the solute-binding protein AccA coupled to an ABC transporter. We have previously shown that unexpectedly, AccA from strain C58 (AccAC58) recognizes the pyranose-2-phosphate motif present in all four agrocinopines and agrocin 84, meaning that strain C58 is able to import agrocinopines C/D, originating from the competitor strain Bo542. Here, using agrocinopine derivatives and combining crystallography, affinity and stability measurements, modeling, molecular dynamics, in vitro and vivo assays, we show that AccABo542 and AccAC58 behave differently despite 75% sequence identity and a nearly identical ligand binding site. Indeed, strain Bo542 imports only compounds containing the d-glucopyranose-2-phosphate moiety, and with a lower affinity compared with strain C58. This difference in import efficiency makes C58 more competitive than Bo542 in culture media. We can now explain why Agrobacterium/Allorhizobium vitis strain S4 is insensitive to agrocin 84, although its genome contains a conserved Acc transport system. Overall, our work highlights AccA proteins as a case study, for which stability and dynamics drive specificity.
Collapse
Affiliation(s)
- Solange Moréra
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Armelle Vigouroux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Magali Aumont-Nicaise
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mohammed Ahmar
- Univ Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS, Université Lyon 1, INSA Lyon, CPE Lyon, ICBMS, UMR 5246; Université Claude Bernard, Bâtiment Lederer, 69622 Villeurbanne Cedex, France
| | - Thibault Meyer
- UMR Ecologie Microbienne, CNRS, INRAE, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, F-69622 Lyon, France
| | - Abbas El Sahili
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Grégory Deicsics
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Almudena González-Mula
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sizhe Li
- Univ Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS, Université Lyon 1, INSA Lyon, CPE Lyon, ICBMS, UMR 5246; Université Claude Bernard, Bâtiment Lederer, 69622 Villeurbanne Cedex, France
| | - Jeanne Doré
- UMR Ecologie Microbienne, CNRS, INRAE, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, F-69622 Lyon, France
| | - Serena Sirigu
- Synchrotron SOLEIL, HelioBio Group, 91190 Saint-Aubin, France
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio Group, 91190 Saint-Aubin, France
| | - Camille Penot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - François André
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Denis Faure
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Laurent Soulère
- Univ Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS, Université Lyon 1, INSA Lyon, CPE Lyon, ICBMS, UMR 5246; Université Claude Bernard, Bâtiment Lederer, 69622 Villeurbanne Cedex, France
| | - Yves Queneau
- Univ Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS, Université Lyon 1, INSA Lyon, CPE Lyon, ICBMS, UMR 5246; Université Claude Bernard, Bâtiment Lederer, 69622 Villeurbanne Cedex, France
| | - Ludovic Vial
- UMR Ecologie Microbienne, CNRS, INRAE, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, F-69622 Lyon, France
| |
Collapse
|
8
|
Zhang JW, Guo C, Xuan CG, Gu JW, Cui ZN, Zhang J, Zhang L, Jiang W, Zhang LQ. High-Throughput, Quantitative Screening of Quorum-Sensing Inhibitors Based on a Bacterial Biosensor. ACS Chem Biol 2023; 18:2544-2554. [PMID: 37983266 DOI: 10.1021/acschembio.3c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Quorum sensing (QS) is a cell-cell communication mechanism by which bacteria synchronize social behaviors such as biofilm formation and virulence factor secretion by producing and sensing small molecular signals. Quorum quenching (QQ) by degrading signals or blocking signal transmissions has become a promising strategy for disrupting QS and preventing bacterial infection and biofilm formation. However, studies of high-throughput screening and identification approaches for quorum-sensing inhibitors (QSIs) are still inadequate. In this work, we developed a sensitive, high-throughput approach for screening QSIs based on the bacterial biosensor strain Agrobacterium tumefaciens N5 (pBA7P), which contains a traG gene promoter induced by QS signals fused with a promoterless β-lactamase gene reporter. Using this approach, we identified 31 QQ bacteria from ∼2000 soil bacterial isolates, some belonging to the genera Bosea, Cupriavidus, and Flavobacterium that have not been reported previously as QQ bacteria. We also identified four QS inhibitory compounds and one QS signal analogue from ∼5000 small-molecule compounds, which profoundly affected the expression of QS-regulated genes and phenotypes of the pathogenic bacteria. This high-throughput screening system is effective and sensitive for screening of both QQ microbes and small molecules, enabling the discovery of a wide variety of biocompatible compounds.
Collapse
Affiliation(s)
- Jun-Wei Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Cong Guo
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Chen-Guang Xuan
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jing-Wen Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Jing Zhang
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China
| | - Lixin Zhang
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China
| | - Wenjun Jiang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li-Qun Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Thompson TP, Busetti A, Gilmore BF. Quorum Sensing in Halorubrum saccharovorum Facilitates Cross-Domain Signaling between Archaea and Bacteria. Microorganisms 2023; 11:1271. [PMID: 37317245 DOI: 10.3390/microorganisms11051271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Quorum Sensing (QS) is a well-studied intercellular communication mechanism in bacteria, regulating collective behaviors such as biofilm formation, virulence, and antibiotic resistance. However, cell-cell signaling in haloarchaea remains largely unexplored. The coexistence of bacteria and archaea in various environments, coupled with the known cell-cell signaling mechanisms in both prokaryotic and eukaryotic microorganisms and the presence of cell-cell signaling mechanisms in both prokaryotic and eukaryotic microorganisms, suggests a possibility for haloarchaea to possess analogous cell-cell signaling or QS systems. Recently, N-acylhomoserine lactone (AHL)-like compounds were identified in haloarchaea; yet, their precise role-for example, persister cell formation-remains ambiguous. This study investigated the capacity of crude supernatant extract from the haloarchaeon Halorubrum saccharovorum CSM52 to stimulate bacterial AHL-dependent QS phenotypes using bioreporter strains. Our findings reveal that these crude extracts induced several AHL-dependent bioreporters and modulated pyocyanin and pyoverdine production in Pseudomonas aeruginosa. Importantly, our study suggests cross-domain communication between archaea and bacterial pathogens, providing evidence for archaea potentially influencing bacterial virulence. Using Thin Layer Chromatography overlay assays, lactonolysis, and colorimetric quantification, the bioactive compound was inferred to be a chemically modified AHL-like compound or a diketopiperazine-like molecule, potentially involved in biofilm formation in H. saccharovorum CSM52. This study offers new insights into putative QS mechanisms in haloarchaea and their potential role in interspecies communication and coordination, thereby enriching our understanding of microbial interactions in diverse environments.
Collapse
Affiliation(s)
- Thomas P Thompson
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alessandro Busetti
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Brendan F Gilmore
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
10
|
Zhang S, Kan J, Liu X, Wu Y, Zhang M, Ou J, Wang J, An L, Li D, Wang L, Wang X, Fang R, Jia Y. Phytopathogenic bacteria utilize host glucose as a signal to stimulate virulence through LuxR homologues. MOLECULAR PLANT PATHOLOGY 2023; 24:359-373. [PMID: 36762904 PMCID: PMC10013830 DOI: 10.1111/mpp.13302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/17/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Chemical signal-mediated biological communication is common within bacteria and between bacteria and their hosts. Many plant-associated bacteria respond to unknown plant compounds to regulate bacterial gene expression. However, the nature of the plant compounds that mediate such interkingdom communication and the underlying mechanisms remain poorly characterized. Xanthomonas campestris pv. campestris (Xcc) causes black rot disease on brassica vegetables. Xcc contains an orphan LuxR regulator (XccR) which senses a plant signal that was validated to be glucose by HPLC-MS. The glucose concentration increases in apoplast fluid after Xcc infection, which is caused by the enhanced activity of plant sugar transporters translocating sugar and cell-wall invertases releasing glucose from sucrose. XccR recruits glucose, but not fructose, sucrose, glucose 6-phosphate, and UDP-glucose, to activate pip expression. Deletion of the bacterial glucose transporter gene sglT impaired pathogen virulence and pip expression. Structural prediction showed that the N-terminal domain of XccR forms an alternative pocket neighbouring the AHL-binding pocket for glucose docking. Substitution of three residues affecting structural stability abolished the ability of XccR to bind to the luxXc box in the pip promoter. Several other XccR homologues from plant-associated bacteria can also form stable complexes with glucose, indicating that glucose may function as a common signal molecule for pathogen-plant interactions. The conservation of a glucose/XccR/pip-like system in plant-associated bacteria suggests that some phytopathogens have evolved the ability to utilize host compounds as virulence signals, indicating that LuxRs mediate an interkingdom signalling circuit.
Collapse
Affiliation(s)
- Siyuan Zhang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jinhong Kan
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Present address:
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xin Liu
- State Key Laboratory of Plant Genomics, Collaborative Innovation Center of Genetics and DevelopmentInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Yao Wu
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Mingyang Zhang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Jinqing Ou
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Juan Wang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Lin An
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Defeng Li
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Li Wang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Xiu‐Jie Wang
- State Key Laboratory of Plant Genomics, Collaborative Innovation Center of Genetics and DevelopmentInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Rongxiang Fang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Yantao Jia
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
11
|
Non-Ionic Osmotic Stress Induces the Biosynthesis of Nodulation Factors and Affects Other Symbiotic Traits in Sinorhizobium fredii HH103. BIOLOGY 2023; 12:biology12020148. [PMID: 36829427 PMCID: PMC9952627 DOI: 10.3390/biology12020148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
(1) Background: Some rhizobia, such as Rhizobium tropici CIAT 899, activate nodulation genes when grown under osmotic stress. This work aims to determine whether this phenomenon also takes place in Sinorhizobium fredii HH103. (2) Methods: HH103 was grown with and without 400 mM mannitol. β-galactosidase assays, nodulation factor extraction, purification and identification by mass spectrometry, transcriptomics by RNA sequencing, motility assays, analysis of acyl-homoserine lactones, and indole acetic acid quantification were performed. (3) Results: Non-ionic osmotic stress induced the production of nodulation factors. Forty-two different factors were detected, compared to 14 found in the absence of mannitol. Transcriptomics indicated that hundreds of genes were either activated or repressed upon non-ionic osmotic stress. The presence of 400 mM mannitol induced the production of indole acetic acid and acyl homoserine lactones, abolished swimming, and promoted surface motility. (4) Conclusions: In this work, we show that non-ionic stress in S. fredii HH103, caused by growth in the presence of 400 mM mannitol, provokes notable changes not only in gene expression but also in various bacterial traits, including the production of nodulation factors and other symbiotic signals.
Collapse
|
12
|
Rosier A, Bais HP. Protocol: a simple method for biosensor visualization of bacterial quorum sensing and quorum quenching interaction on Medicago roots. PLANT METHODS 2022; 18:112. [PMID: 36114554 PMCID: PMC9479286 DOI: 10.1186/s13007-022-00944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Defining interactions of bacteria in the rhizosphere (encompassing the area near and on the plant root) is important to understand how they affect plant health. Some rhizosphere bacteria, including plant growth promoting rhizobacteria (PGPR) engage in the intraspecies communication known as quorum sensing (QS). Many species of Gram-negative bacteria use extracellular autoinducer signal molecules called N-acyl homoserine lactones (AHLs) for QS. Other rhizobacteria species, including PGPRs, can interfere with or disrupt QS through quorum quenching (QQ). Current AHL biosensor assays used for screening and identifying QS and QQ bacteria interactions fail to account for the role of the plant root. METHODS Medicago spp. seedlings germinated on Lullien agar were transferred to soft-agar plates containing the broad-range AHL biosensor Agrobacterium tumefaciens KYC55 and X-gal substrate. Cultures of QS and QQ bacteria as well as pure AHLs and a QQ enzyme were applied to the plant roots and incubated for 3 days. RESULTS We show that this expanded use of an AHL biosensor successfully allowed for visualization of QS/QQ interactions localized at the plant root. KYC55 detected pure AHLs as well as AHLs from live bacteria cultures grown directly on the media. We also showed clear detection of QQ interactions occurring in the presence of the plant root. CONCLUSIONS Our novel tri-trophic system using an AHL biosensor is useful to study QS interspecies interactions in the rhizosphere.
Collapse
Affiliation(s)
- Amanda Rosier
- Department of Plant and Soil Sciences, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE, 19713, USA.
| | - Harsh P Bais
- Department of Plant and Soil Sciences, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE, 19713, USA
| |
Collapse
|
13
|
AHL-mediated quorum sensing to regulate bacterial substance and energy metabolism: A review. Microbiol Res 2022; 262:127102. [DOI: 10.1016/j.micres.2022.127102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023]
|
14
|
Escalante J, Nishimura B, Tuttobene MR, Subils T, Pimentel C, Georgeos N, Sieira R, Bonomo RA, Tolmasky ME, Ramirez MS. Human serum albumin (HSA) regulates the expression of histone-like nucleoid structure protein (H-NS) in Acinetobacter baumannii. Sci Rep 2022; 12:14644. [PMID: 36030268 PMCID: PMC9420150 DOI: 10.1038/s41598-022-19012-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
According to the Centers for Disease Control and Prevention, Acinetobacter baumannii is listed among the most threatening pathogens. A. baumannii is mainly a nosocomial pathogen with a distinctive ability to survive in multiple environments. These characteristics together with this bacterium's ability to acquire antibiotic resistance determinants make it a notorious pathogen. The presence of human serum albumin (HSA) is associated with modification of expression levels in numerous genes. The presence of HSA in the culture medium is also correlated with a reduction in levels of the global suppressor histone-like nucleoid structure protein, H-NS. Comparative transcriptome analysis of the wild type and isogenic Δhns strains cultured in lysogeny broth (LB) in the presence or absence of HSA revealed that the expression of a subset of eleven genes are modified in the Δhns cultured in LB and the wild-type strain in the presence of HSA, pointing out these genes as candidates to be regulated by the presence of HSA through H-NS. Six and five of these genes were up- or down-regulated, respectively. Three of these genes have functions in quorum sensing (acdA, kar and fadD), one in quorum quenching (aidA), two in stress response (katE, ywrO), three in metabolism (phaC, yedL1, and yedL2), one in biofilm formation (csuAB), and one in β-oxidation of fatty acids (fadA). The regulation of these genes was assessed by: (i) transcriptional analysis and qPCR at the transcriptional level; and (ii) by determining the phenotypic characteristics of each function. The results of these studies support the hypothesis that HSA-mediated reduction of H-NS levels may be one very important regulatory circuit utilized by A. baumannii to adapt to selected environments, such as those where HSA-containing human fluids are abundant.
Collapse
Affiliation(s)
- Jenny Escalante
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Brent Nishimura
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Marisel R Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Tomás Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario, Argentina
| | - Camila Pimentel
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Nardin Georgeos
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Rodrigo Sieira
- Fundación Instituto Leloir - IIBBA CONICET, Buenos Aires, Argentina
| | - Robert A Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of VeteransAffairs Medical Center, Cleveland, OH, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA.
| |
Collapse
|
15
|
The Regulatory Network Involving PcoR, RsaL, and MvaT Coordinates the Quorum-Sensing System in Pseudomonas fluorescens 2P24. Appl Environ Microbiol 2022; 88:e0062522. [PMID: 35695573 PMCID: PMC9275216 DOI: 10.1128/aem.00625-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas fluorescens 2P24 is a beneficial plant root-associated microorganism capable of suppressing several soilborne plant diseases. The capacity of P. fluorescens to aggressively colonize the rhizosphere is an important requirement for its biocontrol trait. We previously found that the PcoI/PcoR quorum-sensing system (QS) is involved in regulating the rhizosphere colonization of P. fluorescens. Here, we revealed a sophisticated regulatory network that connects PcoR, RsaL, and MvaT proteins to fine-tune the PcoI/PcoR QS system. Our data showed that PcoR could directly bind to the promoter region of pcoI thereby inducing the PcoI/PcoR QS system, whereas RsaL binds simultaneously with PcoR to the promoter region of pcoI and represses the PcoR-dependent activation of pcoI gene. In addition, RsaL indirectly downregulates the expression of pcoR. Furthermore, we showed that disruption of mvaT enhanced the expression of pcoI, pcoR, and rsaL, whereas MvaT controls the PcoI/PcoR QS in a RsaL-independent manner. Overall, this study elucidates that PcoR, RsaL, and MvaT regulate the PcoI/PcoR QS through a multi-tiered regulatory mechanism and that PcoR is necessary in the RsaL- and MvaT-mediated repression on the expression of pcoI. IMPORTANCE The PcoI/PcoR quorum-sensing system of Pseudomonas fluorescens 2P24 is important for its effective colonization in the plant rhizosphere. Many regulatory elements appear to directly or indirectly influence the QS system. Here, we found a complex regulatory network employing transcriptional factors PcoR, RsaL, and MvaT to influence the expression of the PcoI/PcoR QS in P. fluorescens 2P24. Our results indicate that PcoR and RsaL directly bind to the promoter region of pcoI and then positively and negatively regulate the expression of pcoI, respectively. Furthermore, the H-NS family protein MvaT negatively controls the PcoI/PcoR QS in a RsaL-independent manner. Taken together, our data provide new insights into the interplays between different regulatory elements that fine-tune the QS system of P. fluorescens.
Collapse
|
16
|
Transcription Factor-Based Biosensors for Detecting Pathogens. BIOSENSORS 2022; 12:bios12070470. [PMID: 35884273 PMCID: PMC9312912 DOI: 10.3390/bios12070470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 12/23/2022]
Abstract
Microorganisms are omnipresent and inseparable from our life. Many of them are beneficial to humans, while some are not. Importantly, foods and beverages are susceptible to microbial contamination, with their toxins causing illnesses and even death in some cases. Therefore, monitoring and detecting harmful microorganisms are critical to ensuring human health and safety. For several decades, many methods have been developed to detect and monitor microorganisms and their toxicants. Conventionally, nucleic acid analysis and antibody-based analysis were used to detect pathogens. Additionally, diverse chromatographic methods were employed to detect toxins based on their chemical and structural properties. However, conventional techniques have several disadvantages concerning analysis time, sensitivity, and expense. With the advances in biotechnology, new approaches to detect pathogens and toxins have been reported to compensate for the disadvantages of conventional analysis from different research fields, including electrochemistry, nanotechnology, and molecular biology. Among them, we focused on the recent studies of transcription factor (TF)-based biosensors to detect microorganisms and discuss their perspectives and applications. Additionally, the other biosensors for detecting microorganisms reported in recent studies were also introduced in this review.
Collapse
|
17
|
Insight in the quorum sensing-driven lifestyle of the non-pathogenic Agrobacterium tumefaciens 6N2 and the interactions with the yeast Meyerozyma guilliermondii. Genomics 2021; 113:4352-4360. [PMID: 34793950 DOI: 10.1016/j.ygeno.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022]
Abstract
Agrobacterium tumefaciens is considered a prominent phytopathogen, though most isolates are nonpathogenic. Agrobacteria can inhabit plant tissues interacting with other microorganisms. Yeasts are likewise part of these communities. We analyzed the quorum sensing (QS) systems of A. tumefaciens strain 6N2, and its relevance for the interaction with the yeast Meyerozyma guilliermondii, both sugarcane endophytes. We show that strain 6N2 is nonpathogenic, produces OHC8-HSL, OHC10-HSL, OC12-HSL and OHC12-HSL as QS signals, and possesses a complex QS architecture, with one truncated, two complete systems, and three additional QS-signal receptors. A proteomic approach showed differences in QS-regulated proteins between pure (64 proteins) and dual (33 proteins) cultures. Seven proteins were consistently regulated by quorum sensing in pure and dual cultures. M. guilliermondii proteins influenced by QS activity were also evaluated. Several up- and down- regulated proteins differed depending on the bacterial QS. These results show the QS regulation in the bacteria-yeast interactions.
Collapse
|
18
|
Le C, Pimentel C, Tuttobene MR, Subils T, Papp-Wallace KM, Bonomo RA, Actis LA, Tolmasky ME, Ramirez MS. Effect of Serum Albumin, a Component of Human Pleural Fluid, on Transcriptional and Phenotypic Changes on Acinetobacter baumannii A118. Curr Microbiol 2021; 78:3829-3834. [PMID: 34522980 PMCID: PMC8557393 DOI: 10.1007/s00284-021-02649-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022]
Abstract
Acinetobacter baumannii is a multidrug-resistant pathogen that causes numerous infections associated with high mortality rates. Exposure to human body fluids, such as human pleural fluid (HPF) and human serum, modulates gene expression in A. baumannii, leading to changes in its pathogenic behavior. Diverse degrees of effects at the transcriptional level were observed in susceptible and carbapenem-resistant strains. The transcriptional analysis of AB5075, a hyper-virulent and extensively drug-resistant strain showed changes in genes associated with quorum sensing, quorum quenching, fatty acids metabolism, and high-efficient iron uptake systems. In addition, the distinctive role of human serum albumin (HSA) as a critical component of HPF was evidenced. In the present work, we used model strain to analyze more deeply into the contribution of HSA in triggering A. baumannii's response. By qRT-PCR analysis, changes in the expression level of genes associated with quorum sensing, biofilm formation, and phenylacetic acid pathway were observed. Phenotypic approaches confirmed the transcriptional response. HSA, a predominant component of HPF, can modulate the expression and behavior of genes not only in a hyper-virulent and extensively drug-resistant A. baumannii model, but also in other strains with a different degree of susceptibility and pathogenicity.
Collapse
Affiliation(s)
- Casin Le
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Camila Pimentel
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Marisel R Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Tomas Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario, Argentina
| | - Krisztina M Papp-Wallace
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Departments of Medicine, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Robert A Bonomo
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Departments of Medicine, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- GRECC, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Departments of Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, OH, 45056, USA
| | - Marcelo E Tolmasky
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Maria Soledad Ramirez
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA.
| |
Collapse
|
19
|
Rodgers D, Le C, Pimentel C, Tuttobene MR, Subils T, Escalante J, Nishimura B, Vescovi EG, Sieira R, Bonomo RA, Tolmasky ME, Ramirez MS. Histone-like nucleoid-structuring protein (H-NS) regulatory role in antibiotic resistance in Acinetobacter baumannii. Sci Rep 2021; 11:18414. [PMID: 34531538 PMCID: PMC8446060 DOI: 10.1038/s41598-021-98101-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022] Open
Abstract
In the multidrug resistant (MDR) pathogen Acinetobacter baumannii the global repressor H-NS was shown to modulate the expression of genes involved in pathogenesis and stress response. In addition, H-NS inactivation results in an increased resistance to colistin, and in a hypermotile phenotype an altered stress response. To further contribute to the knowledge of this key transcriptional regulator in A. baumannii behavior, we studied the role of H-NS in antimicrobial resistance. Using two well characterized A. baumannii model strains with distinctive resistance profile and pathogenicity traits (AB5075 and A118), complementary transcriptomic and phenotypic approaches were used to study the role of H-NS in antimicrobial resistance, biofilm and quorum sensing gene expression. An increased expression of genes associated with β-lactam resistance, aminoglycosides, quinolones, chloramphenicol, trimethoprim and sulfonamides resistance in the Δhns mutant background was observed. Genes codifying for efflux pumps were also up-regulated, with the exception of adeFGH. The wild-type transcriptional level was restored in the complemented strain. In addition, the expression of biofilm related genes and biofilm production was lowered when the transcriptional repressor was absent. The quorum network genes aidA, abaI, kar and fadD were up-regulated in Δhns mutant strains. Overall, our results showed the complexity and scope of the regulatory network control by H-NS (genes involved in antibiotic resistance and persistence). These observations brings us one step closer to understanding the regulatory role of hns to combat A. baumannii infections.
Collapse
Affiliation(s)
- Deja Rodgers
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Casin Le
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Camila Pimentel
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Marisel R Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Tomás Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario, Argentina
| | - Jenny Escalante
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Brent Nishimura
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | | | - Rodrigo Sieira
- Fundación Instituto Leloir - IIBBA CONICET, Buenos Aires, Argentina
| | - Robert A Bonomo
- Research Service and GRECC, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, OH, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA.
| |
Collapse
|
20
|
Bejarano A, Perazzolli M, Pertot I, Puopolo G. The Perception of Rhizosphere Bacterial Communication Signals Leads to Transcriptome Reprogramming in Lysobacter capsici AZ78, a Plant Beneficial Bacterium. Front Microbiol 2021; 12:725403. [PMID: 34489914 PMCID: PMC8416617 DOI: 10.3389/fmicb.2021.725403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
The rhizosphere is a dynamic region governed by complex microbial interactions where diffusible communication signals produced by bacteria continuously shape the gene expression patterns of individual species and regulate fundamental traits for adaptation to the rhizosphere environment. Lysobacter spp. are common bacterial inhabitants of the rhizosphere and have been frequently associated with soil disease suppressiveness. However, little is known about their ecology and how diffusible communication signals might affect their behavior in the rhizosphere. To shed light on the aspects determining rhizosphere competence and functioning of Lysobacter spp., we carried out a functional and transcriptome analysis on the plant beneficial bacterium Lysobacter capsici AZ78 (AZ78) grown in the presence of the most common diffusible communication signals released by rhizosphere bacteria. Mining the genome of AZ78 and other Lysobacter spp. showed that Lysobacter spp. share genes involved in the production and perception of diffusible signal factors, indole, diffusible factors, and N-acyl-homoserine lactones. Most of the tested diffusible communication signals (i.e., indole and glyoxylic acid) influenced the ability of AZ78 to inhibit the growth of the phytopathogenic oomycete Pythium ultimum and the Gram-positive bacterium Rhodococcus fascians. Moreover, RNA-Seq analysis revealed that nearly 21% of all genes in AZ78 genome were modulated by diffusible communication signals. 13-Methyltetradecanoic acid, glyoxylic acid, and 2,3-butanedione positively influenced the expression of genes related to type IV pilus, which might enable AZ78 to rapidly colonize the rhizosphere. Moreover, glyoxylic acid and 2,3-butanedione downregulated tRNA genes, possibly as a result of the elicitation of biological stress responses. On its behalf, indole downregulated genes related to type IV pilus and the heat-stable antifungal factor, which might result in impairment of twitching motility and antibiotic production in AZ78. These results show that diffusible communication signals may affect the ecology of Lysobacter spp. in the rhizosphere and suggest that diffusible communication signals might be used to foster rhizosphere colonization and functioning of plant beneficial bacteria belonging to the genus Lysobacter.
Collapse
Affiliation(s)
- Ana Bejarano
- Center of Agriculture, Food, Environment, University of Trento, San Michele all'Adige, Italy.,Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Michele Perazzolli
- Center of Agriculture, Food, Environment, University of Trento, San Michele all'Adige, Italy.,Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Ilaria Pertot
- Center of Agriculture, Food, Environment, University of Trento, San Michele all'Adige, Italy.,Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Gerardo Puopolo
- Center of Agriculture, Food, Environment, University of Trento, San Michele all'Adige, Italy.,Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|
21
|
Fields B, Moffat EK, Harrison E, Andersen SU, Young JPW, Friman VP. Genetic variation is associated with differences in facilitative and competitive interactions in the Rhizobium leguminosarum species complex. Environ Microbiol 2021; 24:3463-3485. [PMID: 34398510 DOI: 10.1111/1462-2920.15720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 12/01/2022]
Abstract
Competitive and facilitative interactions influence bacterial community composition, diversity and functioning. However, the role of genetic diversity for determining interactions between coexisting strains of the same, or closely related, species remains poorly understood. Here, we investigated the type (facilitative/inhibitory) and potential underlying mechanisms of pairwise interactions between 24 genetically diverse bacterial strains belonging to three genospecies (gsA,C,E) of the Rhizobium leguminosarum species complex. Interactions were determined indirectly, based on secreted compounds in cell-free supernatants, and directly, as growth inhibition in cocultures. We found supernatants mediated both facilitative and inhibitory interactions that varied greatly between strains and genospecies. Overall, gsE strains indirectly suppressed growth of gsA strains, while their own growth was facilitated by other genospecies' supernatants. Similar genospecies-level patterns were observed in direct competition, where gsA showed the highest susceptibility and gsE the highest inhibition capacity. At the genetic level, increased gsA susceptibility was associated with a non-random distribution of quorum sensing and secondary metabolite genes across genospecies. Together, our results suggest that genetic variation is associated with facilitative and competitive interactions, which could be important ecological mechanisms explaining R. leguminosarum diversity.
Collapse
Affiliation(s)
| | - Emma K Moffat
- Department of Biology, University of York, York, UK.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
22
|
Bourigault Y, Rodrigues S, Crépin A, Chane A, Taupin L, Bouteiller M, Dupont C, Merieau A, Konto-Ghiorghi Y, Boukerb AM, Turner M, Hamon C, Dufour A, Barbey C, Latour X. Biocontrol of Biofilm Formation: Jamming of Sessile-Associated Rhizobial Communication by Rhodococcal Quorum-Quenching. Int J Mol Sci 2021; 22:ijms22158241. [PMID: 34361010 PMCID: PMC8347015 DOI: 10.3390/ijms22158241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Biofilms are complex structures formed by a community of microbes adhering to a surface and/or to each other through the secretion of an adhesive and protective matrix. The establishment of these structures requires a coordination of action between microorganisms through powerful communication systems such as quorum-sensing. Therefore, auxiliary bacteria capable of interfering with these means of communication could be used to prevent biofilm formation and development. The phytopathogen Rhizobium rhizogenes, which causes hairy root disease and forms large biofilms in hydroponic crops, and the biocontrol agent Rhodococcus erythropolis R138 were used for this study. Changes in biofilm biovolume and structure, as well as interactions between rhizobia and rhodococci, were monitored by confocal laser scanning microscopy with appropriate fluorescent biosensors. We obtained direct visual evidence of an exchange of signals between rhizobia and the jamming of this communication by Rhodococcus within the biofilm. Signaling molecules were characterized as long chain (C14) N-acyl-homoserine lactones. The role of the Qsd quorum-quenching pathway in biofilm alteration was confirmed with an R. erythropolis mutant unable to produce the QsdA lactonase, and by expression of the qsdA gene in a heterologous host, Escherichia coli. Finally, Rhizobium biofilm formation was similarly inhibited by a purified extract of QsdA enzyme.
Collapse
Affiliation(s)
- Yvann Bourigault
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, LBCM IUEM, EA 3884, Université de Bretagne-Sud, F-56100 Lorient, France; (S.R.); (L.T.); (A.D.)
| | - Alexandre Crépin
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, F-86073 Poitiers, France;
| | - Andrea Chane
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, LBCM IUEM, EA 3884, Université de Bretagne-Sud, F-56100 Lorient, France; (S.R.); (L.T.); (A.D.)
| | - Mathilde Bouteiller
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Charly Dupont
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Annabelle Merieau
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Yoan Konto-Ghiorghi
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Amine M. Boukerb
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
| | - Marie Turner
- Vegenov, F-29250 Saint-Pol-de-Léon, France; (M.T.); (C.H.)
- Biocontrol Consortium, F-75007 Paris, France
| | - Céline Hamon
- Vegenov, F-29250 Saint-Pol-de-Léon, France; (M.T.); (C.H.)
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, LBCM IUEM, EA 3884, Université de Bretagne-Sud, F-56100 Lorient, France; (S.R.); (L.T.); (A.D.)
| | - Corinne Barbey
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Xavier Latour
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
- Biocontrol Consortium, F-75007 Paris, France
- Correspondence: ; +33-235-146-000
| |
Collapse
|
23
|
Pimentel C, Le C, Tuttobene MR, Subils T, Papp-Wallace KM, Bonomo RA, Tolmasky ME, Ramirez MS. Interaction of Acinetobacter baumannii with Human Serum Albumin: Does the Host Determine the Outcome? Antibiotics (Basel) 2021; 10:antibiotics10070833. [PMID: 34356754 PMCID: PMC8300715 DOI: 10.3390/antibiotics10070833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023] Open
Abstract
Acinetobacter baumannii has become a serious threat to human health due to its extreme antibiotic resistance, environmental persistence, and capacity to survive within the host. Two A. baumannii strains, A118 and AB5075, commonly used as model systems, and three carbapenem-resistant strains, which are becoming ever more dangerous due to the multiple drugs they can resist, were exposed to 3.5% human serum albumin (HSA) and human serum (HS) to evaluate their response with respect to antimicrobial resistance, biofilm formation, and quorum sensing, all features responsible for increasing survival and persistence in the environment and human body. Expression levels of antibiotic resistance genes were modified differently when examined in different strains. The cmlA gene was upregulated or downregulated in conditions of exposure to 3.5% HSA or HS depending on the strain. Expression levels of pbp1 and pbp3 tended to be increased by the presence of HSA and HS, but the effect was not seen in all strains. A. baumannii A118 growing in the presence of HS did not experience increased expression of these genes. Aminoglycoside-modifying enzymes were also expressed at higher or lower levels in the presence of HSA or HS. Still, the response was not uniform; in some cases, expression was enhanced, and in other cases, it was tapered. While A. baumannii AB5075 became more susceptible to rifampicin in the presence of 3.5% HSA or HS, strain A118 did not show any changes. Expression of arr2, a gene involved in resistance to rifampicin present in A. baumannii AMA16, was expressed at higher levels when HS was present in the culture medium. HSA and HS reduced biofilm formation and production of N-Acyl Homoserine Lactone, a compound intimately associated with quorum sensing. In conclusion, HSA, the main component of HS, stimulates a variety of adaptative responses in infecting A. baumannii strains.
Collapse
Affiliation(s)
- Camila Pimentel
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.E.T.)
| | - Casin Le
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.E.T.)
| | - Marisel R. Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina;
| | - Tomas Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario S2002LRK, Argentina;
| | - Krisztina M. Papp-Wallace
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA; (K.M.P.-W.); (R.A.B.)
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Robert A. Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA; (K.M.P.-W.); (R.A.B.)
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.E.T.)
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.E.T.)
- Correspondence: ; Tel.: +1-657-278-4562
| |
Collapse
|
24
|
Blue light directly modulates the quorum network in the human pathogen Acinetobacter baumannii. Sci Rep 2021; 11:13375. [PMID: 34183737 PMCID: PMC8239052 DOI: 10.1038/s41598-021-92845-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
Quorum sensing modulates bacterial collective behaviors including biofilm formation, motility and virulence in the important human pathogen Acinetobacter baumannii. Disruption of quorum sensing has emerged as a promising strategy with important therapeutic potential. In this work, we show that light modulates the production of acyl-homoserine lactones (AHLs), which were produced in higher levels in the dark than under blue light at environmental temperatures, a response that depends on the AHL synthase, AbaI, and on the photoreceptor BlsA. BlsA interacts with the transcriptional regulator AbaR in the dark at environmental temperatures, inducing abaI expression. Under blue light, BlsA does not interact with AbaR, but induces expression of the lactonase aidA and quorum quenching, consistently with lack of motility at this condition. At temperatures found in warm-blooded hosts, the production of AHLs, quorum quenching as well as abaI and aidA expression were also modulated by light, though in this case higher levels of AHLs were detected under blue light than in the dark, in a BlsA-independent manner. Finally, AbaI reduces A. baumannii's ability to kill C. albicans only in the dark both at environmental as well as at temperatures found in warm-blooded hosts. The overall data indicate that light directly modulates quorum network in A. baumannii.
Collapse
|
25
|
Morohoshi T, Oshima A, Xie X, Someya N. Genetic and functional diversity of PsyI/PsyR quorum-sensing system in the Pseudomonas syringae complex. FEMS Microbiol Ecol 2021; 97:6041021. [PMID: 33332533 DOI: 10.1093/femsec/fiaa254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Strains belonging to the Pseudomonas syringae complex often possess quorum-sensing systems that comprise N-acyl-l-homoserine lactone (AHL) synthases (PsyI) and AHL receptors (PsyR). Here, we investigated the diversity of PsyI/PsyR quorum-sensing systems in 630 strains of the P. syringae complex. AHL production was observed in most strains of Pseudomonas amygdali and Pseudomonas meliae, and a few strains of Pseudomonas coronafaciens and P. syringae. The DNA sequences of psyIR and their upstream and downstream regions were categorized into eight types. P. amygdali pv. myricae, Pseudomonas savastanoi, and P. syringae pv. solidagae, maculicola, broussonetiae, and tomato encoded psyI, but did not produce detectable amounts of AHL. In P. savastanoi, an amino acid substitution (R27S) in PsyI caused defective AHL production. The psyI gene of P. syringae pv. tomato was converted to pseudogenes by frameshift mutations. Escherichia coli harboring psyI genes from P. amygdali pv. myricae, P. syringae pv. solidagae and broussonetiae showed high levels of AHL production. Forced expression of functional psyR restored AHL production in P. amygdali pv. myricae and P. syringae pv. solidagae. In conclusion, our study indicates that the PsyI/PsyR quorum-sensing systems in P. syringae strains are genetically and functionally diverse, with diversity being linked to phylogenetic and pathovar classifications.
Collapse
Affiliation(s)
- Tomohiro Morohoshi
- Graduate School of Regional Development and Creativity, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Akinori Oshima
- Graduate School of Regional Development and Creativity, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Nobutaka Someya
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8519, Japan
| |
Collapse
|
26
|
Pimentel C, Le C, Tuttobene MR, Subils T, Martinez J, Sieira R, Papp-Wallace KM, Keppetipola N, Bonomo RA, Actis LA, Tolmasky ME, Ramirez MS. Human Pleural Fluid and Human Serum Albumin Modulate the Behavior of a Hypervirulent and Multidrug-Resistant (MDR) Acinetobacter baumannii Representative Strain. Pathogens 2021; 10:pathogens10040471. [PMID: 33924559 PMCID: PMC8069197 DOI: 10.3390/pathogens10040471] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen capable of causing serious infections associated with high rates of morbidity and mortality. Due to its antimicrobial drug resistance profile, A. baumannii is categorized as an urgent priority pathogen by the Centers for Disease Control and Prevention in the United States and a priority group 1 critical microorganism by the World Health Organization. Understanding how A. baumannii adapts to different host environments may provide critical insights into strategically targeting this pathogen with novel antimicrobial and biological therapeutics. Exposure to human fluids was previously shown to alter the gene expression profile of a highly drug-susceptible A. baumannii strain A118 leading to persistence and survival of this pathogen. Herein, we explore the impact of human pleural fluid (HPF) and human serum albumin (HSA) on the gene expression profile of a highly multi-drug-resistant strain of A. baumannii AB5075. Differential expression was observed for ~30 genes, whose products are involved in quorum sensing, quorum quenching, iron acquisition, fatty acid metabolism, biofilm formation, secretion systems, and type IV pilus formation. Phenotypic and further transcriptomic analysis using quantitative RT-PCR confirmed RNA-seq data and demonstrated a distinctive role of HSA as the molecule involved in A. baumannii’s response.
Collapse
Affiliation(s)
- Camila Pimentel
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.R.T.); (J.M.); (M.E.T.)
| | - Casin Le
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.R.T.); (J.M.); (M.E.T.)
| | - Marisel R. Tuttobene
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.R.T.); (J.M.); (M.E.T.)
| | - Tomas Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario S2002LRK, Argentina;
| | - Jasmine Martinez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.R.T.); (J.M.); (M.E.T.)
| | - Rodrigo Sieira
- Fundación Instituto Leloir—IIBBA CONICET, Buenos Aires C1405BWE, Argentina;
| | - Krisztina M. Papp-Wallace
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA; (K.M.P.-W.); (R.A.B.)
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Niroshika Keppetipola
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831-3599, USA;
| | - Robert A. Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA; (K.M.P.-W.); (R.A.B.)
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, OH 45056, USA;
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.R.T.); (J.M.); (M.E.T.)
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.R.T.); (J.M.); (M.E.T.)
- Correspondence: ; Tel.: +1-657-278-4562
| |
Collapse
|
27
|
Bouteiller M, Dupont C, Bourigault Y, Latour X, Barbey C, Konto-Ghiorghi Y, Merieau A. Pseudomonas Flagella: Generalities and Specificities. Int J Mol Sci 2021; 22:ijms22073337. [PMID: 33805191 PMCID: PMC8036289 DOI: 10.3390/ijms22073337] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
Flagella-driven motility is an important trait for bacterial colonization and virulence. Flagella rotate and propel bacteria in liquid or semi-liquid media to ensure such bacterial fitness. Bacterial flagella are composed of three parts: a membrane complex, a flexible-hook, and a flagellin filament. The most widely studied models in terms of the flagellar apparatus are E. coli and Salmonella. However, there are many differences between these enteric bacteria and the bacteria of the Pseudomonas genus. Enteric bacteria possess peritrichous flagella, in contrast to Pseudomonads, which possess polar flagella. In addition, flagellar gene expression in Pseudomonas is under a four-tiered regulatory circuit, whereas enteric bacteria express flagellar genes in a three-step manner. Here, we use knowledge of E. coli and Salmonella flagella to describe the general properties of flagella and then focus on the specificities of Pseudomonas flagella. After a description of flagellar structure, which is highly conserved among Gram-negative bacteria, we focus on the steps of flagellar assembly that differ between enteric and polar-flagellated bacteria. In addition, we summarize generalities concerning the fuel used for the production and rotation of the flagellar macromolecular complex. The last part summarizes known regulatory pathways and potential links with the type-six secretion system (T6SS).
Collapse
Affiliation(s)
- Mathilde Bouteiller
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Charly Dupont
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Yvann Bourigault
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Xavier Latour
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Corinne Barbey
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Yoan Konto-Ghiorghi
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Annabelle Merieau
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
- Correspondence:
| |
Collapse
|
28
|
The Roseobacter-Group Bacterium Phaeobacter as a Safe Probiotic Solution for Aquaculture. Appl Environ Microbiol 2021; 87:e0258120. [PMID: 33310713 DOI: 10.1128/aem.02581-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phaeobacter inhibens has been assessed as a probiotic bacterium for application in aquaculture. Studies addressing the efficacy and safety indicate that P. inhibens maintains its antagonistic activity against pathogenic vibrios in aquaculture live cultures (live feed and fish egg/larvae) while having no or a positive effect on the host organisms and a minor impact on the host microbiomes. While P. inhibens produces antibacterial and algicidal compounds, no study has so far found a virulent phenotype of P. inhibens cells against higher organisms. Additionally, an in silico search for antibiotic resistance genes using published genomes of representative strains did not raise concerns regarding the risk for antimicrobial resistance. P. inhibens occurs naturally in aquaculture systems, supporting its safe usage in this environment. In conclusion, at the current state of knowledge, P. inhibens is a "safe-to-use" organism.
Collapse
|
29
|
Liang F, Zhang B, Yang Q, Zhang Y, Zheng D, Zhang LQ, Yan Q, Wu X. Cyclic-di-GMP Regulates the Quorum-Sensing System and Biocontrol Activity of Pseudomonas fluorescens 2P24 through the RsmA and RsmE Proteins. Appl Environ Microbiol 2020; 86:e02016-20. [PMID: 33036989 PMCID: PMC7688223 DOI: 10.1128/aem.02016-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/04/2020] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens 2P24 is a rhizosphere bacterium that protects many crop plants against soilborne diseases caused by phytopathogens. The PcoI/PcoR quorum-sensing (QS) system and polyketide antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) are particularly relevant to the strain's biocontrol potential. In this study, we investigated the effects of c-di-GMP on the biocontrol activity of strain 2P24. The expression of the Escherichia coli diguanylate cyclase (YedQ) and phosphodiesterase (YhjH) in P. fluorescens 2P24 significantly increased and decreased the cellular concentration of c-di-GMP, respectively. The production of the QS signals N-acyl homoserine lactones (AHLs) and 2,4-DAPG was negatively regulated by c-di-GMP in 2P24. The regulatory proteins RsmA and RsmE were positively regulated by c-di-GMP. Genomic analysis revealed that 2P24 has 23 predicted proteins that contain c-di-GMP-synthesizing or -degrading domains. Among these proteins, C0J56_12915, C0J56_13325, and C0J56_27925 contributed to the production of c-di-GMP and were also involved in the regulation of the QS signal and antibiotic 2,4-DAPG production in P. fluorescens Overexpression of C0J56_12915, C0J56_13325, and C0J56_27925 in 2P24 impaired its root colonization and biocontrol activities. Taken together, these results demonstrated that c-di-GMP played an important role in fine-tuning the biocontrol traits of P. fluorescensIMPORTANCE In various bacteria, the bacterial second messenger c-di-GMP influences a wide range of cellular processes. However, the function of c-di-GMP on biocontrol traits in the plant-beneficial rhizobacteria remains largely unclear. The present work shows that the QS system and polyketide antibiotic 2,4-DAPG production are regulated by c-di-GMP through RsmA and RsmE proteins in P. fluorescens 2P24. The diguanylate cyclases (DGCs) C0J56_12915, C0J56_13325, and C0J56_27925 are especially involved in regulating the biocontrol traits of 2P24. Our work also demonstrated a connection between the Gac/Rsm cascade and the c-di-GMP signaling pathway in P. fluorescens.
Collapse
Affiliation(s)
- Fei Liang
- College of Agriculture, Guangxi University, Nanning, China
| | - Bo Zhang
- College of Agriculture, Guangxi University, Nanning, China
| | - Qingqing Yang
- College of Agriculture, Guangxi University, Nanning, China
| | - Yang Zhang
- College of Agriculture, Guangxi University, Nanning, China
| | - Dehong Zheng
- College of Agriculture, Guangxi University, Nanning, China
| | - Li-Qun Zhang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Xiaogang Wu
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
30
|
Melior H, Maaß S, Li S, Förstner KU, Azarderakhsh S, Varadarajan AR, Stötzel M, Elhossary M, Barth-Weber S, Ahrens CH, Becher D, Evguenieva-Hackenberg E. The Leader Peptide peTrpL Forms Antibiotic-Containing Ribonucleoprotein Complexes for Posttranscriptional Regulation of Multiresistance Genes. mBio 2020; 11:e01027-20. [PMID: 32546623 PMCID: PMC7298713 DOI: 10.1128/mbio.01027-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 11/20/2022] Open
Abstract
Bacterial ribosome-dependent attenuators are widespread posttranscriptional regulators. They harbor small upstream open reading frames (uORFs) encoding leader peptides, for which no functions in trans are known yet. In the plant symbiont Sinorhizobium meliloti, the tryptophan biosynthesis gene trpE(G) is preceded by the uORF trpL and is regulated by transcription attenuation according to tryptophan availability. However, trpLE(G) transcription is initiated independently of the tryptophan level in S. meliloti, thereby ensuring a largely tryptophan-independent production of the leader peptide peTrpL. Here, we provide evidence for a tryptophan-independent role of peTrpL in trans We found that peTrpL increases the resistance toward tetracycline, erythromycin, chloramphenicol, and the flavonoid genistein, which are substrates of the major multidrug efflux pump SmeAB. Coimmunoprecipitation with a FLAG-peTrpL suggested smeR mRNA, which encodes the transcription repressor of smeABR, as a peptide target. Indeed, upon antibiotic exposure, smeR mRNA was destabilized and smeA stabilized in a peTrpL-dependent manner, showing that peTrpL acts in the differential regulation of smeABR Furthermore, smeR mRNA was coimmunoprecipitated with peTrpL in antibiotic-dependent ribonucleoprotein (ARNP) complexes, which, in addition, contained an antibiotic-induced antisense RNA complementary to smeRIn vitro ARNP reconstitution revealed that the above-mentioned antibiotics and genistein directly support complex formation. A specific region of the antisense RNA was identified as a seed region for ARNP assembly in vitro Altogether, our data show that peTrpL is involved in a mechanism for direct utilization of antimicrobial compounds in posttranscriptional regulation of multiresistance genes. Importantly, this role of peTrpL in resistance is conserved in other AlphaproteobacteriaIMPORTANCE Leader peptides encoded by transcription attenuators are widespread small proteins that are considered nonfunctional in trans We found that the leader peptide peTrpL of the soil-dwelling plant symbiont Sinorhizobium meliloti is required for differential, posttranscriptional regulation of a multidrug resistance operon upon antibiotic exposure. Multiresistance achieved by efflux of different antimicrobial compounds ensures survival and competitiveness in nature and is important from both evolutionary and medical points of view. We show that the leader peptide forms antibiotic- and flavonoid-dependent ribonucleoprotein complexes (ARNPs) for destabilization of smeR mRNA encoding the transcription repressor of the major multidrug resistance operon. The seed region for ARNP assembly was localized in an antisense RNA, whose transcription is induced by antimicrobial compounds. The discovery of ARNP complexes as new players in multiresistance regulation opens new perspectives in understanding bacterial physiology and evolution and potentially provides new targets for antibacterial control.
Collapse
Affiliation(s)
- Hendrik Melior
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Siqi Li
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Konrad U Förstner
- ZB MED-Information Centre for Life Sciences, University of Cologne, Cologne, Germany
| | - Saina Azarderakhsh
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | | | - Maximilian Stötzel
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Muhammad Elhossary
- ZB MED-Information Centre for Life Sciences, University of Cologne, Cologne, Germany
| | - Susanne Barth-Weber
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Christian H Ahrens
- Agroscope & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | |
Collapse
|
31
|
Acyl-Homoserine Lactone from Plant-Associated Pseudomonas sp. Influences Solanum lycopersicum Germination and Root Growth. J Chem Ecol 2020; 46:699-706. [DOI: 10.1007/s10886-020-01186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/29/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
|
32
|
Raio A, Brilli F, Baraldi R, Neri L, Puopolo G. Impact of spontaneous mutations on physiological traits and biocontrol activity of Pseudomonas chlororaphis M71. Microbiol Res 2020; 239:126517. [PMID: 32535393 DOI: 10.1016/j.micres.2020.126517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
Three morphological mutants (M71a, M71b, M71c) of the antagonist Pseudomonas chlororaphis M71, naturally arose during a biocontrol trial against the phytopathogenic fungus Fusarium oxysporum f.sp. radicis-lycopersisci. In this study, the three mutants were investigated to elucidate their role in the biocontrol of plant pathogens. M71a and M71b phenotypes were generated by a mutation in the two-component system GacS/GacA. The mutation determined an increase in siderophore production and an impaired ability to release proteases, to swarm, to produce phenazine and AHLs and to colonize tomato roots. In vitro antagonistic activity against different plant pathogens was partially reduced in M71a, while M71b resulted effective only against Pythium ultimum. Biocontrol efficacy against Fusarium oxysporum f.sp. radicis-lycopersisci, was partially reduced in M71a and completely lost in M71b. M71c phenotype was impaired in swarming motility, did not produce biofilms and its antagonistic activity was similar to the parental M71 strain. M71c showed an enhanced ability to colonize tomato roots, on which its progeny in part reverted to the M71 parental phenotype. Volatile organic compounds (VOCs) emitted by all four strains, inhibited the growth of Clavibacter michiganensis subsp. michiganensis and Seiridium cardinale in vitro. Real-time screening of VOCs by PTR-MS combined with GC-MS analysis, showed that methanethiol was the main component of the blend produced by all four M71 strains. However, the emissions of hydrogen cyanide, dimethyl disulfide, 1,3-butadiene and acetone were significantly affected by the three different mutations. These findings highlight that the simultaneous presence of different M71 phenotypes may improve, through the integration of different mechanisms, the ecological fitness and biocontrol efficacy of P. chlororaphis M71.
Collapse
Affiliation(s)
- Aida Raio
- Institute for Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy.
| | - Federico Brilli
- Institute for Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Rita Baraldi
- Institute of BioEconomy, National Research Council, Bologna, Italy
| | - Luisa Neri
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, San Michele all'Adige, 38010, Italy
| | - Gerardo Puopolo
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all'Adige, 38010, Italy
| |
Collapse
|
33
|
Miller C, Gilmore J. Detection of Quorum-Sensing Molecules for Pathogenic Molecules Using Cell-Based and Cell-Free Biosensors. Antibiotics (Basel) 2020; 9:antibiotics9050259. [PMID: 32429345 PMCID: PMC7277912 DOI: 10.3390/antibiotics9050259] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/18/2022] Open
Abstract
Since the discovery and subsequent use of penicillin, antibiotics have been used to treat most bacterial infections in the U.S. Over time, the repeated prescription of many antibiotics has given rise to many antibiotic-resistant microbes. A bacterial strain becomes resistant by horizontal gene transfer, where surviving microbes acquire genetic material or DNA fragments from adjacent bacteria that encode for resistance. In order to avoid significant bacterial resistance, novel and target therapeutics are needed. Further advancement of diagnostic technologies could be used to develop novel treatment strategies. The use of biosensors to detect quorum-sensing signaling molecules has the potential to provide timely diagnostic information toward mitigating the multidrug-resistant bacteria epidemic. Resistance and pathogenesis are controlled by quorum-sensing (QS) circuits. QS systems secrete or passively release signaling molecules when the bacterial concentration reaches a certain threshold. Signaling molecules give an early indication of virulence. Detection of these compounds in vitro or in vivo can be used to identify the onset of infection. Whole-cell and cell-free biosensors have been developed to detect quorum-sensing signaling molecules. This review will give an overview of quorum networks in the most common pathogens found in chronic and acute infections. Additionally, the current state of research surrounding the detection of quorum-sensing molecules will be reviewed. Followed by a discussion of future works toward the advancement of technologies to quantify quorum signaling molecules in chronic and acute infections.
Collapse
|
34
|
Narváez-Barragán DA, de Sandozequi A, Rodríguez M, Estrada K, Tovar-Herrera OE, Martínez-Anaya C. Analysis of two Mexican Pectobacterium brasiliense strains reveals an inverted relationship between c-di-GMP levels with exopolysaccharide production and swarming motility. Microbiol Res 2020; 235:126427. [PMID: 32109688 DOI: 10.1016/j.micres.2020.126427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 10/25/2022]
Abstract
Pectobacterium is a diverse genus of phytopathogenic species from soil and water that cause infection either to restricted or multiple plant hosts. Phylogenetic analysis and metabolic fingerprinting of large numbers of genomes have expanded classification of Pectobacterium members. Pectobacterium brasiliense sp. nov has been elevated to the species level having detached from P. carotovorum. Here we present two P. brasiliense strains BF20 and BF45 isolated in Mexico from Opuntia and tobacco, respectively, which cluster into two different groups in whole genome comparisons with other Pectobacterium. We found that BF20 and BF45 strains are phenotypically different as BF45 showed more severe and rapid symptoms in comparison to BF20 in the host models celery and broccoli. Both strains produced similar levels of the main autoinducers, but BF45 shows an additional low abundant autoinducer compared to strain BF20. The two strains had different levels of c-di-GMP, which regulates the transition from motile to sessile lifestyle. In contrast to BF45, BF20 had the highest levels of c-di-GMP, was more motile (swarming), non-flocculant and less proficient in biofilm formation and exopolysaccharide production. Genomic comparisons revealed that differences in c-di-GMP accumulation and perhaps the associated phenotypes might be due to unique c-di-GMP metabolic genes in these two strains. Our results improve our understanding of the associations between phenotype and genotype and how this has shaped the physiology of Pectobacterium strains.
Collapse
Affiliation(s)
- Delia A Narváez-Barragán
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México
| | - Andrés de Sandozequi
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México
| | - Mabel Rodríguez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México
| | - Karel Estrada
- Unidad de Secuenciación Masiva y Bioinformática. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México
| | - Omar E Tovar-Herrera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México
| | - Claudia Martínez-Anaya
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México.
| |
Collapse
|
35
|
Asif M, Imran M. Effect of Quorum Sensing Inhibitor Agents against Pseudomonas aeruginosa. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020020041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Melior H, Li S, Madhugiri R, Stötzel M, Azarderakhsh S, Barth-Weber S, Baumgardt K, Ziebuhr J, Evguenieva-Hackenberg E. Transcription attenuation-derived small RNA rnTrpL regulates tryptophan biosynthesis gene expression in trans. Nucleic Acids Res 2020; 47:6396-6410. [PMID: 30993322 PMCID: PMC6614838 DOI: 10.1093/nar/gkz274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/01/2019] [Accepted: 04/12/2019] [Indexed: 01/06/2023] Open
Abstract
Ribosome-mediated transcription attenuation is a basic posttranscriptional regulation mechanism in bacteria. Liberated attenuator RNAs arising in this process are generally considered nonfunctional. In Sinorhizobium meliloti, the tryptophan (Trp) biosynthesis genes are organized into three operons, trpE(G), ppiD-trpDC-moaC-moeA, and trpFBA-accD-folC, of which only the first one, trpE(G), contains a short ORF (trpL) in the 5′-UTR and is regulated by transcription attenuation. Under conditions of Trp sufficiency, transcription is terminated between trpL and trpE(G), and a small attenuator RNA, rnTrpL, is produced. Here, we show that rnTrpL base-pairs with trpD and destabilizes the polycistronic trpDC mRNA, indicating rnTrpL-mediated downregulation of the trpDC operon in trans. Although all three trp operons are regulated in response to Trp availability, only in the two operons trpE(G) and trpDC the Trp-mediated regulation is controlled by rnTrpL. Together, our data show that the trp attenuator coordinates trpE(G) and trpDC expression posttranscriptionally by two fundamentally different mechanisms: ribosome-mediated transcription attenuation in cis and base-pairing in trans. Also, we present evidence that rnTrpL-mediated regulation of trpDC genes expression in trans is conserved in Agrobacterium and Bradyrhizobium, suggesting that the small attenuator RNAs may have additional conserved functions in the control of bacterial gene expression.
Collapse
Affiliation(s)
- Hendrik Melior
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Siqi Li
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University, Giessen, 35392, Germany
| | - Maximilian Stötzel
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Saina Azarderakhsh
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Susanne Barth-Weber
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - Kathrin Baumgardt
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, 35392, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University, Giessen, 35392, Germany
| | | |
Collapse
|
37
|
Vesty EF, Whitbread AL, Needs S, Tanko W, Jones K, Halliday N, Ghaderiardakani F, Liu X, Cámara M, Coates JC. Cross-kingdom signalling regulates spore germination in the moss Physcomitrella patens. Sci Rep 2020; 10:2614. [PMID: 32054953 PMCID: PMC7018845 DOI: 10.1038/s41598-020-59467-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/17/2020] [Indexed: 01/10/2023] Open
Abstract
Plants live in close association with microorganisms that can have beneficial or detrimental effects. The activity of bacteria in association with flowering plants has been extensively analysed. Bacteria use quorum-sensing as a way of monitoring their population density and interacting with their environment. A key group of quorum sensing molecules in Gram-negative bacteria are the N-acylhomoserine lactones (AHLs), which are known to affect the growth and development of both flowering plants, including crops, and marine algae. Thus, AHLs have potentially important roles in agriculture and aquaculture. Nothing is known about the effects of AHLs on the earliest-diverging land plants, thus the evolution of AHL-mediated bacterial-plant/algal interactions is unknown. In this paper, we show that AHLs can affect spore germination in a representative of the earliest plants on land, the Bryophyte moss Physcomitrella patens. Furthermore, we demonstrate that sporophytes of some wild isolates of Physcomitrella patens are associated with AHL-producing bacteria.
Collapse
Affiliation(s)
- Eleanor F Vesty
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,University Centre Shrewsbury, Guildhall, Frankwell Quay, Shrewsbury, Shropshire, UK
| | - Amy L Whitbread
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,Karlsruhe Institute of Technology, Karlsruhe, Baden-Württemberg, Germany
| | - Sarah Needs
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,School of Life, Health and Chemical Sciences, Open University, Walton Hall, Kents Hill, Milton Keynes, UK
| | - Wesal Tanko
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Kirsty Jones
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Nigel Halliday
- National Biofilm Innovations Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | | | - Xiaoguang Liu
- National Biofilm Innovations Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham, UK.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Miguel Cámara
- National Biofilm Innovations Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham, UK.
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
38
|
Deciphering the Symbiotic Significance of Quorum Sensing Systems of Sinorhizobium fredii HH103. Microorganisms 2020; 8:microorganisms8010068. [PMID: 31906451 PMCID: PMC7022240 DOI: 10.3390/microorganisms8010068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 01/21/2023] Open
Abstract
Quorum sensing (QS) is a bacterial cell-to-cell signaling mechanism that collectively regulates and synchronizes behaviors by means of small diffusible chemical molecules. In rhizobia, QS systems usually relies on the synthesis and detection of N-acyl-homoserine lactones (AHLs). In the model bacterium Sinorhizobium meliloti functions regulated by the QS systems TraI-TraR and SinI-SinR(-ExpR) include plasmid transfer, production of surface polysaccharides, motility, growth rate and nodulation. These systems are also present in other bacteria of the Sinorhizobium genus, with variations at the species and strain level. In Sinorhizobium fredii NGR234 phenotypes regulated by QS are plasmid transfer, growth rate, sedimentation, motility, biofilm formation, EPS production and copy number of the symbiotic plasmid (pSym). The analysis of the S. fredii HH103 genomes reveal also the presence of both QS systems. In this manuscript we characterized the QS systems of S. fredii HH103, determining that both TraI and SinI AHL-synthases proteins are responsible of the production of short- and long-chain AHLs, respectively, at very low and not physiological concentrations. Interestingly, the main HH103 luxR-type genes, expR and traR, are split into two ORFs, suggesting that in S. fredii HH103 the corresponding carboxy-terminal proteins, which contain the DNA-binding motives, may control target genes in an AHL-independent manner. The presence of a split traR gene is common in other S. fredii strains.
Collapse
|
39
|
Gosai J, Anandhan S, Bhattacharjee A, Archana G. Elucidation of quorum sensing components and their role in regulation of symbiotically important traits in Ensifer nodulating pigeon pea. Microbiol Res 2020; 231:126354. [DOI: 10.1016/j.micres.2019.126354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/12/2019] [Accepted: 10/13/2019] [Indexed: 11/15/2022]
|
40
|
Gajdács M, Spengler G. The Role of Drug Repurposing in the Development of Novel Antimicrobial Drugs: Non-Antibiotic Pharmacological Agents as Quorum Sensing-Inhibitors. Antibiotics (Basel) 2019; 8:E270. [PMID: 31861228 PMCID: PMC6963710 DOI: 10.3390/antibiotics8040270] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background: The emergence of multidrug-resistant organisms (MDROs) is a global public health issue, severely hindering clinicians in administering appropriate antimicrobial therapy. Drug repurposing is a drug development strategy, during which new pharmacological applications are identified for already approved drugs. From the viewpoint of the development of virulence inhibitors, inhibition of quorum sensing (QS) is a promising route because various important features in bacterial physiology and virulence are mediated by QS-dependent gene expression. Methods: Forty-five pharmacological agents, encompassing a wide variety of different chemical structures and mechanisms of action, were tested during our experiments. The antibacterial activity of the compounds was tested using the broth microdilution method. Screening and semi-quantitative assessment of QS-inhibition by the compounds was performed using QS-signal molecule-producing and indicator strains. Results: Fourteen pharmaceutical agents showed antibacterial activity in the tested concentration range, while eight drugs (namely 5-fluorouracil, metamizole-sodium, cisplatin, methotrexate, bleomycin, promethazine, chlorpromazine, and thioridazine) showed dose-dependent QS-inhibitory activity in the in vitro model systems applied during the experiments. Conclusions: Virulence inhibitors represent an attractive alternative strategy to combat bacterial pathogens more efficiently. Some of the tested compounds could be considered potential QS-inhibitory agents, warranting further experiments involving additional model systems to establish the extent of their efficacy.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, 6720 Szeged, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, 6720 Szeged, Hungary;
| | - Gabriella Spengler
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, 6720 Szeged, Hungary;
| |
Collapse
|
41
|
AidB, a Novel Thermostable N-Acylhomoserine Lactonase from the Bacterium Bosea sp. Appl Environ Microbiol 2019; 85:AEM.02065-19. [PMID: 31604771 DOI: 10.1128/aem.02065-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/04/2019] [Indexed: 11/20/2022] Open
Abstract
Many Gram-negative bacteria employ N-acylhomoserine lactones (AHLs) as quorum-sensing (QS) signal molecules to regulate virulence expression in a density-dependent manner. Quorum quenching (QQ) via enzymatic inactivation of AHLs is a promising strategy to reduce bacterial infections and drug resistance. Herein, a thermostable AHL lactonase (AidB), which could degrade different AHLs, with or without a substitution of carbonyl or hydroxyl at the C-3 position, was identified from the soil bacterium Bosea sp. strain F3-2. Ultrahigh-performance liquid chromatography analysis demonstrated that AidB is an AHL lactonase that hydrolyzes the ester bond of the homoserine lactone (HSL) ring. AidB was thermostable in the range 30 to 80°C and showed maximum activity after preincubation at 60°C for 30 min. The optimum temperature of AidB was 60°C, and the enzyme could be stably stored in double-distilled water (ddH2O) at 4°C or room temperature. AidB homologs were found only in Rhizobiales and Rhodospirillales of the Alphaproteobacteria AidB from Agrobacterium tumefaciens and AidB from Rhizobium multihospitium (with amino acid identities of 50.6% and 52.8% to AidB, respectively) also showed thermostable AHL degradation activity. When introduced into bacteria, plasmid-expressed AidB attenuated pyocyanin production by Pseudomonas aeruginosa PAO1 and the pathogenicity of Pectobacterium carotovorum subsp. carotovorum Z3-3, suggesting that AidB is a potential therapeutic agent by degrading AHLs.IMPORTANCE A quorum-sensing system using AHLs as the signal in many bacterial pathogens is a critical virulence regulator and an attractive target for anti-infective drugs. In this work, we identified a novel AHL lactonase, AidB, from a soil bacterial strain, Bosea sp. F3-2. The expression of aidB reduced the production of AHL signals and QS-dependent virulence factors in Pseudomonas aeruginosa and Pectobacterium carotovorum The homologs of AidB with AHL-degrading activities were found only in several genera belonging to the Alphaproteobacteria Remarkably, AidB is a thermostable enzyme that retained its catalytic activity after treatment at 80°C for 30 min and exhibits reliable storage stability at both 4°C and room temperature. These properties might make it more suitable for practical application.
Collapse
|
42
|
Cervantes L, Miranda-Sánchez F, Torres Tejerizo G, Romero D, Brom S. Plasmid pSfr64a and the symbiotic plasmid pSfr64b of Sinorhizobium fredii GR64 control each other's conjugative transfer through quorum-sensing elements. Plasmid 2019; 106:102443. [PMID: 31689451 DOI: 10.1016/j.plasmid.2019.102443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/29/2019] [Accepted: 09/17/2019] [Indexed: 11/27/2022]
Abstract
Rhizobia are nitrogen-fixing symbionts of plants. Their genomes frequently contain large plasmids, some of which are able to perform conjugative transfer. Plasmid pSfr64a from Sinorhizobium fredii GR64 is a conjugative plasmid, whose transfer is regulated by quorum sensing genes encoded by itself (traR64a, traI64a), in the symbiotic plasmid pSfr64b (traR64b, traI64b), and in the chromosome (ngrI). Also, transfer of pSfr64b requires quorum sensing elements encoded in this plasmid (traR64b, traI64b), in pSfr64a (traR64a), and in the chromosome (ngrI). These results demonstrate that pSfr64a and the symbiotic plasmid depend on each other for conjugative transfer. Plasmid pSfr64a from S. fredii GR64 is unable to transfer from the genomic background of Rhizobium etli CFN42. Our results show that the relaxase of pRet42a is able to process the oriT of pSfr64a, and viceversa, underlining their functional similarity and suggesting that in addition to the external signals, the "cytoplasmic environment" may pose a barrier to plasmid dissemination, even if the plasmids are functional in other aspects.
Collapse
Affiliation(s)
- Laura Cervantes
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Fabiola Miranda-Sánchez
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gonzalo Torres Tejerizo
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico; Instituto de Biotecnología y Biología Molecular (IBBM) - CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - David Romero
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
| |
Collapse
|
43
|
Chane A, Barbey C, Robert M, Merieau A, Konto-Ghiorghi Y, Beury-Cirou A, Feuilloley M, Pátek M, Gobert V, Latour X. Biocontrol of Soft Rot: Confocal Microscopy Highlights Virulent Pectobacterial Communication and Its Jamming by Rhodococcal Quorum-Quenching. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:802-812. [PMID: 30645157 DOI: 10.1094/mpmi-11-18-0314-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Confocal laser-scanning microscopy was chosen to observe the colonization and damage caused by the soft rot Pectobacterium atrosepticum and the protection mediated by the biocontrol agent Rhodococcus erythropolis. We developed dual-color reporter strains suited for monitoring quorum-sensing and quorum-quenching activities leading to maceration or biocontrol, respectively. A constitutively expressed cyan or red fluorescent protein served as a cell tag for plant colonization, while an inducible expression reporter system based on the green fluorescent protein gene enabled the simultaneous recording of signaling molecule production, detection, or degradation. The dual-colored pathogen and biocontrol strains were used to coinoculate potato tubers. At cellular quorum, images revealed a strong pectobacterial quorum-sensing activity, especially at the plant cell walls, as well as a concomitant rhodococcal quorum-quenching response, at both the single-cell and microcolony levels. The generated biosensors appear to be promising and complementary tools useful for molecular and cellular studies of bacterial communication and interference.
Collapse
Affiliation(s)
- Andrea Chane
- 1 Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)-Normandie Université-LMSM, 55 rue Saint-Germain, 27000 Evreux, France and Structure Fédérative de Recherche Normandie Végétale 4277
| | - Corinne Barbey
- 1 Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)-Normandie Université-LMSM, 55 rue Saint-Germain, 27000 Evreux, France and Structure Fédérative de Recherche Normandie Végétale 4277
- 2 Seeds Innovation Protection Research and Environment, Route de la petite chaussée, 76110 Bretteville du Grand-Caux and Rue des Champs Potez, 62217 Achicourt, France
| | - Magalie Robert
- 1 Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)-Normandie Université-LMSM, 55 rue Saint-Germain, 27000 Evreux, France and Structure Fédérative de Recherche Normandie Végétale 4277
| | - Annabelle Merieau
- 1 Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)-Normandie Université-LMSM, 55 rue Saint-Germain, 27000 Evreux, France and Structure Fédérative de Recherche Normandie Végétale 4277
| | - Yoan Konto-Ghiorghi
- 1 Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)-Normandie Université-LMSM, 55 rue Saint-Germain, 27000 Evreux, France and Structure Fédérative de Recherche Normandie Végétale 4277
| | - Amélie Beury-Cirou
- 2 Seeds Innovation Protection Research and Environment, Route de la petite chaussée, 76110 Bretteville du Grand-Caux and Rue des Champs Potez, 62217 Achicourt, France
- 3 French Federation of seed potato growers (FN3PT/RD3PT), 43-45 rue de Naples, 75008 Paris, France
| | - Marc Feuilloley
- 1 Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)-Normandie Université-LMSM, 55 rue Saint-Germain, 27000 Evreux, France and Structure Fédérative de Recherche Normandie Végétale 4277
| | - Miroslav Pátek
- 4 Institute of Microbiology of the CAS, v.v.i. Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Virginie Gobert
- 2 Seeds Innovation Protection Research and Environment, Route de la petite chaussée, 76110 Bretteville du Grand-Caux and Rue des Champs Potez, 62217 Achicourt, France
- 3 French Federation of seed potato growers (FN3PT/RD3PT), 43-45 rue de Naples, 75008 Paris, France
| | - Xavier Latour
- 1 Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)-Normandie Université-LMSM, 55 rue Saint-Germain, 27000 Evreux, France and Structure Fédérative de Recherche Normandie Végétale 4277
| |
Collapse
|
44
|
Girard L. Quorum sensing in Vibrio spp.: the complexity of multiple signalling molecules in marine and aquatic environments. Crit Rev Microbiol 2019; 45:451-471. [PMID: 31241379 DOI: 10.1080/1040841x.2019.1624499] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Quorum sensing (QS) is a density-dependent mechanism enabling bacteria to coordinate their actions via the release of small diffusible molecules named autoinducers (AIs). Vibrio spp. are able to adapt to changing environmental conditions by using a wide range of physiological mechanisms and many species pose a threat for human health and diverse marine and estuarine ecosystems worldwide. Cell-to-cell communication controls many of their vital functions such as niche colonization, survival strategies, or virulence. In this review, I summarize (1) the different known QS pathways (2) the diversity of AIs as well as their biological functions, and (3) the QS-mediated interactions between Vibrio and other organisms. However, the current knowledge is limited to a few pathogenic or bioluminescent species and in order to provide a genus-wide view an inventory of QS genes among 87 Vibrio species has been made. The large diversity of signal molecules and their differential effects on a particular physiological function suggest that the complexity of multiple signalling systems within bacterial communities is far from being fully understood. I question here the real level of specificity of such communication in the environment and discuss the different perspectives in order to better apprehend QS in natural habitats.
Collapse
Affiliation(s)
- Léa Girard
- Centre of Microbial and Plant Genetics , KU Leuven , Belgium
| |
Collapse
|
45
|
Diel B, Dequivre M, Wisniewski‐Dyé F, Vial L, Hommais F. A novel plasmid‐transcribed regulatory sRNA, QfsR, controls chromosomal polycistronic gene expression in
Agrobacterium fabrum. Environ Microbiol 2019; 21:3063-3075. [DOI: 10.1111/1462-2920.14704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/04/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Benjamin Diel
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5240 Microbiologie Adaptation et Pathogénie F‐69622 Villeurbanne France
- CNRSUMR 5557 Ecologie Microbienne F‐69622 Villeurbanne France
- INRAUMR1418 Ecologie Microbienne F‐69622 Villeurbanne France
| | - Magali Dequivre
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5240 Microbiologie Adaptation et Pathogénie F‐69622 Villeurbanne France
| | - Florence Wisniewski‐Dyé
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5557 Ecologie Microbienne F‐69622 Villeurbanne France
- INRAUMR1418 Ecologie Microbienne F‐69622 Villeurbanne France
| | - Ludovic Vial
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5557 Ecologie Microbienne F‐69622 Villeurbanne France
- INRAUMR1418 Ecologie Microbienne F‐69622 Villeurbanne France
| | - Florence Hommais
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5240 Microbiologie Adaptation et Pathogénie F‐69622 Villeurbanne France
| |
Collapse
|
46
|
Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, Falter-Braun P. Systems Biology of Plant-Microbiome Interactions. MOLECULAR PLANT 2019; 12:804-821. [PMID: 31128275 DOI: 10.1016/j.molp.2019.05.006] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 05/02/2023]
Abstract
In natural environments, plants are exposed to diverse microbiota that they interact with in complex ways. While plant-pathogen interactions have been intensely studied to understand defense mechanisms in plants, many microbes and microbial communities can have substantial beneficial effects on their plant host. Such beneficial effects include improved acquisition of nutrients, accelerated growth, resilience against pathogens, and improved resistance against abiotic stress conditions such as heat, drought, and salinity. However, the beneficial effects of bacterial strains or consortia on their host are often cultivar and species specific, posing an obstacle to their general application. Remarkably, many of the signals that trigger plant immune responses are molecularly highly similar and often identical in pathogenic and beneficial microbes. Thus, it is unclear what determines the outcome of a particular microbe-host interaction and which factors enable plants to distinguish beneficials from pathogens. To unravel the complex network of genetic, microbial, and metabolic interactions, including the signaling events mediating microbe-host interactions, comprehensive quantitative systems biology approaches will be needed.
Collapse
Affiliation(s)
- Patricia A Rodriguez
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Michael Rothballer
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Soumitra Paul Chowdhury
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Thomas Nussbaumer
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Institute of Environmental Medicine (IEM), UNIKA-T, Technical University of Munich, Augsburg, Germany
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Science Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany.
| |
Collapse
|
47
|
Quorum-dependent expression of rsmX and rsmY, small non-coding RNAs, in Pseudomonas syringae. Microbiol Res 2019; 223-225:72-78. [DOI: 10.1016/j.micres.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/19/2019] [Accepted: 04/11/2019] [Indexed: 01/01/2023]
|
48
|
Guo QQ, Zhang WB, Zhang C, Song YL, Liao YL, Ma JC, Yu YH, Wang HH. Characterization of 3-Oxacyl-Acyl Carrier Protein Reductase Homolog Genes in Pseudomonas aeruginosa PAO1. Front Microbiol 2019; 10:1028. [PMID: 31231314 PMCID: PMC6558427 DOI: 10.3389/fmicb.2019.01028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
Bacterial 3-oxoacyl-ACP reductase (OAR) catalyzes the 3-oxoacyl-ACP reduction step in the fatty acid synthesis pathway. At least 12 genes in the Pseudomonas aeruginosa genome are annotated as OAR-encoding genes. In this study, we characterized the functions of these genes with biochemical and genetic techniques. With the exception of PA2967, which encodes FabG, an essential protein in fatty acid synthesis, only the PA4389 and PA4786 gene products had OAR activity, and the single deletion of these two genes reduced the ability of P. aeruginosa to produce several specific quorum-sensing (QS) signals. However, PA4389 and PA4786 do not have key roles in fatty acid synthesis. Moreover, although most OAR homologs had no OAR activity, some may function in carbon utilization. The PA3128 product may play a role in the TCA cycle, and PA0182 and PA1470 seem to be required for the utilization of several amino acids. The rest of the OAR homologs have no roles in carbon utilization, but the deletion of one of these genes might affect the production of virulence factors by P. aeruginosa. We conclude that most OAR homolog genes do not encode OAR enzymes, and that these proteins do not function in fatty acid synthesis.
Collapse
Affiliation(s)
- Qiao-Qiao Guo
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Wen-Bin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Chao Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yu-Lu Song
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yu-Ling Liao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jin-Cheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yong-Hong Yu
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Hai-Hong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
49
|
Castellani LG, Nilsson JF, Wibberg D, Schlüter A, Pühler A, Brom S, Pistorio M, Torres Tejerizo G. Insight into the structure, function and conjugative transfer of pLPU83a, an accessory plasmid of Rhizobium favelukesii LPU83. Plasmid 2019; 103:9-16. [DOI: 10.1016/j.plasmid.2019.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/11/2019] [Accepted: 03/24/2019] [Indexed: 11/26/2022]
|
50
|
Gualpa J, Lopez G, Nievas S, Coniglio A, Halliday N, Cámara M, Cassán F. Azospirillum brasilense Az39, a model rhizobacterium with AHL quorum-quenching capacity. J Appl Microbiol 2019; 126:1850-1860. [PMID: 30924989 DOI: 10.1111/jam.14269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/06/2019] [Accepted: 03/24/2019] [Indexed: 12/20/2022]
Abstract
AIMS The aim of this research was to analyse the quorum-sensing (QS) and quorum-quenching (QQ) mechanisms based on N-acyl-l-homoserine lactones (AHLs) in Azospirillum brasilense Az39, a strain with remarkable capacity to benefit a wide range of crops under agronomic conditions. METHODS AND RESULTS We performed an in silico and in vitro analysis of the quorum mechanisms in A. brasilense Az39. The results obtained in vitro using the reporter strains Chromobacterium violaceum and Agrobacterium tumefaciens and liquid chromatography coupled with mass-mass spectrometry analysis showed that although Az39 does not produce AHL molecules, it is capable of degrading them by at least two hypothetical enzymes identified by bioinformatics approach, associated with the bacterial cell. In Az39 cultures supplemented with 500 nmol l-1 of the C3 unsubstituted AHLs (C4, C6, C8, C10, C12, C14), AHL levels were lower than in noninoculated LB media controls. Similar results were observed upon the addition of AHLs with hydroxy (OH-) and keto (oxo-) substitutions in C3. These results not only demonstrate the ability of Az39 to degrade AHLs. They also show the wide spectrum of molecules that can be degraded by this bacterium. CONCLUSIONS Although A. brasilense Az39 is a silent bacterium unable to produce AHL signals, it is able to interrupt the communications between other bacteria and/or plants by a QQ activity. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report confirming by unequivocal methodology the ability of A. brasilense, one of the most agriculturally used benefic bacteria around the world, to degrade AHLs by a QQ mechanism.
Collapse
Affiliation(s)
- J Gualpa
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - G Lopez
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - S Nievas
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - A Coniglio
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - N Halliday
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - M Cámara
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - F Cassán
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| |
Collapse
|