1
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
2
|
Shirzadian M, Moori S, Rabbani R, Rahbarizadeh F. SynNotch CAR-T cell, when synthetic biology and immunology meet again. Front Immunol 2025; 16:1545270. [PMID: 40308611 PMCID: PMC12040928 DOI: 10.3389/fimmu.2025.1545270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Cancer immunotherapy has been transformed by chimeric antigen receptor (CAR) T-cell treatment, which has shown groundbreaking results in hematological malignancies. However, its application in solid tumors remains a formidable challenge due to immune evasion, tumor heterogeneity, and safety concerns arising from off-target effects. A long-standing effort in this field has been the development of synthetic receptors to create new signaling pathways and rewire immune cells for the specific targeting of cancer cells, particularly in cell-based immunotherapy. This field has undergone a paradigm shift with the introduction of synthetic Notch (synNotch) receptors, which offer a highly versatile signaling platform modeled after natural receptor-ligand interactions. By functioning as molecular logic gates, synNotch receptors enable precise, multi-antigen regulation of T-cell activation, paving the way for enhanced specificity and control. This review explores the revolutionary integration of synNotch systems with CAR T-cell therapy, emphasizing cutting-edge strategies to overcome the inherent limitations of traditional approaches. We delve into the mechanisms of synNotch receptor design, focusing on their ability to discriminate between cancerous and normal cells through spatiotemporally controlled gene expression. Additionally, we highlight recent advancements to improve therapeutic efficacy, safety, and adaptability in treating solid tumors. This study highlights the potential of synNotch-based CAR-T cells to transform the field of targeted cancer therapy by resolving present challenges and shedding light on potential future paths.
Collapse
Affiliation(s)
- Mohsen Shirzadian
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Moori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Rabbani
- Department of Stem Cell Technology and Tissue Engineering, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Lemke S, Dubbelaar ML, Zimmermann P, Bauer J, Nelde A, Hoenisch Gravel N, Scheid J, Wacker M, Jung S, Dengler A, Maringer Y, Rammensee HG, Gouttefangeas C, Fillinger S, Bilich T, Heitmann JS, Nahnsen S, Walz JS. PCI-DB: a novel primary tissue immunopeptidome database to guide next-generation peptide-based immunotherapy development. J Immunother Cancer 2025; 13:e011366. [PMID: 40234091 PMCID: PMC12001369 DOI: 10.1136/jitc-2024-011366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Various cancer immunotherapies rely on the T cell-mediated recognition of peptide antigens presented on human leukocyte antigens (HLA). However, the identification and selection of naturally presented peptide targets for the development of personalized as well as off-the-shelf immunotherapy approaches remain challenging. METHODS Over 10,000 raw mass spectrometry (MS) files from over 3,000 tissue samples were analyzed, summing to approximately seven terabytes of data. The raw MS data were processed using the standardized and open-source nf-core pipelines MHCquant2 and epitopeprediction, providing a uniform procedure for data handling. A global false discovery rate was applied to minimize false-positive identifications. RESULTS Here, we introduce the open-access Peptides for Cancer Immunotherapy Database (PCI-DB, https://pci-db.org/), a comprehensive resource of immunopeptidome data originating from various malignant and benign primary tissues that provides the research community with a convenient tool to facilitate the identification of peptide targets for immunotherapy development. The PCI-DB includes >6.6 million HLA class I and >3.4 million HLA class II peptides from over 40 tissue types and cancer entities. First application of the database provided insights into the representation of cancer-testis antigens across malignant and benign tissues, enabling the identification and characterization of cross-tumor entity and entity-specific tumor-associated antigens (TAAs) as well as naturally presented neoepitopes from frequent cancer mutations. Further, we used the PCI-DB to design personalized peptide vaccines for two patients suffering from metastatic cancer. In a retrospective analysis, PCI-DB enabled the composition of both a multi-peptide vaccine comprising non-mutated, highly frequent TAAs matching the immunopeptidome of the individual patient's tumor and a neoepitope-based vaccine matching the mutational profile of a patient with cancer. Both vaccine approaches induced potent and long-lasting T-cell responses, accompanied by long-term survival of these patients with advanced cancer. CONCLUSION The PCI-DB provides a highly versatile tool to broaden the understanding of cancer-related antigen presentation and, ultimately, supports the development of novel immunotherapies.
Collapse
Affiliation(s)
- Steffen Lemke
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, BW, Germany
- Department of Computer Science, University of Tübingen, Tübingen, BW, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, BW, Germany
| | - Marissa L Dubbelaar
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, BW, Germany
| | - Patrick Zimmermann
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, BW, Germany
| | - Jens Bauer
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, BW, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
| | - Naomi Hoenisch Gravel
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
| | - Jonas Scheid
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, BW, Germany
- Department of Computer Science, University of Tübingen, Tübingen, BW, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, BW, Germany
| | - Marcel Wacker
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
| | - Susanne Jung
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, BW, Germany
| | - Anna Dengler
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
| | - Yacine Maringer
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
| | - Hans-Georg Rammensee
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, BW, Germany
- Institute of Immunology, University of Tübingen, Tübingen, BW, Germany
| | - Cecile Gouttefangeas
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Institute of Immunology, University of Tübingen, Tübingen, BW, Germany
| | - Sven Fillinger
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, BW, Germany
| | - Tatjana Bilich
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
| | - Jonas S Heitmann
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, BW, Germany
| | - Sven Nahnsen
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, BW, Germany
- Department of Computer Science, University of Tübingen, Tübingen, BW, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, BW, Germany
- M3 Research Center, University Hospital of Tübingen, Tübingen, BW, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, BW, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, BW, Germany
| |
Collapse
|
4
|
Zhao F, Zhang X, Tang Y, Yang H, Pan H, Li B, An R, Geyemuri W, Yang C, Wan F, Wu J. Engineered PD-L1 co-expression in PD-1 knockout and MAGE-C2-targeting TCR-T cells augments the cytotoxic efficacy toward target cancer cells. Sci Rep 2025; 15:11894. [PMID: 40195438 PMCID: PMC11976951 DOI: 10.1038/s41598-025-92209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Expression of the PD-1 protein by tumor cells is relatively common and has been shown to exert proliferation-inhibitory effects across various tumor types, including T-cell malignancies, non-small cell lung cancer, and colon cancer. However, harnessing this tumor suppressor pathway is challenging because PD-1 activation by PD-L1 also suppresses normal T-cell function. We hypothesized that cancer antigen-specific TCR-T cells engineered to express PD-L1 could selectively activate the PD-1 pathway in tumor cells while simultaneously preventing self-inhibition by knocking out intrinsic PD-1 expression in TCR-T cells. To test this hypothesis, we co-expressed a MAGE-C2-specific recombinant TCR and the PD-L1-encoding CD274 gene in normal human T cells in which the PDCD1 gene was knocked out. These engineered TCR-T cells targeted MAGE-C2-expressing malignant cells, activating PD-1 signaling to suppress tumor proliferation while maintaining suppressed PD-1 signaling in the TCR-T cells themselves. To evaluate the tumor-suppressive potential of this approach, we compared the efficacy of PDL1-MC2-TCR-TPD1⁻ cells against subtypes lacking PD-L1 expression, PD-1 knockout, or both. Our findings demonstrated that this TCR-T model exhibited significantly enhanced cytotoxic efficacy compared to other subtypes in vitro, ex vivo, and in vivo. These results suggest that the targeted activation of intrinsic PD-1 signaling in T-cell malignancies inhibits tumor proliferation and, when combined with PD-1 inhibition in TCR-T cells, synergistically enhances their cancer-suppressing efficacy. This study provides a foundation for novel cancer treatment strategies.
Collapse
MESH Headings
- Humans
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/metabolism
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/immunology
- Animals
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Cell Line, Tumor
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Mice
- Neoplasm Proteins/immunology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Cell Proliferation
- Gene Knockout Techniques
- Neoplasms/immunology
- Neoplasms/therapy
- Neoplasms/pathology
- Neoplasms/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Fangxin Zhao
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xuan Zhang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ying Tang
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Hongxin Yang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Haiting Pan
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Beibei Li
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Riwen An
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Wu Geyemuri
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Chao Yang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Fang Wan
- School of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Jianqiang Wu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China.
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
5
|
Jamal A, Aldreiwish AD, Banawas SS, Alqurashi YE, Kamal MA, Ahmad F. The paths toward immunotherapy of esophageal cancer: An overview of clinical trials. Int Immunopharmacol 2025; 151:114261. [PMID: 40015204 DOI: 10.1016/j.intimp.2025.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025]
Abstract
As the seventh-leading contributor to global cancer-related deaths, esophageal cancer (EC) is one of the most challenging types of cancer. Despite advancements in conventional therapies, including surgery, chemotherapy, and radiotherapy, the five-year survival rate remains low, underscoring the need for the development of more efficacious treatment approaches. Immunotherapy has emerged as a promising treatment approach, offering new hope for EC patients. This review provides an in-depth examination of the latest immunotherapeutic strategies for EC, focusing on immune checkpoint inhibitors, adoptive cell therapy, cancer vaccines, and oncolytic virotherapy. We critically analyze the current clinical data to highlight the progress and pitfalls of each immunotherapeutic approach for EC. Additionally, we explore the potential for combination therapies, which could overcome the resistance often seen with monotherapies. Finally, we discuss the limitations of current treatments and outline key areas for future research to improve patient outcomes and survival.
Collapse
Affiliation(s)
- Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Allolo D Aldreiwish
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Saeed S Banawas
- Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Yaser E Alqurashi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| |
Collapse
|
6
|
Wachsmann TLA, Poortvliet T, Meeuwsen MH, Remst DFG, Toes MF, Wouters AK, Hagedoorn RS, Falkenburg JHF, Heemskerk MHM. CAR-mediated target recognition limits TCR-mediated target recognition of TCR- and CAR-dual-receptor-edited T cells. Mol Ther 2025; 33:1642-1658. [PMID: 40022447 PMCID: PMC11997489 DOI: 10.1016/j.ymthe.2025.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025] Open
Abstract
Antigen escape can compromise the efficacy of chimeric antigen receptor- (CAR-) or T cell receptor- (TCR-) engineered T cells. Targeting multiple antigens can effectively limit antigen escape, and combining CAR-with TCR-mediated targeting can significantly broaden the spectrum of targetable antigens. Here, we explored whether dual-antigen specificity can be installed on T cells using combined TCR and CAR engineering to prevent antigen escape of multiple myeloma (MM). We report the generation of CD8 T cells that were transduced to express a transgenic TCR, targeting a peptide derived from transcriptional coactivator BOB1 in the context of HLA-B∗07:02, alongside a BCMA-targeting CAR. Those T cells, called TRaCR T cells, efficiently recognized target cells that were resistant to either BOB1 TCR or BCMA CAR T cells, illustrating general dual specificity. In the presence of both antigens, however, target cell recognition was preferentially conferred via the CAR, compromising TCR-mediated target cell recognition. Importantly, this resulted in a survival advantage for tumor cells lacking expression of BCMA in an in vivo model of heterogeneous MM. In conclusion, we demonstrate general dual specificity of TRaCR T cells but advise caution when using TRaCR T cells as a strategy to target heterogeneous tumors.
Collapse
MESH Headings
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Humans
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Animals
- Mice
- Immunotherapy, Adoptive/methods
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Multiple Myeloma/immunology
- Multiple Myeloma/therapy
- Multiple Myeloma/pathology
- Multiple Myeloma/genetics
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- B-Cell Maturation Antigen/genetics
- B-Cell Maturation Antigen/immunology
Collapse
Affiliation(s)
- Tassilo L A Wachsmann
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands.
| | - Teuntje Poortvliet
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Miranda H Meeuwsen
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Dennis F G Remst
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Marijke F Toes
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Anne K Wouters
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| |
Collapse
|
7
|
Kohlgruber AC, Dezfulian MH, Sie BM, Wang CI, Kula T, Laserson U, Larman HB, Elledge SJ. High-throughput discovery of MHC class I- and II-restricted T cell epitopes using synthetic cellular circuits. Nat Biotechnol 2025; 43:623-634. [PMID: 38956325 PMCID: PMC11994455 DOI: 10.1038/s41587-024-02248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/16/2024] [Indexed: 07/04/2024]
Abstract
Antigen discovery technologies have largely focused on major histocompatibility complex (MHC) class I-restricted human T cell receptors (TCRs), leaving methods for MHC class II-restricted and mouse TCR reactivities relatively undeveloped. Here we present TCR mapping of antigenic peptides (TCR-MAP), an antigen discovery method that uses a synthetic TCR-stimulated circuit in immortalized T cells to activate sortase-mediated tagging of engineered antigen-presenting cells (APCs) expressing processed peptides on MHCs. Live, tagged APCs can be directly purified for deconvolution by sequencing, enabling TCRs with unknown specificity to be queried against barcoded peptide libraries in a pooled screening context. TCR-MAP accurately captures self-reactivities or viral reactivities with high throughput and sensitivity for both MHC class I-restricted and class II-restricted TCRs. We elucidate problematic cross-reactivities of clinical TCRs targeting the cancer/testis melanoma-associated antigen A3 and discover targets of myocarditis-inciting autoreactive T cells in mice. TCR-MAP has the potential to accelerate T cell antigen discovery efforts in the context of cancer, infectious disease and autoimmunity.
Collapse
Affiliation(s)
- Ayano C Kohlgruber
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Mohammad H Dezfulian
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Brandon M Sie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Charlotte I Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Tomasz Kula
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
- Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Uri Laserson
- Department of Genetics and Genomic Sciences and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard University Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
8
|
Ma K, Xu Y, Cheng H, Tang K, Ma J, Huang B. T cell-based cancer immunotherapy: opportunities and challenges. Sci Bull (Beijing) 2025:S2095-9273(25)00337-8. [PMID: 40221316 DOI: 10.1016/j.scib.2025.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
T cells play a central role in the cancer immunity cycle. The therapeutic outcomes of T cell-based intervention strategies are determined by multiple factors at various stages of the cycle. Here, we summarize and discuss recent advances in T cell immunotherapy and potential barriers to it within the framework of the cancer immunity cycle, including T-cell recognition of tumor antigens for activation, T cell trafficking and infiltration into tumors, and killing of target cells. Moreover, we discuss the key factors influencing T cell differentiation and functionality, including TCR stimulation, costimulatory signals, cytokines, metabolic reprogramming, and mechanistic forces. We also highlight the key transcription factors dictating T cell differentiation and discuss how metabolic circuits and specific metabolites shape the epigenetic program of tumor-infiltrating T cells. We conclude that a better understanding of T cell fate decision will help design novel strategies to overcome the barriers to effective cancer immunity.
Collapse
Affiliation(s)
- Kaili Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Yingxi Xu
- Department of Oncology, University of Lausanne, Lausanne, 1015, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, 1066, Switzerland; National Key Laboratory of Blood Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 300070, China
| | - Hongcheng Cheng
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Ke Tang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bo Huang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
9
|
Salzler R, DiLillo DJ, Saotome K, Bray K, Mohrs K, Hwang H, Cygan KJ, Shah D, Rye-Weller A, Kundu K, Badithe A, Zhang X, Garnova E, Torres M, Dhanik A, Babb R, Delfino FJ, Thwaites C, Dudgeon D, Moore MJ, Meagher TC, Decker CE, Owczarek T, Gleason JA, Yang X, Suh D, Lee WY, Welsh R, MacDonald D, Hansen J, Guo C, Kirshner JR, Thurston G, Huang T, Franklin MC, Yancopoulos GD, Lin JC, Macdonald LE, Murphy AJ, Chen G, Olsen O, Olson WC. CAR T cells based on fully human T cell receptor-mimetic antibodies exhibit potent antitumor activity in vivo. Sci Transl Med 2025; 17:eado9371. [PMID: 40138458 DOI: 10.1126/scitranslmed.ado9371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/19/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
Monoclonal antibody therapies have transformed the lives of patients across a diverse range of diseases. However, antibodies can usually only access extracellular proteins, including the extracellular portions of membrane proteins that are expressed on the cell surface. In contrast, T cell receptors (TCRs) survey the entire cellular proteome when processed and presented as peptides in association with human leukocyte antigen (pHLA complexes). Antibodies that mimic TCRs by recognizing pHLA complexes have the potential to extend the reach of antibodies to this larger pool of targets and provide increased binding affinity and specificity. A major challenge in developing TCR mimetic (TCRm) antibodies is the limited sequence differences between the target pHLA complex relative to the large global repertoire of pHLA complexes. Here, we provide a comprehensive strategy for generating fully human TCRm antibodies across multiple HLA alleles, beginning with pHLA target discovery and validation and culminating in the engineering of TCRm-based chimeric antigen receptor T cells with potent antitumor activity. By incorporating mass spectrometry, bioinformatic predictions, HLA-humanized mice, antibody screening, and cryo-electron microscopy, we have established a pipeline to identify additional pHLA complex-specific antibodies with therapeutic potential.
Collapse
Affiliation(s)
- Robert Salzler
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - David J DiLillo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kei Saotome
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kevin Bray
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Katja Mohrs
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Haun Hwang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kamil J Cygan
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Darshit Shah
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Anna Rye-Weller
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kunal Kundu
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Ashok Badithe
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Xiaoqin Zhang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Elena Garnova
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Marcela Torres
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Ankur Dhanik
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Robert Babb
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Frank J Delfino
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Courtney Thwaites
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Drew Dudgeon
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Michael J Moore
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Thomas Craig Meagher
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Corinne E Decker
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Tomasz Owczarek
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - John A Gleason
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Xiaoran Yang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - David Suh
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Wen-Yi Lee
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Richard Welsh
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Douglas MacDonald
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Johanna Hansen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Chunguang Guo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jessica R Kirshner
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Gavin Thurston
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Tammy Huang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew C Franklin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - George D Yancopoulos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - John C Lin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Lynn E Macdonald
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Gang Chen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Olav Olsen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - William C Olson
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| |
Collapse
|
10
|
Lennerz V, Doppler C, Fatho M, Dröge A, Schaper S, Gennermann K, Genzel N, Plassmann S, Weismann D, Lukowski SW, Bents D, Beushausen C, Kriese K, Herbst H, Seitz V, Hammer R, Adam PJ, Eggeling S, Wölfel C, Wölfel T, Hennig S. T-cell receptors identified by a personalized antigen-agnostic screening approach target shared neoantigen KRAS Q61H. Front Immunol 2025; 16:1509855. [PMID: 40165973 PMCID: PMC11955635 DOI: 10.3389/fimmu.2025.1509855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Adoptive cell therapy (ACT) with TCR-engineered T-cells represents a promising alternative to TIL- or CAR-T therapies for patients with advanced solid cancers. Currently, selection of therapeutic TCRs critically depends on knowing the target antigens, a condition excluding most patients from treatment. Direct antigen-agnostic identification of tumor-specific T-cell clonotypes and TCR-T manufacturing using their TCRs can advance ACT for patients with aggressive solid cancers. We present a method to identify tumor-specific clonotypes from surgical specimens by comparing TCRβ-chain repertoires of TILs and adjacent tissue-resident lymphocytes. In six out of seven NSCLC-patients analyzed, our selection of tumor-specific clonotypes based on TIL-abundance and high tumor-to-nontumor frequency ratios was confirmed by gene expression signatures determined by scRNA-Seq. In three patients, we demonstrated that predicted tumor-specific clonotypes reacted against autologous tumors. For one of these patients, we engineered TCR-T cells with four candidate tumor-specific TCRs that showed reactivity against the patient's tumor and HLA-matched NSCLC cell lines. The TCR-T cells were then used to screen for candidate neoantigens and aberrantly expressed antigens. Three TCRs recognized recurrent driver-mutation KRAS Q61H-peptide ILDTAGHEEY presented by HLA-A*01:01. The TCRs were also dominant in a tumor relapse, one was found in cell free DNA. The finding of homologous TCRs in independent KRAS Q61H-positive cancers suggests a therapeutic opportunity for HLA-matched patients with KRAS Q61H-expressing tumors.
Collapse
MESH Headings
- Humans
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/immunology
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Lung Neoplasms/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Immunotherapy, Adoptive/methods
- Precision Medicine/methods
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Female
- Male
- Cell Line, Tumor
- Aged
- Mutation
Collapse
Affiliation(s)
- Volker Lennerz
- Internal Medicine III, University Medical Center (UMC) of the Johannes Gutenberg University Mainz, Mainz, Germany
- HSDiagnomics GmbH, Berlin, Germany
- TheryCell GmbH, Berlin, Germany
| | - Christoph Doppler
- Internal Medicine III, University Medical Center (UMC) of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Martina Fatho
- Internal Medicine III, University Medical Center (UMC) of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | | - David Weismann
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Samuel W. Lukowski
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | | | | | - Karen Kriese
- Vivantes Pathology, Vivantes Clinic Neukölln, Berlin, Germany
| | - Hermann Herbst
- Vivantes Pathology, Vivantes Clinic Neukölln, Berlin, Germany
| | | | - Rudolf Hammer
- HSDiagnomics GmbH, Berlin, Germany
- TheryCell GmbH, Berlin, Germany
| | - Paul J. Adam
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Stephan Eggeling
- Vivantes Clinic Neukölln, Vivantes Thoracic Surgery, Berlin, Germany
| | - Catherine Wölfel
- Internal Medicine III, University Medical Center (UMC) of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Wölfel
- Internal Medicine III, University Medical Center (UMC) of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Steffen Hennig
- HSDiagnomics GmbH, Berlin, Germany
- TheryCell GmbH, Berlin, Germany
| |
Collapse
|
11
|
Li R, Grosskopf AK, Joslyn LR, Stefanich EG, Shivva V. Cellular Kinetics and Biodistribution of Adoptive T Cell Therapies: from Biological Principles to Effects on Patient Outcomes. AAPS J 2025; 27:55. [PMID: 40032717 DOI: 10.1208/s12248-025-01017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 03/05/2025] Open
Abstract
Cell-based immunotherapy has revolutionized cancer treatment in recent years and is rapidly expanding as one of the major therapeutic options in immuno-oncology. So far ten adoptive T cell therapies (TCTs) have been approved by the health authorities for cancer treatment, and they have shown remarkable anti-tumor efficacy with potent and durable responses. While adoptive T cell therapies have shown success in treating hematological malignancies, they are lagging behind in establishing promising efficacy in treating solid tumors, partially due to our incomplete understanding of the cellular kinetics (CK) and biodistribution (including tumoral penetration) of cell therapy products. Indeed, recent clinical studies have provided ample evidence that CK of TCTs can influence clinical outcomes in both hematological malignancies and solid tumors. In this review, we will discuss the current knowledge on the CK and biodistribution of anti-tumor TCTs. We will first describe the typical CK and biodistribution characteristics of these "living" drugs, and the biological factors that influence these characteristics. We will then review the relationships between CK and pharmacological responses of TCT, and potential strategies in enhancing the persistence and tumoral penetration of TCTs in the clinic. Finally, we will also summarize bioanalytical methods, preclinical in vitro and in vivo tools, and in silico modeling approaches used to assess the CK and biodistribution of TCTs.
Collapse
Affiliation(s)
- Ran Li
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Abigail K Grosskopf
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Louis R Joslyn
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Eric Gary Stefanich
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Vittal Shivva
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA.
| |
Collapse
|
12
|
Julve M, Wong Y, Lim K, Furness A. Solid tumour cellular therapy - principles of toxicity management. IMMUNO-ONCOLOGY TECHNOLOGY 2025; 25:100737. [PMID: 40236329 PMCID: PMC11997557 DOI: 10.1016/j.iotech.2024.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Following the Food and Drug Administration (FDA) approval of lifileucel and afami-cel for patients with advanced melanoma and synovial sarcoma, respectively, there is a need for improved understanding and guidance regarding the management of toxicity associated with adoptive cellular therapies (ACTs) for solid tumours. Further approvals are expected in coming years, with toxicity management representing a significant consideration for centres looking to implement such advanced therapy medicinal products. Importantly, first-generation tumour-infiltrating lymphocyte therapies are associated with unique toxicities compared with gene-modified T-cell therapies such as chimeric antigen receptor T-cell therapy (CAR T) and T-cell receptor-modified therapy (TCR T), presenting novel challenges for treating healthcare professionals. Extrapolating from experience with CAR T in the field of haemato-oncology, coupled with the historical use of high-dose interleukin-2 in solid tumour therapeutic regimens and more recently lifileucel and afami-cel, has led to the development of core principles for managing toxicity, which is discussed here. Looking to the future, a rapidly developing field with next-generation ACT products, a basic knowledge of such core principles will be an important foundation for healthcare professionals working in this space.
Collapse
Affiliation(s)
- M. Julve
- Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Y.N.S. Wong
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - K.H.J. Lim
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Advanced Immunotherapy and Cell Therapy Team, Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - A.J.S. Furness
- Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Knafler G, Ho AL, Moore KN, Pollack SM, Navenot JM, Sanderson JP. Melanoma-associated antigen A4: A cancer/testis antigen as a target for adoptive T-cell receptor T-cell therapy. Cancer Treat Rev 2025; 134:102891. [PMID: 39970827 DOI: 10.1016/j.ctrv.2025.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/21/2025]
Abstract
T-cell receptor (TCR) T-cell therapies are adoptive cell therapies in which patient cells are engineered to express TCRs targeting specific cancer antigens and infused back into the patient. Since TCR recognition depends on antigen presentation by the human leukocyte antigen system, TCRs can respond to intracellular antigens. Cancer/testis antigens (CTAs) are a large family of proteins, many of which are only expressed in cancerous tissue and immune-privileged germline sites. Melanoma-associated antigen A4 (MAGE-A4) is an intracellular CTA expressed in healthy testis and placenta, and in a range of cancers, including esophageal, head and neck, gastric, ovarian, colorectal, lung, endometrial, cervical, bladder, breast and prostate cancers; soft tissue sarcomas; urothelial and hepatocellular carcinomas; osteosarcoma; and melanoma. This expression pattern, along with the immunogenicity and potential role in tumorigenesis of MAGE-A4 make it a prime target for TCR T-cell therapy. We outline the preclinical and clinical development of TCR T-cell therapies targeting CTAs for treatment of solid tumors, highlighting the need for extensive preclinical characterization of putative off-target, and potential on-target but off-tumor, effects. We identified ten clinical trials assessing TCR T-cell therapies targeting MAGE-A4. Overall, manageable safety profiles and signals of efficacy have been observed, especially in patients with advanced synovial sarcoma, myxoid/round cell liposarcoma, ovarian, head and neck, and urothelial cancers, with one TCR T-cell therapy approved by the US Food and Drug Administration in August 2024. We also review the limitations, and strategies to enhance efficacy and improve safety, of these therapies, and summarize related immunotherapies targeting MAGE-A4.
Collapse
Affiliation(s)
| | - Alan L Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, and Weill Medical College of Cornell University New York NY USA
| | - Kathleen N Moore
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center Oklahoma City OK USA
| | - Seth M Pollack
- Lurie Cancer Center, Department of Medicine, Northwestern University Feinberg School of Medicine Chicago IL USA
| | | | | |
Collapse
|
14
|
Wong KK, Ab. Hamid SS. Multiomics in silico analysis identifies TM4SF4 as a cell surface target in hepatocellular carcinoma. PLoS One 2025; 20:e0307048. [PMID: 39999090 PMCID: PMC11856526 DOI: 10.1371/journal.pone.0307048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The clinical application of cellular immunotherapy in hepatocellular carcinoma (HCC) is impeded by the lack of a cell surface target frequently expressed in HCC cells and with minimal presence in normal tissues to reduce on-target, off-tumor toxicity. To address this, an in silico multomics analysis was conducted to identify an optimal therapeutic target in HCC. A longlist of genes (n = 12,948) expressed in HCCs according to The Human Protein Atlas database were examined. Eight genes were shortlisted to identify one with the highest expression in HCCs, without being shed into circulation, and with restrictive expression profile in other normal human tissues. A total of eight genes were shortlisted and subsequently ranked according to the combination of their transcript and protein expression levels in HCC cases (n = 791) derived from four independent datasets. TM4SF4 was the top-ranked target with the highest expression in HCCs. TM4SF4 showed more favorable expression profile with significantly lower expression in normal human tissues but more highly expressed in HCC compared with seven other common HCC therapeutic targets. Furthermore, scRNA-seq and immunohistochemistry datasets showed that TM4SF4 was absent in immune cell populations but highly expressed in the bile duct canaliculi of hepatocytes, regions inaccessible to immune cells. In scRNA-seq dataset of HCCs, TM4SF4 expression was positively associated with mitochondrial components and oxidative phosphorylation Gene Ontologies in HCC cells (n = 15,787 cells), suggesting its potential roles in mitochondrial-mediated oncogenic effects in HCC. Taken together, TM4SF4 is proposed as a promising cell surface target in HCC due to its high expression in HCC cells with restricted expression profile in non-cancerous tissues, and association with HCC oncogenic pathways.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Suzina Sheikh Ab. Hamid
- Tissue Bank Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
15
|
Echchannaoui H, Legscha KJ, Theobald M. Tumor-Infiltrating Lymphocytes, CAR-, and T-Cell Receptor-Modified T Cells in Solid Cancer Oncology. Oncol Res Treat 2025; 48:294-304. [PMID: 39938499 DOI: 10.1159/000543998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Adoptive cellular therapy (ACT) is a promising treatment approach aiming at enhancing T-cell antitumor immune response. ACT includes tumor-infiltrating lymphocytes, chimeric antigen receptor (CAR) and T-cell receptor gene-modified T cells. Despite a milestone achievement with CAR-T cells in hematopoietic malignancies, ACT has shown modest clinical responses in refractory solid cancers and durable responses remain limited to a minor fraction of patients. SUMMARY In this review, we highlight major advances, limitations and current developments of T-cell therapies for solid cancers. We discuss emerging promising strategies as next-generation ACT, exploring local delivery routes to maximize efficacy and improve safety, integrating predictive biomarkers to optimize selection of patients who most likely would benefit from ACT, using combination therapy to overcome the immunosuppressive tumor microenvironment, targeting multiple tumor antigen to avoid tumor antigen escape, selection of the most potent T-cell product to overcome T-cell dysfunction, and incorporating cutting-edge new technologies, such as gene-editing to further improve antitumor T-cell functions and reduce therapy-related toxicity. KEY MESSAGES Advances made in ACT trials have move the field of immunotherapy for refractory solid cancers to a new stage, by constantly incorporating new strategies to develop next-generation therapies designed to enhance efficacy and improve safety and to allow a broaden access to a large numbers of patients.
Collapse
Affiliation(s)
- Hakim Echchannaoui
- Department of Hematology and Medical Oncology, University Cancer Center (UCT), University Medical Center (UMC) of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, Mainz, Germany
- Institute for Immunology and Research Center for Immunotherapy, UMC of the Johannes Gutenberg University, Mainz, Germany
| | - Kevin Jan Legscha
- Department of Hematology and Medical Oncology, University Cancer Center (UCT), University Medical Center (UMC) of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, Mainz, Germany
| | - Matthias Theobald
- Department of Hematology and Medical Oncology, University Cancer Center (UCT), University Medical Center (UMC) of the Johannes Gutenberg University, Mainz, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, Mainz, Germany
- Institute for Immunology and Research Center for Immunotherapy, UMC of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
16
|
Mei AHC, Laganà A, Osman R, Cho HJ. Melanoma antigen genes (MAGE); novel functional targets in multiple myeloma. Semin Hematol 2025; 62:43-49. [PMID: 39580273 DOI: 10.1053/j.seminhematol.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/25/2024]
Abstract
Melanoma Antigen Genes (MAGE) are expressed in a broad range of cancers, including multiple myeloma. MAGE have been under investigation for more than 3 decades as targets for immune therapy, while in parallel, interrogation of their functions has revealed activities that may be particularly critical in multiple myeloma. MAGE-C1 is expressed in about 75% of newly diagnosed cases and this is maintained through the natural history of the disease. In contrast, MAGE-A3 is expressed in about 35% of newly diagnosed cases, but this increases to more than 75% after relapse. MAGE-A3 expression was associated with poor clinical outcome and resistance to chemotherapy. Translational studies have revealed that MAGE-A3 regulates cell cycling and apoptosis in myeloma cells. Genomic, gene expression, and multiomic studies demonstrate relations with high-risk subgroups of patients. MAGE-A3 mediates these functions through partnership with Kap1 to form a ubiquitin ligase complex. Structural analysis of the interaction between MAGE-A3 and Kap1 gives insight into the biochemical activity and substrate specificity and suggests novel pharmacologic strategies to inhibit them. These studies demonstrating MAGE-A3 oncogenic functions suggest that it may also be a suitable target for small molecule inhibition in multiple myeloma that may be broadly applicable to other cancers that express it.
Collapse
Affiliation(s)
- Anna Huo-Chang Mei
- Multiple Myeloma Center of Excellence, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York NY USA
| | - Alessandro Laganà
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York NY USA
| | - Roman Osman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Hearn Jay Cho
- Multiple Myeloma Center of Excellence, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York NY USA; The Multiple Myeloma Research Foundation, Norwalk, CT.
| |
Collapse
|
17
|
Singhaviranon S, Dempsey JP, Hagymasi AT, Mandoiu II, Srivastava PK. Low-avidity T cells drive endogenous tumor immunity in mice and humans. Nat Immunol 2025; 26:240-251. [PMID: 39789375 PMCID: PMC11785530 DOI: 10.1038/s41590-024-02044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025]
Abstract
T cells recognize neoepitope peptide-major histocompatibility complex class I on cancer cells. The strength (or avidity) of the T cell receptor-peptide-major histocompatibility complex class I interaction is a critical variable in immune control of cancers. Here, we analyze neoepitope-specific CD8 cells of distinct avidities and show that low-avidity T cells are the sole mediators of cancer control in mice and are solely responsive to checkpoint blockade in mice and humans. High-avidity T cells are ineffective and immune-suppressive. The mechanistic basis of these differences lies in the higher exhaustion status of high-avidity cells. High-avidity T cells have a distinct transcriptomic profile that is used here to calculate an 'avidity score', which we then use for in silico identification of low-avidity and high-avidity T cells in mice and humans. Surprisingly, CD8+ T cells with identical T cell receptors exhibit wide variation in avidities, suggesting an additional level of regulation of T cell activity. Aside from providing a better understanding of endogenous T cell responses to cancer, these findings might instruct future immunotherapy strategies.
Collapse
Affiliation(s)
- Summit Singhaviranon
- Department of Immunology and Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Joseph P Dempsey
- Department of Immunology and Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Adam T Hagymasi
- Department of Immunology and Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Ion I Mandoiu
- Department of Computer Science and Engineering, University of Connecticut Mansfield, CT, USA
| | - Pramod K Srivastava
- Department of Immunology and Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
18
|
Hsu MT, Willimsky G, Hansmann L, Blankenstein T. T cell receptors specific for an imatinib-induced mutation in BCR-ABL for adoptive T cell therapy. Front Immunol 2025; 16:1518691. [PMID: 39931057 PMCID: PMC11807957 DOI: 10.3389/fimmu.2025.1518691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
BCR-ABL kinase is the major oncogenic driver of chronic myeloid leukemia (CML). Tyrosine kinase inhibitors (TKIs), which are highly potent in targeting BCR-ABL, are currently used as first-line treatment. Although TKIs are effective, drug resistance caused by the emergence of drug-selected secondary mutations in BCR-ABL remains a major problem for relapse, especially in patients with compound mutations. In this study, we aimed to investigate potential neoepitopes derived from mutated BCR-ABL and to generate neoepitope-specific TCRs for adoptive T cell therapy. Two candidate peptides derived from the E255V and the T315I mutation (designated ABL-E255V and ABL-T315I) were selected for study based on their in silico predicted binding affinity to HLA-A2. By immunizing transgenic mice that express a diverse human T cell receptor (TCR) repertoire restricted to HLA-A2, we detected CD8+ T cell responses against the ABL-E255V, but not the ABL-T315I peptide. From immune responding mice, two E255V-specific TCRs were isolated. Human CD8+ T cells were engineered to express the specific TCRs for characterization, in which one TCR was identified as a therapeutic candidate due to its superior avidity and lack of detectable off-target reactivity. Importantly, we demonstrated that the ABL-E255V neoepitope was naturally processed and presented. In summary, our results demonstrate that HLA-A2+ CML cells harboring the E255V mutation can be targeted by specific TCRs, which may benefit patients who are highly resistant to available TKIs due to compound mutations.
Collapse
MESH Headings
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/immunology
- Animals
- Imatinib Mesylate/pharmacology
- Humans
- Mice
- Immunotherapy, Adoptive/methods
- Mutation
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Mice, Transgenic
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/transplantation
- HLA-A2 Antigen/immunology
- Epitopes, T-Lymphocyte/immunology
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Meng-Tung Hsu
- Molecular Immunology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gerald Willimsky
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, partner site Berlin, Berlin, Germany
| | - Leo Hansmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, partner site Berlin, Berlin, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Thomas Blankenstein
- Molecular Immunology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
19
|
Chandora K, Chandora A, Saeed A, Cavalcante L. Adoptive T Cell Therapy Targeting MAGE-A4. Cancers (Basel) 2025; 17:413. [PMID: 39941782 PMCID: PMC11815873 DOI: 10.3390/cancers17030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
MAGE A4 (Melanoma Antigen Gene A4) is a cancer testis antigen (CTA) that is expressed normally in germline cells (testis/embryonic tissues) but absent in somatic cells. The MAGE A4 CTA is expressed in a variety of tumor types, like synovial sarcoma, ovarian cancer and non-small cell lung cancer. Having its expression profile limited to germline cells has made MAGE A4 a sought-after immunotherapeutic target in certain malignancies. In this review, we focus on MAGE-A4's function and expression, current clinical trials involving targeted immunotherapy approaches, and challenges and opportunities facing MAGE-A4's targeted therapeutics.
Collapse
Affiliation(s)
- Kapil Chandora
- Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA 30310, USA; (K.C.)
| | - Akshay Chandora
- Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA 30310, USA; (K.C.)
| | - Anwaar Saeed
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Ludimila Cavalcante
- Division of Hematology and Oncology, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22903, USA
| |
Collapse
|
20
|
Vogt KC, Silberman PC, Lin Q, Han JE, Laflin A, Gellineau HA, Heller DA, Scheinberg DA. Microenvironment actuated CAR T cells improve solid tumor efficacy without toxicity. SCIENCE ADVANCES 2025; 11:eads3403. [PMID: 39841845 PMCID: PMC11753401 DOI: 10.1126/sciadv.ads3403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
A major limiting factor in the success of chimeric antigen receptor (CAR) T cell therapy for the treatment of solid tumors is targeting tumor antigens also found on normal tissues. CAR T cells against GD2 induced rapid, fatal neurotoxicity because of CAR recognition of GD2+ normal mouse brain tissue. To improve the selectivity of the CAR T cell, we engineered a synthetic Notch receptor that selectively expresses the CAR upon binding to P-selectin, a cell adhesion protein overexpressed in tumor neovasculature. These tumor microenvironment actuated T (MEAT) cells ameliorated T cell infiltration in the brain, preventing fatal neurotoxicity while maintaining antitumor efficacy. We found that conditional CAR expression improved the persistence of tumor-infiltrating lymphocytes because of enhanced metabolic fitness of MEAT cells and the infusion of a less differentiated product. This approach increases the repertoire of targetable solid tumor antigens by restricting CAR expression and subsequent killing to cancer cells only and provides a proof-of-concept model for other targets.
Collapse
MESH Headings
- Animals
- Tumor Microenvironment/immunology
- Mice
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Humans
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Cell Line, Tumor
- Antigens, Neoplasm/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Xenograft Model Antitumor Assays
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
Collapse
Affiliation(s)
- Kristen C. Vogt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pedro C. Silberman
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Pharmacology Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Qianqian Lin
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- BCMB Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - James E. Han
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amy Laflin
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Hendryck A. Gellineau
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Pharmacology Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Pharmacology Program, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
21
|
Hu Q, Xuan J, Wang L, Shen K, Gao Z, Zhou Y, Wei C, Gu J. Application of adoptive cell therapy in malignant melanoma. J Transl Med 2025; 23:102. [PMID: 39844295 PMCID: PMC11752767 DOI: 10.1186/s12967-025-06093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Cutaneous melanoma is one of the most aggressive skin cancers originating from skin pigment cells. Patients with advanced melanoma suffer a poor prognosis and generally cannot benefit well from surgical resection and chemo/target therapy due to metastasis and drug resistance. Thus, adoptive cell therapy (ACT), employing immune cells with specific tumor-recognizing receptors, has emerged as a promising therapeutic approach to display on-tumor toxicity. This review discusses the application, efficacy, limitations, as well as future prospects of four commonly utilized approaches -including tumor-infiltrating lymphocytes, chimeric antigen receptor (CAR) T cell, engineered T-cell receptor T cells, and chimeric antigen receptor NK cells- in the context of malignant melanoma.
Collapse
Affiliation(s)
- Qianrong Hu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jiangying Xuan
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Lu Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Kangjie Shen
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zixu Gao
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Jianying Gu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
22
|
Floudas CS, Sarkizova S, Ceccarelli M, Zheng W. Leveraging mRNA technology for antigen based immuno-oncology therapies. J Immunother Cancer 2025; 13:e010569. [PMID: 39848687 PMCID: PMC11784169 DOI: 10.1136/jitc-2024-010569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025] Open
Abstract
The application of messenger RNA (mRNA) technology in antigen-based immuno-oncology therapies represents a significant advancement in cancer treatment. Cancer vaccines are an effective combinatorial partner to sensitize the host immune system to the tumor and boost the efficacy of immune therapies. Selecting suitable tumor antigens is the key step to devising effective vaccinations and amplifying the immune response. Tumor neoantigens are de novo epitopes derived from somatic mutations, avoiding T-cell central tolerance of self-epitopes and inducing immune responses to tumors. The identification and prioritization of patient-specific tumor neoantigens are based on advanced computational algorithms taking advantage of the profiling with next-generation sequencing considering factors involved in human leukocyte antigen (HLA)-peptide-T-cell receptor (TCR) complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. This review discusses the development and clinical application of mRNA vaccines in oncology, with a particular focus on recent clinical trials and the computational workflows and methodologies for identifying both shared and individual antigens. While this review centers on therapeutic mRNA vaccines targeting existing tumors, it does not cover preventative vaccines. Preclinical experimental validations are crucial in cancer vaccine development, but we emphasize the computational approaches that facilitate neoantigen selection and design, highlighting their role in advancing mRNA vaccine development. The versatility and rapid development potential of mRNA make it an ideal platform for personalized neoantigen immunotherapy. We explore various strategies for antigen target identification, including tumor-associated and tumor-specific antigens and the computational tools used to predict epitopes capable of eliciting strong immune responses. We address key design considerations for enhancing the immunogenicity and stability of mRNA vaccines, as well as emerging trends and challenges in the field. This comprehensive overview highlights the therapeutic potential of mRNA-based cancer vaccines and underscores ongoing research efforts aimed at optimizing these therapies for improved clinical outcomes.
Collapse
Affiliation(s)
- Charalampos S Floudas
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Wei Zheng
- Moderna, Inc, Cambridge, Massachusetts, USA
| |
Collapse
|
23
|
Wang M, Yu F, Zhang Y. Present and future of cancer nano-immunotherapy: opportunities, obstacles and challenges. Mol Cancer 2025; 24:26. [PMID: 39827147 PMCID: PMC11748575 DOI: 10.1186/s12943-024-02214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
Clinically, multimodal therapies are adopted worldwide for the management of cancer, which continues to be a leading cause of death. In recent years, immunotherapy has firmly established itself as a new paradigm in cancer care that activates the body's immune defense to cope with cancer. Immunotherapy has resulted in significant breakthroughs in the treatment of stubborn tumors, dramatically improving the clinical outcome of cancer patients. Multiple forms of cancer immunotherapy, including immune checkpoint inhibitors (ICIs), adoptive cell therapy and cancer vaccines, have become widely available. However, the effectiveness of these immunotherapies is not much satisfying. Many cancer patients do not respond to immunotherapy, and disease recurrence appears to be unavoidable because of the rapidly evolving resistance. Moreover, immunotherapies can give rise to severe off-target immune-related adverse events. Strategies to remove these hindrances mainly focus on the development of combinatorial therapies or the exploitation of novel immunotherapeutic mediations. Nanomaterials carrying anticancer agents to the target site are considered as practical approaches for cancer treatment. Nanomedicine combined with immunotherapies offers the possibility to potentiate systemic antitumor immunity and to facilitate selective cytotoxicity against cancer cells in an effective and safe manner. A myriad of nano-enabled cancer immunotherapies are currently under clinical investigation. Owing to gaps between preclinical and clinical studies, nano-immunotherapy faces multiple challenges, including the biosafety of nanomaterials and clinical trial design. In this review, we provide an overview of cancer immunotherapy and summarize the evidence indicating how nanomedicine-based approaches increase the efficacy of immunotherapies. We also discuss the key challenges that have emerged in the era of nanotechnology-based cancer immunotherapy. Taken together, combination nano-immunotherapy is drawing increasing attention, and it is anticipated that the combined treatment will achieve the desired success in clinical cancer therapy.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| |
Collapse
|
24
|
Champagne J, Nielsen MM, Feng X, Montenegro Navarro J, Pataskar A, Voogd R, Giebel L, Nagel R, Berenst N, Fumagalli A, Kochavi A, Lovecchio D, Valcanover L, Malka Y, Yang W, Laos M, Li Y, Proost N, van de Ven M, van Tellingen O, Bleijerveld OB, Haanen JBAG, Olweus J, Agami R. Adoptive T cell therapy targeting an inducible and broadly shared product of aberrant mRNA translation. Immunity 2025; 58:247-262.e9. [PMID: 39755122 DOI: 10.1016/j.immuni.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/14/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025]
Abstract
Prolonged exposure to interferon-gamma (IFNγ) and the associated increased expression of the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) create an intracellular shortage of tryptophan in the cancer cells, which stimulates ribosomal frameshifting and tryptophan to phenylalanine (W>F) codon reassignments during protein synthesis. Here, we investigated whether such neoepitopes can be useful targets of adoptive T cell therapy. Immunopeptidomic analyses uncovered hundreds of W>F neoepitopes mainly presented by the HLA-A∗24:02 allele. We identified a T cell receptor (TCRTMBIM6W>F.1) possessing high affinity and specificity toward TMBIM6W>F/HLA-A∗24:02, the inducible W>F neoepitope with the broadest expression across cancer cell lines. TCRTMBIM6W>F.1 T cells are activated by tryptophan-depleted cancer cells but not by non-cancer cells. Finally, we provide in vivo proof of concept for clinical application, whereby TCRMART1 T cells promote cancer cell killing by TCRTMBIM6W>F.1 T cells through the generation of W>F neoepitopes. Thus, neoepitopes arising from W>F substitution present shared and highly expressed immunogenic targets with the potential to overcome current limitations in adoptive T cell therapy.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Animals
- Mice
- Protein Biosynthesis
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Cell Line, Tumor
- Tryptophan/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- RNA, Messenger/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Interferon-gamma/metabolism
- Antigens, Neoplasm/immunology
Collapse
Affiliation(s)
- Julien Champagne
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Morten M Nielsen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Xiaodong Feng
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jasmine Montenegro Navarro
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rhianne Voogd
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lisanne Giebel
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Remco Nagel
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nadine Berenst
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Amos Fumagalli
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Adva Kochavi
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Domenica Lovecchio
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lorenzo Valcanover
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Yuval Malka
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Maarja Laos
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Yingqian Li
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Natalie Proost
- Preclinical Intervention Unit and Pharmacology Unit of the Mouse Clinic for Cancer and Ageing (MCCA), the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit and Pharmacology Unit of the Mouse Clinic for Cancer and Ageing (MCCA), the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Onno B Bleijerveld
- NKI Proteomics facility, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - John B A G Haanen
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway.
| | - Reuven Agami
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Erasmus MC, Department of Genetics, Rotterdam University, Rotterdam, the Netherlands.
| |
Collapse
|
25
|
Aparicio B, Theunissen P, Hervas-Stubbs S, Fortes P, Sarobe P. Relevance of mutation-derived neoantigens and non-classical antigens for anticancer therapies. Hum Vaccin Immunother 2024; 20:2303799. [PMID: 38346926 PMCID: PMC10863374 DOI: 10.1080/21645515.2024.2303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/06/2024] [Indexed: 02/15/2024] Open
Abstract
Efficacy of cancer immunotherapies relies on correct recognition of tumor antigens by lymphocytes, eliciting thus functional responses capable of eliminating tumor cells. Therefore, important efforts have been carried out in antigen identification, with the aim of understanding mechanisms of response to immunotherapy and to design safer and more efficient strategies. In addition to classical tumor-associated antigens identified during the last decades, implementation of next-generation sequencing methodologies is enabling the identification of neoantigens (neoAgs) arising from mutations, leading to the development of new neoAg-directed therapies. Moreover, there are numerous non-classical tumor antigens originated from other sources and identified by new methodologies. Here, we review the relevance of neoAgs in different immunotherapies and the results obtained by applying neoAg-based strategies. In addition, the different types of non-classical tumor antigens and the best approaches for their identification are described. This will help to increase the spectrum of targetable molecules useful in cancer immunotherapies.
Collapse
Affiliation(s)
- Belen Aparicio
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Patrick Theunissen
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Puri Fortes
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| |
Collapse
|
26
|
Chen XT, Leisegang M, Gavvovidis I, Pollack SM, Lorenz FKM, Schumacher TN, Daumke O, Blankenstein T. Generation of effective and specific human TCRs against tumor/testis antigen NY-ESO-1 in mice with humanized T cell recognition system. Front Immunol 2024; 15:1524629. [PMID: 39776913 PMCID: PMC11703889 DOI: 10.3389/fimmu.2024.1524629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Generation of high avidity T cell receptors (TCRs) reactive to tumor-associated antigens (TAA) is impaired by tolerance mechanisms, which is an obstacle to effective T cell therapies for cancer treatment. NY-ESO-1, a human cancer-testis antigen, represents an attractive target for such therapies due to its broad expression in different cancer types and the restricted expression in normal tissues. Utilizing transgenic mice with a diverse human TCR repertoire, we isolated effective TCRs against NY-ESO-1157-165 restricted to HLA-A*02:01. We compared the functions of the murine-derived TCR with human-derived TCRs and an affinity matured TCR, using in vitro co-culture and in vivo adoptive T cell transfer in tumor-bearing mice. Alanine scan, x-scan, LCL assay were employed to address the cross-reactivity of the NY-ESO-1157-165 specific TCRs. We also used human tissue cDNA library and human primary cells to assess the safety of adoptive T cell therapies targeting NY-ESO-1 antigen in the clinic. One of the murine-derived human TCRs, TCR-ESO, exhibited higher functional avidity compared to human-derived NY-ESO-1157-165 specific TCRs. TCR-ESO appeared to have similar efficiency in antigen recognition as an in vitro affinity-matured TCR, TCR 1G4-α95LY, which was applied in clinical trials. TCR-ESO showed little cross-reactivity, in contrast to TCR 1G4-α95LY. Our data indicate that highly effective TCRs against NY-ESO-1 are likely deleted in humans due to tolerance mechanisms, and that the TCR gene loci transgenic mice represent a reliable source to isolate effective and highly-specific TCRs for adoptive T cell therapies.
Collapse
Affiliation(s)
- Xiaojing Tina Chen
- Molecular Immunology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Matthias Leisegang
- David and Etta Jonas Center for Cellular Therapy, the University of Chicago, Chicago, IL, United States
- Institute of Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ioannis Gavvovidis
- Molecular Immunology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Seth M. Pollack
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, United States
| | - Felix K. M. Lorenz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ton N. Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Hematology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Oliver Daumke
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thomas Blankenstein
- Molecular Immunology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
27
|
Simic MS, Watchmaker PB, Gupta S, Wang Y, Sagan SA, Duecker J, Shepherd C, Diebold D, Pineo-Cavanaugh P, Haegelin J, Zhu R, Ng B, Yu W, Tonai Y, Cardarelli L, Reddy NR, Sidhu SS, Troyanskaya O, Hauser SL, Wilson MR, Zamvil SS, Okada H, Lim WA. Programming tissue-sensing T cells that deliver therapies to the brain. Science 2024; 386:eadl4237. [PMID: 39636984 PMCID: PMC11900893 DOI: 10.1126/science.adl4237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 09/23/2024] [Indexed: 12/07/2024]
Abstract
To engineer cells that can specifically target the central nervous system (CNS), we identified extracellular CNS-specific antigens, including components of the CNS extracellular matrix and surface molecules expressed on neurons or glial cells. Synthetic Notch receptors engineered to detect these antigens were used to program T cells to induce the expression of diverse payloads only in the brain. CNS-targeted T cells that induced chimeric antigen receptor expression efficiently cleared primary and secondary brain tumors without harming cross-reactive cells outside of the brain. Conversely, CNS-targeted cells that locally delivered the immunosuppressive cytokine interleukin-10 ameliorated symptoms in a mouse model of neuroinflammation. Tissue-sensing cells represent a strategy for addressing diverse disorders in an anatomically targeted manner.
Collapse
Affiliation(s)
- Milos S. Simic
- UCSF Cell Design Institute and Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Payal B. Watchmaker
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Sasha Gupta
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Yuan Wang
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Sharon A. Sagan
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jason Duecker
- UCSF Cell Design Institute and Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Chanelle Shepherd
- UCSF Cell Design Institute and Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - David Diebold
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Psalm Pineo-Cavanaugh
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey Haegelin
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Robert Zhu
- UCSF Cell Design Institute and Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Ben Ng
- UCSF Cell Design Institute and Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Wei Yu
- UCSF Cell Design Institute and Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Yurie Tonai
- UCSF Cell Design Institute and Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Lia Cardarelli
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Nishith R. Reddy
- UCSF Cell Design Institute and Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Sachdev S. Sidhu
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Olga Troyanskaya
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Stephen L. Hauser
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Michael R. Wilson
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Scott S. Zamvil
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Program in Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Helen Diller Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Wendell A. Lim
- UCSF Cell Design Institute and Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
28
|
Ren Y, Yue Y, Li X, Weng S, Xu H, Liu L, Cheng Q, Luo P, Zhang T, Liu Z, Han X. Proteogenomics offers a novel avenue in neoantigen identification for cancer immunotherapy. Int Immunopharmacol 2024; 142:113147. [PMID: 39270345 DOI: 10.1016/j.intimp.2024.113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/11/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Cancer neoantigens are tumor-specific non-synonymous mutant peptides that activate the immune system to produce an anti-tumor response. Personalized cancer vaccines based on neoantigens are currently one of the most promising therapeutic approaches for cancer treatment. By utilizing the unique mutations within each patient's tumor, these vaccines aim to elicit a strong and specific immune response against cancer cells. However, the identification of neoantigens remains challenging due to the low accuracy of current prediction tools and the high false-positive rate of candidate neoantigens. Since the concept of "proteogenomics" emerged in 2004, it has evolved rapidly with the increased sequencing depth of next-generation sequencing technologies and the maturation of mass spectrometry-based proteomics technologies to become a more comprehensive approach to neoantigen identification, allowing the discovery of high-confidence candidate neoantigens. In this review, we summarize the reason why cancer neoantigens have become attractive targets for immunotherapy, the mechanism of cancer vaccines and the advances in cancer immunotherapy. Considerations relevant to the application emerging of proteogenomics technologies for neoantigen identification and challenges in this field are described.
Collapse
Affiliation(s)
- Yuqing Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yi Yue
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinyang Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tengfei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| |
Collapse
|
29
|
Kishton RJ, Restifo NP. T cells lead the charge against solid tumors. NATURE CANCER 2024; 5:1762-1764. [PMID: 39690223 DOI: 10.1038/s43018-024-00860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Affiliation(s)
- Rigel J Kishton
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA.
| | - Nicholas P Restifo
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA.
- Medici Therapeutics, Boston, MA, USA.
| |
Collapse
|
30
|
Wang Z, Sarkar A, Ge X. De novo functional discovery of peptide-MHC restricted CARs from recombinase-constructed large-diversity monoclonal T cell libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625413. [PMID: 39651191 PMCID: PMC11623653 DOI: 10.1101/2024.11.27.625413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Chimeric antigen receptors (CAR) that mimic T cell receptors (TCR) on eliciting peptide-major histocompatibility complex (pMHC) specific T cell responses hold great promise in the development of immunotherapies against solid tumors, infections, and autoimmune diseases. However, broad applications of TCR-mimic (TCRm) CARs are hindered to date largely due to lack of a facile approach for the effective isolation of TCRm CARs. Here, we establish a highly efficient process for de novo discovery of TCRm CARs from human naïve antibody repertories by combining recombinase-mediated large-diversity monoclonal library construction with T cell activation-based positive and negative screenings. Panels of highly functional TCRm CARs with peptide-specific recognition, minimal cross-reactivity, and low tonic signaling were rapidly identified towards MHC-restricted intracellular tumor-associated antigens MAGE-A3, NY-ESO-1, and MART-1. Transduced TCRm CAR-T cells exhibited pMHC-specific functional avidity, potent cytokine release, and efficacious and persistent cytotoxicity. The developed approach could be used to generate safe and potent immunotherapies targeting MHC-restricted antigens.
Collapse
|
31
|
Alsalloum A, Alrhmoun S, Perik-Zavosdkaia O, Fisher M, Volynets M, Lopatnikova J, Perik-Zavodskii R, Shevchenko J, Philippova J, Solovieva O, Zavjalov E, Kurilin V, Shiku H, Silkov A, Sennikov S. Decoding NY-ESO-1 TCR T cells: transcriptomic insights reveal dual mechanisms of tumor targeting in a melanoma murine xenograft model. Front Immunol 2024; 15:1507218. [PMID: 39660132 PMCID: PMC11628372 DOI: 10.3389/fimmu.2024.1507218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
The development of T cell receptor-engineered T cells (TCR-T) targeting intracellular antigens is a promising strategy for treating solid tumors; however, the mechanisms underlying their effectiveness remain poorly understood. In this study, we employed advanced techniques to investigate the functional state of T cells engineered with retroviral vectors to express a TCR specific for the NY-ESO-1 157-165 peptide in the HLA-A*02:01 context. Flow cytometry revealed a predominance of naïve T cells. Gene expression profiling using NanoString technology revealed upregulation of genes encoding chemokine receptors CCR2 and CCR5, indicating enhanced migration towards tumor sites. In the SK-Mel-37 xenograft model, these transduced T cells achieved complete tumor eradication. Furthermore, single-cell RNA sequencing (scRNA-seq) conducted 14 days post-TCR T cell infusion provided a comprehensive analysis of the in vivo adaptation of these cells, identifying a distinct subset of CD8+ effector T cells with an NK cell-like gene expression profile. Our findings indicate that NY-ESO-1 TCR-transduced T cells have the potential to mediate dual antitumor effects through both antigen-independent NK-like and antigen-specific CTL-like responses. This study underscores the potential of NY-ESO-1 TCR-T cells as potent tumor-eradicating agents, highlighting the importance of harnessing their versatile functional capabilities to refine and enhance therapeutic strategies.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Transcriptome
- Immunotherapy, Adoptive/methods
- Cell Line, Tumor
- Melanoma/therapy
- Melanoma/immunology
- Melanoma/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Xenograft Model Antitumor Assays
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- CD8-Positive T-Lymphocytes/immunology
- Membrane Proteins/genetics
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Gene Expression Profiling
- Neoplasm Proteins
- Peptide Fragments
Collapse
Affiliation(s)
- Alaa Alsalloum
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Saleh Alrhmoun
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Olga Perik-Zavosdkaia
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Marina Fisher
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Marina Volynets
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Julia Lopatnikova
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Roman Perik-Zavodskii
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Julia Shevchenko
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Julia Philippova
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Olga Solovieva
- Center for Collective Use SPF-vivarium ICG SB RAS, Ministry of Science and High Education of Russian Federation, Novosibirsk, Russia
| | - Evgenii Zavjalov
- Center for Collective Use SPF-vivarium ICG SB RAS, Ministry of Science and High Education of Russian Federation, Novosibirsk, Russia
| | - Vasily Kurilin
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Hiroshi Shiku
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Alexander Silkov
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Sergey Sennikov
- Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Department of Immunology, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
32
|
Liu J, Zhao Y, Zhao H. Chimeric antigen receptor T-cell therapy in autoimmune diseases. Front Immunol 2024; 15:1492552. [PMID: 39628482 PMCID: PMC11611814 DOI: 10.3389/fimmu.2024.1492552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
The administration of T cells that have been modified to carry chimeric antigen receptors (CARs) aimed at B cells has been an effective strategy in treating B cell malignancies. This breakthrough has spurred the creation of CAR T cells intended to specifically reduce or alter the faulty immune responses associated with autoimmune disorders. Early positive outcomes from clinical trials involving CAR T cells that target the B cell protein CD19 in patients suffering from autoimmune diseases driven by B cells have been reported. Additional strategies are being developed to broaden the use of CAR T cell therapy and enhance its safety in autoimmune conditions. These include employing chimeric autoantireceptors (CAAR) to specifically eliminate B cells that are reactive to autoantigens, and using regulatory T cells (Tregs) engineered to carry antigen-specific CARs for precise immune modulation. This discussion emphasizes key factors such as choosing the right target cell groups, designing CAR constructs, defining tolerable side effects, and achieving a lasting immune modification, all of which are critical for safely integrating CAR T cell therapy in treating autoimmune diseases.
Collapse
MESH Headings
- Humans
- Autoimmune Diseases/therapy
- Autoimmune Diseases/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Animals
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes, Regulatory/immunology
- B-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Autoantigens/immunology
- Antigens, CD19/immunology
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan Zhao
- Department of Respiratory, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
33
|
Chung JB, Brudno JN, Borie D, Kochenderfer JN. Chimeric antigen receptor T cell therapy for autoimmune disease. Nat Rev Immunol 2024; 24:830-845. [PMID: 38831163 DOI: 10.1038/s41577-024-01035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Infusion of T cells engineered to express chimeric antigen receptors (CARs) that target B cells has proven to be a successful treatment for B cell malignancies. This success inspired the development of CAR T cells to selectively deplete or modulate the aberrant immune responses that underlie autoimmune disease. Promising results are emerging from clinical trials of CAR T cells targeting the B cell protein CD19 in patients with B cell-driven autoimmune diseases. Further approaches are being designed to extend the application and improve safety of CAR T cell therapy in the setting of autoimmunity, including the use of chimeric autoantibody receptors to selectively deplete autoantigen-specific B cells and the use of regulatory T cells engineered to express antigen-specific CARs for targeted immune modulation. Here, we highlight important considerations, such as optimal target cell populations, CAR construct design, acceptable toxicities and potential for lasting immune reset, that will inform the eventual safe adoption of CAR T cell therapy for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
| | - Jennifer N Brudno
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - James N Kochenderfer
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
34
|
Chaoul N, Lauricella E, Giglio A, D'Angelo G, Ganini C, Cives M, Porta C. The future of cellular therapy for the treatment of renal cell carcinoma. Expert Opin Biol Ther 2024; 24:1245-1259. [PMID: 39485013 DOI: 10.1080/14712598.2024.2418321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/26/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024]
Abstract
INTRODUCTION Systemic treatment options for renal cell carcinoma (RCC) have expanded considerably in recent years, and both tyrosine kinase inhibitors and immune checkpoint inhibitors, alone or in combination, have entered the clinical arena. Adoptive cell immunotherapies have recently revolutionized the treatment of cancer and hold the promise to further advance the treatment of RCC. AREAS COVERED In this review, we summarize the latest preclinical and clinical development in the field of adoptive cell immunotherapy for the treatment of RCC, focusing on lymphokine-activated killer (LAK) cells, cytokine-induced killer (CIK) cells, tumor-infiltrating T cells (TILs), TCR-engineered T cells, chimeric antigen receptor (CAR) T cells, and dendritic cell vaccination strategies. Perspectives on emerging cellular products including CAR NK cells, CAR macrophages, as well as γδ T cells are also included. EXPERT OPINION So far, areas of greater therapeutic success of adoptive cell therapies include the adjuvant administration of CIK cells and the transfer of anti-CD70 CAR T cells in patients with metastatic RCC. Bench to bedside and back research will be needed to overcome current limitations of adoptive cell therapies in RCC, primarily aiming at improving the safety of immune cell products, optimizing their antitumor activity and generating off-the-shelf products ready for clinical use.
Collapse
Affiliation(s)
- Nada Chaoul
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Eleonora Lauricella
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Andrea Giglio
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Gabriella D'Angelo
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Carlo Ganini
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Mauro Cives
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| |
Collapse
|
35
|
Faiena I, Adhikary S, Schweitzer C, Astrow SH, Grogan T, Funt SA, Bot A, Dorff T, Rosenberg JE, Elashoff DA, Pantuck AJ, Drakaki A. Gene and Protein Expression of MAGE and Associated Immune Landscape Elements in Non-Small-Cell Lung Carcinoma and Urothelial Carcinomas. J Immunother 2024; 47:351-360. [PMID: 39169899 PMCID: PMC11446647 DOI: 10.1097/cji.0000000000000538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/21/2024] [Indexed: 08/23/2024]
Abstract
Melanoma-associated antigen-A (MAGE-A) is expressed in multiple cancers with restricted expression in normal tissue. We sought to assess the MAGE-A3/A6 expression profile as well as immune landscape in urothelial (UC) and non-small cell lung carcinoma (NSCLC). We also assessed co-expression of immune-associated markers, including programmed cell death ligand 1 (PD-L1) in tumor and/or immune cells, and assessed the effect of checkpoint inhibitor treatment on these markers in the context of urothelial carcinoma. We used formalin-fixed paraffin-embedded (FFPE) tissue sections from a variety of tumor types were screened by IHC for MAGE-A and PD-L1 expression. Gene expression analyses by RNA sequencing were performed on RNA extracted from serial tissue sections. UC tumor samples from patients treated with checkpoint inhibitors were assessed by IHC and NanoString gene expression analysis for MAGE-A and immune marker expression before and after treatment. Overall, 84 samples (57%) had any detectable MAGE-A expression. Detectable MAGE-A expression was present at similar frequencies in both tumor tissue types, with 41 (50%) NSCLC and 43 (64%) UC. MAGE-A expression was not significantly changed before and after checkpoint inhibitor therapy by both IHC and NanoString mRNA sequencing. Other immune markers were similarly unchanged post immune checkpoint inhibitor therapy. Stable expression of MAGE-A3/A6 pre and post checkpoint inhibitor treatment indicates that archival specimens harvested after checkpoint therapy are applicable to screening potential candidates for MAGE therapies.
Collapse
Affiliation(s)
- Izak Faiena
- Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | - Tristan Grogan
- Department of Medicine Statistics Core,David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Samuel A. Funt
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Tanya Dorff
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - David A. Elashoff
- Department of Medicine Statistics Core,David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Allan J. Pantuck
- Institute of Urologic Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Alexandra Drakaki
- Institute of Urologic Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
36
|
Wu M, Mao L, Zhai X, Liu J, Wang J, Li L, Duan J, Wang J, Lin S, Li J, Yu S. Microenvironmental alkalization promotes the therapeutic effects of MSLN-CAR-T cells. J Immunother Cancer 2024; 12:e009510. [PMID: 39433427 PMCID: PMC11499857 DOI: 10.1136/jitc-2024-009510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by high invasion, prone metastasis, frequent recurrence and poor prognosis. Unfortunately, the curative effects of current clinical therapies, including surgery, radiotherapy, chemotherapy and immunotherapy, are still limited in patients with TNBC. In this study, we showed that the heterogeneous expression at the protein level and subcellular location of mesothelin (MSLN), a potential target for chimeric antigen receptor-T (CAR-T) cell therapy in TNBC, which is caused by acidification of the tumor microenvironment, may be the main obstacle to therapeutic efficacy. Alkalization culture or sodium bicarbonate administration significantly promoted the membrane expression of MSLN and enhanced the killing efficiency of MSLN-CAR-T cells both in vitro and in vivo, and the same results were also obtained in other cancers with high MSLN expression, such as pancreatic and ovarian cancers. Moreover, mechanistic exploration revealed that the attenuation of autophagy-lysosome function caused by microenvironmental alkalization inhibited the degradation of MSLN. Hence, alkalization of the microenvironment improves the consistency and high expression of the target antigen MSLN and constitutes a routine method for treating diverse solid cancers via MSLN-CAR-T cells.
Collapse
Affiliation(s)
- Min Wu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
- Jin-feng Laboratory, Chongqing, Chongqing, China
| | - Ling Mao
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Xuejia Zhai
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
- Deaprtment of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Jie Liu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Junhan Wang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Langhong Li
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Jiangjie Duan
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
- Jin-feng Laboratory, Chongqing, Chongqing, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
- Jin-feng Laboratory, Chongqing, Chongqing, China
| | - Shuang Lin
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Jianjun Li
- Deaprtment of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Shicang Yu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
- Jin-feng Laboratory, Chongqing, Chongqing, China
| |
Collapse
|
37
|
Sennikov S, Volynets M, Alrhmoun S, Perik-Zavodskii R, Perik-Zavodskaia O, Fisher M, Lopatnikova J, Shevchenko J, Nazarov K, Philippova J, Alsalloum A, Kurilin V, Silkov A. Modified Dendritic cell-based T-cell expansion protocol and single-cell multi-omics allow for the selection of the most expanded and in vitro-effective clonotype via profiling of thousands of MAGE-A3-specific T-cells. Front Immunol 2024; 15:1470130. [PMID: 39450161 PMCID: PMC11499154 DOI: 10.3389/fimmu.2024.1470130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Adoptive cell therapy using TCR-engineered T-cells is one of the most effective strategies against tumor cells. The TCR T-cell approach has been well tested against a variety of blood neoplasms but is yet to be deeply tested against solid tumors. Among solid tumors, cancer-testis antigens are the most prominent targets for tumor-specific therapy, as they are usually found on cells that lie behind blood-tissue barriers. Methods We have employed a novel efficient protocol for MAGE-A3-specific T-cell clonal expansion, performed single-cell multi-omic analysis of the expanded T-cells via BD Rhapsody, engineered a selected T-cell receptor into a lentiviral construct, and tested it in an in vitro LDH-cytotoxicity test. Results and discussion We have observed a 191-fold increase in the MAGE-A3-specific T-cell abundance, obtained a dominant T-cell receptor via single-cell multi-omic BD Rhapsody data analysis in the TCRscape bioinformatics tool, and observed potent cytotoxicity of the dominant-clonotype transduced TCR T-cells against a MAGE-A3-positive tumor. We have demonstrated the efficiency of our T-cell enrichment protocol in obtaining potent anti-tumor T-cells and their T-cell receptors, especially when paired with the modern single-cell analysis methods.
Collapse
MESH Headings
- Antigens, Neoplasm/immunology
- Humans
- Neoplasm Proteins/immunology
- Neoplasm Proteins/genetics
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Single-Cell Analysis/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Cell Line, Tumor
- Clone Cells
- Cell Proliferation
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Cytotoxicity, Immunologic
- Multiomics
Collapse
Affiliation(s)
- Sergey Sennikov
- Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
McAuliffe J, Panetti S, Steffke E, Wicki A, Pereira-Almeida V, Noblecourt L, Hu Y, Guo SYW, Lesenfants J, Ramirez-Valdez RA, Chandrasekar V, Ahmad M, Stroobant V, Vigneron N, Van den Eynde BJ, Leung CSK. Novel H-2D b-restricted CD8 epitope derived from mouse MAGE-type antigen P1A mediates antitumor immunity in C57BL/6 mice. J Immunother Cancer 2024; 12:e008998. [PMID: 39384196 PMCID: PMC11474967 DOI: 10.1136/jitc-2024-008998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/08/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Melanoma antigen gene (MAGE)-type antigens are promising targets for cancer immunotherapy as they are expressed in cancer cells but not in normal tissues, except for male germline cells. The mouse P1A antigen shares this MAGE-type expression pattern and has been used as a target antigen in preclinical tumor models aiming to induce antitumor CD8+ T-cell responses. However, so far only one MHC I-restricted P1A epitope has been identified. It is presented by H-2Ld in mice of the H-2d genetic background such as DBA/2 and BALB/c. Given the availability of multiple genetically altered strains of mice in the C57BL/6 background, it would be useful to define P1A T-cell epitopes presented by the H-2b haplotype, to facilitate more refined mechanistic studies. METHODS We employed a heterologous prime-boost vaccination strategy based on a chimpanzee adenovirus (ChAdOx1) and a modified vaccinia Ankara (MVA) encoding P1A, to induce P1A-specific T-cell responses in C57BL/6 mice. Vaccine-induced responses were measured by intracellular cytokine staining and multiparameter flow cytometry. We mapped the immunogenic CD8 epitope and cloned the cognate T-cell receptor (TCR), which we used for adoptive cell therapy. RESULTS ChAdOx1/MVA-P1A vaccination induces a strong P1A-specific CD8+ T-cell response in C57BL/6 mice. This response is directed against a single 9-amino acid peptide with sequence FAVVTTSFL, corresponding to P1A amino acids 43-51. It is presented by H-2Db. P1A vaccination, especially with ChAdOx1 administered intramuscularly and MVA delivered intravenously, protected mice against P1A-expressing EL4 (EL4.P1A) tumor cell challenge. We identified and cloned four TCRs that are specific for the H-2Db-restricted P1A43-51 peptide. T cells transduced with these TCRs recognized EL4.P1A but not MC38.P1A and B16F10.P1A tumor cells, likely due to differences in the proteasome subtypes present in these cells. Adoptive transfer of these T cells in mice bearing EL4.P1A tumors reduced tumor growth and increased survival. CONCLUSIONS We identified the first CD8+ T-cell epitope of the MAGE-type P1A tumor antigen presented in the H-2b background. This opens new perspectives for mechanistic studies dissecting MAGE-type specific antitumor immunity, making use of the wealth of genetically altered mouse strains available in the C57BL/6 background. This should facilitate the advancement of specific cancer immunotherapies.
Collapse
Affiliation(s)
- James McAuliffe
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Silvia Panetti
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Emily Steffke
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Amanda Wicki
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Vinnycius Pereira-Almeida
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Laurine Noblecourt
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yushu Hu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Immunology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Shi Yu William Guo
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Julie Lesenfants
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
| | | | | | - Maryam Ahmad
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Vincent Stroobant
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Brussels, Belgium
| | - Nathalie Vigneron
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Brussels, Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Brussels, Belgium
| | - Carol Sze Ki Leung
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Pollack IF, Felker J, Frederico SC, Raphael I, Kohanbash G. Immunotherapy for pediatric low-grade gliomas. Childs Nerv Syst 2024; 40:3263-3275. [PMID: 38884777 DOI: 10.1007/s00381-024-06491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/01/2024] [Indexed: 06/18/2024]
Abstract
Pediatric low-grade gliomas (pLGGs) are the most common brain tumor types affecting children. Although gross-total resection remains the treatment of choice, many tumors are not amenable to complete removal, because they either involve midline structures, such as the optic chiasm or hypothalamus, and are not conducive to aggressive resection, or have diffuse biological features and blend with the surrounding brain. Historically, radiation therapy was used as the second-line option for disease control, but with the recognition that this often led to adverse long-term sequelae, particularly in young children, conventional chemotherapy assumed a greater role in initial therapy for unresectable tumors. A variety of agents demonstrated activity, but long-term disease control was suboptimal, with more than 50% of tumors exhibiting disease progression within 5 years. More recently, it has been recognized that a high percentage of these tumors in children exhibit constitutive activation of the mitogen-activated protein kinase (MAPK) pathway because of BRAF translocations or mutations, NFI mutations, or a host of other anomalies that converged on MAPK. This led to phase 1, 2, and 3 trials that explored the activity of blocking this signaling pathway, and the efficacy of this approach compared to conventional chemotherapy. Despite initial promise of these strategies, not all children tolerate this therapy, and many tumors resume growth once MAPK inhibition is stopped, raising concern that long-term and potentially life-long treatment will be required to maintain tumor control, even among responders. This observation has led to interest in other treatments, such as immunotherapy, that may delay or avoid the need for additional treatments. This chapter will summarize the place of immunotherapy in the current armamentarium for these tumors and discuss prior results and future options to improve disease control, with a focus on our prior efforts and experience in this field.
Collapse
Affiliation(s)
- Ian F Pollack
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Neurosurgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| | - James Felker
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurosurgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Stephen C Frederico
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurosurgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Itay Raphael
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurosurgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Gary Kohanbash
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurosurgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| |
Collapse
|
40
|
Kheirkhah AH, Habibi S, Yousefi MH, Mehri S, Ma B, Saleh M, Kavianpour M. Finding potential targets in cell-based immunotherapy for handling the challenges of acute myeloid leukemia. Front Immunol 2024; 15:1460437. [PMID: 39411712 PMCID: PMC11474923 DOI: 10.3389/fimmu.2024.1460437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hostile hematological malignancy under great danger of relapse and poor long-term survival rates, despite recent therapeutic advancements. To deal with this unfulfilled clinical necessity, innovative cell-based immunotherapies have surfaced as promising approaches to improve anti-tumor immunity and enhance patient outcomes. In this comprehensive review, we provide a detailed examination of the latest developments in cell-based immunotherapies for AML, including chimeric antigen receptor (CAR) T-cell therapy, T-cell receptor (TCR)-engineered T-cell therapy, and natural killer (NK) cell-based therapies. We critically evaluate the unique mechanisms of action, current challenges, and evolving strategies to improve the efficacy and safety of these modalities. The review emphasizes how promising these cutting-edge immune-based strategies are in overcoming the inherent complexities and heterogeneity of AML. We discuss the identification of optimal target antigens, the importance of mitigating on-target/off-tumor toxicity, and the need to enhance the persistence and functionality of engineered immune effector cells. All things considered, this review offers a thorough overview of the rapidly evolving field of cell-based immunotherapy for AML, underscoring the significant progress made and the ongoing efforts to translate these innovative approaches into more effective and durable treatments for this devastating disease.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Killer Cells, Natural/immunology
- Immunotherapy/methods
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Amir Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sara Mehri
- Department of Biotechnology, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bin Ma
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, United States
| | - Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
41
|
Kang X, Mita N, Zhou L, Wu S, Yue Z, Babu RJ, Chen P. Nanotechnology in Advancing Chimeric Antigen Receptor T Cell Therapy for Cancer Treatment. Pharmaceutics 2024; 16:1228. [PMID: 39339264 PMCID: PMC11435308 DOI: 10.3390/pharmaceutics16091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for hematological cancers, yet it faces significant hurdles, particularly regarding its efficacy in solid tumors and concerning associated adverse effects. This review provides a comprehensive analysis of the advancements and ongoing challenges in CAR-T therapy. We highlight the transformative potential of nanotechnology in enhancing CAR-T therapy by improving targeting precision, modulating the immune-suppressive tumor microenvironment, and overcoming physical barriers. Nanotechnology facilitates efficient CAR gene delivery into T cells, boosting transfection efficiency and potentially reducing therapy costs. Moreover, nanotechnology offers innovative solutions to mitigate cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Cutting-edge nanotechnology platforms for real-time monitoring of CAR-T cell activity and cytokine release are also discussed. By integrating these advancements, we aim to provide valuable insights and pave the way for the next generation of CAR-T cell therapies to overcome current limitations and enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Xuejia Kang
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - Nur Mita
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
- Faculty of Pharmacy, Mulawarman University, Samarinda 75119, Kalimantan Timur, Indonesia
| | - Lang Zhou
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| | - Siqi Wu
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| | - Zongliang Yue
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| |
Collapse
|
42
|
Nassief G, Anaeme A, Moussa K, Mansour AN, Ansstas G. Recent Advancements in Cell-Based Therapies in Melanoma. Int J Mol Sci 2024; 25:9848. [PMID: 39337333 PMCID: PMC11432154 DOI: 10.3390/ijms25189848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Malignant melanoma outcomes have drastically changed in recent years due to the introduction of immune checkpoint inhibitors (ICIs). However, many patients still experience intolerable side effects, therapy resistance, and disease progression on ICI therapy. Therefore, there remains a need for novel therapeutics that address this gap in treatment options. Cell-based therapies have gained wide attention as a therapeutic option that could address this gap in treatment options for advanced melanoma. These therapies work by extracting certain cell types produced in the human body such as T-cells, modifying them based on a specific target, and transfusing them back into the patient. In the realm of cancer therapy, cell-based therapies utilize immune cells to target tumor cells while sparing healthy cells. Recently, the Food and Drug Administration (FDA) has approved the usage of lifileucel, a tumor-infiltrating lymphocyte (TIL) therapy, in advanced melanoma. This came following recent results from the C-144-01 study (NCT02360579), which demonstrated the efficacy and safety of TILs in metastatic melanoma patients who otherwise failed on standard ICI/targeted therapy. Thus, the results of this trial as well as the recent FDA approval have proven the viability of utilizing cell-based therapies to fill the gap in treatment options for patients with advanced melanoma. This review aims to provide a comprehensive overview of major cell-based therapies that have been utilized in melanoma by delineating results of the most recent multi-center phase II/ III clinical trials that evaluate the efficacy and safety of major cell-based therapies in melanoma. Additionally, we provide a summary of current limitations in each cell-based therapeutic option as well as a future direction of how to further extrapolate these cell-based therapies in advanced melanoma.
Collapse
Affiliation(s)
- George Nassief
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA
| | - Angela Anaeme
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA
| | - Karen Moussa
- UMKC School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Abdallah N Mansour
- Department of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - George Ansstas
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110, USA
| |
Collapse
|
43
|
Rus Bakarurraini NAA, Kamarudin AA, Jamal R, Abu N. Engineered T cells for Colorectal Cancer. Immunotherapy 2024; 16:987-998. [PMID: 39229803 PMCID: PMC11485792 DOI: 10.1080/1750743x.2024.2391733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Colorectal cancer (CRC) is a major contributor to global cancer incidence and mortality. Conventional treatments have limitations; hence, innovative approaches are imperative. Recent advancements in cancer research have led to the development of personalized targeted therapies and immunotherapies. Immunotherapy, in particular, T cell-based therapies, exhibited to be promising in enhancing cancer treatment outcomes. This review focuses on the landscape of engineered T cells as a potential option for the treatment of CRC. It highlights the approaches, challenges and current advancements in this field. As the understanding of molecular mechanisms increases, engineered T cells hold great potential in revolutionizing cancer treatment. To fully explore their safety efficacy in improving patient outcomes, further research and clinical trials are necessary.
Collapse
Affiliation(s)
| | - Ammar Akram Kamarudin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Anderson GSF, Chapman MA. T cell-redirecting therapies in hematological malignancies: Current developments and novel strategies for improved targeting. Mol Ther 2024; 32:2856-2891. [PMID: 39095991 PMCID: PMC11403239 DOI: 10.1016/j.ymthe.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
T cell-redirecting therapies (TCRTs), such as chimeric antigen receptor (CAR) or T cell receptor (TCR) T cells and T cell engagers, have emerged as a highly effective treatment modality, particularly in the B and plasma cell-malignancy setting. However, many patients fail to achieve deep and durable responses; while the lack of truly unique tumor antigens, and concurrent on-target/off-tumor toxicities, have hindered the development of TCRTs for many other cancers. In this review, we discuss the recent developments in TCRT targets for hematological malignancies, as well as novel targeting strategies that aim to address these, and other, challenges.
Collapse
Affiliation(s)
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
45
|
Alsalloum A, Shevchenko JA, Sennikov S. NY-ESO-1 antigen: A promising frontier in cancer immunotherapy. Clin Transl Med 2024; 14:e70020. [PMID: 39275923 PMCID: PMC11399778 DOI: 10.1002/ctm2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024] Open
Abstract
Significant strides have been made in identifying tumour-associated antigens over the past decade, revealing unique epitopes crucial for targeted cancer therapy. Among these, the New York esophageal squamous cell carcinoma (NY-ESO-1) protein, a cancer/testis antigen, stands out. This protein is presented on the cell surface by major histocompatibility complex class I molecules and exhibits restricted expression in germline cells and various cancers, marking it as an immune-privileged site. Remarkably, NY-ESO-1 serves a dual role as both a tumour-associated antigen and its own adjuvant, implying a potential function as a damage-associated molecular pattern. It elicits strong humoural immune responses, with specific antibody frequencies significantly correlating with disease progression. These characteristics make NY-ESO-1 an appealing candidate for developing effective and specific immunotherapy, particularly for advanced stages of disease. In this review, we provide a comprehensive overview of NY-ESO-1 as an immunogenic tumour antigen. We then explore the diverse strategies for targeting NY-ESO-1, including cancer vaccination with peptides, proteins, DNA, mRNA, bacterial vectors, viral vectors, dendritic cells and artificial adjuvant vector cells, while considering the benefits and drawbacks of each strategy. Additionally, we offer an in-depth analysis of adoptive T-cell therapies, highlighting innovative techniques such as next-generation NY-ESO-1 T-cell products and the integration with lymph node-targeted vaccines to address challenges and enhance therapeutic efficacy. Overall, this comprehensive review sheds light on the evolving landscape of NY-ESO-1 targeting and its potential implications for cancer treatment, opening avenues for future tailored directions in NY-ESO-1-specific immunotherapy. HIGHLIGHTS: Endogenous immune response: NY-ESO-1 exhibited high immunogenicity, activating endogenous dendritic cells, T cells and B cells. NY-ESO-1-based cancer vaccines: NY-ESO-1 vaccines using protein/peptide, RNA/DNA, microbial vectors and artificial adjuvant vector cells have shown promise in enhancing immune responses against tumours. NY-ESO-1-specific T-cell receptor-engineered cells: NY-ESO-1-targeted T cells, along with ongoing innovations in engineered natural killer cells and other cell therapies, have improved the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Alaa Alsalloum
- Laboratory of Molecular ImmunologyFederal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical ImmunologyNovosibirskRussia
- Faculty of Natural SciencesNovosibirsk State UniversityNovosibirskRussia
| | - Julia A. Shevchenko
- Laboratory of Molecular ImmunologyFederal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical ImmunologyNovosibirskRussia
| | - Sergey Sennikov
- Laboratory of Molecular ImmunologyFederal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical ImmunologyNovosibirskRussia
- Department of ImmunologyV. Zelman Institute for Medicine and PsychologyNovosibirsk State UniversityNovosibirskRussia
| |
Collapse
|
46
|
Ma P, Jiang Y, Zhao G, Wang W, Xing S, Tang Q, Miao H, Fang H, Sun C, Fang Y, Jiang N, Huang H, Wang S, Xie X, Li N. Toward a comprehensive solution for treating solid tumors using T-cell receptor therapy: A review. Eur J Cancer 2024; 209:114224. [PMID: 39067370 DOI: 10.1016/j.ejca.2024.114224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
T-cell receptor therapy (TCR-T) has demonstrated efficacy, durability, and safety advantages in certain solid tumors (such as human papillomavirus-related tumors, synovial sarcoma, and melanoma). This study aimed to provide careful considerations for developing TCR-T for solid tumors. Therefore, in this review, we have summarized the current clinical application, advantage of TCR-T modalities and explored efficacy/safety-related parameters, particularly avidity, pharmacokinetics/pharmacodynamics, and indications, for solid tumors. Furthermore, we have investigated critical factors related to avidity, including antigen selection, T-cell receptor acquisition, optimization, and co-receptor engagement. Moreover, we have re-examined the expression of tumor antigens for a potentially higher coverage rate of solid tumors based on the current RNA-seq datasets. Finally, we have discussed the current limitations and future directions of TCR-Ts.
Collapse
Affiliation(s)
- Peiwen Ma
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yale Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guo Zhao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wenbo Wang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shujun Xing
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qiyu Tang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Huilei Miao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hong Fang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chao Sun
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuan Fang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Huiyao Huang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Xingwang Xie
- Building 1, Bohui innovation building, yard 9, Sheng Life Garden Road, Changping District, Beijing, China.
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
47
|
Sabile JMG, Swords R, Tyner JW. Evaluating targeted therapies in older patients with TP53-mutated AML. Leuk Lymphoma 2024; 65:1201-1218. [PMID: 38646877 DOI: 10.1080/10428194.2024.2344057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
Mutation of thetumor suppressor gene, TP53 (tumor protein 53), occurs in up to 15% of all patients with acute myeloid leukemia (AML) and is enriched within specific clinical subsets, most notably in older adults, and including secondary AML cases arising from preceding myeloproliferative neoplasm (MPN), myelodysplastic syndrome (MDS), patients exposed to prior DNA-damaging, cytotoxic therapies. In all cases, these tumors have remained difficult to effectively treat with conventional therapeutic regimens. Newer approaches fortreatmentofTP53-mutated AML have shifted to interventions that maymodulateTP53 function, target downstream molecular vulnerabilities, target non-p53 dependent molecular pathways, and/or elicit immunogenic responses. This review will describe the basic biology of TP53, the clinical and biological patterns of TP53 within myeloid neoplasms with a focus on elderly AML patients and will summarize newer therapeutic strategies and current clinical trials.
Collapse
Affiliation(s)
- Jean M G Sabile
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ronan Swords
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
48
|
Parkhurst M, Goff SL, Lowery FJ, Beyer RK, Halas H, Robbins PF, Prickett TD, Gartner JJ, Sindiri S, Krishna S, Zacharakis N, Ngo L, Ray S, Bera A, Shepherd R, Levin N, Kim SP, Copeland A, Nah S, Levi S, Parikh N, Kwong MLM, Klemen ND, Yang JC, Rosenberg SA. Adoptive transfer of personalized neoantigen-reactive TCR-transduced T cells in metastatic colorectal cancer: phase 2 trial interim results. Nat Med 2024; 30:2586-2595. [PMID: 38992129 DOI: 10.1038/s41591-024-03109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024]
Abstract
Adoptive cell transfer (ACT) with neoantigen-reactive T lymphocytes can mediate cancer regression. Here we isolated unique, personalized, neoantigen-reactive T cell receptors (TCRs) from tumor-infiltrating lymphocytes of patients with metastatic gastrointestinal cancers and incorporated the TCR α and β chains into gamma retroviral vectors. We transduced autologous peripheral blood lymphocytes and adoptively transferred these cells into patients after lymphodepleting chemotherapy. In a phase 2 single-arm study, we treated seven patients with metastatic, mismatch repair-proficient colorectal cancers who had progressive disease following multiple previous therapies. The primary end point of the study was the objective response rate as measured using RECIST 1.1, and the secondary end points were safety and tolerability. There was no prespecified interim analysis defined in this study. Three patients had objective clinical responses by RECIST criteria including regressions of metastases to the liver, lungs and lymph nodes lasting 4 to 7 months. All patients received T cell populations containing ≥50% TCR-transduced cells, and all T cell populations were polyfunctional in that they secreted IFNγ, GM-CSF, IL-2 and granzyme B specifically in response to mutant peptides compared with wild-type counterparts. TCR-transduced cells were detected in the peripheral blood of five patients, including the three responders, at levels ≥10% of CD3+ cells 1 month post-ACT. In one patient who responded to therapy, ~20% of CD3+ peripheral blood lymphocytes expressed transduced TCRs more than 2 years after treatment. This study provides early results suggesting that ACT with T cells genetically modified to express personalized neoantigen-reactive TCRs can be tolerated and can mediate tumor regression in patients with metastatic colorectal cancers. ClinicalTrials.gov registration: NCT03412877 .
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Lien Ngo
- Surgery Branch, NCI, NIH, Bethesda, MD, USA
| | | | | | | | - Noam Levin
- Surgery Branch, NCI, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhu S, Jin Y, Zhou M, Li L, Song X, Su X, Liu B, Shen J. KK-LC-1, a biomarker for prognosis of immunotherapy for primary liver cancer. BMC Cancer 2024; 24:811. [PMID: 38972967 PMCID: PMC11229184 DOI: 10.1186/s12885-024-12586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
PURPOSE There is mounting evidence that patients with liver cancer can benefit from Immune checkpoint inhibitors. However, due to the high cost and low efficacy, we aimed to explore new biomarkers for predicting the efficacy of immunotherapy. METHODS Specimens and medical records of liver cancer patients treated at Drum Tower Hospital of Nanjing University were collected, and the expression of Kita-Kyushu lung cancer antigen-1 (KK-LC-1) in tissues as well as the corresponding antibodies in serum were examined to find biomarkers related to the prognosis of immunotherapy and to explore its mechanism in the development of liver cancer. RESULTS KK-LC-1 expression was found to be 34.4% in histopathological specimens from 131 patients and was significantly correlated with Foxp3 expression (P = 0.0356). The expression of Foxp3 in the tissues of 24 patients who received immunotherapy was significantly correlated with overall survival (OS) (P = 0.0247), and there was also a tendency for prolonged OS in patients with high expression of KK-LC-1. In addition, the expression of KK-LC-1 antibody in the serum of patients who received immunotherapy with a first efficacy evaluation of stable disease (SD) was significantly higher than those with partial response (PR) (P = 0.0413). CONCLUSIONS Expression of KK-LC-1 in both tissues and serum has been shown to correlate with the prognosis of patients treated with immunotherapy, and KK-LC-1 is a potential therapeutic target for oncological immunotherapy.
Collapse
Affiliation(s)
- Sihui Zhu
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Comprehensive Cancer Centre of Nanjing international Hospital, Medical School of Nanjing University, Nanjing, China
- Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yuncheng Jin
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Mingzhen Zhou
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lin Li
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Clinical Cancer Institute of Nanjing University, Nanjing, China
- Department of Pathologyof Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xueru Song
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xinyu Su
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
- Clinical Cancer Institute of Nanjing University, Nanjing, China.
| | - Jie Shen
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
- Clinical Cancer Institute of Nanjing University, Nanjing, China.
| |
Collapse
|
50
|
Sabatelle RC, Colson YL, Sachdeva U, Grinstaff MW. Drug Delivery Opportunities in Esophageal Cancer: Current Treatments and Future Prospects. Mol Pharm 2024; 21:3103-3120. [PMID: 38888089 PMCID: PMC11331583 DOI: 10.1021/acs.molpharmaceut.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
With one of the highest mortality rates of all malignancies, the 5-year survival rate for esophageal cancer is under 20%. Depending on the stage and extent of the disease, the current standard of care treatment paradigm includes chemotherapy or chemoradiotherapy followed by surgical esophagogastrectomy, with consideration for adjuvant immunotherapy for residual disease. This regimen has high morbidity, due to anatomic changes inherent in surgery, the acuity of surgical complications, and off-target effects of systemic chemotherapy and immunotherapy. We begin with a review of current treatments, then discuss new and emerging targets for therapies and advanced drug delivery systems. Recent and ongoing preclinical and early clinical studies are evaluating traditional tumor targets (e.g., human epidermal growth factor receptor 2), as well as promising new targets such as Yes-associated protein 1 or mammalian target of rapamycin to develop new treatments for this disease. Due the function and location of the esophagus, opportunities also exist to pair these treatments with a drug delivery strategy to increase tumor targeting, bioavailability, and intratumor concentrations, with the two most common delivery platforms being stents and nanoparticles. Finally, early results with antibody drug conjugates and chimeric antigenic receptor T cells show promise as upcoming therapies. This review discusses these innovations in therapeutics and drug delivery in the context of their successes and failures, with the goal of identifying those solutions that demonstrate the most promise to shift the paradigm in treating this deadly disease.
Collapse
Affiliation(s)
- Robert C. Sabatelle
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, 02215, USA
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Uma Sachdeva
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, 02215, USA
| |
Collapse
|