1
|
Zhang X, Vinatzer BA, Li S. Hyperspectral imaging analysis for early detection of tomato bacterial leaf spot disease. Sci Rep 2024; 14:27666. [PMID: 39532930 PMCID: PMC11557939 DOI: 10.1038/s41598-024-78650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Recent advancements in hyperspectral imaging (HSI) for early disease detection have shown promising results, yet there is a lack of validated high-resolution (spatial and spectral) HSI data representing the responses of plants at different stages of leaf disease progression. To address these gaps, we used bacterial leaf spot (Xanthomonas perforans) of tomato as a model system. Hyperspectral images of tomato leaves, validated against in planta pathogen populations for seven consecutive days, were analyzed to reveal differences between infected and healthy leaves. Machine learning models were trained using leaf-level full spectra data, leaf-level Vegetation index (VI) data, and pixel-level full spectra data at four disease progression stages. The results suggest that HSI can detect disease on tomato leaves at pre-symptomatic stages and differentiate bacterial disease spots from abiotic leaf spots. Using VI data as features for machine learning improved overall classification performance by 26-37% compared to the direct use of raw data. Critical wavelength bands and VIs varied across disease progression stages, suggesting that pre-symptomatic disease detection relied more on changes in leaf water content (1400 nm) and plant defense hormone-mediated responses (750 nm) rather than changes in leaf pigments or internal structure (800-900 nm), which may become more crucial during symptomatic stages. In conclusion, this study provides valuable insights into the dynamics of bacterial spot disease, revealing the potential benefits of leaf structure segmentation and VI group pattern analysis in HSI studies for the early detection of leaf diseases.
Collapse
Affiliation(s)
- Xuemei Zhang
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Boris A Vinatzer
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
2
|
Mahlein AK, Arnal Barbedo JG, Chiang KS, Del Ponte EM, Bock CH. From Detection to Protection: The Role of Optical Sensors, Robots, and Artificial Intelligence in Modern Plant Disease Management. PHYTOPATHOLOGY 2024; 114:1733-1741. [PMID: 38810274 DOI: 10.1094/phyto-01-24-0009-per] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In the past decade, there has been a recognized need for innovative methods to monitor and manage plant diseases, aiming to meet the precision demands of modern agriculture. Over the last 15 years, significant advances in the detection, monitoring, and management of plant diseases have been made, largely propelled by cutting-edge technologies. Recent advances in precision agriculture have been driven by sophisticated tools such as optical sensors, artificial intelligence, microsensor networks, and autonomous driving vehicles. These technologies have enabled the development of novel cropping systems, allowing for targeted management of crops, contrasting with the traditional, homogeneous treatment of large crop areas. The research in this field is usually a highly collaborative and interdisciplinary endeavor. It brings together experts from diverse fields such as plant pathology, computer science, statistics, engineering, and agronomy to forge comprehensive solutions. Despite the progress, translating the advancements in the precision of decision-making or automation into agricultural practice remains a challenge. The knowledge transfer to agricultural practice and extension has been particularly challenging. Enhancing the accuracy and timeliness of disease detection continues to be a priority, with data-driven artificial intelligence systems poised to play a pivotal role. This perspective article addresses critical questions and challenges faced in the implementation of digital technologies for plant disease management. It underscores the urgency of integrating innovative technological advances with traditional integrated pest management. It highlights unresolved issues regarding the establishment of control thresholds for site-specific treatments and the necessary alignment of digital technology use with regulatory frameworks. Importantly, the paper calls for intensified research efforts, widespread knowledge dissemination, and education to optimize the application of digital tools for plant disease management, recognizing the intersection of technology's potential with its current practical limitations.
Collapse
Affiliation(s)
- Anne-Katrin Mahlein
- Institute of Sugar Beet Research (IfZ), Holtenser Landstrasse 77 37079 Göttingen, Germany
| | | | - Kuo-Szu Chiang
- Division of Biometrics, Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Emerson M Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Clive H Bock
- U.S. Department of Agriculture-Agricultural Research Service Southeastern Fruit and Tree Nut Research Station, Byron, GA 31008, U.S.A
| |
Collapse
|
3
|
Maina AW, Oerke EC. Characterization of Rice- Magnaporthe oryzae Interactions by Hyperspectral Imaging. PLANT DISEASE 2023; 107:3139-3147. [PMID: 37871165 DOI: 10.1094/pdis-10-22-2294-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Hyperspectral imaging has the potential to detect, characterize, and quantify plant diseases objectively and nondestructively to improve phenotyping in breeding for disease resistance. In this study, leaf spectral reflectance characteristics of five rice genotypes diseased with blast caused by three Magnaporthe oryzae isolates differing in virulence were compared with visual disease ratings under greenhouse conditions. Spectral information (140 wavebands, range 450 to 850 nm) of infected leaves was recorded with a hyperspectral imaging microscope at 3, 5, and 7 days postinoculation to examine differences in symptom phenotypes and to characterize the compatibility of host-pathogen interactions. Depending on the rice genotype × M. oryzae genotype interaction, blast symptoms varied from tiny necrosis to enlarged lesions with symptom subareas differing in tissue coloration and indicated gene-for-gene-specific interactions. The blast symptom types were differentiated based on their spectral characteristics in the visible/near-infrared range. Symptom-specific spectral signatures and differences in the composition of leaf blast symptom type(s) resulted in unique spectral and spatial patterns of the rice × M. oryzae interactions based on the size, shape, and color of the symptom subareas. Spectral angle mapper classification of spectra enabled (i) discrimination between healthy (green) and diseased tissue of rice genotypes, (ii) classification and quantification of different blast symptom subareas, and (iii) grading of the host-pathogen compatibility (low - intermediate - high). Hyperspectral imaging was more sensitive to small changes in disease resistance than visual disease assessments and enabled the characterization of various types of resistance/susceptibility reactions of tissue subjected to M. oryzae infection.
Collapse
Affiliation(s)
- Angeline W Maina
- Institute for Crop Science and Resource Conservation (INRES) - Plant Pathology, Rheinische Friedrich-Wilhelms University of Bonn, Bonn, Germany
| | - Erich-Christian Oerke
- Institute for Crop Science and Resource Conservation (INRES) - Plant Pathology, Rheinische Friedrich-Wilhelms University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Garrett KA, Bebber DP, Etherton BA, Gold KM, Plex Sulá AI, Selvaraj MG. Climate Change Effects on Pathogen Emergence: Artificial Intelligence to Translate Big Data for Mitigation. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:357-378. [PMID: 35650670 DOI: 10.1146/annurev-phyto-021021-042636] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant pathology has developed a wide range of concepts and tools for improving plant disease management, including models for understanding and responding to new risks from climate change. Most of these tools can be improved using new advances in artificial intelligence (AI), such as machine learning to integrate massive data sets in predictive models. There is the potential to develop automated analyses of risk that alert decision-makers, from farm managers to national plant protection organizations, to the likely need for action and provide decision support for targeting responses. We review machine-learning applications in plant pathology and synthesize ideas for the next steps to make the most of these tools in digital agriculture. Global projects, such as the proposed global surveillance system for plant disease, will be strengthened by the integration of the wide range of new data, including data from tools like remote sensors, that are used to evaluate the risk ofplant disease. There is exciting potential for the use of AI to strengthen global capacity building as well, from image analysis for disease diagnostics and associated management recommendations on farmers' phones to future training methodologies for plant pathologists that are customized in real-time for management needs in response to the current risks. International cooperation in integrating data and models will help develop the most effective responses to new challenges from climate change.
Collapse
Affiliation(s)
- K A Garrett
- Plant Pathology Department, University of Florida, Gainesville, Florida, USA;
- Food Systems Institute, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - D P Bebber
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - B A Etherton
- Plant Pathology Department, University of Florida, Gainesville, Florida, USA;
- Food Systems Institute, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - K M Gold
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Sciences, Cornell AgriTech, Cornell University, Geneva, New York, USA
| | - A I Plex Sulá
- Plant Pathology Department, University of Florida, Gainesville, Florida, USA;
- Food Systems Institute, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - M G Selvaraj
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
5
|
Kuska MT, Heim RHJ, Geedicke I, Gold KM, Brugger A, Paulus S. Digital plant pathology: a foundation and guide to modern agriculture. JOURNAL OF PLANT DISEASES AND PROTECTION : SCIENTIFIC JOURNAL OF THE GERMAN PHYTOMEDICAL SOCIETY (DPG) 2022; 129:457-468. [PMID: 35502325 PMCID: PMC9046714 DOI: 10.1007/s41348-022-00600-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Over the last 20 years, researchers in the field of digital plant pathology have chased the goal to implement sensors, machine learning and new technologies into knowledge-based methods for plant phenotyping and plant protection. However, the application of swiftly developing technologies has posed many challenges. Greenhouse and field applications are complex and differ in their study design requirements. Selecting a sensor type (e.g., thermography or hyperspectral imaging), sensor platform (e.g., rovers, unmanned aerial vehicles, or satellites), and the problem-specific spatial and temporal scale adds to the challenge as all pathosystems are unique and differ in their interactions and symptoms, or lack thereof. Adding host-pathogen-environment interactions across time and space increases the complexity even further. Large data sets are necessary to enable a deeper understanding of these interactions. Therefore, modern machine learning methods are developed to realize the fast data analysis of such complex data sets. This reduces not only human effort but also enables an objective data perusal. Especially deep learning approaches show a high potential to identify probable cohesive parameters during plant-pathogen-environment interactions. Unfortunately, the performance and reliability of developed methods are often doubted by the potential user. Gaining their trust is thus needed for real field applications. Linking biological causes to machine learning features and a clear communication, even for non-experts of such results, is a crucial task that will bridge the gap between theory and praxis of a newly developed application. Therefore, we suggest a global connection of experts and data as the basis for defining a common and goal-oriented research roadmap. Such high interconnectivity will likely increase the chances of swift, successful progress in research and practice. A coordination within international excellence clusters will be useful to reduce redundancy of research while supporting the creation and progress of complementary research. With this review, we would like to discuss past research, achievements, as well as recurring and new challenges. Having such a retrospect available, we will attempt to reveal future challenges and provide a possible direction elevating the next decade of research in digital plant pathology.
Collapse
Affiliation(s)
- Matheus Thomas Kuska
- North Rhine-Westphalia Chamber of Agriculture, Gartenstraße 11, 50765 Cologne, Germany
| | - René H. J. Heim
- Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079 Göttingen, Germany
| | - Ina Geedicke
- Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079 Göttingen, Germany
| | - Kaitlin M. Gold
- Plant Pathology and Plant-Microbe Biology College of Agriculture and Life Science, Cornell University, Cornell AgriTech, 15 Castle Creek Drive, Geneva, 14456 USA
| | - Anna Brugger
- Bildungs- und Beratungszentrum Arenenberg, Arenenberg 8, 8268 Salenstein, Switzerland
| | - Stefan Paulus
- Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079 Göttingen, Germany
| |
Collapse
|
6
|
Abstract
Plant disease threatens the environmental and financial sustainability of crop production, causing $220 billion in annual losses. The dire threat disease poses to modern agriculture demands tools for better detection and monitoring to prevent crop loss and input waste. The nascent discipline of plant disease sensing, or the science of using proximal and/or remote sensing to detect and diagnose disease, offers great promise to extend monitoring to previously unachievable resolutions, a basis to construct multiscale surveillance networks for early warning, alert, and response at low latency, an opportunity to mitigate loss while optimizing protection, and a dynamic new dimension to agricultural systems biology. Despite its revolutionary potential, plant disease sensing remains an underdeveloped discipline, with challenges facing both fundamental study and field application. This article offers a perspective on the current state and future of plant disease sensing, highlights remaining gaps to be filled, and presents a bold vision for the future of global agriculture.
Collapse
|