1
|
Atchley WT, Montgomery A, Seth R, Gandhi T, Brewer S. Navigating COPD in Aging Populations: Insights Into Pathophysiology and Comprehensive Care. Semin Respir Crit Care Med 2024; 45:560-573. [PMID: 39532091 DOI: 10.1055/s-0044-1792112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) poses a significant and growing health burden among aging populations, marked by increasing prevalence and complex management challenges specific to elderly patients. This review explores the multifaceted interplay between COPD and aging, highlighting overlapping pathophysiological processes and comorbidities that complicate diagnosis and treatment. We examine age-specific management strategies, emphasizing the need for tailored approaches that account for the unique physical, cognitive, and health-related quality of life impacts on older adults. Additionally, we discuss preventive treatments and the critical roles of mental health, end-of-life care, and caregiver support in comprehensive disease management. The importance of integrative approaches to enhancing health care delivery is also underscored. Finally, we outline future directions, focusing on novel treatment pathways and the identification of biomarkers for early detection. Addressing these elements is essential for optimizing care in this vulnerable population and alleviating the significant societal and economic impacts of COPD among aging patients.
Collapse
Affiliation(s)
- William T Atchley
- Division of Pulmonary and Critical Care Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Amy Montgomery
- Division of Pulmonary and Critical Care Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Rohan Seth
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Tanmay Gandhi
- Division of Pulmonary, Allergy and Critical Care Medicine, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Shannon Brewer
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
2
|
Wallaeys C, Garcia‐Gonzalez N, Libert C. Paneth cells as the cornerstones of intestinal and organismal health: a primer. EMBO Mol Med 2022; 15:e16427. [PMID: 36573340 PMCID: PMC9906427 DOI: 10.15252/emmm.202216427] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 12/28/2022] Open
Abstract
Paneth cells are versatile secretory cells located in the crypts of Lieberkühn of the small intestine. In normal conditions, they function as the cornerstones of intestinal health by preserving homeostasis. They perform this function by providing niche factors to the intestinal stem cell compartment, regulating the composition of the microbiome through the production and secretion of antimicrobial peptides, performing phagocytosis and efferocytosis, taking up heavy metals, and preserving barrier integrity. Disturbances in one or more of these functions can lead to intestinal as well as systemic inflammatory and infectious diseases. This review discusses the multiple functions of Paneth cells, and the mechanisms and consequences of Paneth cell dysfunction. It also provides an overview of the tools available for studying Paneth cells.
Collapse
Affiliation(s)
- Charlotte Wallaeys
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Natalia Garcia‐Gonzalez
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Claude Libert
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| |
Collapse
|
3
|
Qi C, Sun SW, Xiong XZ. From COPD to Lung Cancer: Mechanisms Linking, Diagnosis, Treatment, and Prognosis. Int J Chron Obstruct Pulmon Dis 2022; 17:2603-2621. [PMID: 36274992 PMCID: PMC9586171 DOI: 10.2147/copd.s380732] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Many studies have proved that the pathogenesis of the chronic obstructive pulmonary disease (COPD) and lung cancer is related, and may cause and affect each other to a certain extent. In fact, the change of chronic airway obstruction will continue to have an impact on the screening, treatment, and prognosis of lung cancer.In this comprehensive review, we outlined the links and heterogeneity between COPD and lung cancer and finds that factors such as gene expression and genetic susceptibility, epigenetics, smoking, epithelial mesenchymal transformation (EMT), chronic inflammation, and oxidative stress injury may all play a role in the process. Although the relationship between these two diseases have been largely determined, the methods to prevent lung cancer in COPD patients are still limited. Early diagnosis is still the key to a better prognosis. Thus, it is necessary to establish more intuitive screening evaluation criteria and find suitable biomarkers for lung cancer screening in high-risk populations with COPD. Some studies have indicated that COPD may change the efficacy of anti-tumor therapy by affecting the response of lung cancer patients to immune checkpoint inhibitors (ICIs). And for lung cancer patients with COPD, the standardized management of COPD can improve the prognosis. The treatment of lung cancer patients with COPD is an individualized, comprehensive, and precise process. The development of new targets and new strategies of molecular targeted therapy may be the breakthrough for disease treatment in the future.
Collapse
Affiliation(s)
- Chang Qi
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Sheng-Wen Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China,Correspondence: Xian-Zhi Xiong, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People’s Republic of China, Tel/Fax +86 27-85726705, Email
| |
Collapse
|
4
|
Zhang Q, Yan L, Lu J, Zhou X. Glycyl-L-histidyl-L-lysine-Cu2+ attenuates cigarette smoke-induced pulmonary emphysema and inflammation by reducing oxidative stress pathway. Front Mol Biosci 2022; 9:925700. [PMID: 35936787 PMCID: PMC9354777 DOI: 10.3389/fmolb.2022.925700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is a common respiratory disorder manifested as chronic airway inflammation and persistent airflow limitation with the essential mechanism as inflammatory response and oxidative stress induced by toxic exposures such as cigarette smoke (CS). Glycyl-L-histidyl-L-lysine (GHK) is a nontoxic tripeptide involved in the process of healing and regeneration as a natural product. With the combination of Cu(II), glycyl-L-histidyl-L-lysine-Cu2+ (GHK-Cu) improves antioxidative and anti-inflammatory bioavailability, and they might offer potential therapeutic properties for COPD. Thus, the present study aimed to identify the potential effects of GHK-Cu on emphysema induced by cigarette smoke. Methods: In the in vivo experiment, C57BL/6J mice were exposed to CS for 12 weeks to induce pulmonary emphysema. GHK-Cu was injected intraperitoneally at doses of 0.2, 2 and 20 μg/g/day in 100 µl of saline on alternative days from the 1st day after CS exposure. The effects of GHK-Cu on the morphology of CS-induced emphysema, the inflammatory response and oxidative stress were evaluated. The antioxidative effect of GHK-Cu on human alveolar epithelial A549 cells was assessed in vitro. Results: GHK-Cu treatment attenuated the CS-induced emphysematous changes and partially reversed the matrix metalloprotein -9 (MMP-9)/tissue inhibitor of metalloproteinases-1 (TIMP-1) imbalance in the lung tissue. GHK-Cu reduced the inflammation and oxidation by decreasing the expression of inflammatory cytokines (IL-1β and TNF-α) in the bronchoalveolar lavage and the enzymatic activity of MPO and MDA in the lung homogenate while restoring the T-AOC and GSH content. Furthermore, administration of GHK-Cu reversed the increase in NF-κB expression induced by CS and increased the Nrf2 level, as an antioxidant defense component, in mice with chronic CS exposure. In CSE-exposed human alveolar epithelial A549 cells, GHK-Cu also inhibited oxidative stress by suppressing MDA levels and restoring T-AOC and GSH levels, which were modulated by upregulating Nrf2 expression. Conclusion: GHK-Cu treatment attenuated CS-induced emphysema by anti-inflammation by downregulating NF-κB and antioxidation via upregulation of the Nrf2/Keap1 in lung tissues.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Respiratory and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Liming Yan
- Department of Respiratory and Critical Care Medicine, Fourth Hospital of China Medical University, Shenyang, China
| | - Jingwen Lu
- Department of Respiratory and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Xiaoming Zhou
- Respiratory Department, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Respiratory and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiaoming Zhou,
| |
Collapse
|
5
|
Chi S, Xu P, Yu P, Cao G, Wang H, Ye Y, Li S, Zhou Y, Li X, Zhou Y, Zhang X, Niu H, Xu L, Cai P, Tang S. Dynamic analysis of serum MMP-7 and its relationship with disease progression in biliary atresia: a multicenter prospective study. Hepatol Int 2022; 16:954-963. [PMID: 35729470 DOI: 10.1007/s12072-022-10322-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/28/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE We aimed to assess the dynamic changing trend of serum matrix metalloproteinase-7 (MMP-7) in biliary atresia (BA) patients from diagnosis to LTx to further elucidate its clinical value in diagnosis and prognoses and its relationship with disease progression. METHODS In this multicentre prospective study, 440 cholestasis patients (direct bilirubin level of > 17 μmol/L) were enrolled. Serum MMP-7 levels were measured using an enzyme-linked immunosorbent assay at diagnosis, 1 week, 2 weeks, 1 month, 6 weeks, 2 months, 3 months, 6 months and then every 6 months post-KPE. The medical record at each follow-up visit for post-Kasai portoenterostomy patient was collected and analyzed. RESULTS Using a cut-off value of > 26.73 ng/mL, serum MMP-7 had an AUC of 0.954 in BA neonates and 0.983 in BA infants. A genetic mutation (G137D) was associated with low MMP-7 levels in serum of BA patients. MMP-7 showed a mediation effect on the association between inflammation and liver fibrosis in BA patients. Four dynamic patterns of serum MMP-7 post-KPE were associated with prognosis. Serum MMP-7 was the only significant predictor at 6 weeks post-KPE and the most accurate predictor at 3 months post-KPE of survival with the native liver in 2 years. CONCLUSION As one of the critical factors associated with BA occurrence and progression, serum MMP-7 can be used for early diagnosis of BA and post-KPE MMP-7 level is the earliest prognostic biomarker so far.
Collapse
Affiliation(s)
- Shuiqing Chi
- Department of Paediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peipei Xu
- Department of Paediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pu Yu
- Department of Neonatal Surgery, Xi'an Children's Hospital, Xi'an, China
| | - Guoqing Cao
- Department of Neonatal Surgery, Xi'an Children's Hospital, Xi'an, China
| | - Haibin Wang
- Department of Paediatric Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongqin Ye
- Department of General Surgery, Shenzhen Children's Hospital General Surgery Ward, Shenzhen, China
| | - Shuai Li
- Department of Paediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhou
- Department of Paediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyang Li
- Department of Paediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhou
- Department of Paediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Paediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huizhong Niu
- Department of Paediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, Hebei, China
| | - Lei Xu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaotao Tang
- Department of Paediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Yang X, Yu Y, Wang Y, Jiang W, Jiang W, Yin B. Genetic Polymorphism of Matrix Metalloproteinase 9 and Susceptibility to Chronic Obstructive Pulmonary Disease: A Meta-analysis. J Med Biochem 2022; 41:263-274. [PMID: 36042908 PMCID: PMC9375530 DOI: 10.5937/jomb0-34155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
Background To systematically analyze the influence of genetic polymorphisms of matrix metalloproteinase 9 (MMP9) on susceptibility to chronic obstructive pulmonary disease (COPD). Methods Relevant literatures reporting MMP9 and susceptibility to COPD in PubMed, Web of Science, VIP, Wanfang and CNKI databases were searched using the key words "matrix metalloproteinases 9/MMP9, COPD/chronic obstructive pulmonary disease". Data of eligible literatures were extracted and analyzed for the odds ratio (OR) and corresponding 95% CI. Results A total of 16 independent studies reporting MMP9-1562C/T and COPD patients were enrolled and analyzed. None of the genetic models revealed the relationship between MMP9-1562C/T and susceptibility to COPD. Subgroup analyses identified lower risk of COPD in Chinese population carrying the TT genotype for theMMP9 rs3918242 relative to those carrying CT and CC genotypes (P=0.03, OR=0.67, 95% CI=0.46-0.97). Conclusions Chinese population carrying the TT genotype for the MMP-9 rs3918242 present lower susceptibility to COPD relative to those carrying CT and CC genotypes.
Collapse
Affiliation(s)
- Xiaoping Yang
- Qingdao Hospital of Traditional Chinese Medicine (Haici Hospital), Department 2 of Respiratory and Critical Care (Lung disease) Center, Qingdao, China
| | - Yuanyuan Yu
- Qingdao Hospital of Traditional Chinese Medicine (Haici Hospital), Department of Anesthesiology, Qingdao, China
| | - Yong Wang
- Qingdao Hospital of Traditional Chinese Medicine (Haici Hospital), Department 2 of Respiratory and Critical Care (Lung disease) Center, Qingdao, China
| | - Wen Jiang
- Qingdao Hospital of Traditional Chinese Medicine (Haici Hospital), Department 2 of Respiratory and Critical Care (Lung disease) Center, Qingdao, China
| | - Wenqing Jiang
- Qingdao Hospital of Traditional Chinese Medicine (Haici Hospital), Department 2 of Respiratory and Critical Care (Lung disease) Center, Qingdao, China
| | - Bin Yin
- Qingdao Hospital of Traditional Chinese Medicine (Haici Hospital), Department 2 of Respiratory and Critical Care (Lung disease) Center, Qingdao, China
| |
Collapse
|
7
|
Ding Y, Hou Y, Liu Y, Xie X, Cui Y, Nie H. Prospects for miR-21 as a Target in the Treatment of Lung Diseases. Curr Pharm Des 2021; 27:415-422. [PMID: 32867648 DOI: 10.2174/1381612826999200820160608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022]
Abstract
MicroRNA (miRNA/miR) is a class of small evolutionarily conserved non-coding RNA, which can inhibit the target gene expression at the post-transcriptional level and serve as significant roles in cell differentiation, proliferation, migration and apoptosis. Of note, the aberrant miR-21 has been involved in the generation and development of multiple lung diseases, and identified as a candidate of biomarker, therapeutic target, or indicator of prognosis. MiR-21 relieves acute lung injury via depressing the PTEN/Foxo1-TLR4/NF-κB signaling cascade, whereas promotes lung cancer cell growth, metastasis, and chemo/radio-resistance by decreasing the expression of PTEN and PDCD4 and promoting the PI3K/AKT transduction. The purpose of this review is to elucidate the potential mechanisms of miR-21 associated lung diseases, with an emphasis on its dual regulating effects, which will trigger novel paradigms in molecular therapy.
Collapse
Affiliation(s)
- Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yanhong Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xiaoyong Xie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
8
|
von Reibnitz D, Yorke ED, Oh JH, Apte AP, Yang J, Pham H, Thor M, Wu AJ, Fleisher M, Gelb E, Deasy JO, Rimner A. Predictive Modeling of Thoracic Radiotherapy Toxicity and the Potential Role of Serum Alpha-2-Macroglobulin. Front Oncol 2020; 10:1395. [PMID: 32850450 PMCID: PMC7423838 DOI: 10.3389/fonc.2020.01395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022] Open
Abstract
Background: To investigate the impact of alpha-2-macroglobulin (A2M), a suspected intrinsic radioprotectant, on radiation pneumonitis and esophagitis using multifactorial predictive models. Materials and Methods: Baseline A2M levels were obtained for 258 patients prior to thoracic radiotherapy (RT). Dose-volume characteristics were extracted from treatment plans. Spearman's correlation (Rs) test was used to correlate clinical and dosimetric variables with toxicities. Toxicity prediction models were built using least absolute shrinkage and selection operator (LASSO) logistic regression on 1,000 bootstrapped datasets. Results: Grade ≥2 esophagitis and pneumonitis developed in 61 (23.6%) and 36 (14.0%) patients, respectively. The median A2M level was 191 mg/dL (range: 94-511). Never/former/current smoker status was 47 (18.2%)/179 (69.4%)/32 (12.4%). We found a significant negative univariate correlation between baseline A2M levels and esophagitis (Rs = -0.18/p = 0.003) and between A2M and smoking status (Rs = 0.13/p = 0.04). Further significant parameters for grade ≥2 esophagitis included age (Rs = -0.32/p < 0.0001), chemotherapy use (Rs = 0.56/p < 0.0001), dose per fraction (Rs = -0.57/p < 0.0001), total dose (Rs = 0.35/p < 0.0001), and several other dosimetric variables with Rs > 0.5 (p < 0.0001). The only significant non-dosimetric parameter for grade ≥2 pneumonitis was sex (Rs = -0.32/p = 0.037) with higher risk for women. For pneumonitis D15 (lung) (Rs = 0.19/p = 0.006) and D45 (heart) (Rs = 0.16/p = 0.016) had the highest correlation. LASSO models applied on the validation data were statistically significant and resulted in areas under the receiver operating characteristic curve of 0.84 (esophagitis) and 0.78 (pneumonitis). Multivariate predictive models did not require A2M to reach maximum predictive power. Conclusion: This is the first study showing a likely association of higher baseline A2M values with lower risk of radiation esophagitis and with smoking status. However, the baseline A2M level was not a significant risk factor for radiation pneumonitis.
Collapse
Affiliation(s)
- Donata von Reibnitz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ellen D Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Aditya P Apte
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jie Yang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hai Pham
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Maria Thor
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Abraham J Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Martin Fleisher
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Emily Gelb
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
9
|
Hu L, Liu F, Li L, Zhang L, Yan C, Li Q, Qiu J, Dong J, Sun J, Zhang H. Effects of icariin on cell injury and glucocorticoid resistance in BEAS-2B cells exposed to cigarette smoke extract. Exp Ther Med 2020; 20:283-292. [PMID: 32550884 PMCID: PMC7296294 DOI: 10.3892/etm.2020.8702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) exert a therapeutic effect in numerous chronic inflammatory diseases. However, chronic obstructive pulmonary disease (COPD) tends to be GC-resistant. Icariin, a major component of flavonoids isolated from Epimedium brevicornum Maxim (Berberidaceae), significantly relieves symptoms in patients with COPD. However, the mechanism of action remains unclear and further investigation is required to establish whether it may serve as an alternative or complementary therapy for COPD. The aim of the present study was to determine the effects of icariin in human bronchial epithelial cells exposed to cigarette smoke extract (CSE) and to determine whether icariin reverses GC resistance. The results revealed that icariin significantly increased the proliferation of CSE-exposed cells. Furthermore, icariin significantly increased protein expression of the anti-inflammatory factor interleukin (IL)-10 and significantly decreased protein expression of the pro-inflammatory factors IL-8 and tumor necrosis factor α. Icariin also attenuated the expression of the cellular matrix remodelling biomarkers matrix metallopeptidase 9 and tissue inhibitor of metalloproteinase 1, and decreased the production of reactive oxygen species (ROS). In addition, icariin regulated the expression of GC resistance-related factors, such as GC receptors, histone deacetylase 2, nuclear factor erythroid-2-related factor 2 and nuclear factor κ B. The results obtained in the present study suggested that icariin may decrease CSE-induced inflammation, airway remodelling and ROS production by mitigating GC resistance. In conclusion, icariin may potentially be used in combination with GCs to increase therapeutic efficacy and reduce GC resistance in COPD.
Collapse
Affiliation(s)
- Lingli Hu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Feng Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Lulu Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Li Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Chen Yan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Qiuping Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jian Qiu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Hongying Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
10
|
Yang WJ, Chen XM, Wang SQ, Hu HX, Cheng XP, Xu LT, Ren DM, Wang XN, Zhao BB, Lou HX, Shen T. 4β-Hydroxywithanolide E from Goldenberry (Whole Fruits of Physalis peruviana L.) as a Promising Agent against Chronic Obstructive Pulmonary Disease. JOURNAL OF NATURAL PRODUCTS 2020; 83:1217-1228. [PMID: 32159343 DOI: 10.1021/acs.jnatprod.9b01265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Environmental toxicant- and oxidant-induced [e.g., cigarette smoke (CS)] respiratory oxidative stress and inflammatory response play a vital role in the onset and progression of COPD. The nuclear factor erythroid 2-related factor 2 (Nrf2) represents an important mechanism for regulating intracellular oxidative stress and inflammatory response and is a promising target for developing agents against COPD. Herein, a bioactivity-guided purification of goldenberry (whole fruits of Physalis peruviana L.) led to the isolation of a novel and potent Nrf2 activator 4β-hydroxywithanolide E (4β-HWE). Our study indicated that (i) 4β-HWE activated the Nrf2-mediated defensive response through interrupting Nrf2-Keap1 protein-protein interaction (PPI) via modification of Cys151 and Cys288 cysteine residues in Keap1 and accordingly suppressing the ubiquitination of Nrf2. (ii) 4β-HWE enhanced intracellular antioxidant capacity and inhibited oxidative stress in normal human lung epithelial Beas-2B cells and wild-type AB zebrafish. (iii) 4β-HWE blocked LPS-stimulated inflammatory response and inhibited LPS-stimulated NF-κB activation in RAW 264.7 murine macrophages. (iv) 4β-HWE effectively suppressed oxidative stress and inflammatory response in a CS-induced mice model of pulmonary injury. Collectively, these results display the feasibility of using 4β-HWE to prevent or alleviate the pathological progression of COPD and suggest that 4β-HWE is a candidate or a leading molecule against COPD.
Collapse
Affiliation(s)
- Wen-Jing Yang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Xue-Mei Chen
- Department of Maternity, Binzhou Central Hospital, Binzhou Shandong 256603, People's Republic of China
| | - Shu-Qi Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Hui-Xin Hu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Xin-Ping Cheng
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Lin-Tao Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Dong-Mei Ren
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Bao-Bing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| |
Collapse
|
11
|
Xue T, Chun-Li A. Role of Pneumocystis jirovecii infection in chronic obstructive pulmonary disease progression in an immunosuppressed rat Pneumocystis pneumonia model. Exp Ther Med 2020; 19:3133-3142. [PMID: 32256801 DOI: 10.3892/etm.2020.8545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/09/2019] [Indexed: 11/05/2022] Open
Abstract
Pneumocystis jirovecii (P. jirovecii), an opportunistic fungal pathogen, is the primary cause of Pneumocystis pneumonia (PCP), which affects immunocompromised individuals and leads to high morbidity and mortality. P. jirovecii colonization is associated with development of chronic obstructive pulmonary disease (COPD) in patients with HIV infection, and also non-sufferers, and in primate models of HIV infection. However, the mechanisms underlying P. jirovecii infection in the pathogenesis of COPD have yet to be fully elucidated. To investigate the pathogenicity of P. jirovecii infection and its role in COPD development, the present study established a PCP rat model induced by dexamethasone sodium phosphate injection. Expression of COPD-related biomarkers, including matrix metalloproteinases (MMPs) MMP-2, MMP-8, MMP-9, and MMP-12, and heat shock protein-27 (HSP-27), were quantified in the rat PCP model using reverse transcription-quantitative polymerase chain reaction, ELISA, western blot analysis, immunohistochemistry and gelatin zymography. Body weight, COPD symptoms, and pulmonary histopathology were assessed. Inflammatory cell counts in splenic tissues were measured using flow cytometry. It was identified that MMP and HSP-27 expression increased in the PCP rats, which was in agreement with previous literature. Therefore, it was hypothesized that P. jirovecii infection may have an important role in COPD development.
Collapse
Affiliation(s)
- Ting Xue
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - An Chun-Li
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
12
|
Li H, Shi K, Zhao Y, Du J, Hu D, Liu Z. TIMP-1 and MMP-9 expressions in COPD patients complicated with spontaneous pneumothorax and their correlations with treatment outcomes. Pak J Med Sci 2019; 36:192-197. [PMID: 32063958 PMCID: PMC6994862 DOI: 10.12669/pjms.36.2.1244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Objective: To study the expressions of TIMP-1 and MMP-9 in patients with chronic obstructive pulmonary disease (COPD) complicated with spontaneous pneumothorax, and their correlations with treatment outcomes. Methods: A total of 80 COPD patients complicated with spontaneous pneumothorax treated in our hospital from December 2015 to December 2017. The serum expressions of TIMP-1 and MMP-9 in 80 COPD patients complicated with spontaneous pneumothorax (COPD group) and 52 healthy volunteers (control group) were detected by ELISA. The correlations of TIMP-1 and MMP-9 expressions with arterial blood gas parameters as well as scores of MRC breathlessness scale and St. George’s Respiratory Questionnaire (SGRQ) were analyzed. Results: The serum expressions of TIMP-1 and MMP-9 of COPD group were significantly higher than those of control group (P<0.05), but the two groups had similar MMP-9/TIMP-1 ratios (P>0.05). For COPD group, TIMP-1 expression, MMP-9 expression, MMP-9/TIMP-1, Sa(O2) and p(O2) were not correlated (P>0.05). TIMP-1 expression was significantly positively correlated with MRC scale and SGRQ scores (P<0.05). Sa(O2), p(O2) and MRC scale score of low MMP-9 expression, low TIMP-1 expression and low MMP-9/TIMP-1 group were significantly improved compared with those of high MMP-9 expression, high TIMP-1 expression and high MMP-9/TIMP-1 group (P<0.05). MMP-9 expression, TIMP-1 expression or MMP-9/TIMP-1 was not correlated with improvement of SGRQ score. Pulmonary function improvement (Sa(O2) improvement rate ≥5% and/or p(O2) improvement rate ≥10%) was correlated with serum MMP-9 expression, baseline Sa(O2) and p(O2). Conclusion: Increase of serum TIMP-1 and MMP-9 expressions in COPD patients was correlated with symptoms and scores of quality of life, and the expressions were also correlated with short-term treatment reactivity.
Collapse
Affiliation(s)
- Hang Li
- Hang Li, Department of Thoracic and Cardiovascular Surgery, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Jiangsu Province, P. R. China
| | - Kaihu Shi
- Kaihu Shi, Department of Thoracic and Cardiovascular Surgery, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Jiangsu Province, P. R. China
| | - Yang Zhao
- Yang Zhao, Department of Thoracic and Cardiovascular Surgery, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Jiangsu Province, P. R. China
| | - Jin Du
- Jin Du, Department of Thoracic and Cardiovascular Surgery, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Jiangsu Province, P. R. China
| | - Dinghui Hu
- Dinghui Hu, Department of Thoracic and Cardiovascular Surgery, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Jiangsu Province, P. R. China
| | - Zuntao Liu
- Zuntao Liu, Department of Thoracic and Cardiovascular Surgery, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Jiangsu Province, P. R. China
| |
Collapse
|
13
|
Ong J, Faiz A, Timens W, van den Berge M, Terpstra MM, Kok K, van den Berg A, Kluiver J, Brandsma CA. Marked TGF-β-regulated miRNA expression changes in both COPD and control lung fibroblasts. Sci Rep 2019; 9:18214. [PMID: 31796837 PMCID: PMC6890791 DOI: 10.1038/s41598-019-54728-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
COPD is associated with disturbed tissue repair, possibly due to TGF-β-regulated miRNA changes in fibroblasts. Our aim was to identify TGF-β-regulated miRNAs and their differential regulation and expression in COPD compared to control fibroblasts. Small RNA sequencing was performed on TGF-β-stimulated and unstimulated lung fibroblasts from 15 COPD patients and 15 controls. Linear regression was used to identify TGF-β-regulated and COPD-associated miRNAs. Interaction analysis was performed to compare miRNAs that responded differently to TGF-β in COPD and control. Re-analysis of previously generated Ago2-IP data and Enrichr were used to identify presence and function of potential target genes in the miRNA-targetome of lung fibroblasts. In total, 46 TGF-β-regulated miRNAs were identified in COPD and 86 in control fibroblasts (FDR < 0.05). MiR-27a-5p was the most significantly upregulated miRNA. MiR-148b-3p, miR-589-5p and miR-376b-3p responded differently to TGF-β in COPD compared to control (FDR < 0.25). MiR-660-5p was significantly upregulated in COPD compared to control (FDR < 0.05). Several predicted targets of miR-27a-5p, miR-148b-3p and miR-660-5p were present in the miRNA-targetome, and were mainly involved in the regulation of gene transcription. In conclusion, altered TGF-β-induced miRNA regulation and differential expression of miR-660-5p in COPD fibroblasts, may represent one of the mechanisms underlying aberrant tissue repair and remodelling in COPD.
Collapse
Affiliation(s)
- J Ong
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands.,University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - A Faiz
- University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Centre Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands.,University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB) Faculty of Science, Ultimo, NSW, 2007, Australia
| | - W Timens
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands.,University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - M van den Berge
- University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Centre Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - M M Terpstra
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, The Netherlands
| | - K Kok
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, The Netherlands
| | - A van den Berg
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - J Kluiver
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - C A Brandsma
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands. .,University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.
| |
Collapse
|
14
|
Respiratory Phenotypes for Preterm Infants, Children, and Adults: Bronchopulmonary Dysplasia and More. Ann Am Thorac Soc 2019; 15:530-538. [PMID: 29328889 DOI: 10.1513/annalsats.201709-756fr] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ongoing advancements in neonatal care since the late 1980s have led to increased numbers of premature infants surviving well beyond the neonatal period. As a result of increased survival, many individuals born preterm manifest chronic respiratory symptoms throughout infancy, childhood, and adult life. The archetypical respiratory disease of prematurity, bronchopulmonary dysplasia, is the second most common chronic pediatric respiratory disease after asthma. However, there are several commonly held misconceptions. These misconceptions include that bronchopulmonary dysplasia is rare, that bronchopulmonary dysplasia resolves within the first few years of life, and that bronchopulmonary dysplasia does not impact respiratory health in adult life. This focused review describes a spectrum of respiratory conditions that individuals born prematurely may experience throughout their lifespan. Specifically, this review provides quantitative estimates of the number of individuals with alveolar, airway, and vascular phenotypes associated with bronchopulmonary dysplasia, as well as non-bronchopulmonary dysplasia respiratory phenotypes such as airway malacia, obstructive sleep apnea, and control of breathing issues. Furthermore, this review illustrates what is known about the potential for progression and/or lack of resolution of these respiratory phenotypes in childhood and adult life. Recognizing the spectrum of respiratory phenotypes associated with individuals born preterm and providing comprehensive and personalized care to these individuals may help to modulate adverse respiratory outcomes in later life.
Collapse
|
15
|
Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities. Drugs 2019; 78:1717-1740. [PMID: 30392114 DOI: 10.1007/s40265-018-1001-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship.
Collapse
|
16
|
Inflammatory and tumorigenic effects of environmental pollutants found in particulate matter on lung epithelial cells. Toxicol In Vitro 2019; 59:300-311. [PMID: 31154059 DOI: 10.1016/j.tiv.2019.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
Exposure to environmental pollutants is a major public health concern. This study investigated the inflammatory and tumorigenic effects of environmental pollutants (benzene, benzo[a]pyrene, cadmium, and diisononyl phthalate) on transformed A549 and H292 lung alveolar epithelial cells and non-transformed BEAS-2B lung bronchial epithelial cells. The cytotoxic effects of the pollutants were analyzed by the methyl thiazolyl tetrazolium assay. The anchorage-independent soft agar assay demonstrated that treatment with benzene, cadmium, and diisononyl phthalate for 4 weeks induced malignant transformation of BEAS-2B cells and tumorigenesis of A549 and H292 cells. mRNA expression of the inflammation-related genes tenascin-C, matrix metalloproteinase (MMP)-9, and MMP-2, as well as inhibitors of MMPs (TIMP-1 and TIMP-2), was analyzed by RT-PCR. The pollutants largely upregulated expression of MMP-9 and MMP-2, but suppressed expression of their inhibitors TIMP-1 and TIMP-2. Measurement of transepithelial electrical resistance revealed that cadmium and diisononyl phthalate significantly increased cell permeability. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a transcription factor of inflammatory genes, including MMP-9 and MMP-2, while signal transducer and activator of transcription (STAT) 3 is a key regulator of malignant transformation. All the pollutants activated the NF-κB promoter, while only cadmium induced activation of the STAT3 promoter in HEK293T cells. Moreover, all the pollutants increased the phospho-NF-κB level, but only cadmium and diisononyl phthalate increased the phospho-STAT3 level in A549 and BEAS-2B cells. These findings suggest that specific environmental pollutants enhance inflammation, cell permeability, and malignant transformation in lung epithelial cells by activating the oncogenic transcription factors STAT3 and NF-κB.
Collapse
|
17
|
Zhou L, Le Y, Tian J, Yang X, Jin R, Gai X, Sun Y. Cigarette smoke-induced RANKL expression enhances MMP-9 production by alveolar macrophages. Int J Chron Obstruct Pulmon Dis 2018; 14:81-91. [PMID: 30587964 PMCID: PMC6304243 DOI: 10.2147/copd.s190023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background and purpose Cigarette smoke (CS) induces alveolar destruction through overproduction of proteinases including matrix metalloproteinase (MMP)-9 by alveolar macrophages (AMs). Receptor activator of nuclear factor-κB ligand (RANKL) functions in immune regulation and cytokine secretion; whether it is involved in CS-induced MMP-9 expression is unknown. The purpose of our study was to investigate the expression and functional role of RANKL pathway in MMP-9 production pertaining to the pathogenesis of COPD. Materials and methods We first localized RANKL and its receptor RANK in the lungs of mice exposed to long-term CS exposure. Next, we studied RANKL and RANK expression under CS extract (CSE) stimulation in vitro. Lastly, we studied the in vitro biological function of RANKL in CS-induced production of MMP-9. Results Both RANKL and RANK were highly expressed in AMs in CS-exposed mice, but not in the control mice. In vitro, CSE increased the expressions of RANKL and RANK in macrophages. AMs responded to CSE and RANKL stimulation by overexpressing MMP-9, and CSE-induced MMP-9 expression was partly blocked by using monoclonal anti-RANKL antibody. Conclusion RANKL/RANK pathway mediates CS-induced MMP-9 expression in AMs, suggesting a novel mechanism for CS-associated emphysema.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China,
| | - Yanqing Le
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China,
| | - Jieyu Tian
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xia Yang
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoyan Gai
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China,
| | - Yongchang Sun
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China,
| |
Collapse
|
18
|
Hou HH, Wang HC, Cheng SL, Chen YF, Lu KZ, Yu CJ. MMP-12 activates protease-activated receptor-1, upregulates placenta growth factor, and leads to pulmonary emphysema. Am J Physiol Lung Cell Mol Physiol 2018; 315:L432-L442. [PMID: 29722565 DOI: 10.1152/ajplung.00216.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Because of the expansion of aging and smoking populations, chronic obstructive pulmonary disease (COPD) is predicted to be the third leading cause of death worldwide in 2030. Therefore, it is pertinent to develop effective therapy to improve management for COPD. Cigarette smoke-mediated protease-antiprotease imbalance is a major pathogenic mechanism for COPD and results in massive pulmonary infiltration of neutrophils and macrophages, releasing excessive neutrophil elastase (NE) and matrix metalloproteinases (MMPs). Our previous studies indicated that placenta growth factor (PGF) and PGF-triggered downstream signaling molecules mediate NE-induced lung epithelial cell apoptosis, which is a major pathogenic mechanism for pulmonary emphysema. However, the relationship between MMP-directed COPD and PGF remains elusive. We hypothesize that MMPs may upregulate PGF expression and be involved in MMP-mediated pathogenesis of COPD. In this study, we demonstrate that only MMP-12 can increase the expression of PGF by increasing early-growth response protein 1 (Egr-1) level through the activation of protease-activated receptor 1 (PAR-1). The PGF-mediated downstream signaling molecules drive caspase-3 and caspase-9-dependent apoptosis in bronchial epithelial cells. Both the upregulation of PGF by MMP-12 and PGF downstream signaling molecules with pulmonary apoptosis and emphysema were also demonstrated in animals. Given these findings, we suggest that both human COPD-associated elastases, NE, and MMP-12, upregulate PGF expression and promote the progression of emphysema and COPD.
Collapse
Affiliation(s)
- Hsin-Han Hou
- Department of Internal Medicine, National Taiwan University Hospital , Taiwan.,Department of Internal Medicine, National Taiwan University, College of Medicine , Taiwan
| | - Hao-Chien Wang
- Department of Internal Medicine, National Taiwan University Hospital , Taiwan.,Department of Internal Medicine, National Taiwan University, College of Medicine , Taiwan
| | - Shih-Lung Cheng
- Department of Internal Medicine, Far Eastern Memorial Hospital , Taiwan.,Department of Chemical Engineering and Materials Science, Yuan-Ze University , Taiwan
| | - Yen-Fu Chen
- Department of Internal Medicine, National Taiwan University Hospital, Yunlin Branch , Taiwan
| | - Kai-Zen Lu
- Department of Internal Medicine, National Taiwan University Hospital , Taiwan.,Department of Internal Medicine, National Taiwan University, College of Medicine , Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital , Taiwan.,Department of Internal Medicine, National Taiwan University, College of Medicine , Taiwan
| |
Collapse
|
19
|
Liu Y, Li A, Feng X, Sun X, Zhu X, Zhao Z. Pharmacological Investigation of the Anti-Inflammation and Anti-Oxidation Activities of Diallyl Disulfide in a Rat Emphysema Model Induced by Cigarette Smoke Extract. Nutrients 2018; 10:E79. [PMID: 29329251 PMCID: PMC5793307 DOI: 10.3390/nu10010079] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/15/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Diallyl disulfide (DADS) is the main organosulfur ingredient in garlic, with known antioxidant and anti-inflammatory activities. The aim of the present study was to investigate the effect of DADS on reducing the inflammation and redox imbalance in a rat emphysema model that was induced by intraperitoneal injection of cigarette smoke extract (CSE). Briefly, DADS exerted an anti-inflammation effect on emphysema rats through decreasing cell influx in the bronchoalveolar lavage fluid (BALF) and suppressing pro-inflammation cytokine production including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) via inhibiting the NF-κB pathway. In addition, levels of oxidative stress markers including malondialdehyde (MDA) and myeloperoxidase (MPO) were reduced, while the activities of glutathione (GSH), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) were markedly enhanced by DADS. Moreover, MMP-9 and TIMP-1 expression were down-regulated by DADS. Furthermore, the regulation effects of DADS on CD4⁺ and CD8⁺ T cells were observed. In conclusion, these encouraging findings suggest that DADS could be considered as a promising anti-inflammation and antioxidative agent for the treatment of emphysema.
Collapse
Affiliation(s)
- Yan Liu
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| | - Ang Li
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| | - Xiuli Feng
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| | - Xiao Sun
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| | - Xiaosong Zhu
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
- Shandong Engineering & Technology Research Center for Jujube Food and Drug, 44 West Wenhua Road, Jinan 250012, China.
- Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Jinan 250101, China.
| |
Collapse
|
20
|
Liu Y, Li A, Feng X, Jiang X, Sun X, Huang W, Zhu X, Zhao Z. l-Menthol alleviates cigarette smoke extract induced lung injury in rats by inhibiting oxidative stress and inflammation via nuclear factor kappa B, p38 MAPK and Nrf2 signalling pathways. RSC Adv 2018; 8:9353-9363. [PMID: 35541889 PMCID: PMC9078689 DOI: 10.1039/c8ra00160j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/27/2018] [Indexed: 11/21/2022] Open
Abstract
l-Menthol is the main ingredient of peppermint which affects various pharmacological effects such as anti-inflammation and anti-oxidative activity.
Collapse
Affiliation(s)
- Yan Liu
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- China
| | - Ang Li
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- China
| | - Xiuli Feng
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- China
| | - Xiaoyan Jiang
- Department of Clinical Pharmacy
- Qilu Hospital
- Shandong University
- Jinan
- China
| | - Xiao Sun
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- China
| | - Weizhen Huang
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- China
| | - Xiaosong Zhu
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- China
- Shandong Engineering & Technology Research Center for Jujube Food and Drug
| |
Collapse
|
21
|
Liu X, Ma C, Wang X, Wang W, Li Z, Wang X, Wang P, Sun W, Xue B. Hydrogen coadministration slows the development of COPD-like lung disease in a cigarette smoke-induced rat model. Int J Chron Obstruct Pulmon Dis 2017; 12:1309-1324. [PMID: 28496315 PMCID: PMC5422326 DOI: 10.2147/copd.s124547] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a progressive pulmonary disease caused by harmful gases or particles. Recent studies have shown that 2% hydrogen or hydrogen water is effective in the treatment and prevention of a variety of diseases. This study investigated the beneficial effects and the possible mechanisms of different hydrogen concentrations on COPD. Methods A rat COPD model was established through smoke exposure methods, and inhalation of different concentrations of hydrogen was used as the intervention. The daily condition of rats and the weight changes were observed; lung function and right ventricular hypertrophy index were assessed. Also, white blood cells were assessed in bronchoalveolar lavage fluid. Pathologic changes in the lung tissue were analyzed using light microscopy and electron microscopy; cardiovascular structure and pulmonary arterial pressure changes in rats were observed using ultrasonography. Tumor necrosis factor alpha, interleukin (IL)-6, IL-17, IL-23, matrix metalloproteinase-12, tissue inhibitor of metalloproteinase-1, caspase-3, caspase-8 protein, and mRNA levels in the lung tissue were determined using immunohistochemistry, Western blot, and real-time polymerase chain reaction. Results The results showed that hydrogen inhalation significantly reduced the number of inflammatory cells in the bronchoalveolar lavage fluid, and the mRNA and protein expression levels of tumor necrosis factor alpha, IL-6, IL-17, IL-23, matrix metalloproteinase-12, caspase-3, and caspase-8, but increased the tissue inhibitor of metalloproteinase-1 expression. Furthermore, hydrogen inhalation ameliorated lung pathology, lung function, and cardiovascular function and reduced the right ventricular hypertrophy index. Inhalation of 22% and 41.6% hydrogen showed better outcome than inhalation of 2% hydrogen. Conclusion These results suggest that hydrogen inhalation slows the development of COPD-like lung disease in a cigarette smoke-induced rat model. Higher concentrations of hydrogen may represent a more effective way for the rat model.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Respiratory Medicine, The First Hospital of Hebei Medical University
| | - Cuiqing Ma
- Department of Immunology, Hebei Medical University, Shijiazhuang
| | - Xiaoyu Wang
- Department of Respiratory Medicine, The First Hospital of Hebei Medical University
| | - Wenjing Wang
- Department of Respiratory Medicine, The First Hospital of Hebei Medical University
| | - Zhu Li
- Department of Respiratory Medicine, The First Hospital of Hebei Medical University
| | - Xiansheng Wang
- Department of Respiratory Medicine, The First Hospital of Hebei Medical University
| | - Pengyu Wang
- Department of Respiratory Medicine, The First Hospital of Hebei Medical University
| | - Wuzhuang Sun
- Department of Respiratory Medicine, The First Hospital of Hebei Medical University
| | - Baojian Xue
- Life Science Research Center, Hebei North University, Zhangjiakou, People's Republic of China
| |
Collapse
|
22
|
Polosukhin VV, Richmond BW, Du RH, Cates JM, Wu P, Nian H, Massion PP, Ware LB, Lee JW, Kononov AV, Lawson WE, Blackwell TS. Secretory IgA Deficiency in Individual Small Airways Is Associated with Persistent Inflammation and Remodeling. Am J Respir Crit Care Med 2017; 195:1010-1021. [PMID: 27911098 PMCID: PMC5422646 DOI: 10.1164/rccm.201604-0759oc] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 12/01/2016] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Maintenance of a surface immune barrier is important for homeostasis in organs with mucosal surfaces that interface with the external environment; however, the role of the mucosal immune system in chronic lung diseases is incompletely understood. OBJECTIVES We examined the relationship between secretory IgA (SIgA) on the mucosal surface of small airways and parameters of inflammation and airway wall remodeling in chronic obstructive pulmonary disease (COPD). METHODS We studied 1,104 small airways (<2 mm in diameter) from 50 former smokers with COPD and 39 control subjects. Small airways were identified on serial tissue sections and examined for epithelial morphology, SIgA, bacterial DNA, nuclear factor-κB activation, neutrophil and macrophage infiltration, and airway wall thickness. MEASUREMENTS AND MAIN RESULTS Morphometric evaluation of small airways revealed increased mean airway wall thickness and inflammatory cell counts in lungs from patients with COPD compared with control subjects, whereas SIgA level on the mucosal surface was decreased. However, when small airways were classified as SIgA intact or SIgA deficient, we found that pathologic changes were localized almost exclusively to SIgA-deficient airways, regardless of study group. SIgA-deficient airways were characterized by (1) abnormal epithelial morphology, (2) invasion of bacteria across the apical epithelial barrier, (3) nuclear factor-κB activation, (4) accumulation of macrophages and neutrophils, and (5) fibrotic remodeling of the airway wall. CONCLUSIONS Our findings support the concept that localized, acquired SIgA deficiency in individual small airways of patients with COPD allows colonizing bacteria to cross the epithelial barrier and drive persistent inflammation and airway wall remodeling, even after smoking cessation.
Collapse
Affiliation(s)
- Vasiliy V. Polosukhin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Bradley W. Richmond
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Cell and Developmental Biology
| | - Rui-Hong Du
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Justin M. Cates
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Pingsheng Wu
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Hui Nian
- Department of Biostatistics, and
| | - Pierre P. Massion
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Jae Woo Lee
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California; and
| | - Alexey V. Kononov
- Department of Pathology, Omsk State Medical Academy, Omsk, Russian Federation
| | - William E. Lawson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Cell and Developmental Biology
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
23
|
Zhou X, Gu D, Hou G. Erythromycin attenuates metalloprotease/anti-metalloprotease imbalance in cigarette smoke-induced emphysema in rats via the mitogen-activated protein kinase/nuclear factor-κB activation pathway. Mol Med Rep 2017; 15:2983-2990. [PMID: 28358431 PMCID: PMC5428383 DOI: 10.3892/mmr.2017.6416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/31/2017] [Indexed: 01/16/2023] Open
Abstract
The present study investigated whether erythromycin (ERY) reduces cigarette smoke (CS)-induced emphysema in rats and aimed to determine the anti-inflammatory effect of ERY, which may identify potential treatments for chronic obstructive pulmonary disease. Furthermore, the current study focused on the potential effects on the imbalance between matrix metalloprotease (MMP) and anti-MMP activity, the phosphorylation of mitogen-activated protein kinases (MAPKs) and the nuclear factor‑κB (NF‑κB) signaling pathway. Wistar rats were divided into the following three groups (n=12 each): control (ERY vehicle only, without any CS exposure), CS (animals were exposed to CS for 12 weeks) and CS + ERY (animals were exposed to CS for 12 weeks and received 100 mg/kg/day ERY). The recruitment of inflammatory cells into the bronchoalveolar lavage fluid (BALF) and the histopathology of lung tissue from all groups was evaluated to grade the severity of the emphysema. The expression of MMP‑2, MMP‑9 and tissue inhibitor of metalloproteinase‑1 was evaluated by immunohistochemistry and western blotting. The activation of MAPKs, NF‑κB and inhibitor of NF‑κB (IκBα), in lung tissues was examined by western blotting. Treatment with ERY resulted in fewer inflammatory cells and cytokines in the BALF, and fewer emphysema‑associated changes in the lungs compared with control. The stimulus of CS promoted the phosphorylation of extracellular signal‑regulated kinase (ERK)1/2 and p38, but not c‑Jun NH2‑terminal kinase, thereby inducing the activation of the ERK/MAPK signaling pathway in rats. Furthermore, CS exposure increased the expression of NF-κB and decreased the expression of IκBα. The levels of phosphorylated ERK1/2 and p38 were significantly reduced in rats with CS‑induced emphysema when treated with ERY compared with the CS group. The results of the present study therefore indicate that oral administration of ERY may suppress CS‑induced emphysema by regulating inflammatory cytokines and the MMP/anti-MMP imbalance via the MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Department of Respiratory Medicine, The Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Dongxue Gu
- Department of Respiratory Medicine, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Gang Hou
- The Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
24
|
Porter LM, Radulović ŽM, Mulenga A. A repertoire of protease inhibitor families in Amblyomma americanum and other tick species: inter-species comparative analyses. Parasit Vectors 2017; 10:152. [PMID: 28330502 PMCID: PMC5361777 DOI: 10.1186/s13071-017-2080-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 03/06/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Protease inhibitors (PIs) are important regulators of physiology and represent anti-parasitic druggable and vaccine targets. We conducted bioinformatic analyses of genome and transcriptome data to determine the protease inhibitor (PI) repertoire in Amblyomma americanum and in 25 other ixodid tick species. For A. americanum, we compared the PI repertoires in fed and unfed, male and female A. americanum ticks. We also analyzed PI repertoires of female 48, 96 and 120 h-fed midgut (MG) and salivary gland (SG) tissues. RESULTS We found 1,595 putative non-redundant PI sequences across 26 ixodid tick species. Ticks express PIs from at least 18 different families: I1, I2, I4, I8, I21, I25, I29, I31, I32, I35, I39, I43, I51, I53, I63, I68, I72 and I74 (MEROPS). The largest PI families were I2, I4 and I8 and lowest in I21, I31, I32, I35 and I68. The majority (75%) of tick PIs putatively inhibit serine proteases, with ~11 and 9% putatively regulating cysteine or metalloprotease-mediated pathways, respectively, and ~4% putatively regulating multiple/mixed protease types. In A. americanum, we found 370 PIs in female and 354 in male ticks. In A. americanum we found 231 and 442 in unfed and fed ticks, respectively. In females, we found 206 and 164 PIs in SG and MG, respectively. The majority of highly cross-tick species conserved PIs were in families I1, I2, I8, I21, I25, I29, I39 and I43. CONCLUSIONS Ticks appear to express large and diverse repertoires of PIs that primarily target serine protease-mediated pathways. We speculate that PI families with the highest repertoires may contain functionally redundant members while those with the lowest repertoires are functionally non-redundant PIs. We found some highly conserved PIs in the latter category, which we propose as potential candidates for broad-spectrum anti-tick vaccine candidates or druggable targets in tick control.
Collapse
Affiliation(s)
- Lindsay M Porter
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, 4647 TAMU, College Station, TX, 77843, USA
| | - Željko M Radulović
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, 4647 TAMU, College Station, TX, 77843, USA
| | - Albert Mulenga
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, 4647 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
25
|
Pifferi M, Bush A, Caramella D, Metelli MR, Di Cicco M, Piras M, Gherarducci G, Capristo C, Maggi F, Peroni D, Boner AL. Matrix metalloproteinases and airway remodeling and function in primary ciliary dyskinesia. Respir Med 2017; 124:49-56. [PMID: 28284321 DOI: 10.1016/j.rmed.2017.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/16/2017] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND The balance between matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) is important in the regulation of airway damage. OBJECTIVE To evaluate whether they are important in the pathophysiology of primary and secondary ciliary dyskinesia (PCD, SCD). METHODS We measured sputum bacteriology, lung CT changes, MMPs, TIMPs and lung function in 86 patients (51 PCD, 35 SCD) in a cross-sectional study; the 10 controls studied did not have HRCT or sputum cultures. MMPs, TIMPs and lung function were evaluated longitudinally for up to one year in 38 PCD patients. RESULTS At baseline, there were no differences in MMPs, TIMPs and MMPs/TIMPs, between PCD and SCD but lower levels were found in controls. There was an association between poorer lung function with increasing levels of MMPs in PCD, while in SCD only MMP-9/TIMP-1 values correlated with FRC z-scores. Levels of MMPs and TIMPs significantly correlated with severity HRCT changes. Longitudinally, there were significant correlations between slope of changes in spirometric parameters and slope of change in sputum MMPs in PCD patients. CONCLUSIONS In conclusion, we report for the first time that increased MMPs are associated with worse airway damage in PCD and SCD, and thus are potential therapeutic targets.
Collapse
Affiliation(s)
- Massimo Pifferi
- Department of Paediatrics, University Hospital of Pisa, Italy.
| | - Andrew Bush
- Imperial College and Royal Brompton Hospital, London, UK
| | - Davide Caramella
- Department of Diagnostic and Interventional Radiology, University Hospital of Pisa, Italy
| | - Maria Rita Metelli
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Maria Di Cicco
- Department of Paediatrics, University Hospital of Pisa, Italy
| | - Martina Piras
- Department of Paediatrics, University Hospital of Pisa, Italy
| | - Giulia Gherarducci
- Department of Diagnostic and Interventional Radiology, University Hospital of Pisa, Italy
| | - Carlo Capristo
- Visiting Professor at Department of Paediatrics, University of Verona, Italy
| | - Fabrizio Maggi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Italy
| | - Diego Peroni
- Department of Paediatrics, University Hospital of Pisa, Italy
| | | |
Collapse
|
26
|
Dvorkin-Gheva A, Vanderstocken G, Yildirim AÖ, Brandsma CA, Obeidat M, Bossé Y, Hassell JA, Stampfli MR. Total particulate matter concentration skews cigarette smoke's gene expression profile. ERJ Open Res 2016; 2:00029-2016. [PMID: 27995131 PMCID: PMC5165723 DOI: 10.1183/23120541.00029-2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/05/2016] [Indexed: 01/05/2023] Open
Abstract
Exposure of small animals to cigarette smoke is widely used as a model to study the pathogenesis of chronic obstructive pulmonary disease. However, protocols and exposure systems utilised vary substantially and it is unclear how these different systems compare. We analysed the gene expression profile of six publically available murine datasets from different cigarette smoke-exposure systems and related the gene signatures to three clinical cohorts. 234 genes significantly regulated by cigarette smoke in at least one model were used to construct a 55-gene network containing 17 clusters. Increasing numbers of differentially regulated clusters were associated with higher total particulate matter concentrations in the different datasets. Low total particulate matter-induced genes mainly related to xenobiotic/detoxification responses, while higher total particulate matter activated immune/inflammatory processes in addition to xenobiotic/detoxification responses. To translate these observations to the clinic, we analysed the regulation of the revealed network in three human cohorts. Similar to mice, we observed marked differences in the number of regulated clusters between the cohorts. These differences were not determined by pack-year. Although none of the experimental models exhibited a complete alignment with any of the human cohorts, some exposure systems showed higher resemblance. Thus, depending on the cohort, clinically observed changes in gene expression may be mirrored more closely by specific cigarette smoke exposure systems. This study emphasises the need for careful validation of animal models.
Collapse
Affiliation(s)
- Anna Dvorkin-Gheva
- Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada
- Centre for Functional Genomics, McMaster University, Hamilton, ON, Canada
- These authors contributed equally
| | - Gilles Vanderstocken
- Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada
- These authors contributed equally
| | - Ali Önder Yildirim
- Institute of Lung Biology and Disease (iLBD), Helmholtz Zentrum München, Neuherberg, Germany, Member of the German Center for Lung Research (DZL)
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, GRIAC research institute, Groningen, The Netherlands
| | - Ma'en Obeidat
- The University of British Columbia Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Yohan Bossé
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, QC, Canada
- Dept of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - John A. Hassell
- Centre for Functional Genomics, McMaster University, Hamilton, ON, Canada
| | - Martin R. Stampfli
- Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada
- Dept of Medicine, Firestone Institute of Respiratory Health at St. Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
27
|
Matrix Metalloproteinases in Non-Neoplastic Disorders. Int J Mol Sci 2016; 17:ijms17071178. [PMID: 27455234 PMCID: PMC4964549 DOI: 10.3390/ijms17071178] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/16/2016] [Accepted: 07/04/2016] [Indexed: 12/23/2022] Open
Abstract
The matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. There are at least 23 members of MMPs ever reported in human, and they and their substrates are widely expressed in many tissues. Recent growing evidence has established that MMP not only can degrade a variety of components of extracellular matrix, but also can cleave and activate various non-matrix proteins, including cytokines, chemokines and growth factors, contributing to both physiological and pathological processes. In normal conditions, MMP expression and activity are tightly regulated via interactions between their activators and inhibitors. Imbalance among these factors, however, results in dysregulated MMP activity, which causes tissue destruction and functional alteration or local inflammation, leading to the development of diverse diseases, such as cardiovascular disease, arthritis, neurodegenerative disease, as well as cancer. This article focuses on the accumulated evidence supporting a wide range of roles of MMPs in various non-neoplastic diseases and provides an outlook on the therapeutic potential of inhibiting MMP action.
Collapse
|
28
|
Kurzawski M, Kaczmarek M, Kłysz M, Malinowski D, Kazienko A, Kurzawa R, Droździk M. MMP2, MMP9 and TIMP2 polymorphisms affect sperm parameters but not fertility in Polish males. Andrologia 2016; 49. [PMID: 27401679 DOI: 10.1111/and.12654] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2016] [Indexed: 12/13/2022] Open
Abstract
Proper function of the blood-testis barrier is pivotal to spermatogenesis. Synchronised action of matrix metalloproteinases (MMP) and their inhibitors (TIMP) is mandatory to maintain dynamic balance of the barrier. Therefore, the association of functional genetic variants of MMP-2, MMP-9 and TIMP-2 and male infertility was studied. A total of 416 infertile males and 421 healthy subjects were genotyped for 7 SNPs within MMP2, MMP9 and TIMP2 genes, along with the assessment of semen parameters (concentration, motility and morphology of spermatozoa). No association was observed between the studied genotypes and male infertility. However, higher sperm concentration was associated with TIMP2 rs8080623 C and rs2277698 T variants among infertile men, and with MMP9 rs17576 A minor allele in controls (p < .05). TIMP2 rs9900972 T and rs2277698 T allele were associated with higher percentage of morphologically normal spermatozoa among controls. MMP2 rs2285053 TT homozygous infertile patients presented higher percentage of spermatozoa displaying nonprogressive motility. Haplotype analysis revealed strong linkage disequilibrium between the studied loci (5 of 8 possible TIMP2 haplotypes, and 3 of 4 possible MMP2 and MMP9 were found). None of the haplotypes showed association with infertility. This study results suggest an association between MMP9 and TIMP2 SNPs with sperm parameters, but not infertility.
Collapse
Affiliation(s)
- M Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - M Kaczmarek
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - M Kłysz
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - D Malinowski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - A Kazienko
- Department of Reproductive Medicine and Gynecology, Pomeranian Medical University, Police, Poland.,VitroLive Fertility Clinic, Szczecin, Poland
| | - R Kurzawa
- Department of Reproductive Medicine and Gynecology, Pomeranian Medical University, Police, Poland.,VitroLive Fertility Clinic, Szczecin, Poland
| | - M Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
29
|
Antuni JD, Barnes PJ. Evaluation of Individuals at Risk for COPD: Beyond the Scope of the Global Initiative for Chronic Obstructive Lung Disease. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2016; 3:653-667. [PMID: 28848890 DOI: 10.15326/jcopdf.3.3.2016.0129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Global initiative for chronic Obstructive Lung Disease (GOLD) Strategy is a valuable tool for clinicians in the diagnosis and management of patients with established chronic obstructive pulmonary disease (COPD). However, there are no recommendations for the evaluation of individuals, exposed to risk factors, who are most likely to develop COPD. Consequently, it is necessary to consider all of the factors that may play a role in the pathogenesis of COPD: genetic factors, gender, socioeconomic status, disadvantageous factors in childhood, lung diseases and exposure to risk factors such as smoking, biomass fuel smoke, occupational hazards and air pollution. Along with the clinical assessment, periodic spirometry should be performed to evaluate lung function and make possible early detection of individuals who will develop the disease through the rate of forced expiratory volume in 1 second (FEV1) decline. The first spirometry, periodicity, and clinically significant decline in FEV1 will encompass the cornerstones of clinical follow up. This approach allows the implementation of important interventions in order to help individuals to cease contact with risk factors and prevent progressive respiratory impairment with the consequent deterioration of quality of life and increased morbidity and mortality.
Collapse
Affiliation(s)
- Julio D Antuni
- Corporación Médica de General San Martín, Buenos Aires, Argentina
| | - Peter J Barnes
- National Heart and Lung Institute, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
30
|
Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency. Nat Commun 2016; 7:11240. [PMID: 27046438 PMCID: PMC4822073 DOI: 10.1038/ncomms11240] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 03/04/2016] [Indexed: 02/08/2023] Open
Abstract
Mechanisms driving persistent airway inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. As secretory immunoglobulin A (SIgA) deficiency in small airways has been reported in COPD patients, we hypothesized that immunobarrier dysfunction resulting from reduced SIgA contributes to chronic airway inflammation and disease progression. Here we show that polymeric immunoglobulin receptor-deficient (pIgR−/−) mice, which lack SIgA, spontaneously develop COPD-like pathology as they age. Progressive airway wall remodelling and emphysema in pIgR−/− mice are associated with an altered lung microbiome, bacterial invasion of the airway epithelium, NF-κB activation, leukocyte infiltration and increased expression of matrix metalloproteinase-12 and neutrophil elastase. Re-derivation of pIgR−/− mice in germ-free conditions or treatment with the anti-inflammatory phosphodiesterase-4 inhibitor roflumilast prevents COPD-like lung inflammation and remodelling. These findings show that pIgR/SIgA deficiency in the airways leads to persistent activation of innate immune responses to resident lung microbiota, driving progressive small airway remodelling and emphysema. The mechanisms driving lung inflammation and remodelling in chronic obstructive pulmonary disease (COPD) are incompletely understood. Here the authors show that lack of secretory IgA promotes bacterial invasion in small airways, resulting in leukocyte recruitment and a COPD-like phenotype.
Collapse
|
31
|
Pulmonary emphysema and tumor microenvironment in primary lung cancer. J Surg Res 2016; 200:690-7. [DOI: 10.1016/j.jss.2015.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 08/23/2015] [Accepted: 09/03/2015] [Indexed: 11/30/2022]
|
32
|
Bernasconi L, Ramenzoni LL, Al-Majid A, Tini GM, Graber SM, Schmidlin PR, Irani S. Elevated Matrix Metalloproteinase Levels in Bronchi Infected with Periodontopathogenic Bacteria. PLoS One 2015; 10:e0144461. [PMID: 26656474 PMCID: PMC4681451 DOI: 10.1371/journal.pone.0144461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022] Open
Abstract
Objectives To determine whether bronchial colonisations/infections with periodontopathogenic bacteria are associated with elevated inflammatory markers such as MMPs, interleukins and Tumor necrosis factor alpha in the bronchial fluid. Methods Periodontal status was assessed in consecutive outpatients planned for elective bronchoscopies, and PCR for periodontopathogenic bacteria was performed from a protected specimen brush sample taken from the bronchial mucosa. Additionally, MMPs, interleukins and Tumor necrosis factor alpha were measured in the bronchial fluid. Results Out of the four species assessed, one species was found in 13 of 91 (14%) patients, and two in 12 (13%), three in 13 (14%) and all four in 1 (1%) patient, respectively. In multiple linear regression models the presence of Treponema denticola showed a consistent pattern of positive effects in bronchial fluid (Bonferroni adjusted p-values) on the levels of MMP9 (p adj.: 0.028) and MMP12 (p adj.: 0.029). Active smoking was independently associated with increased levels of aMMP8 (p adj.: 0.005) and MMP9 (p adj.: 0.009). Levels of IL-1 ß, IL-8 and Tumor necrosis factor alpha measured in the bronchial fluid were not affected by the presence of periodontopathogenic bacteria. Conclusions Bronchial colonisation/infection with Treponema denticola and smoking are independently associated with elevated MMPs (MMP9/MMP12 and MMP8/MMP9, respectively) in the bronchial fluid.
Collapse
Affiliation(s)
- Luca Bernasconi
- Centre for Laboratory Medicine, Cantonal Hospital Aarau, Tellstrasse, CH-5001 Aarau, Switzerland
| | - Liza L. Ramenzoni
- Clinic of Preventive Dentistry, Periodontology, and Cariology, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland
| | - Ahmed Al-Majid
- Clinic of Preventive Dentistry, Periodontology, and Cariology, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland
| | - Gabrielo M. Tini
- Clinic of Pulmonary and Sleep Medicine, Cantonal Hospital Aarau, Tellstrasse, CH-5001 Aarau, Switzerland
| | - Sereina M. Graber
- Anthropological Institute and Museum, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Patrick R. Schmidlin
- Clinic of Preventive Dentistry, Periodontology, and Cariology, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland
| | - Sarosh Irani
- Clinic of Pulmonary and Sleep Medicine, Cantonal Hospital Aarau, Tellstrasse, CH-5001 Aarau, Switzerland
- * E-mail:
| |
Collapse
|
33
|
Freeman CM, Martinez CH, Todt JC, Martinez FJ, Han MK, Thompson DL, McCloskey L, Curtis JL. Acute exacerbations of chronic obstructive pulmonary disease are associated with decreased CD4+ & CD8+ T cells and increased growth & differentiation factor-15 (GDF-15) in peripheral blood. Respir Res 2015; 16:94. [PMID: 26243260 PMCID: PMC4531816 DOI: 10.1186/s12931-015-0251-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/08/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although T cells, especially CD8+, have been implicated in chronic obstructive pulmonary disease (COPD) pathogenesis, their role during acute exacerbations (AE-COPD) is uncertain. METHODS We recruited subjects with COPD and a history of previous AE-COPD and studied them quarterly to collect blood and spontaneously expectorated sputum while stable. During exacerbations (defined by a change in symptoms plus physician diagnosis and altered medications), we collected blood and sputum before administering antibiotics or steroids. We used flow cytometry to identify leukocytes in peripheral blood, plus Luminex® analysis or ELISA to determine levels of inflammatory biomarkers in serum and sputum supernatants. RESULTS Of 33 enrolled subjects, 13 participated in multiple stable visits and had ≥1 AE-COPD visit, yielding 18 events with paired data. Flow cytometric analyses of peripheral blood demonstrated decreased CD4+ and CD8+ T cells during AE-COPD (both absolute and as a percentage of all leukocytes) and significantly increased granulocytes, all of which correlated significantly with serum C-reactive protein (CRP) concentrations. No change was observed in other leukocyte populations during AE-COPD, although the percentage of BDCA-1+ dendritic cells expressing the activation markers CD40 and CD86 increased. During AE-COPD, sICAM-1, sVCAM-1, IL-10, IL-15 and GDF-15 increased in serum, while in sputum supernatants, CRP and TIMP-2 increased and TIMP-1 decreased. CONCLUSIONS The decrease in CD4+ and CD8+ T cells (but not other lymphocyte subsets) in peripheral blood during AE-COPD may indicate T cell extravasation into inflammatory sites or organized lymphoid tissues. GDF-15, a sensitive marker of cardiopulmonary stress that in other settings independently predicts reduced long-term survival, is acutely increased in AE-COPD. These results extend the concept that AE-COPD are systemic inflammatory events to which adaptive immune mechanisms contribute. TRIAL REGISTRATION NCT00281216 , ClinicalTrials.gov.
Collapse
Affiliation(s)
- Christine M Freeman
- Research Service and Pulmonary & Critical Care Medicine Section, Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA.,Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA
| | - Carlos H Martinez
- Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA
| | - Jill C Todt
- Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA
| | - Fernando J Martinez
- Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA
| | - MeiLan K Han
- Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA
| | - Deborah L Thompson
- Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA
| | - Lisa McCloskey
- Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA
| | - Jeffrey L Curtis
- Pulmonary & Critical Care Medicine Section, Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA. .,Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA. .,Pulmonary & Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, 48109, USA. .,Department of Veterans Affairs Healthsystem, Pulmonary and Critical Care Medicine Section (506/111G), 2215 Fuller Road, Ann Arbor, MI, 48105-2303, USA.
| |
Collapse
|
34
|
Gogia S, Lo CY, Neelamegham S. Detection of Plasma Protease Activity Using Microsphere-Cytometry Assays with E. coli Derived Substrates: VWF Proteolysis by ADAMTS13. PLoS One 2015; 10:e0126556. [PMID: 25992814 PMCID: PMC4436310 DOI: 10.1371/journal.pone.0126556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/03/2015] [Indexed: 11/19/2022] Open
Abstract
Protease levels in human blood are often prognostic indicators of inflammatory, thrombotic or oncogenic disorders. The measurement of such enzyme activities in substrate-based assays is complicated due to the low prevalence of these enzymes and steric hindrance of the substrates by the more abundant blood proteins. To address these limitations, we developed a molecular construct that is suitable for microsphere-cytometer based assays in the milieu of human blood plasma. In this proof of principle study, we demonstrate the utility of this substrate to measure metalloprotease ADAMTS13 activity. The substrate, expressed in E. coli as a fusion protein, contains the partial A2-domain of von Willebrand factor (VWF amino acids 1594-1670) that is mutated to include a single primary amine at the N-terminus and free cysteines at the C-terminus. N-terminus fluorescence conjugation was possible using NHS (N-hydroxysuccinimide) chemistry. Maleimide-PEG(Polyethylene glycol)n-biotin coupling at the C-terminus allowed biotinylation with variable PEG spacer lengths. Once bound to streptavidin-bearing microspheres, the substrate fluorescence signal decreased in proportion with ADAMTS13 concentration. Whereas recombinant ADAMTS13 activity could be quantified using substrates with all PEG repeat-lengths, only the construct with the longer 77 PEG-unit could quantify proteolysis in blood plasma. Using this longer substrate, plasma ADAMTS13 down to 5% of normal levels could be detected within 30 min. Such measurements could also be readily performed under conditions resembling hyperbilirubinemia. Enzyme catalytic activity was tuned by varying buffer calcium, with lower divalent ion concentrations enhancing cleavage. Overall, the study highlights the substrate design features important for the creation of efficient proteolysis assays in the setting of human plasma. In particular, it emphasizes the need to introduce PEG spacers in plasma-based experiments, a design attribute commonly ignored in immobilized peptide-substrate assays.
Collapse
Affiliation(s)
- Shobhit Gogia
- Department of Chemical and Biological Engineering and NY State Center for Excellence in Bioinformatics and Life Sciences, State University of New York, Buffalo, New York, United States of America
| | - Chi Y. Lo
- Department of Chemical and Biological Engineering and NY State Center for Excellence in Bioinformatics and Life Sciences, State University of New York, Buffalo, New York, United States of America
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering and NY State Center for Excellence in Bioinformatics and Life Sciences, State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Kraljevic D, Vukojevic K, Karan D, Rajic B, Todorovic J, Miskovic J, Tomic V, Kordic M, Soljic V. Proliferation, apoptosis and expression of matrix metalloproteinase-9 in human fetal lung. Acta Histochem 2015; 117:444-50. [PMID: 25722035 DOI: 10.1016/j.acthis.2015.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 01/22/2015] [Accepted: 02/01/2015] [Indexed: 10/23/2022]
Abstract
Expression pattern of the Ki-67, caspase-3 and matrix metalloproteinases-9 (MMP-9) factors were immunohistochemically analyzed in 48 human fetal lungs from 12 to 40 weeks of gestation. The number of Ki-67 positive cells in the epithelium of canaliculare (88cells/mm(2)) and sacculare stage (93cells/mm(2)) were significantly higher than in the epithelium of pseudoglandular stage (12cells/mm(2)) (p=0.0008 vs. p=0.003). The number of Ki-67 positive cells in the mesenchyme of canaliculare stage (132cells/mm(2)) was significantly higher than in the mesenchyme of pseudoglandular stage (37cells/mm(2)) (p=0.001). The proliferation of mesenchymal cells was higher than the epithelial cells in all developmental stages, especially in the canaliculare stage (p=0.007). Similarly, the number of caspase-3 positive cells in the epithelium of canalicular stage (13cells/mm(2)) was significantly higher than in the epithelium of pseudoglandular stage (6cells/mm(2)) (p=0.002) with peaks in the conductive epithelium of canalicular stage. The number of caspase-3 positive cells in the mesenchyme of canaliculare stage (3cells/mm(2)) was significantly higher than in the mesenchyme of saccular stage (0cells/mm(2)) (p=0.05). There were no caspase-3 positive cells in the mesenchyme of pseudoglandular stage. However, unlike the Ki-67 expression, mesenchymal cells in comparison to epithelial cells express substantially less caspase-3 in all developmental stages. Up to the saccular stage, the expression of MMP-9 in mesenchymal cells showed a linear increase with most pronounced expression in that stage. The number of MMP-9 positive cells in the mesenchyme of canaliculare (20cells/mm(2)) and sacculare (39cells/mm(2)) stage were significantly higher than in the mesenchyme of pseudoglandular stage (12cells/mm(2)) (p=0.04 vs. p=0.004). The first epithelial cells that express MMP-9 were present only at the alveolar stage. Increased proliferation and apoptosis of the mesenchymal cells of canalicular stage is important for formation of definite structures within the stroma of the lung parenchyma. Although apoptosis in the epithelium is not pronounced as proliferation, it is important for thinning of the epithelium and consequent spread of respiratory tract. However in the saccular stage when mesenchyme disappears, MMP-9 expression is more important for primitive alveoli differentiation.
Collapse
|
36
|
Shirley DK, Kaner RJ, Glesby MJ. Screening for Chronic Obstructive Pulmonary Disease (COPD) in an Urban HIV Clinic: A Pilot Study. AIDS Patient Care STDS 2015; 29:232-9. [PMID: 25723842 DOI: 10.1089/apc.2014.0265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Increased smoking and a detrimental response to tobacco smoke in the lungs of HIV/AIDS patients result in an increased risk for COPD. We aimed to determine the predictive value of a COPD screening strategy validated in the general population and to identify HIV-related factors associated with decreased lung function. Subjects at least 35 years of age at an HIV clinic in New York City completed a COPD screening questionnaire and peak flow measurement. Those with abnormal results and a random one-third of normal screens had spirometry. 235 individuals were included and 89 completed spirometry. Eleven (12%) had undiagnosed airway obstruction and 5 had COPD. A combination of a positive questionnaire and abnormal peak flow yielded a sensitivity of 20% (specificity 93%) for detection of COPD. Peak flow alone had a sensitivity of 80% (specificity 80%). Abnormal peak flow was associated with an AIDS diagnosis (p=0.04), lower nadir (p=0.001), and current CD4 counts (p=0.001). Nadir CD4 remained associated in multivariate analysis (p=0.05). Decreased FEV1 (<80% predicted) was associated with lower CD4 count nadir (p=0.04) and detectable current HIV viral load (p=0.01) in multivariate analysis. Questionnaire and peak flow together had low sensitivity, but abnormal peak flow shows potential as a screening tool for COPD in HIV/AIDS. These data suggest that lung function may be influenced by HIV-related factors.
Collapse
Affiliation(s)
- Daniel K Shirley
- 1 Divisions of Infectious Disease and Hospital Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | | | | |
Collapse
|
37
|
MMP-1 and -3 Promoter Variants Are Indicative of a Common Susceptibility for Skin and Lung Aging: Results from a Cohort of Elderly Women (SALIA). J Invest Dermatol 2015; 135:1268-1274. [DOI: 10.1038/jid.2015.7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/19/2014] [Accepted: 12/13/2014] [Indexed: 12/31/2022]
|
38
|
Hou G, Yin Y, Han D, Wang QY, Kang J. Rosiglitazone attenuates the metalloprotease/anti-metalloprotease imbalance in emphysema induced by cigarette smoke: involvement of extracellular signal-regulated kinase and NFκB signaling. Int J Chron Obstruct Pulmon Dis 2015; 10:715-24. [PMID: 25897215 PMCID: PMC4396520 DOI: 10.2147/copd.s77514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective We investigated how rosiglitazone attenuated cigarette smoke (CS)-induced emphysema in a rat model. In particular, we focused on its possible effects on the imbalance between metalloprotease (MMP) and anti-MMP activity, mitogen-activated protein kinase (MAPK) phosphorylation, and nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB) signaling pathway over-activation. Methods A total of 36 Wistar rats were divided into three groups (n=12 each): animals were exposed to CS for 12 weeks in the absence (the CS group) or presence of 30 mg/kg rosiglitazone (the rosiglitazone-CS [RCS] group); a control group was treated with the rosiglitazone vehicle only, without any CS exposure. Histopathology of lung tissue in all groups was evaluated to grade severity of the disease. Expression levels of peroxisome proliferator-activated receptor γ (PPARγ), MMP2, and MMP9 in lung tissue were determined and compared using Western blotting and immunohistochemistry. Activation of MAPKs, NFκB, and the nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor, alpha (IκBα) phosphorylation in lung tissue was examined by Western blotting. Results Emphysema-related pathology, based on inter-alveolar wall distance and alveolar density, was less severe in the RCS group than in the CS group. Compared with the CS group, levels of PPARγ were higher in the RCS group, and levels of MMP2 and MMP9 proteins were lower in the RCS rats. Levels of activated MAPKs and NFκB were also lower, while the IκBαphosphorylation was increased in the lung tissue of RCS rats. Conclusion Our findings suggest that oral administration of rosiglitazone attenuates the metalloprotease activity induced by CS, and the underlying mechanism might involve the activation of signaling pathways dependent on MAPKs or NFκB. Our results further suggest that PPARγ contributes to the pathogenesis of emphysema as well as airway inflammation induced by CS.
Collapse
Affiliation(s)
- Gang Hou
- Department of Respiratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yan Yin
- Department of Respiratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Dan Han
- Department of Respiratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qiu-Yue Wang
- Department of Respiratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jian Kang
- Department of Respiratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
39
|
Jia TG, Zhao JQ, Liu JH. Serum inflammatory factor and cytokines in AECOPD. ASIAN PAC J TROP MED 2014; 7:1005-8. [PMID: 25479632 DOI: 10.1016/s1995-7645(14)60177-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/10/2014] [Accepted: 11/15/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To explore the serum levels of IL-32, MMP-9,PCT and CRP in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). METHODS A total of 50 patients with AECOPD and 45 cases with acute asthma attack admitted from October 2013 to August 2014 were selected, and the serum levels of IL-32, MMP-9, PCT and CRP were determined and compaed by using Double antibody sandwich Enzyme linked immunosorbent assay, immunofluorescence double antibody sandwich assay and immunoturbidimetry assay. RESULTS Serum levels of IL-32, MMP-9, PCT and CRP were significantly higher in AECOPD group than acute asthma attack group (P<0.05). IL-32 and MMP-9 were negatively correlated with lung function. MMP-9 in AECOPD patients was increased more significantly. CONCLUSIONS Serum levels of IL-32 and MMP-9 were negatively correlated with lung function, and the worse the lung function is, the more significant the increase is.
Collapse
Affiliation(s)
- Tie-Gang Jia
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075061, China
| | - Jian-Qing Zhao
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075061, China.
| | - Jian-Hua Liu
- Department of Respiratory Medicine, First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075061, China
| |
Collapse
|
40
|
Xie L, Wu M, Lin H, Liu C, Yang H, Zhan J, Sun S. An increased ratio of serum miR-21 to miR-181a levels is associated with the early pathogenic process of chronic obstructive pulmonary disease in asymptomatic heavy smokers. MOLECULAR BIOSYSTEMS 2014; 10:1072-81. [PMID: 24556821 DOI: 10.1039/c3mb70564a] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heavy smoking is associated with the development of chronic obstructive pulmonary disease (COPD). However, there is no valuable biomarker for evaluating COPD development in heavy smokers because they are usually asymptomatic. This study is aimed at evaluating whether the levels of serum miRNAs can serve as biomarkers for predicting the occurrence of COPD. A rat model of emphysema was induced by enforced smoking, and the dynamic miRNAs expression profile at different stages of emphysema with varying periods of smoking were analyzed by microarray and quantitative real-time polymerase chain reaction (qRT-PCR). The differentially expressing miRNAs were analyzed using Gene Ontology and the KEGG PATHWAY database. The levels of three serum candidate miRNAs were measured by qRT-PCR in 41 healthy controls (HC), 40 asymptomatic heavy smokers, and 49 COPD patients. Following smoking for varying periods, different severities of lung emphysema were observed in different groups of rats, accompanied by altered levels of some serum miRNAs associated with regulating some pathways. Furthermore, the levels of miR-21 were significantly higher in the COPD patients and asymptomatic heavy smokers than in the HC (P < 0.001), while the levels of miR-181a were significantly lower in the COPD patients and asymptomatic heavy smokers than in the HC (P < 0.001). Accordingly, the levels of serum miR-21 and miR-181a as well as their ratios had a high sensitivity (0.854) and specificity (0.850) for evaluating the development of COPD. Our data suggest that the levels of serum miR-21 and miR-181a may be valuable for evaluating the development of COPD in heavy smokers.
Collapse
Affiliation(s)
- Lihua Xie
- Department of Respiratory Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Protease-antiprotease imbalances differ between Cystic Fibrosis patients' upper and lower airway secretions. J Cyst Fibros 2014; 14:324-33. [PMID: 25286826 DOI: 10.1016/j.jcf.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/31/2014] [Accepted: 09/02/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Balanced levels of proteases and anti-proteases are essential in host defense systems. In CF patients' lungs, elevated protease/anti-protease-ratios contribute to damage of airway tissue and premature death with the inherited disease. Little is known about upper airway protease equilibrium in CF. METHODS Neutrophil elastase (NE), Secretory leukocyte protease inhibitor (SLPI), matrix metalloproteinase (MMP)9, tissue inhibitors of metalloproteinase (TIMP)1, cathepsin S (CTSS) and the corresponding cellular distribution were assessed in the nasal lavage (NL) and sputum of 40 CF patients. RESULTS Concentrations of all proteases and anti-proteases were markedly higher in sputum than in NL (NE: 10-fold, SLPI: 5000-fold). Interestingly, the NE/SLPI ratio was 726-fold higher in NL compared to sputum, while the MMP9/TIMP1 ratio was 4.5-fold higher in sputum compared to NL. DISCUSSION This first study to compare protease/anti-protease networks of CF upper and lower airways by NL and sputum reveals substantial differences between both compartments' immunological responses. This finding may have implications for sinonasal and pulmonary treatment, possibly leading to new therapeutic approaches.
Collapse
|
42
|
Porter L, Radulović Ž, Kim T, Braz GRC, Da Silva Vaz I, Mulenga A. Bioinformatic analyses of male and female Amblyomma americanum tick expressed serine protease inhibitors (serpins). Ticks Tick Borne Dis 2014; 6:16-30. [PMID: 25238688 DOI: 10.1016/j.ttbdis.2014.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/20/2014] [Accepted: 08/28/2014] [Indexed: 12/31/2022]
Abstract
Serine protease inhibitors (serpins) are a diverse family of proteins that is conserved across taxa. The diversity of Amblyomma americanum serpins (AAS) is far more complex than previously thought as revealed by discovery of 57 and 33 AAS transcripts that are respectively expressed in male and female A. americanum ticks, with 30 found in both. While distinct reproductively, both male and female metastriate ticks, such as A. americanum, require a blood meal. Thus, 30 AAS sequences found in both male and female ticks could play important role(s) in regulating tick feeding and thus represent attractive candidates for anti-tick vaccine development. Of significant interest, 19 AAS sequences expressed in male and female ticks are also part of the 48 AAS sequences expressed in fed female tick salivary glands or midguts; two organs through which the tick interacts with host blood and immune response factors. Considered the most important domain for serpin function, the reactive center loop (RCL) is further characterized by a single 'P1' site amino acid residue, which is central to determining the protease regulated by the serpin. In this study, a diversity of 17 different P1 site amino acid residues were predicted, suggesting that A. americanum serpins potentially regulate a large number of proteolytic pathways. Our data also indicate that some serpins in this study could regulate target protease common to all tick species, in that more than 40% of AAS show 58-97% inter-species amino acid conservation. Of significance, 24% of AAS showed 62-100% inter-species conservation within the functional RCL domain, with 10 RCLs showing ≥90-100% conservation. In vertebrates, serpins with basic residues at the P1 site regulate key host defense pathways, which the tick must evade to feed successfully. Interestingly, we found that AAS sequences with basic or polar uncharged residues at the putative P1 site are more likely to be conserved across tick species. Another notable observation from our data is that AAS sequences found only in female ticks and those found in both males and females, but not those found only in male ticks, were highly conserved in other tick species. While descriptive, this study provides the basis for more in-depth studies exploring the roles of serpins in tick feeding physiology.
Collapse
Affiliation(s)
- Lindsay Porter
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, United States
| | - Željko Radulović
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, United States
| | - Tae Kim
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, United States
| | - Gloria R C Braz
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - Itabajara Da Silva Vaz
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil
| | - Albert Mulenga
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, United States.
| |
Collapse
|
43
|
Chen X, Xu X, Xiao F. Heterogeneity of chronic obstructive pulmonary disease: from phenotype to genotype. Front Med 2014; 7:425-32. [PMID: 24234678 DOI: 10.1007/s11684-013-0295-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/22/2013] [Indexed: 12/31/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality throughout the world and is mainly characterized by persistent airflow limitation. Given that multiple systems other than the lung can be impaired in COPD patients, the traditional FEV1/FVC ratio shows many limitations in COPD diagnosis and assessment. Certain heterogeneities are found in terms of clinical manifestations, physiology, imaging findings, and inflammatory reactions in COPD patients; thus, phenotyping can provide effective information for the prognosis and treatment. However, phenotypes are often based on symptoms or pathophysiological impairments in late-stage COPD, and the role of phenotypes in COPD prevention and early diagnosis remains unclear. This shortcoming may be overcome by the potential genotypes defined by the heterogeneities in certain genes. This review briefly describes the heterogeneity of COPD, with focus on recent advances in the correlations between genotypes and phenotypes. The potential roles of these genotypes and phenotypes in the molecular mechanisms and management of COPD are also elucidated.
Collapse
|
44
|
Tse HN, Tseng CZS. Update on the pathological processes, molecular biology, and clinical utility of N-acetylcysteine in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2014; 9:825-36. [PMID: 25125976 PMCID: PMC4130719 DOI: 10.2147/copd.s51057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common and morbid disease characterized by high oxidative stress. Its pathogenesis is complex, and involves excessive oxidative stress (redox imbalance), protease/antiprotease imbalance, inflammation, apoptosis, and autoimmunity. Among these, oxidative stress has a pivotal role in the pathogenesis of COPD by initiating and mediating various redox-sensitive signal transduction pathways and gene expression. The protective physiological mechanisms of the redox balance in the human body, their role in the pathogenesis of COPD, and the clinical correlation between oxidative stress and COPD are reviewed in this paper. N-acetylcysteine (NAC) is a mucolytic agent with both antioxidant and anti-inflammatory properties. This paper also reviews the use of NAC in patients with COPD, especially the dose-dependent properties of NAC, eg, its effects on lung function and the exacerbation rate in patients with the disease. Earlier data from BRONCUS (the Bronchitis Randomized on NAC Cost-Utility Study) did not suggest that NAC was beneficial in patients with COPD, only indicating that it reduced exacerbation in an “inhaled steroid-naïve” subgroup. With regard to the dose-dependent properties of NAC, two recent randomized controlled Chinese trials suggested that high-dose NAC (1,200 mg daily) can reduce exacerbations in patients with COPD, especially in those with an earlier (moderately severe) stage of disease, and also in those who are at high risk of exacerbations. However, there was no significant effect on symptoms or quality of life in patients receiving NAC. Further studies are warranted to investigate the effect of NAC at higher doses in non-Chinese patients with COPD.
Collapse
Affiliation(s)
- Hoi Nam Tse
- Medical and Geriatric Department, Kwong Wah Hospital, Hong Kong Special Administrative Region
| | - Cee Zhung Steven Tseng
- Medical and Geriatric Department, Kwong Wah Hospital, Hong Kong Special Administrative Region
| |
Collapse
|
45
|
Sturtzel C, Testori J, Schweighofer B, Bilban M, Hofer E. The transcription factor MEF2C negatively controls angiogenic sprouting of endothelial cells depending on oxygen. PLoS One 2014; 9:e101521. [PMID: 24988463 PMCID: PMC4079651 DOI: 10.1371/journal.pone.0101521] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/09/2014] [Indexed: 11/18/2022] Open
Abstract
The MADS box transcription factor MEF2C has been detected by us to be upregulated by the angiogenic factors VEGF-A and bFGF in endothelial cells. We have here investigated its potential role for angiogenesis. MEF2C was surprisingly found to strongly inhibit angiogenic sprouting, whereas a dominant negative mutant rather induced sprouting. The factor mainly affected migratory processes of endothelial cells, but not proliferation. In gene profiling experiments we delineated the alpha-2-macroglobulin gene to be highly upregulated by MEF2C. Further data confirmed that MEF2C in endothelial cells indeed induces alpha-2-macroglobulin mRNA as well as the secretion of alpha-2-macroglobulin and that conditioned supernatants of cells overexpressing MEF2C inhibit sprouting. Alpha-2-macroglobulin mediates, at least to a large extent, the inhibitory effects of MEF2C as is shown by knockdown of alpha-2-macroglobulin mRNA by lentiviral shRNA expression which reduces the inhibitory effect. However, under hypoxic conditions the VEGF-A/bFGF-mediated upregulation of MEF2C is reduced and the production of alpha-2-macroglobulin largely abolished. Taken together, this suggests that the MEF2C/alpha-2-macroglobulin axis functions in endothelial cells as a negative feed-back mechanism that adapts sprouting activity to the oxygen concentration thus diminishing inappropriate and excess angiogenesis.
Collapse
Affiliation(s)
- Caterina Sturtzel
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Julia Testori
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Schweighofer
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Erhard Hofer
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
46
|
Agler AH, Crystal RG, Mezey JG, Fuller J, Gao C, Hansen JG, Cassano PA. Differential expression of vitamin E and selenium-responsive genes by disease severity in chronic obstructive pulmonary disease. COPD 2014; 10:450-8. [PMID: 23875740 DOI: 10.3109/15412555.2012.761958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antioxidant nutritional status is hypothesized to influence chronic obstructive pulmonary disease (COPD) susceptibility and progression. Although past studies relate antioxidants to gene expression, there are no data in patients with COPD. This study investigated the hypothesis that antioxidant status is compromised in patients with COPD, and antioxidant-responsive genes differentially express in a similar pattern. Lung tissue samples from patients with COPD were assayed for vitamin E and gene expression. Selenium and vitamin E were assayed in corresponding plasma samples. Discovery based genome-wide expression analysis compared moderate, severe, and very severe COPD (GOLD II-IV) patients to mild and at-risk/normal (GOLD 0-I). Hypotheses-driven analyses assessed differential gene expression by disease severity for vitamin E-responsive and selenium-responsive genes. GOLD II-IV COPD patients had 30% lower lung tissue vitamin E levels compared to GOLD 0-I participants (p = 0.0082). No statistically significant genome-wide differences in expression by disease severity were identified. Hypothesis-driven analyses of 109 genes found 16 genes differentially expressed (padjusted < 0.05) by disease severity including 6 selenium-responsive genes (range in fold-change -1.39 to 2.25), 6 vitamin E-responsive genes (fold-change -2.30 to 1.51), and 4 COPD-associated genes. Lung tissue vitamin E in patients with COPD was associated with disease severity and vitamin E-responsive genes were differentially expressed by disease severity. Although nutritional status is hypothesized to contribute to COPD risk, and is of therapeutic interest, evidence to date is mainly observational. The findings reported herein are novel, and support a role of vitamin E in COPD progression.
Collapse
Affiliation(s)
- Anne H Agler
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Revuelta-López E, Castellano J, Roura S, Gálvez-Montón C, Nasarre L, Benitez S, Bayes-Genis A, Badimon L, Llorente-Cortés V. Hypoxia Induces Metalloproteinase-9 Activation and Human Vascular Smooth Muscle Cell Migration Through Low-Density Lipoprotein Receptor–Related Protein 1–Mediated Pyk2 Phosphorylation. Arterioscler Thromb Vasc Biol 2013; 33:2877-87. [DOI: 10.1161/atvbaha.113.302323] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elena Revuelta-López
- From the Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Barcelona, Spain (E.R.-L., J.C., L.N., L.B.); ICREC Research Program, Fundació Institut d´Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain (S.R., C.G.-M., A.B.-G.); and Cardiovascular Biochemistry Group, Biomedical Research Institute Sant Pau, IIB-Sant Pau, Barcelona, Spain (S.B.)
| | - José Castellano
- From the Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Barcelona, Spain (E.R.-L., J.C., L.N., L.B.); ICREC Research Program, Fundació Institut d´Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain (S.R., C.G.-M., A.B.-G.); and Cardiovascular Biochemistry Group, Biomedical Research Institute Sant Pau, IIB-Sant Pau, Barcelona, Spain (S.B.)
| | - Santiago Roura
- From the Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Barcelona, Spain (E.R.-L., J.C., L.N., L.B.); ICREC Research Program, Fundació Institut d´Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain (S.R., C.G.-M., A.B.-G.); and Cardiovascular Biochemistry Group, Biomedical Research Institute Sant Pau, IIB-Sant Pau, Barcelona, Spain (S.B.)
| | - Carolina Gálvez-Montón
- From the Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Barcelona, Spain (E.R.-L., J.C., L.N., L.B.); ICREC Research Program, Fundació Institut d´Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain (S.R., C.G.-M., A.B.-G.); and Cardiovascular Biochemistry Group, Biomedical Research Institute Sant Pau, IIB-Sant Pau, Barcelona, Spain (S.B.)
| | - Laura Nasarre
- From the Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Barcelona, Spain (E.R.-L., J.C., L.N., L.B.); ICREC Research Program, Fundació Institut d´Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain (S.R., C.G.-M., A.B.-G.); and Cardiovascular Biochemistry Group, Biomedical Research Institute Sant Pau, IIB-Sant Pau, Barcelona, Spain (S.B.)
| | - Sonia Benitez
- From the Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Barcelona, Spain (E.R.-L., J.C., L.N., L.B.); ICREC Research Program, Fundació Institut d´Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain (S.R., C.G.-M., A.B.-G.); and Cardiovascular Biochemistry Group, Biomedical Research Institute Sant Pau, IIB-Sant Pau, Barcelona, Spain (S.B.)
| | - Antoni Bayes-Genis
- From the Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Barcelona, Spain (E.R.-L., J.C., L.N., L.B.); ICREC Research Program, Fundació Institut d´Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain (S.R., C.G.-M., A.B.-G.); and Cardiovascular Biochemistry Group, Biomedical Research Institute Sant Pau, IIB-Sant Pau, Barcelona, Spain (S.B.)
| | - Lina Badimon
- From the Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Barcelona, Spain (E.R.-L., J.C., L.N., L.B.); ICREC Research Program, Fundació Institut d´Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain (S.R., C.G.-M., A.B.-G.); and Cardiovascular Biochemistry Group, Biomedical Research Institute Sant Pau, IIB-Sant Pau, Barcelona, Spain (S.B.)
| | - Vicenta Llorente-Cortés
- From the Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Barcelona, Spain (E.R.-L., J.C., L.N., L.B.); ICREC Research Program, Fundació Institut d´Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain (S.R., C.G.-M., A.B.-G.); and Cardiovascular Biochemistry Group, Biomedical Research Institute Sant Pau, IIB-Sant Pau, Barcelona, Spain (S.B.)
| |
Collapse
|
48
|
Liu Q, Jin L, Shen FH, Balian G, Li XJ. Fullerol nanoparticles suppress inflammatory response and adipogenesis of vertebral bone marrow stromal cells--a potential novel treatment for intervertebral disc degeneration. Spine J 2013; 13:1571-80. [PMID: 23669123 PMCID: PMC3841235 DOI: 10.1016/j.spinee.2013.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 11/15/2012] [Accepted: 04/03/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Intervertebral disc degeneration, leading to chronic back pain, is a major health problem in western societies. Vertebral bone marrow has been considered to play an important role in nutrition supply and metabolic exchange for discs. Vertebral bone marrow lesions, including fatty marrow replacement and inflammatory edema, noted on magnetic resonance imaging were first described in 1988. PURPOSE To investigate the potential of a free radical scavenger, fullerol nanoparticles, to prevent vertebral bone marrow lesion and prevent disc degeneration by inhibiting inflammation and adipogenic differentiation of vertebral bone marrow stromal cells (vBMSCs). STUDY DESIGN/SETTING Fullerol nanoparticle solutions were prepared to test their in vitro suppression effects on mouse vBMSC inflammation and adipogenic differentiation compared with non-fullerol-treated groups. METHODS With or without fullerol treatment, vBMSCs from Swiss Webster mice were incubated with 10 ng/mL interleukin-1 β (IL-1 β). The intracellular reactive oxygen species (ROS) were measured with fluorescence staining and flow cytometry. In addition, vBMSCs were cultured with adipogenic medium (AM) with or without fullerol. Gene and protein expressions were evaluated by real-time polymerase chain reaction and histologic methods. RESULTS Fluorescence staining and flow cytometry results showed that IL-1 β markedly increased intracellular ROS level, which could be prevented by fullerol administration. Fullerol also decreased the basal ROS level to 77%. Cellular production of matrix metalloproteinase (MMP)-1, 3, and 13 and tumor necrosis factor alpha (TNF-α) induced by IL-1 β was suppressed by fullerol treatment. Furthermore, adipogenic differentiation of the vBMSCs was retarded markedly by fullerol as revealed by less lipid droplets in the fullerol treatment group compared with the adipogenic group. The expression of adipogenic genes PPARγ and aP2 was highly elevated with AM but decreased on fullerol administration. CONCLUSIONS These results suggest that fullerol prevents the catabolic activity of vBMSCs under inflammatory stimulus by decreasing the level of ROS, MMPs, and TNF-α. Also, fat formation in vBMSCs is prevented by fullerol nanoparticles, and, therefore, fullerol may warrant further in vivo investigation as an effective biological therapy for disc degeneration.
Collapse
Affiliation(s)
| | | | | | | | - Xudong Joshua Li
- Corresponding Author: Xudong Joshua Li, Mailing address: Orthopedic Research Laboratories, Box 800374, University of Virginia School of Medicine, Charlottesville, VA 22908, , Phone: 434-982-4135, Fax: 434-982-1691
| |
Collapse
|
49
|
Singh SP, Gundavarapu S, Smith KR, Chand HS, Saeed AI, Mishra NC, Hutt J, Barrett EG, Husain M, Harrod KS, Langley RJ, Sopori ML. Gestational exposure of mice to secondhand cigarette smoke causes bronchopulmonary dysplasia blocked by the nicotinic receptor antagonist mecamylamine. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:957-64. [PMID: 23757602 PMCID: PMC3734504 DOI: 10.1289/ehp.1306611] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/07/2013] [Indexed: 05/10/2023]
Abstract
BACKGROUND Cigarette smoke (CS) exposure during gestation may increase the risk of bronchopulmonary dysplasia (BPD)-a developmental lung condition primarily seen in neonates that is characterized by hypoalveolarization, decreased angiogenesis, and diminished surfactant protein production and may increase the risk of chronic obstructive pulmonary disease. OBJECTIVE We investigated whether gestational exposure to secondhand CS (SS) induced BPD and sought to ascertain the role of nicotinic acetylcholine receptors (nAChRs) in this response. METHODS We exposed BALB/c and C57BL/6 mice to filtered air (control) or SS throughout the gestation period or postnatally up to 10 weeks. Lungs were examined at 7 days, 10 weeks, and 8 months after birth. RESULTS Gestational but not postnatal exposure to SS caused a typical BPD-like condition: suppressed angiogenesis [decreased vascular endothelial growth factor (VEGF), VEGF receptor, and CD34/CD31 (hematopoietic progenitor cell marker/endothelial cell marker)], irreversible hypoalveolarization, and significantly decreased levels of Clara cells, Clara cell secretory protein, and surfactant proteins B and C, without affecting airway ciliated cells. Importantly, concomitant exposure to SS and the nAChR antagonist mecamylamine during gestation blocked the development of BPD. CONCLUSIONS Gestational exposure to SS irreversibly disrupts lung development leading to a BPD-like condition with hypoalveolarization, decreased angiogenesis, and diminished lung secretory function. Nicotinic receptors are critical in the induction of gestational SS-induced BPD, and the use of nAChR antagonists during pregnancy may block CS-induced BPD.
Collapse
Affiliation(s)
- Shashi P Singh
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kukkonen MK, Tiili E, Vehmas T, Oksa P, Piirilä P, Hirvonen A. Association of genes of protease-antiprotease balance pathway to lung function and emphysema subtypes. BMC Pulm Med 2013; 13:36. [PMID: 23734748 PMCID: PMC3680142 DOI: 10.1186/1471-2466-13-36] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 05/29/2013] [Indexed: 12/11/2022] Open
Abstract
Background The imbalance between proteases and antiproteases has been proposed to participate to the pathogenesis of chronic obstructive pulmonary disease (COPD) and emphysema. Gene level variation in different metalloproteinases, metalloproteinase inhibitors, and cytokines affecting them may contribute to this imbalance and destruction of the lung parenchyma. We investigated whether polymorphisms in selected protease-antiprotease balance pathway genes predispose to different emphysema subtypes (centrilobular, paraseptal, panlobular, and bullae) and airflow limitation among Finnish construction workers. Methods Eleven single nucleotide polymorphisms (SNPs) from seven genes (GC: rs7041 and rs4588; MMP1: rs1799750; MMP9: rs3918242; MMP12: rs652438; TIMP2: rs2277698; TNF: rs1799724 and rs1800629; TGFB1: rs1800469, rs1800470, and rs2241718) were analyzed from 951 clinically and radiologically characterized construction workers. The genotype and haplotype data was compared to different emphysematous signs confirmed with high resolution computed tomography (HRCT), forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and maximal expiratory flow at 50% of FVC (MEF50) by using linear and logistic regression analyses, adjusted for potential confounders. Results The TIMP2 rs2277698 SNP was associated with overall (p = 0.022) and paraseptal (p = 0.010) emphysema, as well as with FEV1/FVC ratio (p = 0.035) and MEF50 (p = 0.008). The TGFB1 rs2241718 and MMP9 rs3918242 SNPs were associated with centrilobular emphysema (p = 0.022 and p = 0.008), and the TNF rs1800629 SNP with paraseptal emphysema (p = 0.017). In stratified analysis, individuals with at least one TIMP2 rs2277698 or TNF rs1800629 variant allele were found to be at around two-fold risk for pathological paraseptal changes (OR 1.94, 95% CI 1.14-3.30; OR 2.10, 95% CI 1.24-3.56). On the contrary, the risk for pathological centrilobular changes was halved for individuals with at least one MMP9 rs3918242 (OR 0.51, 95% CI 0.30-0.86) or TGFB1 rs2241718 (OR 0.53, 95% CI 0.30-0.90) variant allele, or TGFB1 rs1800469-rs1800470 AT-haplotype (OR 0.55, 95% CI 0.33-0.93). MEF50, in turn, was significantly reduced among individuals with at least one TIMP2 rs2277698 variant allele (p = 0.011). Conclusion Our findings strengthen the hypothesis of the importance of protease-antiprotease balance in pathogenesis of emphysema and shed light on the aetiology of different emphysema subtypes by associating MMP9 and TGFB1 to centrilobular emphysema, and TIMP2 and TNF to paraseptal emphysema and/or airflow obstruction.
Collapse
Affiliation(s)
- Mari K Kukkonen
- Finnish Institute of Occupational Health, Topeliuksenkatu 41 a A, FI-00250, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|