1
|
Thach B, Samarajeewa N, Li Y, Heng S, Tsai T, Pangestu M, Catt S, Nie G. Podocalyxin molecular characteristics and endometrial expression: high conservation between humans and macaques but divergence in mice†. Biol Reprod 2022; 106:1143-1158. [PMID: 35284933 DOI: 10.1093/biolre/ioac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/31/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
Podocalyxin (PODXL) is a newly identified key negative regulator of human endometrial receptivity, specifically down-regulated in the luminal epithelium at receptivity to permit embryo implantation. Here, we bioinformatically compared the molecular characteristics of PODXL among the human, rhesus macaque and mouse, determined by immunohistochemistry and in situ hybridization (mouse tissues) whether endometrial PODXL expression is conserved across the three species, and examined if PODXL inhibits mouse embryo attachment in vitro. The PODXL gene, mRNA and protein sequences showed greater similarities between humans and macaques than with mice. In all species, PODXL was expressed in endometrial luminal/glandular epithelia and endothelia. In macaques (n = 9), luminal PODXL was significantly down-regulated when receptivity is developed, consistent with the pattern found in women. At receptivity PODXL was also reduced in shallow glands, whereas endothelial expression was unchanged across the menstrual cycle. In mice, endometrial PODXL did not vary considerably across the estrous cycle (n = 16); however, around embryo attachment on d4.5 of pregnancy (n = 4), luminal PODXL was greatly reduced especially near the site of embryo attachment. Mouse embryos failed to attach or thrive when co-cultured on a monolayer of Ishikawa cells overexpressing PODXL. Thus, endometrial luminal PODXL expression is down-regulated for embryo implantation in all species examined, and PODXL inhibits mouse embryo implantation. Rhesus macaques share greater conservations with humans than mice in PODXL molecular characteristics and regulation, thus represent a better animal model for functional studies of endometrial PODXL for treatment of human fertility.
Collapse
Affiliation(s)
- Bothidah Thach
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3800, Australia.,Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
| | - Nirukshi Samarajeewa
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Ying Li
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Sophea Heng
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Tesha Tsai
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Mulyoto Pangestu
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, 3800, Australia
| | - Sally Catt
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, 3800, Australia
| | - Guiying Nie
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3800, Australia.,Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
| |
Collapse
|
2
|
Sadigh AR, Mihanfar A, Fattahi A, Latifi Z, Akbarzadeh M, Hajipour H, Bahrami‐asl Z, Ghasemzadeh A, Hamdi K, Nejabati HR, Nouri M. S100 protein family and embryo implantation. J Cell Biochem 2019; 120:19229-19244. [DOI: 10.1002/jcb.29261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Aydin Raei Sadigh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Aynaz Mihanfar
- Department of Biochemistry, Faculty of Medicine Urmia University of Medical Sciences Urmia Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
- Stem Cell And Regenerative Medicine Institute Tabriz University of Medical Sciences Tabriz Iran
| | - Maryam Akbarzadeh
- Stem Cell And Regenerative Medicine Institute Tabriz University of Medical Sciences Tabriz Iran
- Department of Biochemistry Erasmus University Medical Center Rotterdam The Netherlands
| | - Hamed Hajipour
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Zahra Bahrami‐asl
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Aliyeh Ghasemzadeh
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Kobra Hamdi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Stem Cell And Regenerative Medicine Institute Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Nouri
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
- Stem Cell And Regenerative Medicine Institute Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
3
|
Global decrease in the expression of signalling pathways’ genes in murine uterus during preimplantation pregnancy. Reprod Biol 2017; 17:89-96. [DOI: 10.1016/j.repbio.2017.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/12/2016] [Accepted: 01/04/2017] [Indexed: 01/25/2023]
|
4
|
Herington JL, Guo Y, Reese J, Paria BC. Gene profiling the window of implantation: Microarray analyses from human and rodent models. ACTA ACUST UNITED AC 2016; 2:S19-S25. [PMID: 28239559 DOI: 10.1016/j.jrhm.2016.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Poor uterine receptivity leads to implantation defects or failure. Identification of uterine molecules crucial to uterine receptivity and/or embryo implantation provides the opportunity to design a diagnostic screening toolkit for uterine receptivity or targeted drug discovery for treating implantation-based infertility. In this regard, gene-profiling studies performed in humans and rodents have identified numerous genes involved in the transcriptional regulation of uterine receptivity and embryo implantation. In this article, we compared available uterine microarray datasets collected during the time of uterine receptivity and implantation in humans, mice and hamsters to uncover conserved gene sets. We also compared the transcriptome signature of women with unexplained infertility (UIF) and recurrent implantation failure (RIF) to gain insight into genes potentially dysregulated during endometrial receptivity or embryo implantation. Among numerous differentially expressed genes, few were revealed that might have molecular diagnostic screening potential for identifying the uterine receptive state during the time of implantation. Finally, functional annotation of gene sets uncovered altered uterine apoptosis or cell adhesion pathways in women with UIF and RIF, respectively. These conserved or divergent gene sets provide insights into the uterine receptive state for supporting blastocyst implantation.
Collapse
Affiliation(s)
- Jennifer L Herington
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yan Guo
- Department of Cancer Biology and Vanderbilt Technologies for Advanced Genomics Analysis and Research Design, Vanderbilt University, Nashville, TN 37232, USA
| | - Jeff Reese
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bibhash C Paria
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Bissonnette L, Drissennek L, Antoine Y, Tiers L, Hirtz C, Lehmann S, Perrochia H, Bissonnette F, Kadoch IJ, Haouzi D, Hamamah S. Human S100A10 plays a crucial role in the acquisition of the endometrial receptivity phenotype. Cell Adh Migr 2016; 10:282-98. [PMID: 26760977 DOI: 10.1080/19336918.2015.1128623] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In assisted reproduction, about 30% of embryo implantation failures are related to inadequate endometrial receptivity. To identify molecules involved in endometrial receptivity acquisition, we investigated, using a SELDI-TOF approach, the protein expression profile of early-secretory and mid-secretory endometrium samples. Among the proteins upregulated in mid-secretory endometrium, we investigated the function of S100A10 in endometrial receptivity and implantation process. S100A10 was expressed in epithelial and stromal cells of the endometrium of fertile patients during the implantation windows. Conversely, it was downregulated in the mid-secretory endometrium of infertile patients diagnosed as non-receptive. Transcriptome analysis of human endometrial epithelial and stromal cells where S100A10 was silenced by shRNA revealed the deregulation of 37 and 256 genes, respectively, related to components of the extracellular matrix and intercellular connections. Functional annotations of these deregulated genes highlighted alterations of the leukocyte extravasation signaling and angiogenesis pathways that play a crucial role during implantation. S100A10 silencing also affected the migration of primary endometrial epithelial and stromal cells, decidualization and secretory transformation of primary endometrial stromal cells and epithelial cells respectively, and promoted apoptosis in serum-starved endometrial epithelial cells. Our findings identify S100A10 as a player in endometrial receptivity acquisition.
Collapse
Affiliation(s)
- Laurence Bissonnette
- a Inserm U1203, 'Développement embryonnaire précoce humain et pluripotence', Hôpital Saint-Eloi , Montpellier , France.,b CHU Montpellier, Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi , Montpellier , France.,c Université de Montpellier, UFR de Médecine , Montpellier , France.,d OVO Fertility , Montréal , Québec , Canada
| | - Loubna Drissennek
- a Inserm U1203, 'Développement embryonnaire précoce humain et pluripotence', Hôpital Saint-Eloi , Montpellier , France.,b CHU Montpellier, Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi , Montpellier , France.,c Université de Montpellier, UFR de Médecine , Montpellier , France
| | - Yannick Antoine
- a Inserm U1203, 'Développement embryonnaire précoce humain et pluripotence', Hôpital Saint-Eloi , Montpellier , France.,b CHU Montpellier, Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi , Montpellier , France
| | - Laurent Tiers
- b CHU Montpellier, Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi , Montpellier , France
| | - Christophe Hirtz
- b CHU Montpellier, Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi , Montpellier , France.,c Université de Montpellier, UFR de Médecine , Montpellier , France
| | - Sylvain Lehmann
- b CHU Montpellier, Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi , Montpellier , France.,c Université de Montpellier, UFR de Médecine , Montpellier , France
| | - Hélène Perrochia
- e CHU Montpellier, Hôpital Gui de Chauliac, Service Anatomie cytologie pathologiques , Montpellier , France
| | | | | | - Delphine Haouzi
- a Inserm U1203, 'Développement embryonnaire précoce humain et pluripotence', Hôpital Saint-Eloi , Montpellier , France.,b CHU Montpellier, Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi , Montpellier , France.,c Université de Montpellier, UFR de Médecine , Montpellier , France
| | - Samir Hamamah
- a Inserm U1203, 'Développement embryonnaire précoce humain et pluripotence', Hôpital Saint-Eloi , Montpellier , France.,b CHU Montpellier, Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi , Montpellier , France.,c Université de Montpellier, UFR de Médecine , Montpellier , France.,f CHU Montpellier, Département de Biologie de la Reproduction et du DPI, Hôpital Arnaud de Villeneuve , Montpellier , France
| |
Collapse
|
6
|
Wei K, Wang L, Cheng H, Zhang C, Ma C, Zhang L, Gong W, Wu L. Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization. Gene 2012. [PMID: 23201417 DOI: 10.1016/j.gene.2012.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The plant hormone auxin plays a key role in adventitious rooting. To increase our understanding of genes involved in adventitious root formation, we identified transcripts differentially expressed in single nodal cuttings of Camellia sinensis treated with or without indole-3-butyric acid (IBA) by suppressive subtractive hybridization (SSH). A total of 77 differentially expressed transcripts, including 70 up-regulated and 7 down-regulated sequences, were identified in tea cuttings under IBA treatment. Seven candidate transcripts were selected and analyzed for their response to IBA, and IAA by real time RT-PCR. All these transcripts were up regulated by at least two folds one day after IBA treatment. Meanwhile, IAA showed less positive effects on the expression of candidate transcripts. The full-length cDNA of a F-box/kelch gene was also isolated and found to be similar to a group of At1g23390 like genes. These unigenes provided a new source for mining genes related to adventitious root formation, which facilitate our understanding of relative fundamental metabolism.
Collapse
Affiliation(s)
- Kang Wei
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Haouzi D, Dechaud H, Assou S, De Vos J, Hamamah S. Insights into human endometrial receptivity from transcriptomic and proteomic data. Reprod Biomed Online 2012; 24:23-34. [DOI: 10.1016/j.rbmo.2011.09.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 01/11/2023]
|
8
|
Rosario GX, Katkam RR, Nimbkar-Joshi S, Modi DN, Manjramkar DD, Hinduja I, Zaveri K, Puri CP, Sachdeva G. Expression of endometrial protein kinase a during early pregnancy in bonnet monkeys (Macaca radiata). Biol Reprod 2009; 81:1172-81. [PMID: 19684337 DOI: 10.1095/biolreprod.109.077339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Embryo-induced signaling pathways are considered to be important for initiation and sustenance of pregnancy. However many of these pathways remain to be deciphered in primates. In the present study, differential display RT-PCR was used to identify genes or gene fragments that are differentially expressed in endometrium of bonnet monkeys (Macaca radiata) on Day 6 of pregnancy. Of several fragments found to be differentially expressed, a fragment of 567 base pair (named GG1) was characterized in detail. GG1 was highly represented in endometrium of pregnant animals compared with that of nonpregnant animals. Sequencing analysis revealed homology of this fragment to exons 7, 8, 9, and 10 and surprisingly to intron 6 of cAMP-dependent protein kinase A (PKA) regulatory type I alpha (tissue-specific extinguisher 1) (PRKAR1A). The increased expression of this fragment in gestational endometrium was confirmed by quantitative PCR studies. Two transcripts of 3.0 kilobase (kb) and 1.5 kb were detected in Northern blot probed with labeled GG1. Protein expressions of alpha regulatory (PRKAR1A) and alpha catalytic (PRKCA) subunits of PKA were also higher in gestational endometrium compared with that in nongestational endometrium. Further in vitro studies using human endometrial explants demonstrated regulation of PRKAR1A (or GG1) and prostaglandin-endoperoxide synthase 2 or cyclooxygenase 2 (PTGS2) by estradiol. This is the first study to date on the differential expression of PKA in primate endometrium during early pregnancy and its in vitro regulation by estradiol.
Collapse
Affiliation(s)
- Gracy Xavier Rosario
- Primate Biology Division, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, Maharashtra, India
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pei DS, Sun YH, Chen SP, Wang YP, Hu W, Zhu ZY. Identification of differentially expressed genes from the cross-subfamily cloned embryos derived from zebrafish nuclei and rare minnow enucleated eggs. Theriogenology 2007; 68:1282-91. [PMID: 17919716 DOI: 10.1016/j.theriogenology.2007.08.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 08/26/2007] [Accepted: 08/01/2007] [Indexed: 11/19/2022]
Abstract
Cross-species nuclear transfer (NT) has been used to retain the genetic viability of a species near extinction. However, unlike intra-species NT, most embryos produced by cross-species NT were unable to develop to later stages due to incompatible nucleo-cytoplasmic interactions between the donor nuclei and the recipient cytoplasm from different species. To study the early nucleo-cytoplasmic interaction in cross-species NT, two laboratory fish species (zebrafish and rare minnow) from different subfamilies were used to generate cross-subfamily NT embryos in the present study. Suppression subtractive hybridization (SSH) was performed to screen out differentially expressed genes from the forward and reverse subtractive cDNA libraries. After dot blot and real-time PCR analysis, 80 of 500 randomly selective sequences were proven to be differentially expressed in the cloned embryos. Among them, 45 sequences shared high homology with 28 zebrafish known genes, and 35 sequences were corresponding to 22 novel expressed sequence tags (ESTs). Based on functional clustering and literature mining analysis, up- and down-regulated genes in the cross-subfamily cloned embryos were mostly relevant to transcription and translation initiation, cell cycle regulation, protein binding, etc. To our knowledge, this is the first report on the determination of genes involved in the early development of cross-species NT embryos of fish.
Collapse
Affiliation(s)
- D S Pei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
10
|
Momozawa Y, Takeuchi Y, Kitago M, Masuda K, Kakuma Y, Hashizume C, Ichimaru T, Mogi K, Okamura H, Yonezawa T, Kikusui T, Mori Y. Gene expression profiles linked to the hormonal induction of male-effect pheromone synthesis in goats (Capra hircus). Biol Reprod 2007; 77:102-7. [PMID: 17392497 DOI: 10.1095/biolreprod.106.059113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The male effect is a well-known phenomenon in female sheep and goats whereby a pheromone-induced activation of reproductive function occurs. However, the molecule(s) involved in this phenomenon are unknown. We investigated gene expression profiles for the induction of male effect pheromone synthesis using a PCR-based cDNA subtraction strategy. We constructed two subtracted cDNA libraries using mRNA from the skin of the head or rump region of orchidectomized male goats with or without pheromone induction using testosterone or dihydrotestosterone (DHT). Both libraries were assumed to contain genes whose expression increases with pheromone induction. Clones (n = 480) from each library were sequenced and identified using BLAST to reveal 115 and 239 types of sequences in the libraries of the head and rump region, respectively. Among these, 12 genes were expressed in both libraries. We conducted real-time PCR to further analyze their expression using cDNA samples derived from pheromone-producing or nonproducing skin from the head of an ovariectomized female goat with or without DHT implantation, respectively. For nine genes, we observed significantly increased expression in samples following DHT implantation. Among these, stearoyl-CoA desaturase 1 (SCD1) and elongation of long chain fatty acids family member 5 (ELOVL5) genes showed more than 100-fold higher expression levels in pheromone-positive samples, suggesting that the products of these genes may be important in pheromone synthesis.
Collapse
Affiliation(s)
- Yukihide Momozawa
- Laboratories of Veterinary Ethology, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu J, Li D, Cao B, Li YX, Herva R, Piao YS, Wang YL. Expression and localization of SWAP-70 in human fetomaternal interface and placenta during tubal pregnancy and normal placentation. J Histochem Cytochem 2007; 55:701-8. [PMID: 17371938 DOI: 10.1369/jhc.6a7151.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
SWAP-70 has been demonstrated as a multiple functional signaling protein involved in formation of membrane ruffling induced by signal cascade of tyrosine kinase growth factor receptors. In the present study, the spatial and temporal expression pattern of SWAP-70 on human fetomaternal interface was investigated using specimens collected from tubal and normal pregnancies by in situ hybridization, immunohistochemistry, and Western blotting. Data showed an intense expression of SWAP-70 in trophoblasts at weeks 3-6 of fallopian implantation and at weeks 6-7 of normal pregnancy. The most intense expression was exhibited by those highly motile and invasive extravillous trophoblasts. From gestational week 8 on, the level of SWAP-70 in trophoblasts decreased significantly, and the signal was restricted in villous cytotrophoblast cells. In the in vitro cultured human trophoblast cell line, B6Tert-1, colocalization of SWAP-70 with F-actin was verified. Data in human placenta were similar to what we recently reported on rhesus monkey fetomaternal interface. Our results suggest that SWAP-70 may be involved in regulating migration and invasion of trophoblast cells during the processes of embryonic implantation and placentation in primates.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 25 Bei Si Huan Xi Road, Beijing 100080, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Lizama C, Alfaro I, Reyes JG, Moreno RD. Up-regulation of CD95 (Apo-1/Fas) is associated with spermatocyte apoptosis during the first round of spermatogenesis in the rat. Apoptosis 2006; 12:499-512. [PMID: 17195944 DOI: 10.1007/s10495-006-0012-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 10/11/2006] [Indexed: 10/23/2022]
Abstract
Apoptosis plays a major role in controlling both the rate of sperm production and chromosomal abnormalities in adult male testes. However, little is known on the mechanisms controlling induction and execution of apoptosis under physiological conditions. In this work we have uncovered a major role for the cell death receptor Fas in both the extrinsic and intrinsic pathways in normal germ cell apoptosis. We show here that Fas levels increased significantly in a group of germ cell in 25 d old rats, which were identified as spermatocytes and only a few spermatogonia. In addition, we show that isolated spermatocytes expressing high levels of Fas display activation of caspase-8, -9, -3, -6 and -2, as well as increased levels of intracellular calcium and decreased pH, which coincides with stabilization of p53, and transcriptional activation of PUMA and Fas. Therefore, our data strongly suggests that transcriptional up regulation of Fas could predispose a group of spermatocytes to Fas ligand triggering apoptosis by the extrinsic and intrinsic pathway.
Collapse
Affiliation(s)
- Carlos Lizama
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda, 340, Santiago, Chile
| | | | | | | |
Collapse
|
13
|
El-Sayed A, Hoelker M, Rings F, Salilew D, Jennen D, Tholen E, Sirard MA, Schellander K, Tesfaye D. Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiol Genomics 2006; 28:84-96. [PMID: 17018689 DOI: 10.1152/physiolgenomics.00111.2006] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this work is to address the relationship between transcriptional profile of embryos and the pregnancy success based on gene expression analysis of blastocyst biopsies taken prior to transfer to recipients. Biopsies (30-40% of the intact embryo) were taken from in vitro-produced day 7 blastocysts (n = 118), and 60-70% were transferred to recipients after reexpansion. Based on the success of pregnancy, biopsies were pooled in three groups (each 10 biopsies) namely: those resulting in no pregnancy (G1), resorbed embryos (G2), and those resulting in calf delivery (G3). Gene expression analysis of these groups was performed using home-made bovine preimplantation-specific cDNA array (219 clones) and BlueChip (with approximately 2,000 clones). Microarray data analysis results revealed a total of 52 and 58 genes were differentially regulated during comparison between G1 vs. G3 and G2 vs. G3. Biopsies resulted in calf delivery were enriched with genes necessary for implantation (COX2 and CDX2), carbohydrate metabolism (ALOX15), growth factor (BMP15), signal transduction (PLAU), and placenta-specific 8 (PLAC8). Biopsies from embryos resulting in resorption are enriched with transcripts involved protein phosphorylation (KRT8), plasma membrane (OCLN), and glucose metabolism (PGK1 and AKR1B1). Biopsies from embryos resulting in no pregnancy are enriched with transcripts involved inflammatory cytokines (TNF), protein amino acid binding (EEF1A1), transcription factors (MSX1, PTTG1), glucose metabolism (PGK1, AKR1B1), and CD9, which is an inhibitor of implantation. In conclusion, we generated direct candidates of blastocyst-specific genes which may play an important role in determining the fate of the embryo after transfer.
Collapse
Affiliation(s)
- Ashraf El-Sayed
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bauersachs S, Ulbrich SE, Gross K, Schmidt SEM, Meyer HHD, Wenigerkind H, Vermehren M, Sinowatz F, Blum H, Wolf E. Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers of uterine receptivity. Reproduction 2006; 132:319-31. [PMID: 16885540 DOI: 10.1530/rep.1.00996] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The endometrium plays a central role among the reproductive tissues in the context of early embryo–maternal communication and pregnancy. This study investigated transcriptome profiles of endometrium samples from day 18 pregnant vs non-pregnant heifers to get insight into the molecular mechanisms involved in conditioning the endometrium for embryo attachment and implantation. Using a combination of subtracted cDNA libraries and cDNA array hybridisation, 109 mRNAs with at least twofold higher abundance in endometrium of pregnant animals and 70 mRNAs with higher levels in the control group were identified. Among the mRNAs with higher abundance in pregnant animals, at least 41 are already described as induced by interferons. In addition, transcript levels of many new candidate genes involved in the regulation of transcription, cell adhesion, modulation of the maternal immune system and endometrial remodelling were found to be increased. The different expression level was confirmed with real-time PCR for nine genes. Localisation of mRNA expression in the endometrium was shown byin situhybridisation forAGRN,LGALS3BP,LGALS9,USP18,PARP12andBST2. A comparison with similar studies in humans, mice, and revealed species-specific and common molecular markers of uterine receptivity.
Collapse
Affiliation(s)
- Stefan Bauersachs
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu J, Fu YY, Sun XY, Li FX, Li YX, Wang YL. Expression of SWAP-70 in the uterus and feto-maternal interface during embryonic implantation and pregnancy in the rhesus monkey (Macaca mulatta). Histochem Cell Biol 2006; 126:695-704. [PMID: 16786323 DOI: 10.1007/s00418-006-0206-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2006] [Indexed: 11/24/2022]
Abstract
SWAP-70 is a unique signaling protein involved in multiple processes including lymphatic cell activation, migration, adhesion, and cytoskeleton organization. Its role in reproductive system remains to be unclear. In the present study, the spatial and temporal expression of SWAP-70 in the uterus during normal menstrual cycle as well as on the feto-maternal interface during pregnancy was investigated in the rhesus monkey by in situ hybridization and immunohistochemistry. It was shown that SWAP-70 was mainly expressed in glandular epithelial cells of uterine endometrium, and the level peaked at the mid-secretory stage. At the beginning of embryonic implantation, SWAP-70 was intensely expressed at the implantation site, mainly localized in glandular and luminal epithelial cells, as well as in primary trophoblasts and epithelial plaque. High level of SWAP-70 was observed in villous cytotrophoblast (VCT), syncytiotrophoblast (ST), column cytotrophoblast, trophoblast shell, interstitial trophoblast, and endovascular trophoblast during gestational days 15-25. From gestational day 50 to term, expression of SWAP-70 decreased evidently and was restricted in VCT cells. What's more, SWAP-70 co-localized with F-actin on the feto-maternal interface, especially in highly motive extravillous trophoblasts. The data indicate that SWAP-70 may be involved in regulating motility of trophoblast cells during embryonic implantation and placentation.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 25 Bei Si Huan Xi Road, Beijing 100080, China
| | | | | | | | | | | |
Collapse
|
16
|
Klein C, Bauersachs S, Ulbrich SE, Einspanier R, Meyer HHD, Schmidt SEM, Reichenbach HD, Vermehren M, Sinowatz F, Blum H, Wolf E. Monozygotic Twin Model Reveals Novel Embryo-Induced Transcriptome Changes of Bovine Endometrium in the Preattachment Period1. Biol Reprod 2006; 74:253-64. [PMID: 16207835 DOI: 10.1095/biolreprod.105.046748] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Initiation and maintenance of pregnancy are critically dependent on an intact embryo-maternal communication in the preimplantation period. To get new insights into molecular mechanisms underlying this complex dialog, a holistic transcriptome study of endometrium samples from Day 18 pregnant vs. nonpregnant twin cows was performed. This genetically defined model system facilitated the identification of specific conceptus-induced changes of the endometrium transcriptome. Using a combination of subtracted cDNA libraries and cDNA array hybridization, 87 different genes were identified as upregulated in pregnant animals. Almost one half of these genes are known to be stimulated by type I interferons. For the ISG15ylation system, which is assumed to play an important role in interferon tau (IFNT) signaling, mRNAs of four potential components (IFITM1, IFITM3, HSXIAPAF1, and DTX3L) were found at increased levels in addition to ISG15 and UBE1L. These results were further substantiated by colocalization of these mRNAs in the endometrium of pregnant animals shown by in situ hybridization. A functional classification of the identified genes revealed several different biological processes involved in the preparation of the endometrium for the attachment and implantation of the embryo. Specifically, elevated transcript levels were found for genes involved in modulation of the maternal immune system, genes relevant for cell adhesion, and for remodeling of the endometrium. This first systematic study of maternal transcriptome changes in response to the presence of an embryo on Day 18 of pregnancy in cattle is an important step toward deciphering the embryo-maternal dialog using a systems biology approach.
Collapse
Affiliation(s)
- Claudia Klein
- Institute of Molecular Animal Breeding and Biotechnology, Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|