1
|
Wen C, Tao H, Chen H, Pu W, Yan Q, Zou Y, Su SS, Zhou L, Peng Y, Wang G, Xu T, Zheng X, Wu M, Dai Y. Single-cell RNA sequencing and functional analysis reveal the role of altered glycosylation levels of hepatic macrophages in liver cirrhosis. J Gastroenterol 2025; 60:607-620. [PMID: 39888412 DOI: 10.1007/s00535-025-02218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Liver cirrhosis represents a critical stage of chronic liver disease, characterized by progressive liver damage, cellular dysfunction, and disrupted cell-to-cell interactions. Glycosylation, an essential post-translational modification, significantly influences cellular behavior and disease progression. Its role in cirrhosis at the single-cell level remains unclear, despite its importance. METHODS This study, based on single-cell glycosylation and transcriptome data, compared the expression of differentially expressed genes in liver tissues from cirrhotic and healthy control samples, identifying changes in glycosylation-related genes and their functional pathway enrichment characteristics. Additionally, it analyzed the composition of immune cells and intercellular interaction features, with a focus on the interaction between macrophages and other immune cells and their potential role in immune regulation. RESULTS The analysis revealed significant changes in immune cell composition and glycosylation patterns in cirrhotic livers. Specifically, the number of macrophages increased substantially, while overall glycosylation levels decreased. Enhanced interactions between macrophages and other cell types were observed, highlighting the central role of macrophages in reshaping the immune microenvironment during cirrhosis progression. Gene expression analysis showed a marked upregulation of FUCA1, a gene encoding a glycosylation-related hydrolase. This change was strongly associated with the observed reduction in glycosylation levels. Functional enrichment analysis further revealed that glycosylation-related genes were primarily involved in immune pathways, including antigen processing and presentation, cytokine signaling, and immune activation. CONCLUSIONS Single-cell glycosylation analysis provides crucial insights into immune cell interactions in cirrhosis. Targeting glycosylation pathways in macrophages may offer new treatment strategies for cirrhosis.
Collapse
Affiliation(s)
- Chunmei Wen
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Huihui Tao
- School of Medicine, Anhui University of Science & Technology, Huainan, China.
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, China.
| | - Huaizhou Chen
- The Organ Transplantation Department of 924th Hospital of Joint Logistic Support Force of PLA, Guilin, China
| | - Wenjun Pu
- Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Qiang Yan
- The Organ Transplantation Department of 924th Hospital of Joint Logistic Support Force of PLA, Guilin, China
| | - Yaoshuang Zou
- The Organ Transplantation Department of 924th Hospital of Joint Logistic Support Force of PLA, Guilin, China
| | - Sheng Sean Su
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lingling Zhou
- School of Medicine, Anhui University of Science & Technology, Huainan, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, China
| | - Yali Peng
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Guoying Wang
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Tiantian Xu
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Xuejia Zheng
- The First Hospital of Anhui University of Science and Technology, Huainan, China
| | - Mengyao Wu
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Yong Dai
- School of Medicine, Anhui University of Science & Technology, Huainan, China.
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, China.
- The Organ Transplantation Department of 924th Hospital of Joint Logistic Support Force of PLA, Guilin, China.
- The First Hospital of Anhui University of Science and Technology, Huainan, China.
| |
Collapse
|
2
|
Liu H, Yin G, Franco Leonardi B, Lan T, Ait Ahmed Y, Berger H, Kohlhepp MS, Amiridze N, Martagón Calderón N, Frau C, Vallier L, Rezvani M, Tacke F, Guillot A. Reactive cholangiocyte-derived ORM2 drives a pathogenic modulation of the injured biliary niche through macrophage reprogramming. Gut 2025:gutjnl-2024-334425. [PMID: 40199572 DOI: 10.1136/gutjnl-2024-334425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Injured or reactive biliary epithelial cells participate in most chronic liver injuries in a process referred to as ductular reaction, which involves multicellular interactions with marked local infiltration of macrophages and fibrogenic cell activation. The direct roles of biliary epithelial cells in shaping their cellular niche remain unknown. OBJECTIVE We aimed at investigating the effects of biliary epithelial cell-derived acute phase response protein orosomucoid 2 (ORM2) in shaping monocyte/macrophage response to liver injury. DESIGN Transcriptome data sets from human and mouse livers were used, results were confirmed with multiplex immunofluorescence. A multicellular biliary-niche-on-a-chip derived from primary liver and blood cells (wild-type, Mdr2 -/- mice) was established to model ductular reaction. Human blood cells collected from healthy donors and intrahepatic cholangiocyte organoids derived from normal and cirrhotic liver patients were used. RESULTS Our transcriptome data set and multiplex immunofluorescence analyses indicated a previously unrecognised involvement of the acute phase response protein ORM2 in ductular reactions in both human and mouse livers. ORM2 gene expression was increased in biliatresone-challenged, bile acid-challenged and acetaminophen-challenged cholangiocytes. Cholangiocyte-derived ORM2 induced unique transcriptome changes and functional adaptation of liver macrophages. ORM2-activated macrophages exacerbated cholangiocyte cell stress and Orm2 expression, but also tended to promote fibrogenic activation of hepatic stellate cells. Mechanistically, ORM2 effects were mediated by an inositol 1,4,5-trisphosphate receptor type 2-dependent calcium pathway. CONCLUSION This study reveals a paracrine communication circuit during ductular reaction, in which reactive cholangiocyte-derived ORM2 reprogrammes liver macrophages, participating in a pathogenic remodelling of the immune biliary niche.
Collapse
Affiliation(s)
- Hanyang Liu
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Guo Yin
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| | - Bianca Franco Leonardi
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Tian Lan
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yeni Ait Ahmed
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| | - Hilmar Berger
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| | - Marlene Sophia Kohlhepp
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| | - Natalja Amiridze
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| | - Natalia Martagón Calderón
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Carla Frau
- BIH Center for Regenerative Therapies (BCRT), Berlin, Germany, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ludovic Vallier
- BIH Center for Regenerative Therapies (BCRT), Berlin, Germany, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Milad Rezvani
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin, Germany, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| |
Collapse
|
3
|
Cui H, Banerjee S, Xie N, Hussain M, Jaiswal A, Liu H, Kulkarni T, Antony VB, Liu RM, Colonna M, Liu G. TREM2 promotes lung fibrosis via controlling alveolar macrophage survival and pro-fibrotic activity. Nat Commun 2025; 16:1761. [PMID: 39971937 PMCID: PMC11840137 DOI: 10.1038/s41467-025-57024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
Lung macrophages play a pivotal role in pulmonary fibrosis, with monocyte-derived alveolar macrophages driving disease progression. However, the mechanisms regulating their pro-fibrotic behavior and survival remain unclear, and effective therapeutic strategies are lacking. Here we show that triggering receptors expressed on myeloid cells 2 are predominantly expressed on monocyte-derived alveolar macrophages in fibrotic mouse lungs and are significantly elevated in lung macrophages from patients with idiopathic pulmonary fibrosis. Deletion or knockdown of this receptor disrupts intracellular survival signaling, promotes macrophage apoptosis, and attenuates their pro-fibrotic phenotype. We further demonstrate that a lipid mediator and a high-avidity ligand of this receptor, encountered by macrophages in the alveolar milieu, enhance macrophage survival and activity. Ablation of TREM2 or blocking this receptor with soluble receptors or specific antibodies effectively alleviates lung fibrosis in male mice. These findings identify this receptor as a critical regulator of macrophage-mediated fibrosis and a promising therapeutic target for intervention.
Collapse
Affiliation(s)
- Huachun Cui
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sami Banerjee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Na Xie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Musaddique Hussain
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ashish Jaiswal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hongli Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Tejaswini Kulkarni
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Veena B Antony
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
4
|
Heldens A, Casteleyn C, Onghena L, Antwi M, Neyt S, Descamps B, Vanhove C, Verhelst X, Raevens S, Van Vlierberghe H, Devisscher L, De Bruyne R, Junien JL, Wettstein G, Geerts A, Lefere S. The pan-PPAR agonist lanifibranor reduces portal pressure independent of fibrosis reduction through the splanchnic vasculature. Biomed Pharmacother 2025; 183:117826. [PMID: 39805191 DOI: 10.1016/j.biopha.2025.117826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/22/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025] Open
Abstract
Portal hypertension (PH) can cause severe complications in patients with advanced chronic liver disease (aCLD). The pan-peroxisome proliferator-activated receptor (pan-PPAR) agonist lanifibranor reduces portal pressure in preclinical models of aCLD. Since the effect on PH might be secondary to fibrosis improvement, we investigated the effect of lanifibranor on PH, hepatic and splanchnic angiogenesis in mouse models of fibrotic and prehepatic non-fibrotic PH. Mice with fibrotic PH (common bile duct ligation; CBDL) and prehepatic PH (partial portal vein ligation; PPVL) received daily lanifibranor/vehicle for 14 or 7 days, respectively. Hemodynamics, serum, hepatic and mesenteric histology, and hepatic, mesenteric and liver sinusoidal endothelial cells (LSEC) gene expression levels were analyzed. Vascular corrosion casts of the venous mesenteric and hepatic vasculature were analyzed using scanning electron microscopy and µCT. Portal pressure was increased in CBDL mice. Lanifibranor treatment demonstrated a dose-dependent trend towards decreasing the elevated portal pressure, and reduced fibrosis. Hepatic mRNA levels of inflammatory, fibrotic and angiogenic markers were significantly downregulated in lanifibranor-treated CBDL mice. LSEC dysfunction was improved by lanifibranor. Compared to CBDL mice, portal pressure was more extensively elevated in PPVL mice, which was significantly reduced by lanifibranor. Superior mesenteric artery blood flow, which was increased in vehicle-treated PPVL mice, tended to decrease by lanifibranor. The expansion of the mesenteric vasculature and mesenteric protein level of angiogenetic markers in PPVL mice were reduced after lanifibranor. In conclusion, lanifibranor improves PH, independently from fibrosis reduction, potentially through reducing the venous mesenteric vasculature expansion and intrahepatic angiogenesis, and ameliorating LSEC function.
Collapse
Affiliation(s)
- Anneleen Heldens
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Christophe Casteleyn
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Ghent University, Ghent, Belgium
| | - Louis Onghena
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium; Department of Human Structure and Repair, Department of Gastrointestinal Surgery, Ghent University, Ghent, Belgium
| | - Milton Antwi
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium; Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology unit, Ghent University, Ghent, Belgium; Translational Nuclear Receptor Research, Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sara Neyt
- Department of Electronics and Information Systems, IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- Department of Electronics and Information Systems, IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- Department of Electronics and Information Systems, IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Xavier Verhelst
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Sarah Raevens
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Hans Van Vlierberghe
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Lindsey Devisscher
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium; Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology unit, Ghent University, Ghent, Belgium
| | - Ruth De Bruyne
- Department of Internal Medicine and Pediatrics, Pediatric Gastroenterology, Hepatology and Nutrition, Ghent University, Ghent, Belgium
| | | | | | - Anja Geerts
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Sander Lefere
- Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
5
|
Shi Q, Xue C, Zeng Y, Chu Q, Jiang S, Zhang Y, Yuan X, Zhu D, Li L. PPARα agonist ameliorates cholestatic liver injury by regulating hepatic macrophage homeostasis. Int J Biol Macromol 2025; 287:138510. [PMID: 39647740 DOI: 10.1016/j.ijbiomac.2024.138510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Inflammatory response plays an essential role in the pathogenesis of cholestatic liver injury. PPARα agonists have been shown to regulate bile acid homeostasis and hepatic inflammation. However, the immunoregulatory mechanisms through which PPARα agonists ameliorate cholestatic liver injury remain unclear. In this study, surgical bile duct ligation was performed to establish a mouse model of cholestasis. Our study revealed that PPARα agonist alleviated cholestatic liver injury in mice by suppressing inflammatory response, reducing neutrophil infiltration, and promoting M2-like macrophage polarization. CyTOF analysis showed that PPARα agonist increased the proportion of anti-inflammatory F4/80hiCD44+MHCII- M2-like macrophages while decreasing the proportion of pro-inflammatory CD64+CX3CR1+CCR2hiVISTAhiCD172a+CD44hi M1-like MoMFs. Additionally, scRNA-seq indicated that PPARα agonist regulated the developmental trajectory and homeostasis of hepatic macrophages. Mechanistically, PPARα agonist may influence the expression of immune regulators in heterogeneous macrophages to exert protective effects against cholestasis. In addition, the CCL and MIF signaling pathways may participate in the communication among hepatic immune cells, including macrophages, neutrophils, natural killer cells, and dendritic cells, in response to the PPARα agonist. In conclusions, PPARα agonist alleviated cholestatic liver injury by attenuating the inflammatory response and restoring hepatic macrophage homeostasis. This study might enhance the understanding of the immunoregulatory mechanisms of PPARα agonists, providing promising therapeutic targets for cholestatic liver diseases.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
6
|
Gilgenkrantz H, Sayegh RA, Lotersztajn S. Immunoregulation of Liver Fibrosis: New Opportunities for Antifibrotic Therapy. Annu Rev Pharmacol Toxicol 2025; 65:281-299. [PMID: 39259981 DOI: 10.1146/annurev-pharmtox-020524-012013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Liver fibrosis develops in response to chronic liver injury and is characterized by a sustained inflammatory response that leads to excessive collagen deposition by myofibroblasts. The fibrogenic response is governed by the release of inflammatory mediators from innate, adaptive, and innate-like lymphoid cells and from nonprofessional immune cells (i.e., epithelial cells, hepatic myofibroblasts, and liver sinusoidal endothelial cells). Upon removal of the underlying cause, liver fibrosis can resolve via activation of specific immune cell subsets. Despite major advances in the understanding of fibrosis pathogenesis, there is still no approved antifibrotic therapy. This review summarizes our current knowledge of the immune cell landscape and the inflammatory mechanisms underlying liver fibrosis progression and regression. We discuss how reprogramming immune cell phenotype, in particular through targeting selective inflammatory pathways or modulating cell-intrinsic metabolism, may be translated into antifibrogenic therapies.
Collapse
Affiliation(s)
- Helene Gilgenkrantz
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France;
| | - Rola Al Sayegh
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France;
| | - Sophie Lotersztajn
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France;
| |
Collapse
|
7
|
Wang WL, Lian H, Liang Y, Ye Y, Tam PKH, Chen Y. Molecular Mechanisms of Fibrosis in Cholestatic Liver Diseases and Regenerative Medicine-Based Therapies. Cells 2024; 13:1997. [PMID: 39682745 PMCID: PMC11640075 DOI: 10.3390/cells13231997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of this review is to explore the potential of new regenerative medicine approaches in the treatment of cholestatic liver fibrosis. Cholestatic liver diseases, such as primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and biliary atresia (BA), due to the accumulation of bile, often progress to liver fibrosis, cirrhosis, and liver failure. When the disease becomes severe enough to require liver transplantation. Deeply understanding the disease's progression and fibrosis formation is crucial for better diagnosis and treatment. Current liver fibrosis treatments mainly target the root causes and no direct treatment method in fibrosis itself. Recent advances in regenerative medicine offer a potential approach that may help find the ways to target fibrosis directly, offering hope for improved outcomes. We also summarize, analyze, and discuss the current state and benefits of regenerative medicine therapies such as mesenchymal stem cell (MSC) therapy, induced pluripotent stem cells (iPSCs), and organoid technology, which may help the treatment of cholestatic liver diseases. Focusing on the latest research may reveal new targets and enhance therapeutic efficacy, potentially leading to more effective management and even curative strategies for cholestatic liver diseases.
Collapse
Affiliation(s)
- Wei-Lu Wang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China; (W.-L.W.); (H.L.); (Y.L.)
| | - Haoran Lian
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China; (W.-L.W.); (H.L.); (Y.L.)
| | - Yingyu Liang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China; (W.-L.W.); (H.L.); (Y.L.)
| | - Yongqin Ye
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China;
| | - Paul Kwong Hang Tam
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China; (W.-L.W.); (H.L.); (Y.L.)
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China;
- Precision Regenerative Medicine Research Centre, Medical Sciences Division, Macau University of Science and Technology, Macao SAR, China
| | - Yan Chen
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China; (W.-L.W.); (H.L.); (Y.L.)
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China;
- Precision Regenerative Medicine Research Centre, Medical Sciences Division, Macau University of Science and Technology, Macao SAR, China
| |
Collapse
|
8
|
Ma K, Guo S, Li J, Wei T, Liang T. Biological and clinical role of TREM2 in liver diseases. Hepatol Commun 2024; 8:e0578. [PMID: 39774286 PMCID: PMC11567705 DOI: 10.1097/hc9.0000000000000578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/27/2024] [Indexed: 01/11/2025] Open
Abstract
Liver diseases constitute a major health burden worldwide, accounting for more than 4% of all disease-related mortalities. While the incidence of viral hepatitis is expected to decrease, metabolic liver disorders are increasingly diagnosed. Liver pathology is diverse, with functional and molecular alterations in both parenchymal and mesenchymal cells, including immune cells. Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor of the immunoglobulin superfamily and mainly expressed on myeloid cells. Several studies have demonstrated that TREM2 plays a critical role in tissue physiology and various pathological conditions. TREM2 is recognized as being associated with the development of liver diseases by regulating tissue homeostasis and the immune microenvironment. The biological and clinical impact of TREM2 is complex, given its diverse context-dependent functions. This review aims to summarize recent progress in understanding the association between TREM2 and different liver disorders and shed light on the clinical significance of targeting TREM2.
Collapse
Affiliation(s)
- Ke Ma
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
| | - Shouliang Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
| | - Jin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Liu L, Niu K, Yang Z, Song J, Wei D, Zhang R, Tao K. Osteopontin: an indispensable component in common liver, pancreatic, and biliary related disease. J Cancer Res Clin Oncol 2024; 150:508. [PMID: 39572438 PMCID: PMC11582231 DOI: 10.1007/s00432-024-06038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND The liver, gallbladder, and pancreas constitute a critically important system of digestive and endocrine organs in the human body, performing essential and complex physiological functions. At present, diseases of this digestive system have a high incidence in the world and is a more common disease. However, osteopontin (OPN) plays a crucial role in common liver, pancreatic, and biliary diseases, and its mechanisms of action merit further exploration and study. METHODS We performed an analysis to assess the role of osteopontin in liver, pancreatic, and biliary diseases, focusing on its significance in these conditions. RESULTS Osteopontin, a profoundly phosphorylated glycoprotein, can be utilized as a diagnostic marker for hepatocellular carcinoma and cholangiopathies. Additionally it assists in the treatment of non-alcoholic fatty liver disease and promotes the proliferation, migration, and invasion of pancreatic cancer cells. Furthermore, osteopontin regulates inflammatory responses in chronic pancreatitis. CONCLUSIONS This review offers a thorough analysis of the genetic and protein architecture of OPN, and elucidates the relationship between osteopontin and liver, pancreatic, and biliary diseases. Furthermore, exclusive focus is lavished on the potential utility of OPN as a biomarker and an innovative therapeutic target in the management of these disorder.
Collapse
Affiliation(s)
- Lu Liu
- College of Life Sciences, Northwest University, Xi'an, 710069, China
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China
| | - Kunwei Niu
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhipeng Yang
- College of Life Sciences, Northwest University, Xi'an, 710069, China
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China
| | - Junbo Song
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China
| | - Dan Wei
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China.
| | - Ruohan Zhang
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China.
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
10
|
De Ponti FF, Liu Z, Scott CL. Understanding the complex macrophage landscape in MASLD. JHEP Rep 2024; 6:101196. [PMID: 39524202 PMCID: PMC11550213 DOI: 10.1016/j.jhepr.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a spectrum of disease states ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), which can eventually lead to the development of cirrhosis and hepatocellular carcinoma. Macrophages have long been implicated in driving the progression from steatosis to end-stage disease, yet we still know relatively little about the precise involvement of these cells in MASLD progression and/or regression. Rather, there are a considerable number of conflicting reports regarding the precise roles of these cells. This confusion stems from the fact that, until recently, macrophages in the liver were considered a homogenous population. However, thanks to recent technological advances including multi-parameter flow cytometry, single-cell RNA sequencing and spatial proteogenomics, we now know that this is not the case. Rather hepatic macrophages, even in the healthy liver, are heterogenous, existing in multiple subsets with distinct transcriptional profiles and hence likely functions. This heterogeneity is even more prominent in MASLD, where the macrophage pool consists of multiple different subsets of resident and recruited cells. To probe the unique functions of these cells and determine if targeting macrophages may be a viable therapeutic strategy in MASLD, we first need to unravel this complexity and decipher which populations and/or activation states are present and what functions each of these may play in driving MASLD progression. In this review, we summarise recent advances in the field, highlighting what is currently known about the hepatic macrophage landscape in MASLD and the questions that remain to be tackled.
Collapse
Affiliation(s)
- Federico F. De Ponti
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
| | - Zhuangzhuang Liu
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
| | - Charlotte L. Scott
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland
| |
Collapse
|
11
|
Matchett KP, Paris J, Teichmann SA, Henderson NC. Spatial genomics: mapping human steatotic liver disease. Nat Rev Gastroenterol Hepatol 2024; 21:646-660. [PMID: 38654090 DOI: 10.1038/s41575-024-00915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as non-alcoholic fatty liver disease) is a leading cause of chronic liver disease worldwide. MASLD can progress to metabolic dysfunction-associated steatohepatitis (MASH, formerly known as non-alcoholic steatohepatitis) with subsequent liver cirrhosis and hepatocellular carcinoma formation. The advent of current technologies such as single-cell and single-nuclei RNA sequencing have transformed our understanding of the liver in homeostasis and disease. The next frontier is contextualizing this single-cell information in its native spatial orientation. This understanding will markedly accelerate discovery science in hepatology, resulting in a further step-change in our knowledge of liver biology and pathobiology. In this Review, we discuss up-to-date knowledge of MASLD development and progression and how the burgeoning field of spatial genomics is driving exciting new developments in our understanding of human liver disease pathogenesis and therapeutic target identification.
Collapse
Affiliation(s)
- Kylie P Matchett
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Jasmin Paris
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Neil C Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
12
|
Liu C, Wang K, Liu W, Zhang J, Fan Y, Sun Y. ALOX15 + M2 macrophages contribute to epithelial remodeling in eosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2024; 154:592-608. [PMID: 38705258 DOI: 10.1016/j.jaci.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Epithelial remodeling is a prominent feature of eosinophilic chronic rhinosinusitis with nasal polyps (eCRSwNP), and infiltration of M2 macrophages plays a pivotal role in the pathogenesis of eCRSwNP, but the underlying mechanisms remain undefined. OBJECTIVE We sought to investigate the role of ALOX15+ M2 macrophages in the epithelial remodeling of eCRSwNP. METHODS Digital spatial transcriptomics and single-cell sequencing analyses were used to characterize the epithelial remodeling and cellular infiltrate in eCRSwNP. Hematoxylin and eosin staining, immunohistochemical staining, and immunofluorescence staining were used to explore the relationship between ALOX15+ M2 (CD68+CD163+) macrophages and epithelial remodeling. A coculture system of primary human nasal epithelial cells (hNECs) and the macrophage cell line THP-1 was used to determine the underlying mechanisms. RESULTS Spatial transcriptomics analysis showed the upregulation of epithelial remodeling-related genes, such as Vimentin and matrix metalloproteinase 10, and enrichment of epithelial-mesenchymal transition (EMT)-related pathways, in the epithelial areas in eCRSwNP, with more abundance of epithelial basal, goblet, and glandular cells. Single-cell analysis identified that ALOX15+, rather than ALOX15-, M2 macrophages were specifically highly expressed in eCRSwNP. CRSwNP with high ALOX15+ M2THP-1-IL-4+IL-13 macrophages had more obvious epithelial remodeling features and increased genes associated with epithelial remodeling and integrity of epithelial morphology versus that with low ALOX15+ M2THP-1-IL-4+IL-13 macrophages. IL-4/IL-13-polarized M2THP-1-IL-4+IL-13 macrophages upregulated expressions of EMT-related genes in hNECs, including Vimentin, TWIST1, Snail, and ZEB1. ALOX15 inhibition in M2THP-1-IL-4+IL-13 macrophages resulted in reduction of the EMT-related transcripts in hNECs. Blocking chemokine (C-C motif) ligand 13 signaling inhibited M2THP-1-IL-4+IL-13 macrophage-induced EMT alteration in hNECs. CONCLUSIONS ALOX15+ M2 macrophages are specifically increased in eCRSwNP and may contribute to the pathogenesis of epithelial remodeling via production of chemokine (C-C motif) ligand 13.
Collapse
Affiliation(s)
- Chang Liu
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Kanghua Wang
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wenqin Liu
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jinxiu Zhang
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yunping Fan
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Yueqi Sun
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
13
|
Horn P, Tacke F. Metabolic reprogramming in liver fibrosis. Cell Metab 2024; 36:1439-1455. [PMID: 38823393 DOI: 10.1016/j.cmet.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Chronic liver diseases, primarily metabolic dysfunction-associated steatotic liver disease (MASLD), harmful use of alcohol, or viral hepatitis, may result in liver fibrosis, cirrhosis, and cancer. Hepatic fibrogenesis is a complex process with interactions between different resident and non-resident heterogeneous liver cell populations, ultimately leading to deposition of extracellular matrix and organ failure. Shifts in cell phenotypes and functions involve pronounced transcriptional and protein synthesis changes that require metabolic adaptations in cellular substrate metabolism, including glucose and lipid metabolism, resembling changes associated with the Warburg effect in cancer cells. Cell activation and metabolic changes are regulated by metabolic stress responses, including the unfolded protein response, endoplasmic reticulum stress, autophagy, ferroptosis, and nuclear receptor signaling. These metabolic adaptations are crucial for inflammatory and fibrogenic activation of macrophages, lymphoid cells, and hepatic stellate cells. Modulation of these pathways, therefore, offers opportunities for novel therapeutic approaches to halt or even reverse liver fibrosis progression.
Collapse
Affiliation(s)
- Paul Horn
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
14
|
Guillot A, Tacke F. Liver macrophages revisited: The expanding universe of versatile responses in a spatiotemporal context. Hepatol Commun 2024; 8:e0491. [PMID: 38967563 PMCID: PMC11227356 DOI: 10.1097/hc9.0000000000000491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/23/2024] [Indexed: 07/06/2024] Open
Abstract
The liver is a vital organ that continuously adapts to a wide and dynamic diversity of self-antigens and xenobiotics. This involves the active contribution of immune cells, particularly by the liver-resident macrophages, the Kupffer cells (KCs), which exert a variety of central functions in liver homeostasis and disease. As such, KCs interact with their microenvironment to shape the hepatic cellular landscape, control gut-derived signal integration, and modulate metabolism. On injury, the rapid recruitment of bone marrow monocyte-derived macrophages alters this status quo and, when unrestrained, drastically compromises liver homeostasis, immune surveillance, and tissue organization. Several factors determine the functional roles of liver macrophages in these processes, such as their ontogeny, activation/polarization profile and, importantly, spatial distribution within the liver. Loss of tolerance and adaptability of the hepatic immune environment may result in persistent inflammation, hepatic fibrosis, cirrhosis, and a tumorigenic niche promoting liver cancer. In this review, we aim at providing the most recent breakthroughs in our understanding of liver macrophage biology, particularly their diversity and adaptability in the hepatic spatiotemporal context, as well as on potential therapeutic interventions that may hold the key to tackling remaining clinical challenges of varying etiologies in hepatology.
Collapse
|
15
|
Zhao Y, Huang Z, Gao L, Ma H, Chang R. Osteopontin/SPP1: a potential mediator between immune cells and vascular calcification. Front Immunol 2024; 15:1395596. [PMID: 38919629 PMCID: PMC11196619 DOI: 10.3389/fimmu.2024.1395596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Vascular calcification (VC) is considered a common pathological process in various vascular diseases. Accumulating studies have confirmed that VC is involved in the inflammatory response in heart disease, and SPP1+ macrophages play an important role in this process. In VC, studies have focused on the physiological and pathological functions of macrophages, such as pro-inflammatory or anti-inflammatory cytokines and pro-fibrotic vesicles. Additionally, macrophages and activated lymphocytes highly express SPP1 in atherosclerotic plaques, which promote the formation of fatty streaks and plaque development, and SPP1 is also involved in the calcification process of atherosclerotic plaques that results in heart failure, but the crosstalk between SPP1-mediated immune cells and VC has not been adequately addressed. In this review, we summarize the regulatory effect of SPP1 on VC in T cells, macrophages, and dendritic cells in different organs' VC, which could be a potential therapeutic target for VC.
Collapse
Affiliation(s)
- Yanli Zhao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Zujuan Huang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Limei Gao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Hongbo Ma
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rong Chang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
16
|
Wang S, Xiao Y, Tian J, Dai B, Tao Z, Liu J, Sun Z, Liu X, Li Y, Zhao G, Cui Y, Wang F, Liu S. Targeted Macrophage CRISPR-Cas13 mRNA Editing in Immunotherapy for Tendon Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311964. [PMID: 38302097 DOI: 10.1002/adma.202311964] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/12/2024] [Indexed: 02/03/2024]
Abstract
CRISPR-Cas13 holds substantial promise for tissue repair through its RNA editing capabilities and swift catabolism. However, conventional delivery methods fall short in addressing the heightened inflammatory response orchestrated by macrophages during the acute stages of tendon injury. In this investigation, macrophage-targeting cationic polymers are systematically screened to facilitate the entry of Cas13 ribonucleic-protein complex (Cas13 RNP) into macrophages. Notably, SPP1 (OPN encoding)-producing macrophages are recognized as a profibrotic subtype that emerges during the inflammatory stage. By employing ROS-responsive release mechanisms tailored for macrophage-targeted Cas13 RNP editing systems, the overactivation of SPP1 is curbed in the face of an acute immune microenvironment. Upon encapsulating this composite membrane around the tendon injury site, the macrophage-targeted Cas13 RNP effectively curtails the emergence of injury-induced SPP1-producing macrophages in the acute phase, leading to diminished fibroblast activation and mitigated peritendinous adhesion. Consequently, this study furnishes a swift RNA editing strategy for macrophages in the inflammatory phase triggered by ROS in tendon injury, along with a pioneering macrophage-targeted carrier proficient in delivering Cas13 into macrophages efficiently.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Xiao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian Tian
- Department of Orthopedics, Soochow University Affiliated Wuxi Ninth People's Hospital, Wuxi, 214061, China
| | - Bo Dai
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zaijin Tao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jingwen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhenyu Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xuanzhe Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yanhao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gang Zhao
- Department of Orthopedics, Soochow University Affiliated Wuxi Ninth People's Hospital, Wuxi, 214061, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
17
|
Krause J, Schramm C. Multi-omics characterization of healthy and PSC human liver - what we knew and what we have learned. J Hepatol 2024; 80:681-683. [PMID: 38428642 DOI: 10.1016/j.jhep.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Affiliation(s)
- Jenny Krause
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246 Germany
| | - Christoph Schramm
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246 Germany; Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg 20246 Germany; Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg 20246 Germany.
| |
Collapse
|
18
|
Hopkins JW, Sulka KB, Sawden M, Carroll KA, Brown RD, Bunnell SC, Poltorak A, Tai A, Reed ER, Sharma S. STING promotes homeostatic maintenance of tissues and confers longevity with aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588107. [PMID: 38645182 PMCID: PMC11030237 DOI: 10.1101/2024.04.04.588107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Local immune processes within aging tissues are a significant driver of aging associated dysfunction, but tissue-autonomous pathways and cell types that modulate these responses remain poorly characterized. The cytosolic DNA sensing pathway, acting through cyclic GMP-AMP synthase (cGAS) and Stimulator of Interferon Genes (STING), is broadly expressed in tissues, and is poised to regulate local type I interferon (IFN-I)-dependent and independent inflammatory processes within tissues. Recent studies suggest that the cGAS/STING pathway may drive pathology in various in vitro and in vivo models of accelerated aging. To date, however, the role of the cGAS/STING pathway in physiological aging processes, in the absence of genetic drivers, has remained unexplored. This remains a relevant gap, as STING is ubiquitously expressed, implicated in multitudinous disorders, and loss of function polymorphisms of STING are highly prevalent in the human population (>50%). Here we reveal that, during physiological aging, STING-deficiency leads to a significant shortening of murine lifespan, increased pro-inflammatory serum cytokines and tissue infiltrates, as well as salient changes in histological composition and organization. We note that aging hearts, livers, and kidneys express distinct subsets of inflammatory, interferon-stimulated gene (ISG), and senescence genes, collectively comprising an immune fingerprint for each tissue. These distinctive patterns are largely imprinted by tissue-specific stromal and myeloid cells. Using cellular interaction network analyses, immunofluorescence, and histopathology data, we show that these immune fingerprints shape the tissue architecture and the landscape of cell-cell interactions in aging tissues. These age-associated immune fingerprints are grossly dysregulated with STING-deficiency, with key genes that define aging STING-sufficient tissues greatly diminished in the absence of STING. Changes in immune signatures are concomitant with a restructuring of the stromal and myeloid fractions, whereby cell:cell interactions are grossly altered and resulting in disorganization of tissue architecture in STING-deficient organs. This altered homeostasis in aging STING-deficient tissues is associated with a cross-tissue loss of homeostatic tissue-resident macrophage (TRM) populations in these tissues. Ex vivo analyses reveal that basal STING-signaling limits the susceptibility of TRMs to death-inducing stimuli and determines their in situ localization in tissue niches, thereby promoting tissue homeostasis. Collectively, these data upend the paradigm that cGAS/STING signaling is primarily pathological in aging and instead indicate that basal STING signaling sustains tissue function and supports organismal longevity. Critically, our study urges caution in the indiscriminate targeting of these pathways, which may result in unpredictable and pathological consequences for health during aging.
Collapse
Affiliation(s)
- Jacob W. Hopkins
- Department of Immunology, Tufts University, Boston, MA 02111
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Katherine B. Sulka
- Department of Immunology, Tufts University, Boston, MA 02111
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Machlan Sawden
- Department of Immunology, Tufts University, Boston, MA 02111
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Kimberly A. Carroll
- Department of Immunology, Tufts University, Boston, MA 02111
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Ronald D. Brown
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 12853
| | | | | | - Albert Tai
- Department of Immunology, Tufts University, Boston, MA 02111
- Data Intensive Studies Center, Tufts University, Medford, MA, 02155
| | - Eric R. Reed
- Data Intensive Studies Center, Tufts University, Medford, MA, 02155
| | - Shruti Sharma
- Department of Immunology, Tufts University, Boston, MA 02111
| |
Collapse
|
19
|
Zhao S, Feng Y, Zhang J, Zhang Q, Wang J, Cui S. Comparative analysis of gene expression between mice and humans in acetaminophen-induced liver injury by integrating bioinformatics analysis. BMC Med Genomics 2024; 17:80. [PMID: 38549107 PMCID: PMC10976682 DOI: 10.1186/s12920-024-01848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVE Mice are routinely utilized as animal models of drug-induced liver injury (DILI), however, there are significant differences in the pathogenesis between mice and humans. This study aimed to compare gene expression between humans and mice in acetaminophen (APAP)-induced liver injury (AILI), and investigate the similarities and differences in biological processes between the two species. METHODS A pair of public datasets (GSE218879 and GSE120652) obtained from GEO were analyzed using "Limma" package in R language, and differentially expressed genes (DEGs) were identified, including co-expressed DEGs (co-DEGs) and specific-expressed DEGS (specific-DEGs). Analysis of Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed analyses for specific-DEGs and co-DEGs. The co-DEGs were also used to construct transcription factor (TF)-gene network, gene-miRNA interactions network and protein-protein interaction (PPI) network for analyzing hub genes. RESULTS Mouse samples contained 1052 up-regulated genes and 1064 down-regulated genes, while human samples contained 1156 up-regulated genes and 1557 down-regulated genes. After taking the intersection between the DEGs, only 154 co-down-regulated and 89 co-up-regulated DEGs were identified, with a proportion of less than 10%. It was suggested that significant differences in gene expression between mice and humans in drug-induced liver injury. Mouse-specific-DEGs predominantly engaged in processes related to apoptosis and endoplasmic reticulum stress, while human-specific-DEGs were concentrated around catabolic process. Analysis of co-regulated genes reveals showed that they were mainly enriched in biosynthetic and metabolism-related processes. Then a PPI network which contains 189 nodes and 380 edges was constructed from the co-DEGs and two modules were obtained by Mcode. We screened out 10 hub genes by three algorithms of Degree, MCC and MNC, including CYP7A1, LSS, SREBF1, FASN, CD44, SPP1, ITGAV, ANXA5, LGALS3 and PDGFRA. Besides, TFs such as FOXC1, HINFP, NFKB1, miRNAs like mir-744-5p, mir-335-5p, mir-149-3p, mir-218-5p, mir-10a-5p may be the key regulatory factors of hub genes. CONCLUSIONS The DEGs of AILI mice models and those of patients were compared, and common biological processes were identified. The signaling pathways and hub genes in co-expression were identified between mice and humans through a series of bioinformatics analyses, which may be more valuable to reveal molecular mechanisms of AILI.
Collapse
Affiliation(s)
- Shanmin Zhao
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, NO. 800 Xiangyin Road, 200433, Shanghai, China
| | - Yan Feng
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, NO. 800 Xiangyin Road, 200433, Shanghai, China
| | - Jingyuan Zhang
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, NO. 800 Xiangyin Road, 200433, Shanghai, China
| | - Qianqian Zhang
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, NO. 800 Xiangyin Road, 200433, Shanghai, China
| | - Junyang Wang
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, NO. 800 Xiangyin Road, 200433, Shanghai, China
| | - Shufang Cui
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, NO. 800 Xiangyin Road, 200433, Shanghai, China.
| |
Collapse
|
20
|
Peiseler M, Tacke F. Bile duct-associated macrophages enter the spotlight in inflammatory cholestatic liver disease. Hepatology 2024; 79:257-260. [PMID: 37607726 DOI: 10.1097/hep.0000000000000576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Affiliation(s)
- Moritz Peiseler
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- BIH, Berlin Institute of Health, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
21
|
Trussoni CE, LaRusso NF. Macrophages make a difference in cholestatic liver diseases - but how? J Hepatol 2023; 79:1349-1351. [PMID: 37821021 DOI: 10.1016/j.jhep.2023.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Affiliation(s)
- Christy E Trussoni
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
22
|
Ouyang JF, Mishra K, Xie Y, Park H, Huang KY, Petretto E, Behmoaras J. Systems level identification of a matrisome-associated macrophage polarisation state in multi-organ fibrosis. eLife 2023; 12:e85530. [PMID: 37706477 PMCID: PMC10547479 DOI: 10.7554/elife.85530] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Abstract
Tissue fibrosis affects multiple organs and involves a master-regulatory role of macrophages which respond to an initial inflammatory insult common in all forms of fibrosis. The recently unravelled multi-organ heterogeneity of macrophages in healthy and fibrotic human disease suggests that macrophages expressing osteopontin (SPP1) associate with lung and liver fibrosis. However, the conservation of this SPP1+ macrophage population across different tissues and its specificity to fibrotic diseases with different etiologies remain unclear. Integrating 15 single-cell RNA-sequencing datasets to profile 235,930 tissue macrophages from healthy and fibrotic heart, lung, liver, kidney, skin, and endometrium, we extended the association of SPP1+ macrophages with fibrosis to all these tissues. We also identified a subpopulation expressing matrisome-associated genes (e.g., matrix metalloproteinases and their tissue inhibitors), functionally enriched for ECM remodelling and cell metabolism, representative of a matrisome-associated macrophage (MAM) polarisation state within SPP1+ macrophages. Importantly, the MAM polarisation state follows a differentiation trajectory from SPP1+ macrophages and is associated with a core set of regulon activity. SPP1+ macrophages without the MAM polarisation state (SPP1+MAM-) show a positive association with ageing lung in mice and humans. These results suggest an advanced and conserved polarisation state of SPP1+ macrophages in fibrotic tissues resulting from prolonged inflammatory cues within each tissue microenvironment.
Collapse
Affiliation(s)
- John F Ouyang
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
| | - Kunal Mishra
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
| | - Yi Xie
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
| | - Harry Park
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
| | - Kevin Y Huang
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
| | - Enrico Petretto
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU)NanjingChina
| | - Jacques Behmoaras
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|