1
|
Krach F, Boerstler T, Neubert S, Krumm L, Regensburger M, Winkler J, Winner B. RNA splicing modulator for Huntington's disease treatment induces peripheral neuropathy. iScience 2025; 28:112380. [PMID: 40343270 PMCID: PMC12059699 DOI: 10.1016/j.isci.2025.112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/05/2025] [Accepted: 04/03/2025] [Indexed: 05/11/2025] Open
Abstract
RNA splicing modulators, a new class of small molecules with the potential to modify the protein expression levels, have quickly been translated into clinical trials. These compounds hold promise for treating neurodegenerative disorders, including branaplam for lowering huntingtin levels in Huntington's disease. However, the VIBRANT-HD trial was terminated due to the emergence of peripheral neuropathy. Here, we describe the complex mechanism whereby branaplam activates p53, induces nucleolar stress in human induced pluripotent stem cell (iPSC)-derived motor neurons (iPSC-MN), and thereby enhanced expression of the neurotoxic p53-target gene BBC3. On the cellular level, branaplam disrupts neurite integrity, reflected by elevated neurofilament light chain levels. These findings illustrate the complex pharmacology of RNA splicing modulators with a small therapeutic window between lowering huntingtin levels and the clinically relevant off-target effect of neuropathy. Comprehensive toxicological screening in human stem cell models can complement pre-clinical testing before advancing RNA-targeting drugs to clinical trials.
Collapse
Affiliation(s)
- Florian Krach
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
| | - Tom Boerstler
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
| | - Stephanie Neubert
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
| | - Laura Krumm
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
- Center for Rare Disorders (ZSEER), University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
| |
Collapse
|
2
|
Tang S, Fu S, Zheng Y, Cheng X, Cao P, Li C, Peng G. Mechanistic exploration of licorice reconciling Medicine:Huangqi Guizhi Wuwu decoction and Shaoyao Gancao decoction compatibility as an example. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119708. [PMID: 40147678 DOI: 10.1016/j.jep.2025.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 03/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhiza uralensis Fisch. (GU) is a pivotal botanical in traditional Chinese medicine (TCM), because of its ability to reconcile various herbs, and its crucial role in numerous formulas. Huanggui Shaogan decoction (HSGD) is an empirical formula, developed by Huangqi Guizhi Wuwu decoction (HGD) and Shaoyao Gancao decoction (SGD), and prepared by adding GU to HGD. However, the mechanisms of GU reconciling medicine remain incompletely characterized. AIM OF THE STUDY This study aimed to explain mechanisms of GU reconciling medicine based on the differences of components, pharmacological efficacy, and the existence of the components. METHODS Differential components between HSGD and HGD were systematically identified using LC‒MS/MS coupled with chemometric analysis. The existence states and binding affinities of these differential components were further characterized via ultrafiltration separation. The therapeutic potential of HSGD was validated in a murine model of oxaliplatin-induced peripheral neuropathy (OIPN). RESULTS Twenty-two differential chemical components between HSGD and HGD were identified, including flavonoids, saponins, gingerol, and monoglycoside. The transmittance of flavonoids and gingerols increased in HSGD. However, the transmittance of astragalus saponins decreased, which may be due to micelle association and the increase in molecular clusters. HSGD could enhance the mechanical pain threshold, alleviate cold nociceptive hypersensitivity, relieve dorsal root ganglia neuron injury, and decrease the expression of nerve growth factor, 5-hydroxytryptamine, substance P, and calcitonin gene-related peptide better. The differential correlation analysis revealed the relationship between differential components and pharmacological indicators. The above results indicated that different herbs combinations had a greater impact on the dissolution and molecular state of the components of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao. CONCLUSION The study highlights the solubilizing effect of GU within HSGD, and it also improves the efficacy of the treatment of OIPN, which underpins its compatibility rationality. It provided an inspiration for the study of other TCM formulas.
Collapse
Affiliation(s)
- Shuwan Tang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shengnan Fu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yunfeng Zheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Xiaolan Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Peng Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Cunyu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China.
| | - Guoping Peng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China.
| |
Collapse
|
3
|
Kim Y, Je MA, Jeong M, Kwon H, Jang A, Kim J, Choi GE. Upregulation of NGF/TrkA-Related Proteins in Dorsal Root Ganglion of Paclitaxel-Induced Peripheral Neuropathy Animal Model. J Pain Res 2024; 17:3919-3932. [PMID: 39588524 PMCID: PMC11586490 DOI: 10.2147/jpr.s470671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
Background Paclitaxel (PTX) can induce chemotherapy-induced peripheral neuropathy (CIPN) as a side effect. The aim of this study was to understand the neurochemical changes induced by NGF/TrkA signaling in PTX-induced neuropathic pain. Methods The PTX-induced CIPN mouse model was evaluated using nerve conduction velocity (NCV) and behavioral tests. Protein expression in mouse DRG was observed by Western blotting and immunohistochemistry. Nerve growth factor (NGF), IL-6, and IL-1β mRNA levels were determined using qRT-PCR by isolating total RNA from whole blood. Results PTX showed low amplitude and high latency values in NCV in mice, and induced cold allodynia and thermal hyperalgesia in behavioral assessment. Activating transcription factor 3 (ATF3) and MAPK pathway related proteins (ERK1/2), tropomyosin receptor kinase A (TrkA), calcitonin gene related peptide (CGRP) and transient receptor potential vanilloid 1 (TRPV1) were upregulated 7th and 14th days after 2 mg/kg and 10 mg/kg of PTX administration. Protein kinase C (PKC) was upregulated 7th days after 10 mg/kg PTX treatment and 14th days after 2 mg/kg and 10 mg/kg PTX administration. NGF, IL-6, and IL-1β fold change values also showed a time- and dose-dependent increase. Conclusion Taken together, our findings may improve our understanding of the nociceptive symptoms associated with PTX-induced neuropathic pain and lead to the development of new treatments for peripheral neuropathy.
Collapse
Affiliation(s)
- Yeeun Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Min-A Je
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Myeongguk Jeong
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Hyeokjin Kwon
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Aelee Jang
- Department of Nursing, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Jungho Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Go-Eun Choi
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| |
Collapse
|
4
|
Cavaletti G, Alberti P, Canta A, Carozzi V, Cherchi L, Chiorazzi A, Crippa L, Marmiroli P, Meregalli C, Pozzi E, Rodriguez-Menendez V, Steinkühler C, Licandro SA. Translation of paclitaxel-induced peripheral neurotoxicity from mice to patients: the importance of model selection. Pain 2024; 165:2482-2493. [PMID: 38723182 PMCID: PMC11474912 DOI: 10.1097/j.pain.0000000000003268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 10/17/2024]
Abstract
ABSTRACT Paclitaxel-induced peripheral neurotoxicity (PIPN) is a potentially dose-limiting side effect in anticancer chemotherapy. Several animal models of PIPN exist, but their results are sometimes difficult to be translated into the clinical setting. We compared 2 widely used PIPN models characterized by marked differences in their methodologies. Female C57BL/6JOlaHsd mice were used, and they received only paclitaxel vehicle (n = 38) or paclitaxel via intravenous injection (n = 19, 70 mg/kg) once a week for 4 weeks (Study 1) or intraperitoneally (n = 19, 10 mg/kg) every 2 days for 7 times (Study 2). At the end of treatment and in the follow-up, mice underwent behavioral and neurophysiological assessments of PIPN. At the same time points, some mice were killed and dorsal root ganglia, skin, and sciatic and caudal nerve samples underwent pathological examination. Serum neurofilament light levels were also measured. The differences in the neurotoxicity parameters were analyzed using a nonparametric Mann-Whitney test, with significance level set at P < 0.05. Study 1 showed significant and consistent behavioral, neurophysiological, pathological, and serological changes induced by paclitaxel administration at the end of treatment, and most of these changes were still evident in the follow-up period. By contrast, study 2 evidenced only a transient small fiber neuropathy, associated with neuropathic pain. Our comparative study clearly distinguished a PIPN model recapitulating all the clinical features of the human condition and a model showing only small fiber neuropathy with neuropathic pain induced by paclitaxel.
Collapse
Affiliation(s)
- Guido Cavaletti
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Annalisa Canta
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | - Valentina Carozzi
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | - Laura Cherchi
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | - Luca Crippa
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | - Paola Marmiroli
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | | | - Eleonora Pozzi
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | | | | | | |
Collapse
|
5
|
Tarasiuk O, Invernizzi C, Alberti P. In vitro neurotoxicity testing: lessons from chemotherapy-induced peripheral neurotoxicity. Expert Opin Drug Metab Toxicol 2024; 20:1037-1052. [PMID: 39246127 DOI: 10.1080/17425255.2024.2401584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION Chemotherapy induced peripheral neurotoxicity (CIPN) is a long-lasting, or even permanent, late toxicity caused by largely used anticancer drugs. CIPN affects a growing population of cancer survivors and diminishes their quality of life since there is no curative/preventive treatment. Among several reasons for this unmet clinical need, there is an incomplete knowledge on mechanisms leading to CIPN. Therefore, bench side research is still greatly needed: in vitro studies are pivotal to both evaluate neurotoxicity mechanisms and potential neuroprotection strategies. AREAS COVERED Advantages and disadvantages of in vitro approaches are addressed with respect to their applicability to the CIPN field. Different cell cultures and techniques to assess neurotoxicity/neuroprotection are described. PubMed search-string: (chemotherapy-induced) AND (((neuropathy) OR neurotoxicity) OR neuropathic pain) AND (in vitro) AND (((((model) OR SH-SY5Y) OR PC12) OR iPSC) OR DRG neurons); (chemotherapy-induced) AND (((neuropathy) OR neurotoxicity) OR neuropathic pain) AND (model) AND (((neurite elongation) OR cell viability) OR morphology). No articles published before 1990 were selected. EXPERT OPINION CIPN is an ideal experimental setting to test axonal damage and, in general, peripheral nervous system mechanisms of disease and neuroprotection. Therefore, starting from robust preclinical data in this field, potentially, relevant biological rationale can be transferred to other human spontaneous diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- Olga Tarasiuk
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Chiara Invernizzi
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- Neuroscience, School of Medicine and Surgery, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
6
|
Mahboubi H, Yu H, Malca M, McCusty D, Stochaj U. Pifithrin-µ Induces Stress Granule Formation, Regulates Cell Survival, and Rewires Cellular Signaling. Cells 2024; 13:885. [PMID: 38891018 PMCID: PMC11172192 DOI: 10.3390/cells13110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
(1) Background: Stress granules (SGs) are cytoplasmic protein-RNA condensates that assemble in response to various insults. SG production is driven by signaling pathways that are relevant to human disease. Compounds that modulate SG characteristics are therefore of clinical interest. Pifithrin-µ is a candidate anti-tumor agent that inhibits members of the hsp70 chaperone family. While hsp70s are required for granulostasis, the impact of pifithrin-µ on SG formation is unknown. (2) Methods: Using HeLa cells as model system, cell-based assays evaluated the effects of pifithrin-µ on cell viability. Quantitative Western blotting assessed cell signaling events and SG proteins. Confocal microscopy combined with quantitative image analyses examined multiple SG parameters. (3) Results: Pifithrin-µ induced bona fide SGs in the absence of exogenous stress. These SGs were dynamic; their properties were determined by the duration of pifithrin-µ treatment. The phosphorylation of eIF2α was mandatory to generate SGs upon pifithrin-µ exposure. Moreover, the formation of pifithrin-µ SGs was accompanied by profound changes in cell signaling. Pifithrin-µ reduced the activation of 5'-AMP-activated protein kinase, whereas the pro-survival protein kinase Akt was activated. Long-term pifithrin-µ treatment caused a marked loss of cell viability. (4) Conclusions: Our study identified stress-related changes in cellular homeostasis that are elicited by pifithrin-µ. These insights are important knowledge for the appropriate therapeutic use of pifithrin-µ and related compounds.
Collapse
Affiliation(s)
- Hicham Mahboubi
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - Henry Yu
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - Michael Malca
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - David McCusty
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
- Quantitative Life Sciences Program, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
7
|
Martínez AL, Brea J, López D, Cosme N, Barro M, Monroy X, Burgueño J, Merlos M, Loza MI. In vitro models for neuropathic pain phenotypic screening in brain therapeutics. Pharmacol Res 2024; 202:107111. [PMID: 38382648 DOI: 10.1016/j.phrs.2024.107111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
The discovery of brain therapeutics faces a significant challenge due to the low translatability of preclinical results into clinical success. To address this gap, several efforts have been made to obtain more translatable neuronal models for phenotypic screening. These models allow the selection of active compounds without predetermined knowledge of drug targets. In this review, we present an overview of various existing models within the field, examining their strengths and limitations, particularly in the context of neuropathic pain research. We illustrate the usefulness of these models through a comparative review in three crucial areas: i) the development of novel phenotypic screening strategies specifically for neuropathic pain, ii) the validation of the models for both primary and secondary screening assays, and iii) the use of the models in target deconvolution processes.
Collapse
Affiliation(s)
- A L Martínez
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - J Brea
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - D López
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - N Cosme
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - M Barro
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - X Monroy
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - J Burgueño
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - M Merlos
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - M I Loza
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
8
|
Yang Y, He Z, Wu S. Ursolic acid alleviates paclitaxel-induced peripheral neuropathy through PPARγ activation. Toxicol Appl Pharmacol 2024; 484:116883. [PMID: 38437959 DOI: 10.1016/j.taap.2024.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) reduces the overall quality of life and leads to interruption of chemotherapy. Ursolic acid, a triterpenoid naturally which presents in fruit peels and in many herbs and spices, can function as a peroxisome proliferator-activated receptor γ (PPARγ) agonist, and has been widely used as an herbal medicine with a wide spectrum of pharmacological activities, including anti-cancer, anti-inflammatory and neuroprotective effect. METHODS We used a phenotypic drug screening approach to identify ursolic acid as a potential neuroprotective drug in vitro and in vivo and carried out additional biochemical experiments to identify its mechanism of action. RESULTS Our study demonstrated that ursolic acid reduced neurotoxicity and cell apoptosis induced by pacilitaxel, resulting in an improvement of CIPN. Moreover, we explored the potential mechanisms of ursolic acid on CIPN. As a result, ursolic acid inhibited CHOP (C/EBP Homologous Protein) expression, indicating the endoplasmic reticulum (ER) stress suppression, and regulating CHOP related apoptosis regulator (the Bcl2 family) to reverse pacilitaxel induced apoptosis. Moreover, we showed that the therapeutic effect of ursolic acid on the pacilitaxel-induced peripheral neuropathy is PPARγ dependent. CONCLUSIONS Taken together, the present study suggests ursolic acid has potential as a new PPARγ agonist targeting ER stress-related apoptotic pathways to ameliorate pacilitaxel-induced peripheral neuropathic pain and nerve injury, providing new clinical therapeutic method for CIPN.
Collapse
Affiliation(s)
- Yulian Yang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Shaanxi 710072, China
| | - Zhongzheng He
- Department of Neurosurgery, Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, Shaanxi 710003, China
| | - Shuangchan Wu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Shaanxi 710072, China; Research & Development Institute of Northwestern Polytechnical University, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
9
|
Cheng PF, Yuan-He, Ge MM, Ye DW, Chen JP, Wang JX. Targeting the Main Sources of Reactive Oxygen Species Production: Possible Therapeutic Implications in Chronic Pain. Curr Neuropharmacol 2024; 22:1960-1985. [PMID: 37921169 PMCID: PMC11333790 DOI: 10.2174/1570159x22999231024140544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 11/04/2023] Open
Abstract
Humans have long been combating chronic pain. In clinical practice, opioids are firstchoice analgesics, but long-term use of these drugs can lead to serious adverse reactions. Finding new, safe and effective pain relievers that are useful treatments for chronic pain is an urgent medical need. Based on accumulating evidence from numerous studies, excess reactive oxygen species (ROS) contribute to the development and maintenance of chronic pain. Some antioxidants are potentially beneficial analgesics in the clinic, but ROS-dependent pathways are completely inhibited only by scavenging ROS directly targeting cellular or subcellular sites. Unfortunately, current antioxidant treatments do not achieve this effect. Furthermore, some antioxidants interfere with physiological redox signaling pathways and fail to reverse oxidative damage. Therefore, the key upstream processes and mechanisms of ROS production that lead to chronic pain in vivo must be identified to discover potential therapeutic targets related to the pathways that control ROS production in vivo. In this review, we summarize the sites and pathways involved in analgesia based on the three main mechanisms by which ROS are generated in vivo, discuss the preclinical evidence for the therapeutic potential of targeting these pathways in chronic pain, note the shortcomings of current research and highlight possible future research directions to provide new targets and evidence for the development of clinical analgesics.
Collapse
Affiliation(s)
- Peng-Fei Cheng
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yuan-He
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Meng-Meng Ge
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Ping Chen
- Department of Pain Management, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jin-Xi Wang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
10
|
Cheng F, Zhang R, Sun C, Ran Q, Zhang C, Shen C, Yao Z, Wang M, Song L, Peng C. Oxaliplatin-induced peripheral neurotoxicity in colorectal cancer patients: mechanisms, pharmacokinetics and strategies. Front Pharmacol 2023; 14:1231401. [PMID: 37593174 PMCID: PMC10427877 DOI: 10.3389/fphar.2023.1231401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Oxaliplatin-based chemotherapy is a standard treatment approach for colorectal cancer (CRC). However, oxaliplatin-induced peripheral neurotoxicity (OIPN) is a severe dose-limiting clinical problem that might lead to treatment interruption. This neuropathy may be reversible after treatment discontinuation. Its complicated mechanisms are related to DNA damage, dysfunction of voltage-gated ion channels, neuroinflammation, transporters, oxidative stress, and mitochondrial dysfunction, etc. Several strategies have been proposed to diminish OIPN without compromising the efficacy of adjuvant therapy, namely, combination with chemoprotectants (such as glutathione, Ca/Mg, ibudilast, duloxetine, etc.), chronomodulated infusion, dose reduction, reintroduction of oxaliplatin and topical administration [hepatic arterial infusion chemotherapy (HAIC), pressurized intraperitoneal aerosol chemotherapy (PIPAC), and hyperthermic intraperitoneal chemotherapy (HIPEC)]. This article provides recent updates related to the potential mechanisms, therapeutic strategies in treatment of OIPN, and pharmacokinetics of several methods of oxaliplatin administration in clinical trials.
Collapse
Affiliation(s)
- Fang Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruoqi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Ran
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cuihan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changhong Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziqing Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Miao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Song
- Department of Pharmacy, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Milutinovic B, Mahalingam R, Mendt M, Arroyo L, Seua A, Dharmaraj S, Shpall E, Heijnen CJ. Intranasally Administered MSC-Derived Extracellular Vesicles Reverse Cisplatin-Induced Cognitive Impairment. Int J Mol Sci 2023; 24:11862. [PMID: 37511623 PMCID: PMC10380450 DOI: 10.3390/ijms241411862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Neurotoxic side effects of chemotherapy include deficits in attention, memory, and executive functioning. Currently, there are no FDA-approved therapies. In mice, cisplatin causes long-term cognitive deficits, white matter damage, mitochondrial dysfunction, and loss of synaptic integrity. We hypothesized that MSC-derived small extracellular vesicles (sEVs) could restore cisplatin-induced cognitive impairments and brain damage. Animals were injected with cisplatin intraperitoneally and treated with MSC-derived sEVs intranasally 48 and 96 h after the last cisplatin injection. The puzzle box test (PBT) and the novel object place recognition test (NOPRT) were used to determine cognitive deficits. Synaptosomal mitochondrial morphology was analyzed by transmission electron microscopy. Immunohistochemistry using antibodies against synaptophysin and PSD95 was applied to assess synaptic loss. Black-Gold II staining was used to quantify white matter integrity. Our data show that sEVs enter the brain in 30 min and reverse the cisplatin-induced deficits in executive functioning and working and spatial memory. Abnormalities in mitochondrial morphology, loss of white matter, and synaptic integrity in the hippocampus were restored as well. Transcriptomic analysis revealed upregulation of regenerative functions after treatment with sEVs, pointing to a possible role of axonal guidance signaling, netrin signaling, and Wnt/Ca2+ signaling in recovery. Our data suggest that intranasal sEV treatment could become a novel therapeutic approach for the treatment of chemobrain.
Collapse
Affiliation(s)
- Bojana Milutinovic
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rajasekaran Mahalingam
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mayela Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luis Arroyo
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexandre Seua
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shruti Dharmaraj
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
12
|
Zhai M, Hu H, Zheng Y, Wu B, Sun W. PGC1α: an emerging therapeutic target for chemotherapy-induced peripheral neuropathy. Ther Adv Neurol Disord 2023; 16:17562864231163361. [PMID: 36993941 PMCID: PMC10041632 DOI: 10.1177/17562864231163361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/25/2023] [Indexed: 03/29/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN)-mediated paresthesias are a common complication in cancer patients undergoing chemotherapy. There are currently no treatments available to prevent or reverse CIPN. Therefore, new therapeutic targets are urgently needed to develop more effective analgesics. However, the pathogenesis of CIPN remains unclear, and the prevention and treatment strategies of CIPN are still unresolved issues in medicine. More and more studies have demonstrated that mitochondrial dysfunction has become a major factor in promoting the development and maintenance of CIPN, and peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC1α) plays a significant role in maintaining the mitochondrial function, protecting peripheral nerves, and alleviating CIPN. In this review, we highlight the core role of PGC1α in regulating oxidative stress and maintaining normal mitochondrial function and summarize recent advances in its therapeutic effects and mechanisms in CIPN and other forms of peripheral neuropathy. Emerging studies suggest that PGC1α activation may positively impact CIPN mitigation by modulating oxidative stress, mitochondrial dysfunction, and inflammation. Therefore, novel therapeutic strategies targeting PGC1α could be a potential therapeutic target in CIPN.
Collapse
Affiliation(s)
- Mingzhu Zhai
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
- Yantian Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Haibei Hu
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Yi Zheng
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Benqing Wu
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen 518016, China
| | | |
Collapse
|
13
|
Neutrophil extracellular traps as a unique target in the treatment of chemotherapy-induced peripheral neuropathy. EBioMedicine 2023; 90:104499. [PMID: 36870200 PMCID: PMC10009451 DOI: 10.1016/j.ebiom.2023.104499] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a severe dose-limiting side effect of chemotherapy and remains a huge clinical challenge. Here, we explore the role of microcirculation hypoxia induced by neutrophil extracellular traps (NETs) in the development of CIPN and look for potential treatment. METHODS The expression of NETs in plasma and dorsal root ganglion (DRG) are examined by ELISA, IHC, IF and Western blotting. IVIS Spectrum imaging and Laser Doppler Flow Metry are applied to explore the microcirculation hypoxia induced by NETs in the development of CIPN. Stroke Homing peptide (SHp)-guided deoxyribonuclease 1 (DNase1) is used to degrade NETs. FINDINGS The level of NETs in patients received chemotherapy increases significantly. And NETs accumulate in the DRG and limbs in CIPN mice. It leads to disturbed microcirculation and ischemic status in limbs and sciatic nerves treated with oxaliplatin (L-OHP). Furthermore, targeting NETs with DNase1 significantly reduces the chemotherapy-induced mechanical hyperalgesia. The pharmacological or genetic inhibition on myeloperoxidase (MPO) or peptidyl arginine deiminase-4 (PAD4) dramatically improves microcirculation disturbance caused by L-OHP and prevents the development of CIPN in mice. INTERPRETATION In addition to uncovering the role of NETs as a key element in the development of CIPN, our finding provides a potential therapeutic strategy that targeted degradation of NETs by SHp-guided DNase1 could be an effective treatment for CIPN. FUNDING This study was funded by the National Natural Science Foundation of China81870870, 81971047, 81773798, 82271252; Natural Science Foundation of Jiangsu ProvinceBK20191253; Major Project of "Science and Technology Innovation Fund" of Nanjing Medical University2017NJMUCX004; Key R&D Program (Social Development) Project of Jiangsu ProvinceBE2019732; Nanjing Special Fund for Health Science and Technology DevelopmentYKK19170.
Collapse
|
14
|
Yap TA, Daver N, Mahendra M, Zhang J, Kamiya-Matsuoka C, Meric-Bernstam F, Kantarjian HM, Ravandi F, Collins ME, Francesco MED, Dumbrava EE, Fu S, Gao S, Gay JP, Gera S, Han J, Hong DS, Jabbour EJ, Ju Z, Karp DD, Lodi A, Molina JR, Baran N, Naing A, Ohanian M, Pant S, Pemmaraju N, Bose P, Piha-Paul SA, Rodon J, Salguero C, Sasaki K, Singh AK, Subbiah V, Tsimberidou AM, Xu QA, Yilmaz M, Zhang Q, Li Y, Bristow CA, Bhattacharjee MB, Tiziani S, Heffernan TP, Vellano CP, Jones P, Heijnen CJ, Kavelaars A, Marszalek JR, Konopleva M. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials. Nat Med 2023; 29:115-126. [PMID: 36658425 PMCID: PMC11975418 DOI: 10.1038/s41591-022-02103-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/21/2022] [Indexed: 01/21/2023]
Abstract
Although targeting oxidative phosphorylation (OXPHOS) is a rational anticancer strategy, clinical benefit with OXPHOS inhibitors has yet to be achieved. Here we advanced IACS-010759, a highly potent and selective small-molecule complex I inhibitor, into two dose-escalation phase I trials in patients with relapsed/refractory acute myeloid leukemia (NCT02882321, n = 17) and advanced solid tumors (NCT03291938, n = 23). The primary endpoints were safety, tolerability, maximum tolerated dose and recommended phase 2 dose (RP2D) of IACS-010759. The PK, PD, and preliminary antitumor activities of IACS-010759 in patients were also evaluated as secondary endpoints in both clinical trials. IACS-010759 had a narrow therapeutic index with emergent dose-limiting toxicities, including elevated blood lactate and neurotoxicity, which obstructed efforts to maintain target exposure. Consequently no RP2D was established, only modest target inhibition and limited antitumor activity were observed at tolerated doses, and both trials were discontinued. Reverse translational studies in mice demonstrated that IACS-010759 induced behavioral and physiological changes indicative of peripheral neuropathy, which were minimized with the coadministration of a histone deacetylase 6 inhibitor. Additional studies are needed to elucidate the association between OXPHOS inhibition and neurotoxicity, and caution is warranted in the continued development of complex I inhibitors as antitumor agents.
Collapse
Affiliation(s)
- Timothy A Yap
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Naval Daver
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mikhila Mahendra
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jixiang Zhang
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos Kamiya-Matsuoka
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meghan E Collins
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Maria Emilia Di Francesco
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ecaterina E Dumbrava
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sisi Gao
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason P Gay
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonal Gera
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Han
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias J Jabbour
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel D Karp
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer R Molina
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalia Baran
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maro Ohanian
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carolina Salguero
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koji Sasaki
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anand K Singh
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Quanyun A Xu
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Musa Yilmaz
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Zhang
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Li
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christopher A Bristow
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meenakshi B Bhattacharjee
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, USA
| | - Timothy P Heffernan
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher P Vellano
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip Jones
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cobi J Heijnen
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Psychological Sciences, Rice University, Houston, TX, USA
| | - Annemieke Kavelaars
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph R Marszalek
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Marina Konopleva
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Meregalli C, Monza L, Jongen JLM. A mechanistic understanding of the relationship between skin innervation and chemotherapy-induced neuropathic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:1066069. [PMID: 36582196 PMCID: PMC9792502 DOI: 10.3389/fpain.2022.1066069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Neuropathic pain is a frequent complication of chemotherapy-induced peripheral neurotoxicity (CIPN). Chemotherapy-induced peripheral neuropathies may serve as a model to study mechanisms of neuropathic pain, since several other common causes of peripheral neuropathy like painful diabetic neuropathy may be due to both neuropathic and non-neuropathic pain mechanisms like ischemia and inflammation. Experimental studies are ideally suited to study changes in morphology, phenotype and electrophysiologic characteristics of primary afferent neurons that are affected by chemotherapy and to correlate these changes to behaviors reflective of evoked pain, mainly hyperalgesia and allodynia. However, hyperalgesia and allodynia may only represent one aspect of human pain, i.e., the sensory-discriminative component, while patients with CIPN often describe their pain using words like annoying, tiring and dreadful, which are affective-emotional descriptors that cannot be tested in experimental animals. To understand why some patients with CIPN develop neuropathic pain and others not, and which are the components of neuropathic pain that they are experiencing, experimental and clinical pain research should be combined. Emerging evidence suggests that changes in subsets of primary afferent nerve fibers may contribute to specific aspects of neuropathic pain in both preclinical models and in patients with CIPN. In addition, the role of cutaneous neuroimmune interactions is considered. Since obtaining dorsal root ganglia and peripheral nerves in patients is problematic, analyses performed on skin biopsies from preclinical models as well as patients provide an opportunity to study changes in primary afferent nerve fibers and to associate these changes to human pain. In addition, other biomarkers of small fiber damage in CIPN, like corneal confocal microscope and quantitative sensory testing, may be considered.
Collapse
Affiliation(s)
- Cristina Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy,Correspondence: Cristina Meregalli
| | - Laura Monza
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Joost L. M. Jongen
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
16
|
Alotaibi M, Al-Aqil F, Alqahtani F, Alanazi M, Nadeem A, Ahmad SF, Lapresa R, Alharbi M, Alshammari A, Alotaibi M, Saleh T, Alrowis R. Alleviation of cisplatin-induced neuropathic pain, neuronal apoptosis, and systemic inflammation in mice by rapamycin. Front Aging Neurosci 2022; 14:891593. [PMID: 36248001 PMCID: PMC9554141 DOI: 10.3389/fnagi.2022.891593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Platinum-based chemotherapeutic treatment of cancer patients is associated with debilitating adverse effects. Several adverse effects have been well investigated, and can be managed satisfactorily, but chemotherapy-induced peripheral neuropathy (CIPN) remains poorly treated. Our primary aim in this study was to investigate the neuroprotective effect of the immunomodulatory drug rapamycin in the mitigation of cisplatin-induced neurotoxicity. Pain assays were performed in vivo to determine whether rapamycin would prevent or significantly decrease cisplatin-induced neurotoxicity in adult male Balb/c mice. Neuropathic pain induced by both chronic and acute exposure to cisplatin was measured by hot plate assay, cold plate assay, tail-flick test, and plantar test. Rapamycin co-treatment resulted in significant reduction in cisplatin-induced nociceptive-like symptoms. To understand the underlying mechanisms behind rapamycin-mediated neuroprotection, we investigated its effect on certain inflammatory mediators implicated in the propagation of chemotherapy-induced neurotoxicity. Interestingly, cisplatin was found to significantly increase peripheral IL-17A expression and CD8- T cells, which were remarkably reversed by the pre-treatment of mice with rapamycin. In addition, rapamycin reduced the cisplatin-induced neuronal apoptosis marked by decreased neuronal caspase-3 activity. The rapamycin neuroprotective effect was also associated with reversal of the changes in protein expression of p21Cip1, p53, and PUMA. Collectively, rapamycin alleviated some features of cisplatin-induced neurotoxicity in mice and can be further investigated for the treatment of cisplatin-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Moureq Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Moureq Alotaibi,
| | - Faten Al-Aqil
- Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Miteb Alanazi
- Pharmacy Services, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rebeca Lapresa
- Institute of Functional Biology and Genomics, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, Salamanca, Spain
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muteb Alotaibi
- Department of Neurology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Raed Alrowis
- Department of Periodotics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Balogh M, Zhang J, Gaffney CM, Kalakuntla N, Nguyen NT, Trinh RT, Aguilar C, Pham HV, Milutinovic B, Nichols JM, Mahalingam R, Shepherd AJ. Sensory neuron dysfunction in orthotopic mouse models of colon cancer. J Neuroinflammation 2022; 19:204. [PMID: 35962398 PMCID: PMC9375288 DOI: 10.1186/s12974-022-02566-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/07/2022] [Indexed: 11/10/2022] Open
Abstract
Reports of neurological sequelae related to colon cancer are largely restricted to rare instances of paraneoplastic syndromes, due to autoimmune reactions. Systemic inflammation associated with tumor development influences sensory neuron function in other disease models, though the extent to which this occurs in colorectal cancer is unknown. We induced orthotopic colorectal cancer via orthotopic injection of two colorectal cancer cell lines (MC38 and CT26) in two different mouse strains (C57BL/6 and Balb/c, respectively). Behavioral tests of pain sensitivity and activity did not detect significant alterations in sensory sensitivity or diminished well-being throughout tumor development. However, immunohistochemistry revealed widespread reductions in intraepidermal nerve fiber density in the skin of tumor-bearing mice. Though loss of nerve fiber density was not associated with increased expression of cell injury markers in dorsal root ganglia, lumbar dorsal root ganglia neurons of tumor-bearing animals showed deficits in mitochondrial function. These neurons also had reduced cytosolic calcium levels in live-cell imaging and reduced spontaneous activity in multi-electrode array analysis. Bulk RNA sequencing of DRGs from tumor-bearing mice detected activation of gene expression pathways associated with elevated cytokine and chemokine signaling, including CXCL10. This is consistent with the detection of CXCL10 (and numerous other cytokines, chemokines and growth factors) in MC38 and CT26 cell-conditioned media, and the serum of tumor-bearing mice. Our study demonstrates in a pre-clinical setting that colon cancer is associated with latent sensory neuron dysfunction and implicates cytokine/chemokine signaling in this process. These findings may have implications for determining risk factors and treatment responsiveness related to neuropathy in colorectal cancer.
Collapse
Affiliation(s)
- Mihály Balogh
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AD, Groningen, The Netherlands
| | - Jixiang Zhang
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caitlyn M Gaffney
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neha Kalakuntla
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas T Nguyen
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ronnie T Trinh
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clarissa Aguilar
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Hoang Vu Pham
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bojana Milutinovic
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Neurosurgery, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James M Nichols
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rajasekaran Mahalingam
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew J Shepherd
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
18
|
Lee J, Kim JM, Lee YH, Chong GO, Hong DG. Survival Outcomes With Reduced Doses of Adjuvant Chemotherapy in Advanced Epithelial Ovarian Cancer. In Vivo 2022; 36:1868-1874. [PMID: 35738591 PMCID: PMC9301407 DOI: 10.21873/invivo.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM There have not been enough recent studies investigating the incidence or efficacy of dose reduction in adjuvant chemotherapy for epithelial ovarian cancer. This study examined whether patients who needed dose reduction showed poorer survival outcomes. PATIENTS AND METHODS From 2011 to 2021, 102 patients were included in the study. Patients who underwent neoadjuvant chemotherapy and those with early-stage disease were excluded. Patients were divided into two groups: those who had a ≥60% dose reduction during the whole period of first-line adjuvant chemotherapy, and those with dose reductions <60%. Of the 102 patients, 38 (37.3%) underwent dose reduction ≥60%. RESULTS PFS was significantly longer in the group whose dose reductions were ≥60%, whereas OS was not significant. CONCLUSION A dose reduction of ≥60%, determined by patients' medical conditions, during first-line of adjuvant chemotherapy does not negatively influence survival outcomes, such as OS and PFS, in advanced epithelial ovarian cancer.
Collapse
Affiliation(s)
- Juhun Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Jong Mi Kim
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Yoon Hee Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Gun Oh Chong
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Dae Gy Hong
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| |
Collapse
|
19
|
Illias AM, Yu KJ, Hwang SH, Solis J, Zhang H, Velasquez JF, Cata JP, Dougherty PM. Dorsal root ganglion toll-like receptor 4 signaling contributes to oxaliplatin-induced peripheral neuropathy. Pain 2022; 163:923-935. [PMID: 34490849 DOI: 10.1097/j.pain.0000000000002454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Activation of toll-like receptor 4 (TLR4) in the dorsal root ganglion (DRG) and spinal cord contributes to the generation of paclitaxel-related chemotherapy-induced peripheral neuropathy (CIPN). Generalizability of TLR4 signaling in oxaliplatin-induced CIPN was tested here. Mechanical hypersensitivity developed in male SD rats by day 1 after oxaliplatin treatment, reached maximum intensity by day 14, and persisted through day 35. Western blot revealed an increase in TLR4 expression in the DRG of oxaliplatin at days 1 and 7 after oxaliplatin treatment. Cotreatment of rats with the TLR4 antagonist lipopolysaccharide derived from Rhodobacter sphaeroides ultrapure or with the nonspecific immunosuppressive minocycline with oxaliplatin resulted in significantly attenuated hyperalgesia on day 7 and 14 compared with rats that received oxaliplatin plus saline vehicle. Immunostaining of DRGs revealed an increase in the number of neurons expressing TLR4, its canonical downstream signal molecules myeloid differentiation primary response gene 88 (MyD88) and TIR-domain-containing adapter-inducing interferon-β, at both day 7 and day 14 after oxaliplatin treatment. These increases were blocked by cotreatment with either lipopolysaccharide derived from Rhodobacter sphaeroides or minocycline. Double staining showed the localization of TLR4, MyD88, and TIR-domain-containing adapter-inducing interferon-β in subsets of DRG neurons. Finally, there was no significant difference in oxaliplatin-induced mechanical hypersensitivity between male and female rats when observed for 2 weeks. Furthermore, upregulation of TLR4 was detected in both sexes when tested 14 days after treatment with oxaliplatin. These findings suggest that the activation of TLR4 signaling in DRG neurons is a common mechanism in CIPN induced by multiple cancer chemotherapy agents.
Collapse
Affiliation(s)
- Amina M Illias
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Jie Yu
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Seon-Hee Hwang
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jacob Solis
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Hongmei Zhang
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jose F Velasquez
- Department of Anesthesiology and Perioperative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Patrick M Dougherty
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
20
|
Alexander JF, Mahalingam R, Seua AV, Wu S, Arroyo LD, Hörbelt T, Schedlowski M, Blanco E, Kavelaars A, Heijnen CJ. Targeting the Meningeal Compartment to Resolve Chemobrain and Neuropathy via Nasal Delivery of Functionalized Mitochondria. Adv Healthc Mater 2022; 11:e2102153. [PMID: 35007407 PMCID: PMC9803615 DOI: 10.1002/adhm.202102153] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/03/2022] [Indexed: 01/03/2023]
Abstract
Cognitive deficits (chemobrain) and peripheral neuropathy occur in ∼75% of patients treated for cancer with chemotherapy and persist long-term in >30% of survivors. Without preventive or curative interventions and with increasing survivorship rates, the population debilitated by these neurotoxicities is rising. Platinum-based chemotherapeutics, including cisplatin, induce neuronal mitochondrial defects leading to chemobrain and neuropathic pain. This study investigates the capacity of nasally administered mesenchymal stem cell-derived mitochondria coated with dextran-triphenylphosphonium polymer (coated mitochondria) to reverse these neurotoxicities. Nasally administered coated mitochondria are rapidly detectable in macrophages in the brain meninges but do not reach the brain parenchyma. The coated mitochondria change expression of >2400 genes regulating immune, neuronal, endocrine and vascular pathways in the meninges of mice treated with cisplatin. Nasal administration of coated mitochondria reverses cisplatin-induced cognitive deficits and resolves neuropathic pain at a >55-times lower dose compared to uncoated mitochondria. Reversal of these neuropathologies is associated with resolution of cisplatin-induced deficits in myelination, synaptosomal mitochondrial integrity and neurogenesis. These findings demonstrate that nasally administered coated mitochondria promote resolution of chemobrain and peripheral neuropathy, thereby identifying a novel facile strategy for clinical application of mitochondrial donation and treating central and peripheral nervous system pathologies by targeting the brain meninges.
Collapse
Affiliation(s)
- Jenolyn F. Alexander
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas, M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, Texas, 77030, United States,Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Rajasekaran Mahalingam
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas, M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, Texas, 77030, United States
| | - Alexandre V. Seua
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas, M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, Texas, 77030, United States
| | - Suhong Wu
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, Texas, 77030, United States
| | - Luis D. Arroyo
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas, M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, Texas, 77030, United States
| | - Tina Hörbelt
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, Texas, 77030, United States
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas, M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, Texas, 77030, United States
| | - Cobi J. Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas, M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, Texas, 77030, United States,Corresponding Author
| |
Collapse
|
21
|
Yang J, Liu Z, Perrett S, Zhang H, Pan Z. PES derivative PESA is a potent tool to globally profile cellular targets of PES. Bioorg Med Chem Lett 2022; 60:128553. [PMID: 35051576 DOI: 10.1016/j.bmcl.2022.128553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
PES (2-phenylethynesulfonamide, pifithrin-μ, PFTμ) is an electrophilic compound that exhibits anticancer properties, protects against chemotherapy-induced peripheral neuropathy in chemotherapy, and shows immunomodulatory, anti-inflammatory and anti-viral activities. PES generally shows higher cytotoxicity towards tumor cells than non-tumor cells. The mechanism of action of PES is unclear but may involve the covalent modification of proteins as PES has been found to be a covalent inhibitor of Hsp70. We developed a new PES derivative PESA with a terminal alkynyl group to perform click-reaction-assisted activity-based protein profiling (click-reaction ABPP) and used this to screen for cellular targets of PES. We found PES and its derivatives PES-Cl and PESA have comparable ability to undergo a Michael addition reaction with GSH and Hsp70, and showed similar cytotoxicity. By fluorescence imaging and proteomics studies we identified over 300 PESA-attached proteins in DOHH2 cells. Some proteins involved in cancer-related redox processes, such as peroxiredoxin 1 (PRDX1), showed higher frequency and abundance in mass spectrometry detection. Our results suggest that cytotoxicity of PES and its derivatives may be related to attack of protein thiols and cellular GSH resulting in breakdown of cellular redox homeostasis. This study provides a powerful new tool compound within the PES class of bioactive compounds and gives insight into the working mechanisms of PES and its derivatives.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Zhenyan Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District Beijing 100101, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District Beijing 100101, China; University of the Chinese Academy of Sciences, 19 Yuquan Road Shijingshan District, Beijing 100049, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District Beijing 100101, China; University of the Chinese Academy of Sciences, 19 Yuquan Road Shijingshan District, Beijing 100049, China.
| | - Zhengying Pan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| |
Collapse
|
22
|
Stucky CL, Mikesell AR. Cutaneous pain in disorders affecting peripheral nerves. Neurosci Lett 2021; 765:136233. [PMID: 34506882 PMCID: PMC8579816 DOI: 10.1016/j.neulet.2021.136233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023]
Abstract
Our ability to quickly detect and respond to harmful environmental stimuli is vital for our safety and survival. This inherent acute pain detection is a "gift" because it both protects our body from harm and allows healing of damaged tissues [1]. Damage to tissues from trauma or disease can result in distorted or amplified nociceptor signaling and sensitization of the spinal cord and brain (Central Nervous System; CNS) pathways to normal input from light touch mechanoreceptors. Together, these processes can result in nagging to unbearable chronic pain and extreme sensitivity to light skin touch (allodynia). Unlike acute protective pain, chronic pain and allodynia serve no useful purpose and can severely reduce the quality of life of an affected person. Chronic pain can arise from impairment to peripheral neurons, a phenomenon called "peripheral neuropathic pain." Peripheral neuropathic pain can be caused by many insults that directly affect peripheral sensory neurons, including mechanical trauma, metabolic imbalance (e.g., diabetes), autoimmune diseases, chemotherapeutic agents, viral infections (e.g., shingles). These insults cause "acquired" neuropathies such as small-fiber neuropathies, diabetic neuropathy, chemotherapy-induced peripheral neuropathy, and post herpetic neuralgia. Peripheral neuropathic pain can also be caused by genetic factors and result in hereditary neuropathies that include Charcot-Marie-Tooth disease, rare channelopathies and Fabry disease. Many acquired and hereditary neuropathies affect the skin, our largest organ and protector of nearly our entire body. Here we review how cutaneous nociception (pain perceived from the skin) is altered following diseases that affect peripheral nerves that innervate the skin. We provide an overview of how noxious stimuli are detected and encoded by molecular transducers on subtypes of cutaneous afferent endings and conveyed to the CNS. Next, we discuss several acquired and hereditary diseases and disorders that cause painful or insensate (lack of sensation) cutaneous peripheral neuropathies, the symptoms and percepts patients experience, and how cutaneous afferents and other peripheral cell types are altered in function in these disorders. We highlight exciting new research areas that implicate non-neuronal skin cells, particularly keratinocytes, in cutaneous nociception and peripheral neuropathies. Finally, we conclude with ideas for innovative new directions, areas of unmet need, and potential opportunities for novel cutaneous therapeutics that may avoid CNS side effects, as well as ideas for improved translation of mechanisms identified in preclinical models to patients.
Collapse
Affiliation(s)
- Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Alexander R Mikesell
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
23
|
Paniagua N, Sánchez-Robles EM, Bagues A, Martín-Fontelles MI, Goicoechea C, Girón R. Behavior and electrophysiology studies of the peripheral neuropathy induced by individual and co-administration of paclitaxel and oxaliplatin in rat. Life Sci 2021; 277:119397. [PMID: 33794249 DOI: 10.1016/j.lfs.2021.119397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/26/2022]
Abstract
AIMS Antitumor agents, as taxanes and platinum compounds, induce peripheral neuropathies which can hamper their use for cancer treatment. The study of chemotherapy-induced neuropathies in humans is difficult because of ethical reasons, differences among administration protocols and intrinsic characteristics of patients. The aim of the present study is to compare the neuropathic signs induced by individual or combined administration of paclitaxel and oxaliplatin. MAIN METHODS Oxaliplatin and paclitaxel were administered individually and combined to induce peripheral neuropathy in rats, sensory neuropathic signs were assessed in the hind limbs and orofacial area. The in vitro skin-saphenous nerve preparation was used to record the axonal activity of Aδ sensory neurons. KEY FINDINGS Animals treated with the combination developed mechanical allodynia in the paws and muscular hyperalgesia in the orofacial area, which was similar to that in animals treated with monotherapy, the latter also developed cold allodynia in the paws. Aδ-fibers of the rats treated with the combination were hyperexcited and presented hypersensitivity to pressure stimulation of the innervated skin, also similar to that recorded in the fibers of the animals treated with monotherapy. SIGNIFICANCE Our work objectively demonstrates that the combination of a platinum compound with a taxane does not worsen the development of sensorial neuropathies in rats, which is an interesting data to take into account when the combination of antitumor drugs is necessary. Co-administration of antitumor drugs is more effective in cancer treatment without increasing the risk of the disabling neuropathic side effects.
Collapse
Affiliation(s)
- N Paniagua
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| | - E M Sánchez-Robles
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| | - A Bagues
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain.
| | - M I Martín-Fontelles
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| | - C Goicoechea
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| | - R Girón
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| |
Collapse
|
24
|
Development of a novel in vitro assay to screen for neuroprotective drugs against iatrogenic neurite shortening. PLoS One 2021; 16:e0248139. [PMID: 33690613 PMCID: PMC7946280 DOI: 10.1371/journal.pone.0248139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/21/2021] [Indexed: 12/17/2022] Open
Abstract
This work tries to help overcome the lack of relevant translational screening assays, as a limitation for the identification of novel analgesics for neuropathic pain. Hyperexcitability and neurite shortening are common adverse effects of antiviral and antitumor drugs, leading to neuropathic pain. Now, as seen in the drug screening that we developed here, a high-content microscopy-based assay with immortalized dorsal root ganglia (DRG) neurons (differentiated F11 cells) allowed to identify drugs able to protect against the iatrogenic neurite shortening induced by the antitumor drug vincristine and the antiviral drug rilpivirine. We observed that vincristine and rilpivirine induced a significant reduction in the neurite length, which was reverted by α-lipoic acid. We had also evidenced protective effects of pregabalin and melatonin, acting through the α2δ-2 subunit of the voltage-dependent calcium channels and the MT1 receptor, respectively. Additionally, two hits originated from a previous primary screening aimed to detect inhibitors of hyperexcitability to inflammatory mediators in DRG neurons (nitrendipine and felodipine) also prevented neurite shortening in our model. In summary, in this work we developed a novel secondary assay for identifying hits with neuroprotective effect against iatrogenic neurite shortening, consistent with the anti-hyperexcitability action previously tested: highlighting nitrendipine and felodipine against iatrogenic damage in DRG neurons.
Collapse
|
25
|
Boukelmoune N, Laumet G, Tang Y, Ma J, Mahant I, Nijboer C, Benders M, Kavelaars A, Heijnen CJ, Heijnen CJ. Nasal administration of mesenchymal stem cells reverses chemotherapy-induced peripheral neuropathy in mice. Brain Behav Immun 2021; 93:43-54. [PMID: 33316379 PMCID: PMC8826497 DOI: 10.1016/j.bbi.2020.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequently reported adverse effects of cancer treatment. CIPN often persists long after treatment completion and has detrimental effects on patient's quality of life. There are no efficacious FDA-approved drugs for CIPN. We recently demonstrated that nasal administration of mesenchymal stem cells (MSC) reverses the cognitive deficits induced by cisplatin in mice. Here we show that nasal administration of MSC after cisplatin- or paclitaxel treatment- completely reverses signs of established CIPN, including mechanical allodynia, spontaneous pain, and loss of intraepidermal nerve fibers (IENF) in the paw. The resolution of CIPN is associated with normalization of the cisplatin-induced decrease in mitochondrial bioenergetics in DRG neurons. Nasally administered MSC enter rapidly the meninges of the brain, spinal cord and peripheral lymph nodes to promote IL-10 production by macrophages. MSC-mediated resolution of mechanical allodynia, recovery of IENFs and restoration of DRG mitochondrial function critically depends on IL-10 production. MSC from IL-10 knockout animals are not capable of reversing the symptoms of CIPN. Moreover, WT MSC do not reverse CIPN in mice lacking IL-10 receptors on peripheral sensory neurons. In conclusion, only two nasal administrations of MSC fully reverse CIPN and the associated mitochondrial abnormalities via an IL-10 dependent pathway. Since MSC are already applied clinically, we propose that nasal MSC treatment could become a powerful treatment for the large group of patients suffering from neurotoxicities of cancer treatment.
Collapse
Affiliation(s)
- Nabila Boukelmoune
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA
| | - Geoffroy Laumet
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA.,Current affiliation: Department of Physiology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Yongfu Tang
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA
| | - Jiacheng Ma
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA
| | - Itee Mahant
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA
| | - Cora Nijboer
- Department of Developmental Origins of Disease, Division Woman and Baby, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Manon Benders
- Department of Neonatology, Division Woman and Baby, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA
| | - Cobi J. Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, Texas, 77030, USA.,Corresponding author at: Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Z8.5034, Houston, Texas, 77030. (Cobi J. Heijnen)
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX 77030, USA.
| |
Collapse
|
26
|
De Logu F, Trevisan G, Marone IM, Coppi E, Padilha Dalenogare D, Titiz M, Marini M, Landini L, Souza Monteiro de Araujo D, Li Puma S, Materazzi S, De Siena G, Geppetti P, Nassini R. Oxidative stress mediates thalidomide-induced pain by targeting peripheral TRPA1 and central TRPV4. BMC Biol 2020; 18:197. [PMID: 33317522 PMCID: PMC7737339 DOI: 10.1186/s12915-020-00935-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Background The mechanism underlying the pain symptoms associated with chemotherapeutic-induced peripheral neuropathy (CIPN) is poorly understood. Transient receptor potential ankyrin 1 (TRPA1), TRP vanilloid 4 (TRPV4), TRPV1, and oxidative stress have been implicated in several rodent models of CIPN-evoked allodynia. Thalidomide causes a painful CIPN in patients via an unknown mechanism. Surprisingly, the pathway responsible for such proalgesic response has not yet been investigated in animal models. Results Here, we reveal that a single systemic administration of thalidomide and its derivatives, lenalidomide and pomalidomide, elicits prolonged (~ 35 days) mechanical and cold hypersensitivity in C57BL/6J mouse hind paw. Pharmacological antagonism or genetic deletion studies indicated that both TRPA1 and TRPV4, but not TRPV1, contribute to mechanical allodynia, whereas cold hypersensitivity was entirely due to TRPA1. Thalidomide per se did not stimulate recombinant and constitutive TRPA1 and TRPV4 channels in vitro, which, however, were activated by the oxidative stress byproduct, hydrogen peroxide. Systemic treatment with an antioxidant attenuated mechanical and cold hypersensitivity, and the increase in oxidative stress in hind paw, sciatic nerve, and lumbar spinal cord produced by thalidomide. Notably, central (intrathecal) or peripheral (intraplantar) treatments with channel antagonists or an antioxidant revealed that oxidative stress-dependent activation of peripheral TRPA1 mediates cold allodynia and part of mechanical allodynia. However, oxidative stress-induced activation of central TRPV4 mediated the residual TRPA1-resistant component of mechanical allodynia. Conclusions Targeting of peripheral TRPA1 and central TRPV4 may be required to attenuate pain associated with CIPN elicited by thalidomide and related drugs.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Ilaria Maddalena Marone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, Florence, Italy
| | | | - Mustafa Titiz
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Matilde Marini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Lorenzo Landini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Daniel Souza Monteiro de Araujo
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Simone Li Puma
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Serena Materazzi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Gaetano De Siena
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
27
|
Cell-specific role of histone deacetylase 6 in chemotherapy-induced mechanical allodynia and loss of intraepidermal nerve fibers. Pain 2020; 160:2877-2890. [PMID: 31356453 DOI: 10.1097/j.pain.0000000000001667] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious adverse side effect of cancer treatment with no Food and Drug Administration-approved medication for its prevention or management. Using RNA sequencing analysis of dorsal root ganglia (DRG), we identify critical contributions of histone deacetylase 6 (HDAC6) and mitochondrial damage to the establishment of CIPN in a mouse model of cisplatin-induced neuropathy. We show that pharmacological inhibition of HDAC6 using ACY-1215 or global deletion of HDAC6 is sufficient to prevent cisplatin-induced mechanical allodynia, loss of intraepidermal nerve fibers (IENFs), and mitochondrial bioenergetic deficits in DRG neurons and peripheral nerves in male and female mice. The bioenergetic deficits in the neuronal cell bodies in the DRG are characterized by reduced oxidative phosphorylation, whereas the mitochondrial deficits in the nerves are due to a reduction in axonal mitochondrial content. Notably, deleting HDAC6 in sensory neurons protects against the cisplatin-induced loss of IENFs and the reduction in mitochondrial bioenergetics and content in the peripheral nerve. By contrast, deletion of HDAC6 in sensory neurons only partially and transiently prevents cisplatin-induced mechanical allodynia and does not protect against impairment of mitochondrial function in DRG neurons. We further reveal a critical role of T cells in the protective effects of HDAC6 inhibition on these signs of CIPN. In summary, we show that cisplatin-induced mechanical allodynia is associated with mitochondrial damage in DRG neurons, whereas the loss of IENFs is related to bioenergetic deficits in peripheral nerves. Moreover, our findings identify cell-specific contributions of HDAC6 to mechanical allodynia and loss of IENFs that characterize cisplatin-induced peripheral neuropathy.
Collapse
|
28
|
Depletion of senescent-like neuronal cells alleviates cisplatin-induced peripheral neuropathy in mice. Sci Rep 2020; 10:14170. [PMID: 32843706 PMCID: PMC7447787 DOI: 10.1038/s41598-020-71042-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy is among the most common dose-limiting adverse effects of cancer treatment, leading to dose reduction and discontinuation of life-saving chemotherapy and a permanently impaired quality of life for patients. Currently, no effective treatment or prevention is available. Senescence induced during cancer treatment has been shown to promote the adverse effects. Here, we show that cisplatin induces senescent-like neuronal cells in primary culture and in mouse dorsal root ganglia (DRG), as determined by the characteristic senescence markers including senescence-associated beta-galactosidase, accumulation of cytosolic p16INK4A and HMGB1, as well as increased expression of p16Ink4a, p21, and MMP-9. The accumulation of senescent-like neuronal cells in DRG is associated with cisplatin-induced peripheral neuropathy (CIPN) in mice. To determine if depletion of senescent-like neuronal cells may effectively mitigate CIPN, we used a pharmacological ‘senolytic’ agent, ABT263, which inhibits the anti-apoptotic proteins BCL-2 and BCL-xL and selectively kills senescent cells. Our results demonstrated that clearance of DRG senescent neuronal cells reverses CIPN, suggesting that senescent-like neurons play a role in CIPN pathogenesis. This finding was further validated using transgenic p16-3MR mice, which permit ganciclovir (GCV) to selectively kill senescent cells expressing herpes simplex virus 1 thymidine kinase (HSV-TK). We showed that CIPN was alleviated upon GCV administration to p16-3MR mice. Together, the results suggest that clearance of senescent DRG neuronal cells following platinum-based cancer treatment might be an effective therapy for the debilitating side effect of CIPN.
Collapse
|
29
|
Lu Y, Zhang P, Zhang Q, Yang C, Qian Y, Suo J, Tao X, Zhu J. Duloxetine Attenuates Paclitaxel-Induced Peripheral Nerve Injury by Inhibiting p53-Related Pathways. J Pharmacol Exp Ther 2020; 373:453-462. [PMID: 32238452 DOI: 10.1124/jpet.120.265082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/18/2020] [Indexed: 03/08/2025] Open
Abstract
Paclitaxel (PTX) is an antineoplastic drug extracted from the Taxus species, and peripheral neuropathy is a common side effect. Paclitaxel-induced peripheral neuropathy (PIPN) seriously affects patient quality of life. Currently, the mechanism of PIPN is still unknown, and few treatments are recognized clinically. Duloxetine is recommended as the only potential treatment of chemotherapy-induced peripheral neuropathy (CIPN) by the American Society of Clinical Oncology. However, this guidance lacks a theoretical basis and experimental evidence. Our study suggested that duloxetine could improve PIPN and provide neuroprotection. We explored the potential mechanisms of duloxetine on PIPN. As a result, duloxetine acts by inhibiting poly ADP-ribose polymerase cleavage (PARP) and tumor suppressor gene p53 activation and regulating apoptosis regulator the Bcl2 family to reverse PTX-induced oxidative stress and apoptosis. Taken together, the present study shows that using duloxetine to attenuate PTX-induced peripheral nerve injury and peripheral pain may provide new clinical therapeutic targets for CIPN. SIGNIFICANCE STATEMENT: This study reported that duloxetine significantly alleviates neuropathic pain induced by paclitaxel and is related to poly ADP-ribose polymerase (PARP), tumor suppressor gene p53, and apoptosis regulator the Bcl2 family. Our findings thus not only provide important guidance to support duloxetine to become the first standard chemotherapy-induced peripheral neuropathy (CIPN) drug but also will find potential new targets and positive control for new CIPN drug development.
Collapse
Affiliation(s)
- Yuting Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Peng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Qiuyan Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Chao Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Yangyan Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Jinshuai Suo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Xinxia Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Jing Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| |
Collapse
|
30
|
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major challenge, with increasing impact as oncological treatments, using potentially neurotoxic chemotherapy, improve cancer cure and survival. Acute CIPN occurs during chemotherapy, sometimes requiring dose reduction or cessation, impacting on survival. Around 30% of patients will still have CIPN a year, or more, after finishing chemotherapy. Accurate assessment is essential to improve knowledge around prevalence and incidence of CIPN. Consensus is needed to standardize assessment and diagnosis, with use of well-validated tools, such as the EORTC-CIPN 20. Detailed phenotyping of the clinical syndrome moves toward a precision medicine approach, to individualize treatment. Understanding significant risk factors and pre-existing vulnerability may be used to improve strategies for CIPN prevention, or to use targeted treatment for established CIPN. No preventive therapies have shown significant clinical efficacy, although there are promising novel agents such as histone deacetylase 6 (HDAC6) inhibitors, currently in early phase clinical trials for cancer treatment. Drug repurposing, eg, metformin, may offer an alternative therapeutic avenue. Established treatment for painful CIPN is limited. Following recommendations for general neuropathic pain is logical, but evidence for agents such as gabapentinoids and amitriptyline is weak. The only agent currently recommended by the American Society of Clinical Oncology is duloxetine. Mechanisms are complex with changes in ion channels (sodium, potassium, and calcium), transient receptor potential channels, mitochondrial dysfunction, and immune cell interactions. Improved understanding is essential to advance CIPN management. On a positive note, there are many potential sites for modulation, with novel analgesic approaches.
Collapse
Affiliation(s)
- Lesley A Colvin
- Chair of Pain Medicine, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland
| |
Collapse
|
31
|
Gordon-Williams R, Farquhar-Smith P. Recent advances in understanding chemotherapy-induced peripheral neuropathy. F1000Res 2020; 9. [PMID: 32201575 PMCID: PMC7076330 DOI: 10.12688/f1000research.21625.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common cause of pain and poor quality of life for those undergoing treatment for cancer and those surviving cancer. Many advances have been made in the pre-clinical science; despite this, these findings have not been translated into novel preventative measures and treatments for CIPN. This review aims to give an update on the pre-clinical science, preventative measures, assessment and treatment of CIPN.
Collapse
Affiliation(s)
- Richard Gordon-Williams
- Department of Pain Medicine, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Paul Farquhar-Smith
- Department of Pain Medicine, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| |
Collapse
|
32
|
Zhao X, Du W, Zhang M, Atiq ZO, Xia F. Sirt2-associated transcriptome modifications in cisplatin-induced neuronal injury. BMC Genomics 2020; 21:192. [PMID: 32122297 PMCID: PMC7053098 DOI: 10.1186/s12864-020-6584-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy is not only one of the most common causes of dose reduction or discontinuation of cancer treatment, but it can also permanently decrease the quality of life of cancer patients and survivors. Notably, Sirt2 protects many organs from various injuries, including diabetic peripheral neuropathy. As demonstrated previously by our laboratory and others, the overexpression of Sirt2 can improve cisplatin-induced neuropathy, although the mechanism is still unclear. RESULTS In this study, the underlying mechanism by which Sirt2 protects neurons from cisplatin-induced injury was explored using the RNAseq technique in cultured rodent neurons. Sirt2 status was modified by genetic knockout (Sirt2/KO) and was then reconstituted in Sirt2/KO cells (Sirt2/Res). We observed 323 upregulated genes and 277 downregulated genes in Sirt2-expressing cells (Sirt2/Res) compared to Sirt2-deficient cells (Sirt2/KO). Pathway analysis suggested that Sirt2 may affect several pathways, such as MAPK, TNF, and cytokine-cytokine interaction. Furthermore, cisplatin-induced changes to the transcriptome are strongly associated with Sirt2 status. Cisplatin induced distinctive transcriptome changes for 227 genes in Sirt2-expressing cells and for 783 genes in Sirt2-deficient cells, while changes in only 138 of these genes were independent of Sirt2 status. Interestingly, changes in the p53 pathway, ECM-receptor interactions, and cytokine-cytokine receptor interactions were induced by cisplatin only in Sirt2-deficient cells. CONCLUSIONS This study demonstrated that Sirt2 regulates the transcriptome in cultured rodent neuronal cells. Furthermore, Sirt2-associated transcriptome regulation may be an important mechanism underlying the role of Sirt2 in organ protection, such as in cisplatin-induced neuronal injury. Sirt2 may be a potential target for the prevention and treatment of chemotherapy-induced neuropathy.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.,Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA
| | - Wuying Du
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Manchao Zhang
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Zainab O Atiq
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Fen Xia
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
33
|
Bozi LHM, Campos JC, Zambelli VO, Ferreira ND, Ferreira JCB. Mitochondrially-targeted treatment strategies. Mol Aspects Med 2019; 71:100836. [PMID: 31866004 DOI: 10.1016/j.mam.2019.100836] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Disruption of mitochondrial function is a common feature of inherited mitochondrial diseases (mitochondriopathies) and many other infectious and non-infectious diseases including viral, bacterial and protozoan infections, inflammatory and chronic pain, neurodegeneration, diabetes, obesity and cardiovascular diseases. Mitochondria therefore become an attractive target for developing new therapies. In this review we describe critical mechanisms involved in the maintenance of mitochondrial functionality and discuss strategies used to identify and validate mitochondrial targets in different diseases. We also highlight the most recent preclinical and clinical findings using molecules targeting mitochondrial bioenergetics, morphology, number, content and detoxification systems in common pathologies.
Collapse
Affiliation(s)
- Luiz H M Bozi
- Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Juliane C Campos
- Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | | | | | - Julio C B Ferreira
- Institute of Biomedical Sciences, University of Sao Paulo, Brazil; Department of Chemical and Systems Biology, School of Medicine, Stanford University, USA.
| |
Collapse
|
34
|
Moradi-Marjaneh R, Paseban M, Moradi Marjaneh M. Hsp70 inhibitors: Implications for the treatment of colorectal cancer. IUBMB Life 2019; 71:1834-1845. [PMID: 31441584 DOI: 10.1002/iub.2157] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/12/2019] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in the world. Despite intensive advances in diagnosis and treatment of CRC, it is yet one of the leading cause of cancer related morbidity and mortality. Therefore, there is an urgent medical need for alternative therapeutic approaches to treat CRC. The 70 kDa heat shock proteins (Hsp70s) are a family of evolutionary conserved heat shock proteins, which play an important role in cell homeostasis and survival. They overexpress in various types of malignancy including CRC and are typically accompanied with poor prognosis. Hence, inhibition of Hsp70 may be considered as a striking chemotherapeutic avenue. This review summarizes the current knowledge on the progress made so far to discover compounds, which target the Hsp70 family, with particular emphasis on their efficacy in treatment of CRC. We also briefly explain the induction of Hsp70 as a strategy to prevent CRC.
Collapse
Affiliation(s)
| | - Maryam Paseban
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Moradi Marjaneh
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
35
|
Shim HS, Bae C, Wang J, Lee KH, Hankerd KM, Kim HK, Chung JM, La JH. Peripheral and central oxidative stress in chemotherapy-induced neuropathic pain. Mol Pain 2019; 15:1744806919840098. [PMID: 30857460 PMCID: PMC6458664 DOI: 10.1177/1744806919840098] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is an adverse side effect of many anti-cancer chemotherapeutic treatments. CIPN often causes neuropathic pain in extremities, and oxidative stress has been shown to be a major contributing factor to this pain. In this study, we determined the site of oxidative stress associated with pain (specifically, mechanical hypersensitivity) in cisplatin- and paclitaxel-treated mouse models of CIPN and investigated the neurophysiological mechanisms accounting for the pain. C57BL/6N mice that received either cisplatin or paclitaxel (2 mg/kg, once daily on four alternate days) developed mechanical hypersensitivity to von Frey filament stimulations of their hindpaws. Cisplatin-induced mechanical hypersensitivity was inhibited by silencing of Transient Receptor Potential channels V1 (TRPV1)- or TRPA1-expressing afferents, whereas paclitaxel-induced mechanical hypersensitivity was attenuated by silencing of Aβ fibers. Although systemic delivery of phenyl N-tert-butylnitrone, a reactive oxygen species scavenger, alleviated mechanical hypersensitivity in both cisplatin- and paclitaxel-treated mice, intraplantar phenyl N-tert-butylnitrone was effective only in cisplatin-treated mice, and intrathecal phenyl N-tert-butylnitrone, only in paclitaxel-treated mice. In a reactive oxygen species-dependent manner, the mechanosensitivity of Aδ/C fiber endings in the hindpaw skin was increased in cisplatin-treated mice, and the excitatory synaptic strength in the spinal dorsal horn was potentiated in paclitaxel-treated mice. Collectively, these results suggest that cisplatin-induced mechanical hypersensitivity is attributed to peripheral oxidative stress sensitizing mechanical nociceptors, whereas paclitaxel-induced mechanical hypersensitivity is due to central (spinal) oxidative stress maintaining central sensitization that abnormally produces pain in response to Aβ fiber inputs.
Collapse
Affiliation(s)
- Hyun Soo Shim
- 1 Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Chilman Bae
- 1 Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Jigong Wang
- 1 Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Kyung-Hee Lee
- 1 Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA.,2 Department of Dental Hygiene, Dongseo University, Busan, Republic of Korea
| | - Kali M Hankerd
- 1 Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Hee Kee Kim
- 3 Department of Pain Medicine, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jin Mo Chung
- 1 Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Jun-Ho La
- 1 Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
36
|
Toma W, Kyte SL, Bagdas D, Jackson A, Meade JA, Rahman F, Chen ZJ, Del Fabbro E, Cantwell L, Kulkarni A, Thakur GA, Papke RL, Bigbee JW, Gewirtz DA, Damaj MI. The α7 nicotinic receptor silent agonist R-47 prevents and reverses paclitaxel-induced peripheral neuropathy in mice without tolerance or altering nicotine reward and withdrawal. Exp Neurol 2019; 320:113010. [PMID: 31299179 DOI: 10.1016/j.expneurol.2019.113010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/05/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
Various antitumor drugs, including paclitaxel, frequently cause chemotherapy-induced peripheral neuropathy (CIPN) that can be sustained even after therapy has been completed. The current work was designed to evaluate R-47, an α7 nAChR silent agonist, in our mouse model of CIPN. R-47 was administered to male C57BL/6J mice prior to and during paclitaxel treatment. Additionally, we tested if R-47 would alter nicotine's reward and withdrawal effects. The H460 and A549 non-small cell lung cancer (NSCLC) cell lines were exposed to R-47 for 24-72 h, and tumor-bearing NSG mice received R-47 prior to and during paclitaxel treatment. R-47 prevents and reverses paclitaxel-induced mechanical hypersensitivity in mice in an α7 nAChR-dependent manner. No tolerance develops following repeated administration of R-47, and the drug lacks intrinsic rewarding effects. Additionally, R-47 neither changes the rewarding effect of nicotine in the Conditioned Place Preference test nor enhances mecamylamine-precipitated withdrawal. Furthermore, R-47 prevents paclitaxel-mediated loss of intraepidermal nerve fibers and morphological alterations of microglia in the spinal cord. Moreover, R-47 does not increase NSCLC cell viability, colony formation, or proliferation, and does not interfere with paclitaxel-induced growth arrest, DNA fragmentation, or apoptosis. Most importantly, R-47 does not increase the growth of A549 tumors or interfere with the antitumor activity of paclitaxel in tumor-bearing mice. These studies suggest that R-47 could be a viable and efficacious approach for the prevention and treatment of CIPN that would not interfere with the antitumor activity of paclitaxel or promote lung tumor growth.
Collapse
Affiliation(s)
- Wisam Toma
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America.
| | - S Lauren Kyte
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, United States of America
| | - Deniz Bagdas
- Department of Psychiatry, Yale University School of Medicine, Yale Tobacco Center of Regulatory Science, New Haven, CT, United States of America
| | - Asti Jackson
- Department of Psychiatry, Yale University School of Medicine, Yale Tobacco Center of Regulatory Science, New Haven, CT, United States of America
| | - Julie A Meade
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Faria Rahman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Zhi-Jian Chen
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Egidio Del Fabbro
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States of America; Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States of America
| | - Abhijit Kulkarni
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States of America
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States of America
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - John W Bigbee
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America; Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, United States of America
| |
Collapse
|
37
|
Trecarichi A, Flatters SJL. Mitochondrial dysfunction in the pathogenesis of chemotherapy-induced peripheral neuropathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:83-126. [PMID: 31208528 DOI: 10.1016/bs.irn.2019.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several first-line chemotherapeutic agents, including taxanes, platinum agents and proteasome inhibitors, are associated with the dose-limiting side effect of chemotherapy-induced peripheral neuropathy (CIPN). CIPN predominantly manifests as sensory symptoms, which are likely due to drug accumulation within peripheral nervous tissues rather than the central nervous system. No treatment is currently available to prevent or reverse CIPN. The causal mechanisms underlying CIPN are not yet fully understood. Mitochondrial dysfunction has emerged as a major factor contributing to the development and maintenance of CIPN. This chapter will provide an overview of both clinical and preclinical data supporting this hypothesis. We will review the studies reporting the nature of mitochondrial dysfunction evoked by chemotherapy in terms of changes in mitochondrial morphology, bioenergetics and reactive oxygen species (ROS) generation. Furthermore, we will discuss the in vivo effects of pharmacological interventions that counteract chemotherapy-evoked mitochondrial dysfunction and ameliorate pain-like behavior.
Collapse
Affiliation(s)
- Annalisa Trecarichi
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sarah J L Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
38
|
Orally active Epac inhibitor reverses mechanical allodynia and loss of intraepidermal nerve fibers in a mouse model of chemotherapy-induced peripheral neuropathy. Pain 2019; 159:884-893. [PMID: 29369966 DOI: 10.1097/j.pain.0000000000001160] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect of cancer treatment that significantly compromises quality of life of cancer patients and survivors. Identification of targets for pharmacological intervention to prevent or reverse CIPN is needed. We investigated exchange protein regulated by cAMP (Epac) as a potential target. Epacs are cAMP-binding proteins known to play a pivotal role in mechanical allodynia induced by nerve injury and inflammation. We demonstrate that global Epac1-knockout (Epac1-/-) male and female mice are protected against paclitaxel-induced mechanical allodynia. In addition, spinal cord astrocyte activation and intraepidermal nerve fiber (IENF) loss are significantly reduced in Epac1-/- mice as compared to wild-type mice. Moreover, Epac1-/- mice do not develop the paclitaxel-induced deficits in mitochondrial bioenergetics in the sciatic nerve that are a hallmark of CIPN. Notably, mice with cell-specific deletion of Epac1 in Nav1.8-positive neurons (N-Epac1-/-) also show reduced paclitaxel-induced mechanical allodynia, astrocyte activation, and IENF loss, indicating that CIPN develops downstream of Epac1 activation in nociceptors. The Epac-inhibitor ESI-09 reversed established paclitaxel-induced mechanical allodynia in wild-type mice even when dosing started 10 days after completion of paclitaxel treatment. In addition, oral administration of ESI-09 suppressed spinal cord astrocyte activation in the spinal cord and protected against IENF loss. Ex vivo, ESI-09 blocked paclitaxel-induced abnormal spontaneous discharges in dorsal root ganglion neurons. Collectively, these findings implicate Epac1 in nociceptors as a novel target for treatment of CIPN. This is clinically relevant because ESI-09 has the potential to reverse a debilitating and long-lasting side effect of cancer treatment.
Collapse
|
39
|
Flatters SJL, Dougherty PM, Colvin LA. Clinical and preclinical perspectives on Chemotherapy-Induced Peripheral Neuropathy (CIPN): a narrative review. Br J Anaesth 2019; 119:737-749. [PMID: 29121279 DOI: 10.1093/bja/aex229] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
This review provides an update on the current clinical and preclinical understanding of chemotherapy induced peripheral neuropathy (CIPN). The overview of the clinical syndrome includes a review of its assessment, diagnosis and treatment. CIPN is caused by several widely-used chemotherapeutics including paclitaxel, oxaliplatin, bortezomib. Severe CIPN may require dose reduction, or cessation, of chemotherapy, impacting on patient survival. While CIPN often resolves after chemotherapy, around 30% of patients will have persistent problems, impacting on function and quality of life. Early assessment and diagnosis is important, and we discuss tools developed for this purpose. There are no effective strategies to prevent CIPN, with limited evidence of effective drugs for treating established CIPN. Duloxetine has moderate evidence, with extrapolation from other neuropathic pain states generally being used to direct treatment options for CIPN. The preclinical perspective includes a discussion on the development of clinically-relevant rodent models of CIPN and some of the potentially modifiable mechanisms that have been identified using these models. We focus on the role of mitochondrial dysfunction, oxidative stress, immune cells and changes in ion channels from summary of the latest literature in these areas. Many causal mechanisms of CIPN occur simultaneously and/or can reinforce each other. Thus, combination therapies may well be required for most effective management. More effective treatment of CIPN will require closer links between oncology and pain management clinical teams to ensure CIPN patients are effectively monitored. Furthermore, continued close collaboration between clinical and preclinical research will facilitate the development of novel treatments for CIPN.
Collapse
Affiliation(s)
- S J L Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - P M Dougherty
- Division of Anaesthesia, Critical Care and Pain Medicine, Department of Pain Medicine Research, The University of Texas M.D. Anderson Cancer Centre, Houston, TX, USA
| | - L A Colvin
- Department of Anaesthesia, Critical Care & Pain Medicine, University of Edinburgh, Western General Hospital, Crewe Rd, Edinburgh EH4 2XU, UK
| |
Collapse
|
40
|
Meng J, Zhang Q, Yang C, Xiao L, Xue Z, Zhu J. Duloxetine, a Balanced Serotonin-Norepinephrine Reuptake Inhibitor, Improves Painful Chemotherapy-Induced Peripheral Neuropathy by Inhibiting Activation of p38 MAPK and NF-κB. Front Pharmacol 2019; 10:365. [PMID: 31024320 PMCID: PMC6465602 DOI: 10.3389/fphar.2019.00365] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/25/2019] [Indexed: 02/05/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe, toxic side effect that frequently occurs in anticancer treatment and may result in discontinuation of treatment as well as a serious reduction in life quality. The CIPN incidence rate is as high as 85–90%. Unfortunately, there is currently no standard evidence-based CIPN treatment. In several clinical trials, it has been reported that duloxetine can improve CIPN pain induced by oxaliplatin (OXA) and paclitaxel (PTX); thus, The American Society of Clinical Oncology (ASCO) recommends duloxetine as the only potential treatment for CIPN. However, this guidance lacks the support of sufficient evidence. Our study shows that duloxetine markedly reduces neuropathic pain evoked by OXA or PTX. Duloxetine acts by inhibiting the activation of p38 phosphorylation, thus preventing the activation and nuclear translocation of the NF-κB transcription factor, reducing the inflammatory response and inhibiting nerve injury by regulating nerve growth factor (NGF). Furthermore, in this study, it is shown that duloxetine does not affect the antitumor activity of OXA or PTX. This study not only provides biological evidence to support the use of duloxetine as the first standard CIPN drug but will also lead to potential new targets for CIPN drug development.
Collapse
Affiliation(s)
- Jing Meng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Qiuyan Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Xiao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenzhen Xue
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
41
|
Cisplatin treatment induces attention deficits and impairs synaptic integrity in the prefrontal cortex in mice. Sci Rep 2018; 8:17400. [PMID: 30479361 PMCID: PMC6258730 DOI: 10.1038/s41598-018-35919-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022] Open
Abstract
Patients treated for cancer frequently experience chemobrain, characterized by impaired memory and reduced attention. These deficits often persist after treatment, and no preventive or curative interventions exist. In mice, we assessed the effect of cisplatin chemotherapy on attention using the 5-choice serial reaction time task and on synaptic integrity. We also assessed the capacity of mesenchymal stem cells to normalize the characteristics of chemobrain. Mice were trained in the 5-choice serial reaction time task. After reaching advancement criteria at a 4-second stimulus time, they were treated with cisplatin followed by nasal administration of mesenchymal stem cells. Cisplatin reduced the percentage of correct responses due to an increase in omissions, indicating attention deficits. Mesenchymal stem cell treatment reversed these cisplatin-induced deficits in attention. Cisplatin also induced abnormalities in markers of synaptic integrity in the prefrontal cortex. Specifically, cisplatin decreased expression of the global presynaptic marker synaptophysin and the glutamatergic presynaptic marker vGlut2. Expression of the presynaptic GABAergic marker vGAT increased. Nasal mesenchymal stem cell administration normalized these markers of synaptic integrity. In conclusion, cisplatin induces long-lasting attention deficits that are associated with decreased synaptic integrity in the prefrontal cortex. Nasal administration of mesenchymal stem cells reversed these behavioural and structural deficits.
Collapse
|
42
|
Kober KM, Olshen A, Conley YP, Schumacher M, Topp K, Smoot B, Mazor M, Chesney M, Hammer M, Paul SM, Levine JD, Miaskowski C. Expression of mitochondrial dysfunction-related genes and pathways in paclitaxel-induced peripheral neuropathy in breast cancer survivors. Mol Pain 2018; 14:1744806918816462. [PMID: 30426838 PMCID: PMC6293373 DOI: 10.1177/1744806918816462] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Paclitaxel is one of the most commonly used drugs to treat breast cancer. Its
major dose-limiting toxicity is paclitaxel-induced peripheral neuropathy
(PIPN). PIPN persists into survivorship and has a negative impact on
patient’s mood, functional status, and quality of life. No interventions are
available to treat PIPN. A critical barrier to the development of
efficacious interventions is the lack of understanding of the mechanisms
that underlie PIPN. Mitochondrial dysfunction has been evaluated in
preclinical studies as a hypothesized mechanism for PIPN, but clinical data
to support this hypothesis are limited. The purpose of this pilot study was
to evaluate for differential gene expression and perturbed pathways between
breast cancer survivors with and without PIPN. Methods Gene expression in peripheral blood was assayed using RNA-seq. Differentially
expressed genes (DEG) and pathways associated with mitochondrial dysfunction
were identified between survivors who received paclitaxel and did (n = 25)
and did not (n = 25) develop PIPN. Results Breast cancer survivors with PIPN were significantly older; more likely to be
unemployed; reported lower alcohol use; had a higher body mass index and
poorer functional status; and had a higher number of lower extremity sites
with loss of light touch, cold, and pain sensations and higher vibration
thresholds. No between-group differences were found in the cumulative dose
of paclitaxel received or in the percentage of patients who had a dose
reduction or delay due to PIPN. Five DEGs and nine perturbed pathways were
associated with mitochondrial dysfunction related to oxidative stress, iron
homeostasis, mitochondrial fission, apoptosis, and autophagy. Conclusions This study is the first to provide molecular evidence that a number of
mitochondrial dysfunction mechanisms identified in preclinical models of
various types of neuropathic pain including chemotherapy-induced peripheral
neuropathy are found in breast cancer survivors with persistent PIPN and
suggest genes for validation and as potential therapeutic targets.
Collapse
Affiliation(s)
- Kord M Kober
- 1 School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| | - Adam Olshen
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yvettte P Conley
- 3 School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Schumacher
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kimberly Topp
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Betty Smoot
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Melissa Mazor
- 1 School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| | - Margaret Chesney
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Marilyn Hammer
- 4 Department of Nursing, Mount Sinai Medical Center, New York, NY, USA
| | - Steven M Paul
- 1 School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| | - Jon D Levine
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Christine Miaskowski
- 1 School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
43
|
Nasal administration of mesenchymal stem cells restores cisplatin-induced cognitive impairment and brain damage in mice. Oncotarget 2018; 9:35581-35597. [PMID: 30473752 PMCID: PMC6238972 DOI: 10.18632/oncotarget.26272] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022] Open
Abstract
Cognitive impairments are a common side effect of chemotherapy that often persists long after treatment completion. There are no FDA-approved interventions to treat these cognitive deficits also called ‘chemobrain’. We hypothesized that nasal administration of mesenchymal stem cells (MSC) reverses chemobrain. To test this hypothesis, we used a mouse model of cognitive deficits induced by cisplatin that we recently developed. Mice were treated with two cycles of cisplatin followed by nasal administration of MSC. Cisplatin treatment induced deficits in the puzzle box, novel object/place recognition and Y-maze tests, indicating cognitive impairment. Nasal MSC treatment fully reversed these cognitive deficits in males and females. MSC also reversed the cisplatin-induced damage to cortical myelin. Resting state functional MRI and connectome analysis revealed a decrease in characteristic path length after cisplatin, while MSC treatment increased path length in cisplatin-treated mice. MSCs enter the brain but did not survive longer than 12-72 hrs, indicating that they do not replace damaged tissue. RNA-sequencing analysis identified mitochondrial oxidative phosphorylation as a top pathway activated by MSC administration to cisplatin-treated mice. Consistently, MSC treatment restored the cisplatin-induced mitochondrial dysfunction and structural abnormalities in brain synaptosomes. Nasal administration of MSC did not interfere with the peripheral anti-tumor effect of cisplatin. In conclusion, nasal administration of MSC may represent a powerful, non-invasive, and safe regenerative treatment for resolution of chemobrain.
Collapse
|
44
|
Chine VB, Au NPB, Kumar G, Ma CHE. Targeting Axon Integrity to Prevent Chemotherapy-Induced Peripheral Neuropathy. Mol Neurobiol 2018; 56:3244-3259. [DOI: 10.1007/s12035-018-1301-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
|
45
|
McCormick B, Lowes DA, Colvin L, Torsney C, Galley HF. MitoVitE, a mitochondria-targeted antioxidant, limits paclitaxel-induced oxidative stress and mitochondrial damage in vitro, and paclitaxel-induced mechanical hypersensitivity in a rat pain model. Br J Anaesth 2018; 117:659-666. [PMID: 27799181 DOI: 10.1093/bja/aew309] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Neuropathic pain is a common side-effect of chemotherapy. Although precise mechanisms are unclear, oxidative stress and mitochondrial damage are involved. We investigated whether the mitochondria targeted antioxidant, MitoVitE, provided better protection against paclitaxel-induced mitochondrial damage in rat dorsal root ganglion (DRG) cells, than a non-targeted form of vitamin E, Trolox. We also determined whether MitoVitE, compared with duloxetine, could limit paclitaxel-induced mechanical hypersensitivity in rats. METHODS Mitochondrial function was measured in DRG cells exposed to paclitaxel with and without MitoVitE or Trolox. The effect of MitoVitE or Trolox on paclitaxel-induced cell killing in cancer cell lines was also determined. Rats received a cumulative dose of 8 mg kg-1 paclitaxel plus either MitoVitE (2 mg-1 kg day-1), duloxetine (10 mg kg-1 day-1) or vehicle control daily. Mechanical hind paw withdrawal thresholds were measured every two days. RESULTS Paclitaxel caused loss of membrane potential in DRG cells. At 100 µM paclitaxel median [range] change was 61[44-78]%, P < 0.0001, which was ameliorated by MitoVitE (86[62-104]%) but not Trolox (46[46-57]%). Similarly, loss of metabolic activity and glutathione induced by paclitaxel (both P < 0.0001) were reduced by MitoVitE but not Trolox. Cytotoxicity of paclitaxel was not affected by co-exposure of ovarian cancer cells to either MitoVitE or Trolox, but was slightly reduced against breast cancer cells, in the presence of Trolox. Mean (SD) areas under the curve of withdrawal thresholds at 6 h after injection in rats given paclitaxel + control, or + MitoVitE (P < 0.0001) or + duloxetine (P < 0.0001) were 110 (5), 145 (10) and 156 (13) respectively. CONCLUSIONS Paclitaxel affected mitochondrial function and glutathione in DRG cells, which was abrogated by MitoVitE but not Trolox, without decreasing cancer cell cytotoxicity. In rats, paclitaxel-induced mechanical hypersensitivity was ameliorated by MitoVitE treatment to an extent similar to duloxetine. These data confirm mitochondria as a mechanistic target for paclitaxel-induced damage and suggest mitochondria targeted antioxidants as future therapeutic strategies.
Collapse
Affiliation(s)
- B McCormick
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition University of Aberdeen, Aberdeen UK.,Centre for Integrative Physiology University of Edinburgh
| | - D A Lowes
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition University of Aberdeen, Aberdeen UK
| | - L Colvin
- Department of Anaesthesia, Critical Care and Pain Medicine, University of Edinburgh, Edinburgh UK
| | - C Torsney
- Centre for Integrative Physiology University of Edinburgh
| | - H F Galley
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition University of Aberdeen, Aberdeen UK
| |
Collapse
|
46
|
Caponegro MD, Torres LF, Rastegar C, Rath N, Anderson ME, Robinson JK, Tsirka SE. Pifithrin-μ modulates microglial activation and promotes histological recovery following spinal cord injury. CNS Neurosci Ther 2018; 25:200-214. [PMID: 29962076 DOI: 10.1111/cns.13000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Treatments immediately after spinal cord injury (SCI) are anticipated to decrease neuronal death, disruption of neuronal connections, demyelination, and inflammation, and to improve repair and functional recovery. Currently, little can be done to modify the acute phase, which extends to the first 48 hours post-injury. Efforts to intervene have focused on the subsequent phases - secondary (days to weeks) and chronic (months to years) - to both promote healing, prevent further damage, and support patients suffering from SCI. METHODS We used a contusion model of SCI in female mice, and delivered a small molecule reagent during the early phase of injury. Histological and behavioral outcomes were assessed and compared. RESULTS We find that the reagent Pifithrin-μ (PFT-μ) acts early and directly on microglia in vitro, attenuating their activation. When administered during the acute phase of SCI, PFT-μ resulted in reduced lesion size during the initial inflammatory phase, and reduced the numbers of pro-inflammatory microglia and macrophages. Treatment with PFT-μ during the early stage of injury maintained a stable anti-inflammatory environment. CONCLUSIONS Our results indicate that a small molecule reagent PFT-μ has sustained immunomodulatory effects following a single dose after injury.
Collapse
Affiliation(s)
- Michael D Caponegro
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Luisa F Torres
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Cyrus Rastegar
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.,Biological Psychology, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Nisha Rath
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.,Biological Psychology, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Maria E Anderson
- Biological Psychology, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - John K Robinson
- Biological Psychology, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Stella E Tsirka
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
47
|
Boeckel GR, Ehrlich BE. NCS-1 is a regulator of calcium signaling in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1660-1667. [PMID: 29746899 DOI: 10.1016/j.bbamcr.2018.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Abstract
Neuronal Calcium Sensor-1 (NCS-1) is a highly conserved calcium binding protein which contributes to the maintenance of intracellular calcium homeostasis and regulation of calcium-dependent signaling pathways. It is involved in a variety of physiological cell functions, including exocytosis, regulation of calcium permeable channels, neuroplasticity and response to neuronal damage. Over the past 30 years, continuing investigation of cellular functions of NCS-1 and associated disease states have highlighted its function in the pathophysiology of several disorders and as a therapeutic target. Among the diseases that were found to be associated with NCS-1 are neurological disorders such as bipolar disease and non-neurological conditions such as breast cancer. Furthermore, alteration of NCS-1 expression is associated with substance abuse disorders and severe side effects of chemotherapeutic agents. The objective of this article is to summarize the current body of evidence describing NCS-1 and its interactions on a molecular and cellular scale, as well as describing macroscopic implications in physiology and medicine. Particular attention is paid to the role of NCS-1 in development and prevention of chemotherapy induced peripheral neuropathy (CIPN).
Collapse
Affiliation(s)
- Göran R Boeckel
- Department of Pharmacology, Yale University, New Haven, CT, United States; Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, CT, United States; Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| |
Collapse
|
48
|
Abstract
Chemotherapy-induced peripheral neuropathy is one of the most common dose-limiting side effects of cancer treatment. Currently, there is no Food and Drug Administration-approved treatment available. Histone deacetylase 6 (HDAC6) is a microtubule-associated deacetylase whose function includes regulation of α-tubulin-dependent intracellular mitochondrial transport. Here, we examined the effect of HDAC6 inhibition on established cisplatin-induced peripheral neuropathy. We used a novel HDAC6 inhibitor ACY-1083, which shows 260-fold selectivity towards HDAC6 vs other HDACs. Our results show that HDAC6 inhibition prevented cisplatin-induced mechanical allodynia, and also completely reversed already existing cisplatin-induced mechanical allodynia, spontaneous pain, and numbness. These findings were confirmed using the established HDAC6 inhibitor ACY-1215 (Ricolinostat), which is currently in clinical trials for cancer treatment. Mechanistically, treatment with the HDAC6 inhibitor increased α-tubulin acetylation in the peripheral nerve. In addition, HDAC6 inhibition restored the cisplatin-induced reduction in mitochondrial bioenergetics and mitochondrial content in the tibial nerve, indicating increased mitochondrial transport. At a later time point, dorsal root ganglion mitochondrial bioenergetics also improved. HDAC6 inhibition restored the loss of intraepidermal nerve fiber density in cisplatin-treated mice. Our results demonstrate that pharmacological inhibition of HDAC6 completely reverses all the hallmarks of established cisplatin-induced peripheral neuropathy by normalization of mitochondrial function in dorsal root ganglia and nerve, and restoration of intraepidermal innervation. These results are especially promising because one of the HDAC6 inhibitors tested here is currently in clinical trials as an add-on cancer therapy, highlighting the potential for a fast clinical translation of our findings.
Collapse
|
49
|
Ma J, Kavelaars A, Dougherty PM, Heijnen CJ. Beyond symptomatic relief for chemotherapy-induced peripheral neuropathy: Targeting the source. Cancer 2018; 124:2289-2298. [PMID: 29461625 DOI: 10.1002/cncr.31248] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 12/23/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious adverse side effect of many chemotherapeutic agents, affecting >60% of patients with cancer. Moreover, CIPN persists long into survivorship in approximately 20% to 30% of these patients. To the authors' knowledge, no drugs have been approved to date by the US Food and Drug Administration to effectively manage chemotherapy-induced neuropathic pain. The majority of the drugs tested for the management of CIPN aim at symptom relief, including pain and paresthesia, yet are not very efficacious. The authors propose that there is a need to acquire a more thorough understanding of the etiology of CIPN so that effective, mechanism-based, disease-modifying interventions can be developed. It is important to note that such interventions should not interfere with the antitumor effects of chemotherapy. Mitochondria are rod-shaped cellular organelles that represent the powerhouses of the cell, in that they convert oxygen and nutrients into the cellular energy "currency" adenosine triphosphate. In addition, mitochondria regulate cell death. Neuronal mitochondrial dysfunction and the associated nitro-oxidative stress represent crucial final common pathways of CIPN. Herein, the authors discuss the potential to prevent or reverse CIPN by protecting mitochondria and/or inhibiting nitro-oxidative stress with novel potential drugs, including the mitochondrial protectant pifithrin-μ, histone deacetylase 6 inhibitors, metformin, antioxidants, peroxynitrite decomposition catalysts, and anti-inflammatory mediators including interleukin 10. This review hopefully will contribute toward bridging the gap between preclinical research and the development of realistic novel therapeutic strategies to prevent or reverse the devastating neurotoxic effects of chemotherapy on the (peripheral) nervous system. Cancer 2018;124:2289-98. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Jiacheng Ma
- Neuroimmunology Laboratory, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Annemieke Kavelaars
- Neuroimmunology Laboratory, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick M Dougherty
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cobi J Heijnen
- Neuroimmunology Laboratory, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
50
|
Kyte SL, Toma W, Bagdas D, Meade JA, Schurman LD, Lichtman AH, Chen ZJ, Del Fabbro E, Fang X, Bigbee JW, Damaj MI, Gewirtz DA. Nicotine Prevents and Reverses Paclitaxel-Induced Mechanical Allodynia in a Mouse Model of CIPN. J Pharmacol Exp Ther 2018; 364:110-119. [PMID: 29042416 PMCID: PMC5738719 DOI: 10.1124/jpet.117.243972] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/16/2017] [Indexed: 01/03/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN), a consequence of peripheral nerve fiber dysfunction or degeneration, continues to be a dose-limiting and debilitating side effect during and/or after cancer chemotherapy. Paclitaxel, a taxane commonly used to treat breast, lung, and ovarian cancers, causes CIPN in 59-78% of cancer patients. Novel interventions are needed due to the current lack of effective CIPN treatments. Our studies were designed to investigate whether nicotine can prevent and/or reverse paclitaxel-induced peripheral neuropathy in a mouse model of CIPN, while ensuring that nicotine will not stimulate lung tumor cell proliferation or interfere with the antitumor properties of paclitaxel. Male C57BL/6J mice received paclitaxel every other day for a total of four injections (8 mg/kg, i.p.). Acute (0.3-0.9 mg/kg, i.p.) and chronic (24 mg/kg per day, s.c.) administration of nicotine respectively reversed and prevented paclitaxel-induced mechanical allodynia. Blockade of the antinociceptive effect of nicotine with mecamylamine and methyllycaconitine suggests that the reversal of paclitaxel-induced mechanical allodynia is primarily mediated by the α7 nicotinic acetylcholine receptor subtype. Chronic nicotine treatment also prevented paclitaxel-induced intraepidermal nerve fiber loss. Notably, nicotine neither promoted proliferation of A549 and H460 non-small cell lung cancer cells nor interfered with paclitaxel-induced antitumor effects, including apoptosis. Most importantly, chronic nicotine administration did not enhance Lewis lung carcinoma tumor growth in C57BL/6J mice. These data suggest that the nicotinic acetylcholine receptor-mediated pathways may be promising drug targets for the prevention and treatment of CIPN.
Collapse
Affiliation(s)
- S Lauren Kyte
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - Wisam Toma
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - Deniz Bagdas
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - Julie A Meade
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - Lesley D Schurman
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - Aron H Lichtman
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - Zhi-Jian Chen
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - Egidio Del Fabbro
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - Xianjun Fang
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - John W Bigbee
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - M Imad Damaj
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - David A Gewirtz
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| |
Collapse
|