1
|
Ito A, Yang S, Shinto E, Shinto A, Toyofuku A, Kurata J. Interhemispheric and Corticothalamic White-Matter Dysfunction Underlies Affective Morbidity and Impaired Pain Modulation in Chronic Pain. Anesth Analg 2025; 140:465-475. [PMID: 38837907 PMCID: PMC11687938 DOI: 10.1213/ane.0000000000006992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Although patients with chronic pain show behavioral signs of impaired endogenous pain modulation, responsible cerebral networks have yet to be anatomically delineated. We used diffusion tensor imaging (DTI) to examine the white-matter alterations in patients with chronic pain compared with healthy subjects. We further measured thermal pain modulatory responses using the offset analgesia (OA) paradigm. We tested whether the white-matter indices be associated with psychophysical parameters reflecting morbidity and modulatory responses of pain in patients, and whether they could serve as diagnostic biomarkers of chronic pain. METHODS Twenty-six patients with chronic pain and 18 age- and gender-matched healthy controls were enrolled. After completing psychophysical questionnaires, they underwent OA measurement and whole-brain DTI in a 3 Tesla magnetic resonance imaging scanner. Fractional anisotropy (FA) and radial diffusivity (RD) of the white-matter were computed and compared between the groups with tract-based spatial statistics using the FMRIB Software Library (FSL) software. Correlations were sought among white-matter indices, thermal pain responses, and psychophysical parameters. The white-matter indices and OA-related parameters were tested whether they distinguish patients from controls by receiver operating characteristic analysis. RESULTS During OA, patients showed a shorter latency to the maximum (maximum visual analog scale [VAS] latency, 16.0 ± 3.7 vs 18.9 ± 3.1 second [mean ± standard deviation, SD]; P = .032) but a longer latency to the minimum pain (OA latency, 15.6 ± 3.5 vs 11.1 ± 4.2 seconds; P = .004) than controls. They showed a smaller mean FA (0.44 ± 0.12 vs 0.45 ± 0.11; P = .012) and a larger mean RD of the global white-matter (0.00057 ± 0.00002 vs 0.00056 ± 0.00002; P = .038) than controls, at specific areas including the corpus callosum, anterior thalamic radiation, and forceps major. FA of the splenium of the corpus callosum was associated with maximum VAS latency (r = 0.493) and OA latency (r = -0.552). The Pain Catastrophizing Scale scores showed strong negative correlations with FA across those specific areas (r = -0.405). Those latencies during OA and white-matter metrics distinguished patients from controls ( P < .05). CONCLUSIONS Patients with chronic pain showed dysfunction of the white matter concerned with interhemispheric communication of sensorimotor information as well as descending corticothalamic modulation of pain in association with affective morbidity and altered temporal dynamics of pain perception. We suggest that an impaired interhemispheric modulation of pain, through the corpus callosum, might be a novel cerebral mechanism in chronification of pain.
Collapse
Affiliation(s)
- Atsushi Ito
- From the Department of Psychosomatic Dentistry, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Sushuang Yang
- Department of Anesthesiology, Jikei University Graduate School of Medicine, Tokyo, Japan
| | - Eri Shinto
- Department of Anesthesiology, Jikei University Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Shinto
- Department of Anesthesiology, Keio University Graduate School of Medicine, Tokyo, Japan
| | - Akira Toyofuku
- From the Department of Psychosomatic Dentistry, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Jiro Kurata
- From the Department of Psychosomatic Dentistry, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
- Department of Anesthesiology, Jikei University Graduate School of Medicine, Tokyo, Japan
- Department of Anesthesiology, Keio University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Antoniazzi E, Cavigioli C, Tang V, Zoccola C, Todisco M, Tassorelli C, Cosentino G. Effects of Repetitive Transcranial Magnetic Stimulation Applied over the Primary Motor Cortex on the Offset Analgesia Phenomenon. Life (Basel) 2025; 15:182. [PMID: 40003592 PMCID: PMC11856385 DOI: 10.3390/life15020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, we investigate the effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) applied over the left upper limb primary motor cortex (M1) on the offset analgesia (OA) phenomenon, a measure of endogenous pain modulation. In particular, we aim to determine whether rTMS influences OA differently in the forearm region, corresponding to the stimulated cortical area, compared to the trigeminal region. Twenty-two healthy volunteers underwent three experimental sessions: a baseline session without stimulation, an active rTMS session, and a sham rTMS session. Quantitative sensory testing (QST) paradigms, including warm and cold detection thresholds, heat pain threshold corresponding to a visual analogue scale (VAS) score of approximately 50-60 out of 100 (Pain50-60), and constant and offset trials, were assessed in both the forearm and trigeminal regions. The results revealed that active rTMS significantly enhanced the OA phenomenon in the forearm during the late phase, while no significant effects were observed in the trigeminal region. These findings suggest that rTMS may modulate central pain mechanisms in a body region-specific manner, potentially linked to the somatotopic organization of M1. This study points to possible mechanisms of action of rTMS for pain relief, highlighting the importance of region-specific effects in chronic pain treatment. Further research is needed to investigate the underlying mechanisms and clinical applicability of rTMS in patients with chronic pain conditions, especially when OA is compromised.
Collapse
Affiliation(s)
- Elisa Antoniazzi
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Camilla Cavigioli
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Vanessa Tang
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Clara Zoccola
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Massimiliano Todisco
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Giuseppe Cosentino
- Translational Neurophysiology Research Section, IRCCS Mondino Foundation, 27100 Pavia, Italy; (E.A.); (C.C.); (V.T.); (C.Z.); (M.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
3
|
Cosentino G, Antoniazzi E, Cavigioli C, Tang V, Tammam G, Zaffina C, Tassorelli C, Todisco M. Repetitive Transcranial Magnetic Stimulation of the Human Motor Cortex Modulates Processing of Heat Pain Sensation as Assessed by the Offset Analgesia Paradigm. J Clin Med 2023; 12:7066. [PMID: 38002678 PMCID: PMC10672427 DOI: 10.3390/jcm12227066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Offset analgesia (OA), which is defined as a disproportionately large reduction in pain perception following a small decrease in a heat stimulus, quantifies temporal aspects of endogenous pain modulation. In this study on healthy subjects, we aimed to (i) determine the Heat Pain Threshold (HPT) and the response to constant and dynamic heat stimuli assessing sensitization, adaptation and OA phenomena at the thenar eminence; (ii) evaluate the effects of high-frequency repetitive Transcranial Magnetic Stimulation (rTMS) of the primary motor cortex (M1) on these measures. Twenty-four healthy subjects underwent quantitative sensory testing before and after active or sham 10 Hz rTMS (1200 stimuli) of the left M1, during separate sessions. We did not observe any rTMS-related changes in the HPT or visual analogue scale (VAS) values recorded during the constant trial. Of note, at baseline, we did not find OA at the thenar eminence. Only after active rTMS did we detect significantly reduced VAS values during dynamic heat stimuli, indicating a delayed and attenuated OA phenomenon. rTMS of the left M1 may activate remote brain areas that belong to the descending pain modulatory and reward systems involved in the OA phenomenon. Our findings provide insights into the mechanisms by which rTMS of M1 could exert its analgesic effects.
Collapse
Affiliation(s)
- Giuseppe Cosentino
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Elisa Antoniazzi
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Camilla Cavigioli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Vanessa Tang
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giulia Tammam
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Chiara Zaffina
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Massimiliano Todisco
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
4
|
Colebaugh CA, Wilson JM, Flowers KM, Overstreet D, Wang D, Edwards RR, Chai PR, Schreiber KL. The Impact of Varied Music Applications on Pain Perception and Situational Pain Catastrophizing. THE JOURNAL OF PAIN 2023; 24:1181-1192. [PMID: 36646399 PMCID: PMC10329987 DOI: 10.1016/j.jpain.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/12/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
We evaluated how pain processing and situational pain catastrophizing differed between 2 music interventions (Unwind and favorite music) and a control condition (white noise). Healthy adults (n = 70) completed quantitative sensory testing (QST) measuring pressure pain threshold (PPTh) and tolerance (PPTol), heat pain threshold (HPTh), offset analgesia (OA), temporal summation of pain (TSP), and conditioned pain modulation (CPM). Participants completed 3 QST rounds with the presence of white noise (control condition), a relaxing music app (Unwind), and their favorite music, which were presented in a randomized order. The Situational Pain Catastrophizing Scale was completed after each round. Friedman tests and post hoc Wilcoxon signed-rank tests were used to compare pain processing and catastrophizing across the 3 conditions. Participants' PPTh, PPTol, and HPTh were significantly higher during the favorite music condition compared to the other 2 conditions, indicating lower pain sensitivity when listening to favorite music. In contrast, OA was lower in the favorite music condition. Although TSP and CPM were induced by the QST paradigm, these did not differ across the 3 conditions. Situational pain catastrophizing was also significantly lower during the favorite music condition. Several measures of pain sensitivity and situational pain catastrophizing were lower when listening to favorite music compared to relaxing music or white noise. More research is necessary to determine the mechanism(s) by which music modulates pain processing. PERSPECTIVE: This article presents evidence that participant-chosen favorite music can alter several aspects of nociceptive processing, including catastrophic thinking about pain, compared to white noise or relaxing music. Employing an individual's favorite music during episodic or procedural pain might represent a cost effective adjunctive analgesic strategy.
Collapse
Affiliation(s)
- Carin A Colebaugh
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Jenna M Wilson
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - K Mikayla Flowers
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Demario Overstreet
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dan Wang
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter R Chai
- Division of Medical Toxicology, Department of Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Psychosocial Oncology and Palliative Care, Dana Farber Cancer Institute, Boston, Massachusetts; The Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, Boston, Massachusetts; The Fenway Institute, Boston, Massachusetts
| | - Kristin L Schreiber
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Adamczyk WM, Szikszay TM, Nahman-Averbuch H, Skalski J, Nastaj J, Gouverneur P, Luedtke K. To Calibrate or not to Calibrate? A Methodological Dilemma in Experimental Pain Research. THE JOURNAL OF PAIN 2022; 23:1823-1832. [PMID: 35918020 DOI: 10.1016/j.jpain.2022.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/24/2022] [Accepted: 07/20/2022] [Indexed: 05/23/2023]
Abstract
To calibrate or not to calibrate? This question is raised by almost everyone designing an experimental pain study with supra-threshold stimulation. The dilemma is whether to individualize stimulus intensity to the pain threshold / supra-threshold pain level of each participant or whether to provide the noxious stimulus at a fixed intensity so that everyone receives the identical input. Each approach has unique pros and cons which need to be considered to i) accurately design an experiment, ii) enhance statistical inference in the given data and, iii) reduce bias and the influence of confounding factors in the individual study e.g., body composition, differences in energy absorption and previous experience. Individualization requires calibration, a procedure already irritating the nociceptive system but allowing to match the pain level across individuals. It leads to a higher variability of the stimulus intensity, thereby influencing the encoding of "noxiousness" by the central nervous system. Results might be less influenced by statistical phenomena such as ceiling/floor effects and the approach does not seem to rise ethical concerns. On the other hand, applying a fixed (standardized) intensity reduces the problem of intensity encoding leading to a large between-subjects variability in pain responses. Fixed stimulation intensities do not require pre-exposure. It can be proposed that one method is not preferable over another, however the choice depends on the study aim and the desired level of external validity. This paper discusses considerations for choosing the optimal approach for experimental pain studies and provides recommendations for different study designs. PERSPECTIVE: To calibrate pain or not? This dilemma is related to almost every experimental pain research. The decision is a trade-off between statistical power and greater control of stimulus encoding. The article decomposes both approaches and presents the pros and cons of either approach supported by data and simulation experiment.
Collapse
Affiliation(s)
- Waclaw M Adamczyk
- Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland; Institute of Health Sciences, Department of Physiotherapy, Pain & Exercise Research Luebeck (P.E.R.L.), University of Lübeck, Lübeck, Germany.
| | - Tibor M Szikszay
- Institute of Health Sciences, Department of Physiotherapy, Pain & Exercise Research Luebeck (P.E.R.L.), University of Lübeck, Lübeck, Germany
| | - Hadas Nahman-Averbuch
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Jacek Skalski
- Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Jakub Nastaj
- Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Philip Gouverneur
- Institute of Medical Informatics, University of Lübeck, Lübeck, Germany
| | - Kerstin Luedtke
- Institute of Health Sciences, Department of Physiotherapy, Pain & Exercise Research Luebeck (P.E.R.L.), University of Lübeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
6
|
Wang M, Tutt JO, Dorricott NO, Parker KL, Russo AF, Sowers LP. Involvement of the cerebellum in migraine. Front Syst Neurosci 2022; 16:984406. [PMID: 36313527 PMCID: PMC9608746 DOI: 10.3389/fnsys.2022.984406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/27/2022] [Indexed: 11/14/2022] Open
Abstract
Migraine is a disabling neurological disease characterized by moderate or severe headaches and accompanied by sensory abnormalities, e.g., photophobia, allodynia, and vertigo. It affects approximately 15% of people worldwide. Despite advancements in current migraine therapeutics, mechanisms underlying migraine remain elusive. Within the central nervous system, studies have hinted that the cerebellum may play an important sensory integrative role in migraine. More specifically, the cerebellum has been proposed to modulate pain processing, and imaging studies have revealed cerebellar alterations in migraine patients. This review aims to summarize the clinical and preclinical studies that link the cerebellum to migraine. We will first discuss cerebellar roles in pain modulation, including cerebellar neuronal connections with pain-related brain regions. Next, we will review cerebellar symptoms and cerebellar imaging data in migraine patients. Lastly, we will highlight the possible roles of the neuropeptide calcitonin gene-related peptide (CGRP) in migraine symptoms, including preclinical cerebellar studies in animal models of migraine.
Collapse
Affiliation(s)
- Mengya Wang
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Joseph O. Tutt
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - Krystal L. Parker
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
| | - Andrew F. Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States,Department of Neurology, University of Iowa, Iowa City, IA, United States,Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA, United States
| | - Levi P. Sowers
- Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA, United States,Department of Pediatrics, University of Iowa, Iowa City, IA, United States,*Correspondence: Levi P. Sowers
| |
Collapse
|
7
|
Szikszay TM, Lévénez JLM, Adamczyk WM, Carvalho GF, Luedtke K. Offset analgesia is increased intra-orally. J Oral Rehabil 2022; 49:993-1001. [PMID: 35841379 DOI: 10.1111/joor.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Offset analgesia (OA) is commonly used to quantify endogenous pain inhibition. However, the potential role of afferent inputs and the subsequent peripheral factors from different body areas on the underlying mechanisms are still unclear. OBJECTIVES The aim of this cross-sectional study was to compare the magnitude of OA in four different body areas representing a) glabrous and non-glabrous skin, b) trigeminal and extra-trigeminal areas, and c) intra- and extra-oral tissue. METHODS OA was assessed at the oral mucosa of the lower lip, at the skin of the cheek, the forearm and the palm of the hand in 32 healthy and pain-free participants. OA testing included two trials: (1) a constant trial (30 seconds of constant heat stimulation at an individualized temperature of Pain50 (pain intensity of 50 out of 100)), and (2) an offset trial (10 seconds of individualized Pain50 , followed by 5 seconds at Pain50 +1°C and 15 seconds at Pain50 ). Participants continuously rated their pain during each trial with a computerized visual analog scale. RESULTS A significant OA response was recorded at the oral mucosa (p<0.001, d=1.24), the cheek (p<0.001, d=0.84) and the forearm (p<0.001, d=1.04), but not at the palm (p=0.19, d=0.24). Significant differences were shown for OA recorded at the cheek versus the mucosa (p=0.02), and between palm and mucosa (p=0.007), but not between the remaining areas (p>0.05). CONCLUSION This study suggests that intra-oral endogenous pain inhibition assessed with OA is enhanced and supports the role of peripheral mechanisms contributing to the OA response.
Collapse
Affiliation(s)
- T M Szikszay
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Universität zu Lübeck, Lübeck, Germany
| | - J L M Lévénez
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Universität zu Lübeck, Lübeck, Germany
| | - W M Adamczyk
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Universität zu Lübeck, Lübeck, Germany.,Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - G F Carvalho
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Universität zu Lübeck, Lübeck, Germany
| | - K Luedtke
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Universität zu Lübeck, Lübeck, Germany
| |
Collapse
|
8
|
Li T, Zhang S, Ikeda E, Kobinata H. Functional connectivity modulations during offset analgesia in chronic pain patients: an fMRI study. Brain Imaging Behav 2022; 16:1794-1802. [PMID: 35314949 DOI: 10.1007/s11682-022-00652-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
Abstract
Patients with neuropathic pain and fibromyalgia showed reduced or absent offset analgesia (OA) response and attenuated cerebral activity in descending pain modulatory and reward systems in patients. However, neural network modifications of OA in chronic pain have not been determined. We enrolled 23 patients with various chronic pain and 17 age- and gender- matched healthy controls. All participants were given OA-related noxious thermal stimuli, including 3 repeats of offset analgesia paradigm at 46-47-46 °C and constant paradigm at 46 °C on the left volar forearm under whole-brain functional magnitude resonance imaging (fMRI). We evaluated magnitude of OA, examined OA modulated functional connectivity using psychophysiological interaction analysis and resting-state functional connectivity analysis and explored their behavioral correlations in patients compared with controls.Compared to controls, chronic pain patients showed smaller magnitude of OA (P = 0.047). OA modulated connectivity decreased between posterior cingulate cortex (PCC) and right medial prefrontal cortex (MPFC) in proportion to current chronic pain (P = 0.018); decreased between right pallidum and right thalamus, and increased between right caudate nucleus and left primary somatosensory cortex (P FDR < 0.05).The impaired PCC-MPFC connectivity might play an important role in dysfunction of OA and contribute to pain chronification.
Collapse
Affiliation(s)
- Tianjiao Li
- Department of Anesthesiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Shuo Zhang
- Department of Anesthesiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eri Ikeda
- Department of Anesthesiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Kobinata
- Department of Anesthesiology, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Alter BJ, Santosa H, Nguyen QH, Huppert TJ, Wasan AD. Offset analgesia is associated with opposing modulation of medial versus dorsolateral prefrontal cortex activations: A functional near-infrared spectroscopy study. Mol Pain 2022; 18:17448069221074991. [PMID: 35083928 PMCID: PMC9047820 DOI: 10.1177/17448069221074991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/02/2022] Open
Abstract
Offset analgesia is defined by a dramatic drop in perceived pain intensity with a relatively small decrease in noxious input. Although functional magnetic resonance imaging studies implicate subcortical descending inhibitory circuits during offset analgesia, the role of cortical areas remains unclear. The current study identifies cortical correlates of offset analgesia using functional near infrared spectroscopy (fNIRS). Twenty-four healthy volunteers underwent fNIRS scanning during offset (OS) and control (Con) heat stimuli applied to the forearm. After controlling for non-neural hemodynamic responses in superficial tissues, widespread increases in cortical oxygenated hemoglobin concentration were observed, reflecting cortical activation during heat pain. OS-Con contrasts revealed deactivations in bilateral medial prefrontal cortex (mPFC) and bilateral somatosensory cortex (SSC) associated with offset analgesia. Right dorsolateral prefrontal cortex (dlPFC) showed activation only during OS. These data demonstrate opposing cortical activation patterns during offset analgesia and support a model in which right dlPFC underlies ongoing evaluation of pain intensity change. With predictions of decreasing pain intensity, right dlPFC activation likely inhibits ascending noxious input via subcortical pathways resulting in SSC and mPFC deactivation. This study identifies cortical circuitry underlying offset analgesia and introduces the use of fNIRS to study pain modulation in an outpatient clinical environment.
Collapse
Affiliation(s)
- Benedict J. Alter
- Department of Anesthesiology and
Perioperative Medicine, University of
Pittsburgh, Pittsburgh, PA, USA
| | - Hendrik Santosa
- Department of Radiology, University of
Pittsburgh, Pittsburgh, PA, USA
| | - Quynh H. Nguyen
- Department of Anesthesiology and
Perioperative Medicine, University of
Pittsburgh, Pittsburgh, PA, USA
| | - Theodore J. Huppert
- Department of Electrical and
Computer Engineering, University of
Pittsburgh, Pittsburgh, PA, USA
| | - Ajay D. Wasan
- Department of Anesthesiology and
Perioperative Medicine, University of
Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of
Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Shulman J, Zurakowski D, Keysor J, Jervis K, Sethna NF. Offset analgesia identifies impaired endogenous pain modulation in pediatric chronic pain disorders. Pain 2021; 161:2852-2859. [PMID: 32658151 DOI: 10.1097/j.pain.0000000000001984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Offset analgesia (OA), a psychophysical test of endogenous pain inhibition, is diminished in many adult chronic pain disorders but OA has not been investigated in youth with chronic pain disorders. This study assessed OA responses in 30 youth with chronic primary and secondary pain disorders and 32 healthy controls. The OA, control, and constant thermal tests were evoked with an individualized noxious heat stimulus of approximately 50/100 mm on a visual analogue scale followed by 1°C offset temperature. This study also examined the association of OA responses with 2 self-report measures of pain sensitivity, the Central Sensitization Inventory (CSI) and Pain Sensitivity Questionnaire. Patients exhibited diminished capacity to activate OA with a reduction in ΔeVASc of 53 ± 29% vs controls 74 ± 24% (P = 0.003) even after multivariate regression adjusting for age, sex, and body mass index. Patients also showed decreased ability to habituate to a constant noxious heat stimulus compared to controls (P = 0.021). Central Sensitization Inventory scores showed excellent predictive accuracy in differentiating patients from controls (area under the curve = 0.95; 95% CI: 0.91-0.99) and CSI score ≥30 was identified as an optimal cutoff value. Pain Sensitivity Questionnaire scores did not differentiate patients from controls nor correlate with OA. In this study, 60% of youth with chronic pain showed reduced capacity for endogenous pain inhibition.
Collapse
Affiliation(s)
- Julie Shulman
- Department of Physical and Occupational Therapy, Boston Children's Hospital, Boston, MA, United States.,Interprofessional PhD in Rehabilitation Science Program, MGH Institute of Health Professions, Boston, MA, United States
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Anesthesiology, Harvard Medical School, Boston, MA, United States
| | - Julie Keysor
- Interprofessional PhD in Rehabilitation Science Program, MGH Institute of Health Professions, Boston, MA, United States
| | - Kelsey Jervis
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Navil F Sethna
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Anesthesiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Offset analgesia and onset hyperalgesia with different stimulus ranges. Pain Rep 2021; 6:e914. [PMID: 33786407 PMCID: PMC7997128 DOI: 10.1097/pr9.0000000000000914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 11/25/2022] Open
Abstract
A comparison between the effects of offset analgesia and onset hyperalgesia and how these effects relate to the stimulus range of thermal stimulation. Introduction: Offset analgesia (OA), a large reduction in pain after a brief increase in intensity of an otherwise stable painful stimulus, has been established by a large body of research. But the opposite effect, onset hyperalgesia (OH), a disproportional hyperalgesic response after a briefly decreased intensity of a painful stimulus, has only been investigated in one previous study. Objectives: The aim of this study was to induce OA and OH in healthy participants and explore the effects of different stimulus ranges (increase/decrease of temperature) on OA and OH. Methods: A total of 62 participants were tested in 2 identical experiments. Offset analgesia and OH conditions included 2 different temperature deviations (±1°C/±2°C) from initial temperature and were compared with a constant temperature (control). Results: Offset analgesia was successfully elicited in OA1°C in experiment 1, and in OA1°C and OA2°C in experiment 2. Results indicate a continuous stimulus–response relationship between the stimulus range and the resulting hypoalgesic response. Onset hyperalgesia was only elicited in OH2°C in experiment 1. Exploratory analysis showed that the lack of OH response in experiment 2 could be explained by sex differences, and that OA and OH responses were only weakly correlated. Conclusions: The asymmetry between pain responses after a brief temperature increase and decrease suggests that different mechanisms are involved in the pain responses to increasing and decreasing temperature. This asymmetry may also be explained by high temperatures in OA condition (+1°C/+2°C above baseline) that could be seen as salient “learning signals,” which augment the response to following changes in temperature.
Collapse
|
12
|
Lie MU, Winsvold B, Gjerstad J, Matre D, Pedersen LM, Heuch I, Zwart JA, Nilsen KB. The association between selected genetic variants and individual differences in experimental pain. Scand J Pain 2021; 21:163-173. [PMID: 33108341 DOI: 10.1515/sjpain-2020-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The underlying mechanisms for individual differences in experimental pain are not fully understood, but genetic susceptibility is hypothesized to explain some of these differences. In the present study we focus on three genetic variants important for modulating experimental pain related to serotonin (SLC6A4 5-HTTLPR/rs25531 A>G), catecholamine (COMT rs4680 Val158Met) and opioid (OPRM1 rs1799971 A118G) signaling. We aimed to investigate associations between each of the selected genetic variants and individual differences in experimental pain. METHODS In total 356 subjects (232 low back pain patients and 124 healthy volunteers) were genotyped and assessed with tests of heat pain threshold, pressure pain thresholds, heat pain tolerance, conditioned pain modulation (CPM), offset analgesia, temporal summation and secondary hyperalgesia. Low back pain patients and healthy volunteers did not differ in regards to experimental test results or allelic frequencies, and were therefore analyzed as one group. The associations were tested using analysis of variance and the Kruskal-Wallis test. RESULTS No significant associations were observed between the genetic variants (SLC6A4 5-HTTLPR/rs25531 A>G, COMT rs4680 Val158Met and OPRM1 rs1799971 A118G) and individual differences in experimental pain (heat pain threshold, pressure pain threshold, heat pain tolerance, CPM, offset analgesia, temporal summation and secondary hyperalgesia). CONCLUSIONS The selected pain-associated genetic variants were not associated with individual differences in experimental pain. Genetic variants well known for playing central roles in pain perception failed to explain individual differences in experimental pain in 356 subjects. The finding is an important contribution to the literature, which often consists of studies with lower sample size and one or few experimental pain assessments.
Collapse
Affiliation(s)
| | - Bendik Winsvold
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Johannes Gjerstad
- National Institute of Occupational Health, Department of Work Psychology and Physiology, Oslo, Norway.,Department of Bioscience, University of Oslo, Oslo, Norway
| | - Dagfinn Matre
- National Institute of Occupational Health, Department of Work Psychology and Physiology, Oslo, Norway
| | - Linda M Pedersen
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Ingrid Heuch
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - John-Anker Zwart
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
13
|
Alter BJ, Aung MS, Strigo IA, Fields HL. Onset hyperalgesia and offset analgesia: Transient increases or decreases of noxious thermal stimulus intensity robustly modulate subsequent perceived pain intensity. PLoS One 2020; 15:e0231124. [PMID: 33290407 PMCID: PMC7723268 DOI: 10.1371/journal.pone.0231124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Reported pain intensity depends not only on stimulus intensity but also on previously experienced pain. A painfully hot temperature applied to the skin evokes a lower subjective pain intensity if immediately preceded by a higher temperature, a phenomenon called offset analgesia. Previous work indicated that prior pain experience can also increase subsequent perceived pain intensity. Therefore, we examined whether a given noxious stimulus is experienced as more intense when it is preceded by an increase from a lower temperature. Using healthy volunteer subjects, we observed a disproportionate increase in pain intensity at a given stimulus intensity when this intensity is preceded by a rise from a lower intensity. This disproportionate increase is similar in magnitude to that of offset analgesia. We call this effect onset hyperalgesia. Control stimuli, in which a noxious temperature is held constant, demonstrate that onset hyperalgesia is distinct from receptor or central sensitization. The absolute magnitudes of offset analgesia and onset hyperalgesia correlate with each other but not with the noxious stimulus temperature. Finally, the magnitude of both offset analgesia and onset hyperalgesia depends on preceding temperature changes. Overall, this study demonstrates that the perceptual effect of a noxious thermal stimulus is influenced in a bidirectional manner depending upon both the intensity and direction of change of the immediately preceding thermal stimulus.
Collapse
Affiliation(s)
- Benedict J. Alter
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Mya Sandi Aung
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
| | - Irina A. Strigo
- San Francisco VA Health Care System & Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
| | - Howard L. Fields
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
14
|
Lunde CE, Szabo E, Holmes SA, Borsook D, Sieberg CB. Commentary: Novel Use of Offset Analgesia to Assess Adolescents and Adults with Treatment Resistant Endometriosis-Associated Pain. J Pain Res 2020; 13:2775-2782. [PMID: 33204144 PMCID: PMC7660453 DOI: 10.2147/jpr.s276135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background and Objective Endometriosis, affecting approximately 176 million adults and adolescents worldwide, is a debilitating condition in which uterine tissue grows outside the uterus. The condition costs the US economy approximately $78 billion annually in pain-related disability. By understanding the neural underpinnings of endometriosis-associated pain (EAP) and risk factors for chronification, translational research methods could lessen diagnostic delays and maximize successful pain remediation. This can be accomplished by the novel use of a known method, offset analgesia (OA), to better elucidate the neural mechanisms that may contribute to and maintain EAP. This commentary will provide justification and rationale for the use of OA in the study of EAP. Conclusion Utilizing an OA paradigm in patients with endometriosis, especially adolescents, may (1) provide insight into neural mechanisms contributing to pain maintenance, which could capture those at-risk for the transition to chronic pelvic pain, (2) provide a metric for the development of future centrally mediated treatment options for this population, and (3) elucidate the brain changes that result in resistance to treatment and pain chronification.
Collapse
Affiliation(s)
- Claire E Lunde
- Center for Pain and the Brain (P.A.I.N. Group), Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.,Biobehavioral Pediatric Pain Lab, Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA.,Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, Oxford, Oxfordshire, UK
| | - Edina Szabo
- Center for Pain and the Brain (P.A.I.N. Group), Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Anesthesiology, Harvard Medical School, Boston, MA, USA
| | - Scott A Holmes
- Center for Pain and the Brain (P.A.I.N. Group), Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Anesthesiology, Harvard Medical School, Boston, MA, USA
| | - David Borsook
- Center for Pain and the Brain (P.A.I.N. Group), Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Anesthesiology, Harvard Medical School, Boston, MA, USA
| | - Christine B Sieberg
- Center for Pain and the Brain (P.A.I.N. Group), Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.,Biobehavioral Pediatric Pain Lab, Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Sitsen E, van Velzen M, de Rover M, Dahan A, Niesters M. Hyperalgesia and Reduced Offset Analgesia During Spinal Anesthesia. J Pain Res 2020; 13:2143-2149. [PMID: 33061546 PMCID: PMC7519835 DOI: 10.2147/jpr.s258533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/11/2020] [Indexed: 01/05/2023] Open
Abstract
Introduction Spinal anesthesia induces short-term deafferentation and causes connectivity changes in brain areas involved in endogenous pain modulation. We determined whether spinal anesthesia alters pain sensitivity and offset analgesia. Offset analgesia is a manifestation of endogenous pain modulation and characterized by profound analgesia upon a small decrease in noxious stimulation. Methods In this randomized controlled crossover trial, static thermal pain responses and offset analgesia were obtained in 22 healthy male volunteers during spinal anesthesia and control conditions (absence of spinal anesthesia). Pain responses and offset analgesia were measured on a remote skin area above the upper level of anesthesia (C8/Th1). Results Following spinal injection of the local anesthetic, the average maximum anesthesia level was Th6. Static pain scores at C8/Th1 were higher during spinal anesthesia compared to control: 59.1 ± 15.0 mm (spinal anesthesia) versus 51.7 ± 19.7 mm (control; p = 0.03). Offset analgesia responses were decreased during spinal analgesia: pain score decrease 79 ± 27% (spinal anesthesia) versus 90 ± 17% (control; p = 0.016). Discussion We confirmed that spinal anesthesia-induced deafferentation causes hyperalgesic responses to noxious thermal stimulation and reduced offset analgesia at dermatomes remote and above the level of deafferentation. While these data suggest that the reduction of offset analgesia has a central origin, related to alterations in brain areas involved in inhibitory pain control, we cannot exclude alternative (peripheral) mechanisms. Trial Registration Dutch Cochrane Center under identifier (www.trialregister.nl) NL3874.
Collapse
Affiliation(s)
- Elske Sitsen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, RC 2300, the Netherlands
| | - Monique van Velzen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, RC 2300, the Netherlands
| | - Mischa de Rover
- Department of Anesthesiology, Leiden University Medical Center, Leiden, RC 2300, the Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, RC 2300, the Netherlands
| | - Marieke Niesters
- Department of Anesthesiology, Leiden University Medical Center, Leiden, RC 2300, the Netherlands
| |
Collapse
|
16
|
Forstenpointner J, Berry D, Baron R, Borsook D. The cornucopia of central disinhibition pain - An evaluation of past and novel concepts. Neurobiol Dis 2020; 145:105041. [PMID: 32800994 DOI: 10.1016/j.nbd.2020.105041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/18/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Central disinhibition (CD), as applied to pain, decreases thresholds of endogenous systems. This provokes onset of spontaneous or evoked pain in an individual beyond the ability of the nervous system to inhibit pain resulting from a disease or tissue damage. The original CD concept as proposed by Craig entails a shift from the lateral pain pathway (i.e. discriminative pain processing) towards the medial pain pathway (i.e. emotional pain processing), within an otherwise neurophysiological intact environment. In this review, the original CD concept as proposed by Craig is extended by the primary "nociceptive pathway damage - CD" concept and the secondary "central pathway set point - CD". Thereby, the original concept may be transferred into anatomical and psychological non-functional conditions. We provide examples for either primary or secondary CD concepts within different clinical etiologies as well as present surrogate models, which directly mimic the underlying pathophysiology (A-fiber block) or modulate the CD pathway excitability (thermal grill). The thermal grill has especially shown promising advancements, which may be useful to examine CD pathway activation in the future. Therefore, within this topical review, a systematic review on the thermal grill illusion is intended to stimulate future research. Finally, the authors review different mechanism-based treatment approaches to combat CD pain.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany; Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| | - Delany Berry
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
|
18
|
Derbyshire SWG, Long VJE, Asplund CL. Stepwise increasing sequential offsets cannot be used to deliver high thermal intensities with little or no perception of pain. J Neurophysiol 2019; 122:729-736. [PMID: 31242398 DOI: 10.1152/jn.00007.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Offset analgesia (OA) is the disproportionate decrease in pain experience following a slight decrease in noxious heat stimulus intensity. We tested whether sequential offsets would allow noxious temperatures to be reached with little or no perception of pain. Forty-eight participants continuously rated their pain experience during trials containing trains of heat stimuli delivered by Peltier thermode. Stimuli were adjusted through either stepwise sequential increases of 2°C and decreases of 1°C or direct step increases of 1°C up to a maximum of 46°C. Step durations (1, 2, 3, or 6 s) varied by trial. Pain ratings generally followed presented temperature, regardless of step condition or duration. For 6-s steps, OA was observed after each decrease, but the overall pain trajectory was unchanged. We found no evidence that sequential offsets could allow for little pain perception during noxious temperature presentation.NEW & NOTEWORTHY Offset analgesia is the disproportionate decrease in pain experience following a slight decrease in noxious heat stimulus intensity. We tested whether sequential offsets would allow noxious temperatures to be reached with little or no perception of pain. We found little evidence of such overall analgesia. In contrast, we observed analgesic effects after each offset with long-duration stimuli, even with relatively low-temperature noxious stimuli.
Collapse
Affiliation(s)
- Stuart W G Derbyshire
- Department of Psychology, National University of Singapore, Singapore.,Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Victoria Jane En Long
- Division of Social Sciences, Yale-NUS College, National University of Singapore, Singapore
| | - Christopher L Asplund
- Department of Psychology, National University of Singapore, Singapore.,Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Social Sciences, Yale-NUS College, National University of Singapore, Singapore.,N.1 Institute for Health, National University of Singapore, Singapore
| |
Collapse
|
19
|
Moana‐Filho EJ, Herrero Babiloni A, Nisley A. Endogenous pain modulation assessed with offset analgesia is not impaired in chronic temporomandibular disorder pain patients. J Oral Rehabil 2019; 46:1009-1022. [DOI: 10.1111/joor.12832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/29/2019] [Accepted: 06/09/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Estephan Jose Moana‐Filho
- Division of TMD and Orofacial Pain, School of Dentistry University of Minnesota Minneapolis Minnesota USA
| | - Alberto Herrero Babiloni
- Division of TMD and Orofacial Pain, School of Dentistry University of Minnesota Minneapolis Minnesota USA
| | - Aaron Nisley
- Division of TMD and Orofacial Pain, School of Dentistry University of Minnesota Minneapolis Minnesota USA
| |
Collapse
|
20
|
Beck B, Gnanasampanthan S, Iannetti GD, Haggard P. No temporal contrast enhancement of simple decreases in noxious heat. J Neurophysiol 2019; 121:1778-1786. [PMID: 30840535 PMCID: PMC6589718 DOI: 10.1152/jn.00335.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Offset analgesia (OA) studies have found that small decreases in the intensity of a tonic noxious heat stimulus yield a disproportionately large amount of pain relief. In the classic OA paradigm, the decrease in stimulus intensity is preceded by an increase of equal size from an initial noxious level. Although the majority of researchers believe this temporal sequence of two changes is important for eliciting OA, it has also been suggested that the temporal contrast mechanism underlying OA may enhance detection of simple, isolated decreases in noxious heat. To test whether decreases in noxious heat intensity, by themselves, are perceived better than increases of comparable sizes, we used an adaptive two-interval alternative forced choice task to find perceptual thresholds for increases and decreases in radiant and contact heat. Decreases in noxious heat were more difficult to perceive than increases of comparable sizes from the same initial temperature of 45°C. In contrast, decreases and increases were perceived equally well within a common range of noxious temperatures (i.e., when increases started from 45°C and decreases started from 47°C). In another task, participants rated the pain intensity of heat stimuli that randomly and unpredictably increased, decreased, or remained constant. Ratings of unpredictable stimulus decreases also showed no evidence of perceptual enhancement. Our results demonstrate that there is no temporal contrast enhancement of simple, isolated decreases in noxious heat intensity. Combined with previous OA findings, they suggest that long-lasting noxious stimuli that follow an increase-decrease pattern may be important for eliciting the OA effect. NEW & NOTEWORTHY Previous research suggested that a small decrease in noxious heat intensity feels surprisingly large because of sensory enhancement of noxious stimulus offsets (a simplified form of “offset analgesia”). Using a two-alternative forced choice task where participants detected simple increases or decreases in noxious heat, we showed that decreases in noxious heat, by themselves, are no better perceived than increases of comparable sizes. This suggests that a decrease alone is not sufficient to elicit offset analgesia.
Collapse
Affiliation(s)
- Brianna Beck
- Institute of Cognitive Neuroscience, University College London , London , United Kingdom
| | | | - Gian Domenico Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London , London , United Kingdom
| |
Collapse
|
21
|
The Magnitude of Offset Analgesia as a Measure of Endogenous Pain Modulation in Healthy Participants and Patients With Chronic Pain. Clin J Pain 2019; 35:189-204. [DOI: 10.1097/ajp.0000000000000657] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Nissen TD, Mørch CD, Arendt-Nielsen L, Drewes AM, Olesen AE. Offset analgesia is not affected by cold pressor induced analgesia. Scand J Pain 2018; 18:695-701. [PMID: 30307901 DOI: 10.1515/sjpain-2018-0082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/16/2018] [Indexed: 11/15/2022]
Abstract
Background and aims Offset analgesia (OA) is a pain modulating mechanism described as a disproportionately large decrease in pain intensity evoked by a minor decrease in stimulus intensity. Precise mechanisms of OA are still not elucidated and studies are needed to evaluate factors modulating OA. The aim of this study was to investigate OA before and during tonic cold pain (thought to induce descending inhibition), in a group of healthy volunteers. Methods A randomized, crossover study was performed in 17 healthy participants (8 males and 9 females). The OA paradigm lasted 35 s and was induced by the traditional method using thermal stimulation applied to the forearm. A constant control heat stimulus (CTL) paradigm was used as control to assess adaptation. Pain intensity was assessed continuously. For induction of tonic cold pain, the participants immersed their hand into 2°C water for 2 min. After 1 min and 25 s, the heat stimulation (OA or CTL paradigm) was repeated to assess the modulatory effect of the cold pressor test. Results It was possible to induce OA both before and during the cold pressor test. Tonic cold pain modulated the peak pain reported during both the OA (p=0.015) and CTL paradigms (p=0.001) reflecting endogenous pain modulation. However, the magnitude of OA was not modulated by tonic cold pain (p>0.05). Conclusions The offset analgesia magnitude was not modulated by simultaneously tonic cold pain, thought to reflect another endogenous pain modulation mechanism. Implications Neither offset analgesia magnitude nor adaptation were modulated by cold pressor induced endogenous analgesia. This could be explained by the fact, that offset analgesia was already at maximum in healthy participants. Hence, offset analgesia may not be a suitable assessment tool to investigate modulation induced by experimental methods or pharmacology in healthy participants.
Collapse
Affiliation(s)
- Thomas Dahl Nissen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Carsten Dahl Mørch
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Anne Estrup Olesen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Medicinerhuset, Mølleparkvej 4, 3rd floor, DK-9000 Aalborg, Denmark, Phone: +45 9766 0535.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Zhang S, Li T, Kobinata H, Ikeda E, Ota T, Kurata J. Attenuation of offset analgesia is associated with suppression of descending pain modulatory and reward systems in patients with chronic pain. Mol Pain 2018; 14:1744806918767512. [PMID: 29592786 PMCID: PMC5882045 DOI: 10.1177/1744806918767512] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Offset analgesia is a disproportionate decrease of pain perception following a slight decrease of noxious thermal stimulus and attenuated in patients with neuropathic pain. We examined offset analgesia in patients with heterogeneous chronic pain disorders and used functional magnetic resonance imaging to explore modification of cerebral analgesic responses in comparison with healthy controls. Results We recruited seventeen patients with chronic pain and seventeen age-, sex-matched healthy controls. We gave a noxious thermal stimulation paradigm including offset analgesia and control stimuli on the left volar forearm, while we obtained a real-time continuous pain rating and a whole-brain functional magnetic resonance imaging. Baseline, first plateau (5 s), increment (5 s), and second plateau (20 s) temperatures of offset analgesia stimulus were set at 32°C, 46°C, 47°C, and 46°C, respectively. Control stimulus included 30-s 46°C stimulus or only the first 10 s of offset analgesia stimulus. We evaluated magnitude of offset analgesia, analyzed cerebral activation by thermal stimulation, and further compared offset analgesia-related activation between the groups. Magnitude of offset analgesia was larger in controls than in patients (median: 28.9% (interquartile range: 11.0–56.0%) vs. 19.0% (4.2–48.7%), p = 0.047). During the second plateau, controls showed a larger blood oxygenation level-dependent activation than patients at the putamen, anterior cingulate, dorsolateral prefrontal cortices, nucleus accumbens, brainstem, and medial prefrontal cortex (p < 0.05), which are known to mediate either of descending pain modulation or reward responses. Offset analgesia-related activity at the anterior cingulate cortex was negatively correlated with neuropathic component of pain in patients with chronic pain (p = 0.004). Conclusions Attenuation of offset analgesia was associated with suppressed activation of the descending pain modulatory and reward systems in patients with chronic pain, at least in the studied cohort. The present findings might implicate both behavioral and cerebral plastic alterations contributing to chronification of pain. Clinical trial registry: The Japanese clinical trials registry (UMIN-CTR, No. UMIN000011253; http://www.umin.ac.jp/ctr/)
Collapse
Affiliation(s)
- Shuo Zhang
- 1 Department of Anesthesiology, 92190 Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences , Japan
| | - Tianjiao Li
- 1 Department of Anesthesiology, 92190 Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences , Japan
| | - Hiroyuki Kobinata
- 1 Department of Anesthesiology, 92190 Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences , Japan
| | - Eri Ikeda
- 1 Department of Anesthesiology, 92190 Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences , Japan
| | - Takashi Ota
- 1 Department of Anesthesiology, 92190 Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences , Japan
| | - Jiro Kurata
- 2 Department of Anesthesiology and Pain Clinic, 13100 Tokyo Medical and Dental University Hospital of Medicine, Japan
| |
Collapse
|
24
|
Sprenger C, Stenmans P, Tinnermann A, Büchel C. Evidence for a spinal involvement in temporal pain contrast enhancement. Neuroimage 2018; 183:788-799. [PMID: 30189340 DOI: 10.1016/j.neuroimage.2018.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/19/2018] [Accepted: 09/02/2018] [Indexed: 12/25/2022] Open
Abstract
Spatiotemporal filtering and amplification of sensory information at multiple levels during the generation of perceptual representations is a fundamental processing principle of the nervous system. While for the visual and auditory system temporal filtering of sensory signals has been noticed for a long time, respective contrast mechanisms within the nociceptive system became only recently subject of investigations, mainly in the context of offset analgesia (OA) subsequent to noxious stimulus decreases. In the present study we corroborate in a first experiment the assumption that offset analgesia involves a central component by showing that an OA-like effect accounting for 74% of a corresponding OA reference can be evoked by decomposing the stimulus offset into two separate box-car stimuli applied within the same dermatome but to separate populations of primary afferent neurons. In order to draw conclusions about the levels of the CNS at which temporal filtering of nociceptive information takes place during OA we investigate in a second experiment neuronal activity in the spinal cord during a painful thermal stimulus offset employing high-resolution fMRI in healthy volunteers. Pain-related BOLD responses in the spinal cord were significantly reduced during OA and their time course followed widely behavioral hypoalgesia, but not the thermal stimulation profile. In summary, the results suggest that temporal pain contrast enhancement during OA comprises a central mechanism and this mechanism becomes already effective at the level of the spinal cord.
Collapse
Affiliation(s)
- Christian Sprenger
- Department of Systems Neuroscience, University-Medical-Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Philip Stenmans
- Department of Systems Neuroscience, University-Medical-Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Alexandra Tinnermann
- Department of Systems Neuroscience, University-Medical-Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University-Medical-Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
25
|
Olesen AE, Nissen TD, Nilsson M, Lelic D, Brock C, Christrup LL, Drewes AM. Offset Analgesia and The Impact of Treatment with Oxycodone and Venlafaxine: A Placebo-Controlled, Randomized Trial in Healthy Volunteers. Basic Clin Pharmacol Toxicol 2018; 123:727-731. [DOI: 10.1111/bcpt.13078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/20/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Anne E. Olesen
- Mech-Sense; Department of Gastroenterology & Hepatology; Aalborg University Hospital; Aalborg Denmark
- Department of Clinical Medicine; Aalborg University; Aalborg Denmark
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Thomas D. Nissen
- Mech-Sense; Department of Gastroenterology & Hepatology; Aalborg University Hospital; Aalborg Denmark
| | - Matias Nilsson
- Mech-Sense; Department of Gastroenterology & Hepatology; Aalborg University Hospital; Aalborg Denmark
| | - Dina Lelic
- Mech-Sense; Department of Gastroenterology & Hepatology; Aalborg University Hospital; Aalborg Denmark
| | - Christina Brock
- Mech-Sense; Department of Gastroenterology & Hepatology; Aalborg University Hospital; Aalborg Denmark
- Department of Clinical Medicine; Aalborg University; Aalborg Denmark
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Lona L. Christrup
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Asbjørn M. Drewes
- Mech-Sense; Department of Gastroenterology & Hepatology; Aalborg University Hospital; Aalborg Denmark
- Department of Clinical Medicine; Aalborg University; Aalborg Denmark
| |
Collapse
|
26
|
Affiliation(s)
- Steven E. Harte
- Department of Anesthesiology Chronic Pain and Fatigue Research Center University of Michigan Ann Arbor Michigan
| | - Richard E. Harris
- Department of Anesthesiology Chronic Pain and Fatigue Research Center University of Michigan Ann Arbor Michigan
| | - Daniel J. Clauw
- Department of Anesthesiology Chronic Pain and Fatigue Research Center University of Michigan Ann Arbor Michigan
| |
Collapse
|
27
|
Abstract
Offset analgesia (OA) represents a disproportionately large decrease of pain perception after a brief, temporary increment of thermal pain stimulus and was reported attenuated in patients with neuropathic pain. We examined whether OA depends on the increment duration before offset, and whether individual features of OA distinguish patients with chronic pain and healthy controls. We used a Peltier-type thermal stimulator and OA paradigms including 5-, 10-, or 15-s duration of 1°C-increment (T2) over 45°C. We first examined OA response, on the left volar forearm, at 3 different T2's in 40 healthy volunteers, and OA and constant stimulus responses in 12 patients with chronic pain and 12 matched healthy controls. We measured magnitude of OA ([INCREMENT]OA) and maximum visual analogue scale (VAS) latency (time to peak VAS) during constant stimulus for each individual. Pain perception kinetics were compared with analysis of variance and sought for correlations with psychophysical parameters with a significance threshold at P < 0.05. In healthy controls, longer T2 at 10 or 15 seconds resulted in larger [INCREMENT]OA compared with T2 at 5 seconds (P = 0.04). In patients, [INCREMENT]OA was significantly smaller than controls at T2 = 5 or 10 seconds (P < 0.05) but grew comparable at T2 = 15 seconds with controls. Maximum VAS latency was longer in patients than in controls and negatively correlated with [INCREMENT]OA in patients. An OA index ([INCREMENT]OA/[maximum VAS latency]) proved diagnostic of chronic pain with an area under the receiver operating characteristic curve at 0.897. Patients with chronic pain showed impairment of OA and reduced temporal sharpening of pain perception, which might imply possible disturbance of the endogenous pain modulatory system.
Collapse
|
28
|
Ligato D, Petersen K, Mørch C, Arendt-Nielsen L. Offset analgesia: The role of peripheral and central mechanisms. Eur J Pain 2018; 22:142-149. [DOI: 10.1002/ejp.1110] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- D. Ligato
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - K.K. Petersen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - C.D. Mørch
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| | - L. Arendt-Nielsen
- Center for Sensory-Motor Interaction (SMI); Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Denmark
| |
Collapse
|
29
|
Naugle KM, Cruz-Almeida Y, Fillingim RB, Riley JL. Loss of Temporal Inhibition of Nociceptive Information Is Associated With Aging and Bodily Pain. THE JOURNAL OF PAIN 2017; 18:1496-1504. [PMID: 28847735 DOI: 10.1016/j.jpain.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
Abstract
An age-related decline in endogenous pain inhibitory processes likely places older adults at an increased risk for chronic pain. Limited research indicates that older adults may be characterized by deficient offset analgesia, an inhibitory temporal sharpening mechanism that increases the detectability of minor decreases in noxious stimulus intensity. The primary purpose of the study was to examine age differences in offset analgesia in community-dwelling younger, middle-aged, and older adults. An additional aim of the study was to determine whether the magnitude of offset analgesia predicted self-reported bodily pain. Eighty-seven younger adults, 42 middle-aged adults, and 60 older adults completed 4 offset analgesia trials and 3 constant temperature trials in which a noxious heat stimulus was applied to the volar forearm for 40 seconds. The offset trials consisted of 3 continuous phases: an initial 10-second painful stimulus, either a 1.0°C or .4°C increase in temperature from the initial 10-second painful stimulus for 10 seconds, and either a 1.0°C or .4°C decrease back to the initial testing temperature for 20 seconds. During each trial, subjects rated pain intensity continuously using an electronic visual analog scale (0-100). All subjects also completed the Short-Form Health Survey-36 including the Bodily Pain subscale. The results indicated that older and middle-aged adults showed reduced offset analgesia compared with younger adults in the 1.0°C and .4°C offset trials. Furthermore, the magnitude of offset analgesia predicted self-reported bodily pain, with those exhibiting reduced offset analgesia reporting greater bodily pain. Dysfunction of this endogenous inhibitory system could increase the risk of developing chronic pain for middle-aged and older adults. PERSPECTIVE Older and middle-aged adults showed reduced offset analgesia compared with younger adults. The significant association between reduced offset analgesia and pain in daily life supports the notion that pain modulatory deficits are associated with not just a chronic pain condition but with the experience of pain in general.
Collapse
Affiliation(s)
- Kelly M Naugle
- Department of Kinesiology, School of Physical Education and Tourism Management, Indiana University Purdue University, Indianapolis, Indiana
| | - Yenisel Cruz-Almeida
- Department of Aging & Geriatric Research and Neuroscience, College of Medicine, Institute on Aging, University of Florida, Gainesville, Florida; College of Dentistry and Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida
| | - Roger B Fillingim
- College of Dentistry and Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida
| | - Joseph L Riley
- College of Dentistry and Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida.
| |
Collapse
|
30
|
Van Den Houte M, Van Oudenhove L, Bogaerts K, Van Diest I, Van den Bergh O. Endogenous Pain Modulation: Association with Resting Heart Rate Variability and Negative Affectivity. PAIN MEDICINE 2017; 19:1587-1596. [DOI: 10.1093/pm/pnx165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Lukas Van Oudenhove
- Translational Research Center for Gastrointestinal Disorders (TARGID), Faculty of Medicine, University of Leuven, Leuven, Belgium
| | - Katleen Bogaerts
- Health Psychology, Faculty of Psychology and Educational Sciences
| | - Ilse Van Diest
- Health Psychology, Faculty of Psychology and Educational Sciences
| | | |
Collapse
|