1
|
Schor NF. The Tangential Dialogue Between Science and Medicine: A Case in Point. Pediatr Neurol 2024; 153:96-102. [PMID: 38359527 PMCID: PMC10940191 DOI: 10.1016/j.pediatrneurol.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/24/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
The road between a hypothesis about a disease or condition and its cure or palliation is never simply linear. There are many tantalizing tangents to be chased and many seemingly obvious truths with countless exceptions; this is usually a feature, not a bug, as they say in computer programming. In the tangents and exceptions are clues and alternative roads to science and medicine that can provide cures and palliative measures, sometimes for diseases or conditions other than the one being studied. The narrative that follows uses the author's scientific experience in childhood nervous system cancer to illustrate the importance of a robust, bidirectional interaction between the laboratory bench and the clinic bedside in the quest for solutions to problems of health, longevity, and quality of life.
Collapse
Affiliation(s)
- Nina F Schor
- Office of the Director, Division of Intramural Research, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
2
|
Tan M, Pan Q, Wu Q, Li J, Wang J. Aldolase B attenuates clear cell renal cell carcinoma progression by inhibiting CtBP2. Front Med 2023; 17:503-517. [PMID: 36790589 DOI: 10.1007/s11684-022-0947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/28/2022] [Indexed: 02/16/2023]
Abstract
Aldolase B (ALDOB), a glycolytic enzyme, is uniformly depleted in clear cell renal cell carcinoma (ccRCC) tissues. We previously showed that ALDOB inhibited proliferation through a mechanism independent of its enzymatic activity in ccRCC, but the mechanism was not unequivocally identified. We showed that the corepressor C-terminal-binding protein 2 (CtBP2) is a novel ALDOB-interacting protein in ccRCC. The CtBP2-to-ALDOB expression ratio in clinical samples was correlated with the expression of CtBP2 target genes and was associated with shorter survival. ALDOB inhibited CtBP2-mediated repression of multiple cell cycle inhibitor, proapoptotic, and epithelial marker genes. Furthermore, ALDOB overexpression decreased the proliferation and migration of ccRCC cells in an ALDOB-CtBP2 interaction-dependent manner. Mechanistically, our findings showed that ALDOB recruited acireductone dioxygenase 1, which catalyzes the synthesis of an endogenous inhibitor of CtBP2, 4-methylthio 2-oxobutyric acid. ALDOB functions as a scaffold to bring acireductone dioxygenase and CtBP2 in close proximity to potentiate acireductone dioxygenase-mediated inhibition of CtBP2, and this scaffolding effect was independent of ALDOB enzymatic activity. Moreover, increased ALDOB expression inhibited tumor growth in a xenograft model and decreased lung metastasis in vivo. Our findings reveal that ALDOB is a negative regulator of CtBP2 and inhibits tumor growth and metastasis in ccRCC.
Collapse
Affiliation(s)
- Mingyue Tan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Urology Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qi Pan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qi Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, 323000, China
| | - Jianfa Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jun Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Urology Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People's Hospital of Lishui), Lishui, 323000, China.
| |
Collapse
|
3
|
The Eya phosphatase: Its unique role in cancer. Int J Biochem Cell Biol 2017; 96:165-170. [PMID: 28887153 DOI: 10.1016/j.biocel.2017.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/11/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022]
Abstract
The Eya proteins were originally identified as essential transcriptional co-activators of the Six family of homeoproteins. Subsequently, the highly conserved C-terminal domains of the Eya proteins were discovered to act as a Mg2+-dependent Tyr phosphatases, making Eyas the first transcriptional activators to harbor intrinsic phosphatase activity. Only two direct targets of the Eya Tyr phosphatase have been identified: H2AX, whose dephosphorylation directs cells to the DNA repair instead of the apoptotic pathway upon DNA damage, and ERβ, whose dephosphorylation inhibits its anti-tumor transcriptional activity. The Eya Tyr phosphatase mediates breast cancer cell transformation, migration, invasion, as well as metastasis, through targets not yet identified. Intriguingly, the N-terminal domain of Eya contains a separate Ser/Thr phosphatase activity implicated in innate immunity and in regulating c-Myc stability. Thus, Eya proteins are highly complex, containing two separable phosphatase domains and a transcriptional activation domain, thereby influencing tumor progression through multiple mechanisms.
Collapse
|