1
|
Ran J, Zhou M, Wen H. Artificial intelligence in inflammatory bowel disease. Saudi J Gastroenterol 2025:00936815-990000000-00126. [PMID: 40275746 DOI: 10.4103/sjg.sjg_46_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
ABSTRACT Inflammatory bowel disease (IBD) is a complex condition influenced by various intestinal factors. Advances in next-generation sequencing, high-throughput omics, and molecular network technologies have significantly accelerated research in this field. The emergence of artificial intelligence (AI) has further enhanced the efficient utilization and interpretation of datasets, enabling the discovery of clinically actionable insights. AI is now extensively applied in gastroenterology, where it aids in endoscopic analyses, including the diagnosis of colorectal cancer, precancerous polyps, gastrointestinal inflammatory lesions, and bleeding. Additionally, AI supports clinicians in patient stratification, predicting disease progression and treatment responses, and adjusting treatment plans in a timely manner. This approach not only reduces healthcare costs but also improves patient health and safety. This review outlines the principles of AI, the current research landscape, and future directions for its applications in IBD, with the goal of advancing targeted treatment strategies.
Collapse
Affiliation(s)
- Jiaxuan Ran
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | | | | |
Collapse
|
2
|
Liu S, Liu Y, Li M, Shang S, Cao Y, Shen X, Huang C. Artificial intelligence in autoimmune diseases: a bibliometric exploration of the past two decades. Front Immunol 2025; 16:1525462. [PMID: 40330462 PMCID: PMC12052778 DOI: 10.3389/fimmu.2025.1525462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/27/2025] [Indexed: 05/08/2025] Open
Abstract
Objective Autoimmune diseases have long been recognized for their intricate nature and elusive mechanisms, presenting significant challenges in both diagnosis and treatment. The advent of artificial intelligence technology has opened up new possibilities for understanding, diagnosing, predicting, and managing autoimmune disorders. This study aims to explore the current state and emerging trends in the field through bibliometric analysis, providing guidance for future research directions. Methods The study employed the Web of Science Core Collection database for data acquisition and performed bibliometric analysis using CiteSpace, HistCite Pro, and VOSviewer. Results Over the past two decades, 1,695 publications emerged in this research field, including 1,409 research articles and 286 reviews. This investigation unveils the global development landscape predominantly led by the United States and China. The research identifies key institutions, such as Brigham & Women's Hospital, influential journals like the Annals of the Rheumatic Diseases, distinguished authors including Katherine P. Liao, and pivotal articles. It visually maps out the research clusters' evolutionary path over time and explores their applications in patient identification, risk factors, prognosis assessment, diagnosis, classification of disease subtypes, monitoring and decision support, and drug discovery. Conclusion AI is increasingly recognized for its potential in the field of autoimmune diseases, yet it continues to face numerous challenges, including insufficient model validation and difficulties in data integration and computational power. Significant advancements have been demanded to enhance diagnostic precision, improve treatment methodologies, and establish robust frameworks for data protection, thereby facilitating more effective management of these complex conditions.
Collapse
Affiliation(s)
- Sidi Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Ming Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Shuangshuang Shang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Yunxiang Cao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Xi Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Chuanbing Huang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
3
|
George AT, Rubin DT. Artificial Intelligence in Inflammatory Bowel Disease. Gastrointest Endosc Clin N Am 2025; 35:367-387. [PMID: 40021234 DOI: 10.1016/j.giec.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Artificial intelligence (AI) is being increasingly studied and implemented in gastroenterology. In inflammatory bowel disease (IBD), numerous AI models are being developed to assist with IBD diagnosis, standardization of endoscopic and radiologic disease activity, and predicting outcomes. Further prospective, multicenter studies representing diverse populations and novel applications are needed prior to routine implementation in clinical practice and expected improved outcomes for clinicians and patients.
Collapse
Affiliation(s)
- Alvin T George
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - David T Rubin
- Department of Medicine, Inflammatory Bowel Disease Center, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Zhao Z, Chen X, Xiang Q, Liu L, Li X, Qiu B. Identification of circadian rhythm-related biomarkers and development of diagnostic models for Crohn's disease using machine learning algorithms. Comput Methods Biomech Biomed Engin 2025:1-17. [PMID: 39836385 DOI: 10.1080/10255842.2025.2453922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
The global rise in Crohn's Disease (CD) incidence has intensified diagnostic challenges. This study identified circadian rhythm-related biomarkers for CD using datasets from the GEO database. Differentially expressed genes underwent Weighted Gene Co-Expression Network Analysis, with 49 hub genes intersected from GeneCards data. Diagnostic models were constructed using machine learning algorithms, and biologic therapy efficacy was predicted with advanced regression techniques. Single-cell sequencing showed high gene expression in stem cells, immune, and endothelial cells, with validation confirming significant differences between CD patients and controls. These findings suggest circadian rhythm-related genes as promising diagnostic biomarkers for CD.
Collapse
Affiliation(s)
- Zhijing Zhao
- Department of Gastroenterolgy, Sixth People's Hospital of Chengdu, Chengdu, China
- Department of Scientific Research, Sixth People's Hospital of Chengdu, Chengdu, China
| | - Xia Chen
- Department of Gastroenterolgy, Sixth People's Hospital of Chengdu, Chengdu, China
| | - Qian Xiang
- Department of Gastroenterolgy, Sixth People's Hospital of Chengdu, Chengdu, China
| | - Liu Liu
- Department of Gastroenterolgy, Third People's Hospital of Chengdu, Chengdu, China
| | - Xiaohua Li
- Department of Respiratory and Critical Care Medicine, Sixth People's Hospital of Chengdu, Chengdu, China
| | - Boyun Qiu
- Department of Gastroenterolgy, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| |
Collapse
|
5
|
Cannarozzi AL, Latiano A, Massimino L, Bossa F, Giuliani F, Riva M, Ungaro F, Guerra M, Brina ALD, Biscaglia G, Tavano F, Carparelli S, Fiorino G, Danese S, Perri F, Palmieri O. Inflammatory bowel disease genomics, transcriptomics, proteomics and metagenomics meet artificial intelligence. United European Gastroenterol J 2024; 12:1461-1480. [PMID: 39215755 PMCID: PMC11652336 DOI: 10.1002/ueg2.12655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Various extrinsic and intrinsic factors such as drug exposures, antibiotic treatments, smoking, lifestyle, genetics, immune responses, and the gut microbiome characterize ulcerative colitis and Crohn's disease, collectively called inflammatory bowel disease (IBD). All these factors contribute to the complexity and heterogeneity of the disease etiology and pathogenesis leading to major challenges for the scientific community in improving management, medical treatments, genetic risk, and exposome impact. Understanding the interaction(s) among these factors and their effects on the immune system in IBD patients has prompted advances in multi-omics research, the development of new tools as part of system biology, and more recently, artificial intelligence (AI) approaches. These innovative approaches, supported by the availability of big data and large volumes of digital medical datasets, hold promise in better understanding the natural histories, predictors of disease development, severity, complications and treatment outcomes in complex diseases, providing decision support to doctors, and promising to bring us closer to the realization of the "precision medicine" paradigm. This review aims to provide an overview of current IBD omics based on both individual (genomics, transcriptomics, proteomics, metagenomics) and multi-omics levels, highlighting how AI can facilitate the integration of heterogeneous data to summarize our current understanding of the disease and to identify current gaps in knowledge to inform upcoming research in this field.
Collapse
Affiliation(s)
- Anna Lucia Cannarozzi
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Anna Latiano
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Luca Massimino
- Gastroenterology and Digestive Endoscopy DepartmentIRCCS Ospedale San RaffaeleMilanItaly
| | - Fabrizio Bossa
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Francesco Giuliani
- Innovation & Research UnitFondazione IRCCS “Casa Sollievo della Sofferenza”San Giovanni RotondoItaly
| | - Matteo Riva
- Gastroenterology and Digestive Endoscopy DepartmentIRCCS Ospedale San RaffaeleMilanItaly
| | - Federica Ungaro
- Gastroenterology and Digestive Endoscopy DepartmentIRCCS Ospedale San RaffaeleMilanItaly
| | - Maria Guerra
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Anna Laura Di Brina
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Giuseppe Biscaglia
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Francesca Tavano
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Sonia Carparelli
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Gionata Fiorino
- Gastroenterology and Digestive EndoscopySan Camillo‐Forlanini HospitalRomeItaly
| | - Silvio Danese
- Faculty of MedicineUniversità Vita‐Salute San RaffaeleMilanItaly
| | - Francesco Perri
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Orazio Palmieri
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| |
Collapse
|
6
|
Soyer SM, Ozbek P, Kasavi C. Lung Adenocarcinoma Systems Biomarker and Drug Candidates Identified by Machine Learning, Gene Expression Data, and Integrative Bioinformatics Pipeline. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:408-420. [PMID: 38979602 DOI: 10.1089/omi.2024.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Lung adenocarcinoma (LUAD) is a significant planetary health challenge with its high morbidity and mortality rate, not to mention the marked interindividual variability in treatment outcomes and side effects. There is an urgent need for robust systems biomarkers that can help with early cancer diagnosis, prediction of treatment outcomes, and design of precision/personalized medicines for LUAD. The present study aimed at systems biomarkers of LUAD and deployed integrative bioinformatics and machine learning tools to harness gene expression data. Predictive models were developed to stratify patients based on prognostic outcomes. Importantly, we report here several potential key genes, for example, PMEL and BRIP1, and pathways implicated in the progression and prognosis of LUAD that could potentially be targeted for precision/personalized medicine in the future. Our drug repurposing analysis and molecular docking simulations suggested eight drug candidates for LUAD such as heat shock protein 90 inhibitors, cardiac glycosides, an antipsychotic agent (trifluoperazine), and a calcium ionophore (ionomycin). In summary, this study identifies several promising leads on systems biomarkers and drug candidates for LUAD. The findings also attest to the importance of integrative bioinformatics, structural biology and machine learning techniques in biomarker discovery, and precision oncology research and development.
Collapse
Affiliation(s)
- Semra Melis Soyer
- Department of Bioengineering, Faculty of Engineering, Marmara University, İstanbul, Türkiye
| | - Pemra Ozbek
- Department of Bioengineering, Faculty of Engineering, Marmara University, İstanbul, Türkiye
| | - Ceyda Kasavi
- Department of Bioengineering, Faculty of Engineering, Marmara University, İstanbul, Türkiye
| |
Collapse
|
7
|
Meng Z, Liu S, Liang S, Jani B, Meng Z. Heterogeneous biomedical entity representation learning for gene-disease association prediction. Brief Bioinform 2024; 25:bbae380. [PMID: 39154194 PMCID: PMC11330343 DOI: 10.1093/bib/bbae380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024] Open
Abstract
Understanding the genetic basis of disease is a fundamental aspect of medical research, as genes are the classic units of heredity and play a crucial role in biological function. Identifying associations between genes and diseases is critical for diagnosis, prevention, prognosis, and drug development. Genes that encode proteins with similar sequences are often implicated in related diseases, as proteins causing identical or similar diseases tend to show limited variation in their sequences. Predicting gene-disease association (GDA) requires time-consuming and expensive experiments on a large number of potential candidate genes. Although methods have been proposed to predict associations between genes and diseases using traditional machine learning algorithms and graph neural networks, these approaches struggle to capture the deep semantic information within the genes and diseases and are dependent on training data. To alleviate this issue, we propose a novel GDA prediction model named FusionGDA, which utilizes a pre-training phase with a fusion module to enrich the gene and disease semantic representations encoded by pre-trained language models. Multi-modal representations are generated by the fusion module, which includes rich semantic information about two heterogeneous biomedical entities: protein sequences and disease descriptions. Subsequently, the pooling aggregation strategy is adopted to compress the dimensions of the multi-modal representation. In addition, FusionGDA employs a pre-training phase leveraging a contrastive learning loss to extract potential gene and disease features by training on a large public GDA dataset. To rigorously evaluate the effectiveness of the FusionGDA model, we conduct comprehensive experiments on five datasets and compare our proposed model with five competitive baseline models on the DisGeNet-Eval dataset. Notably, our case study further demonstrates the ability of FusionGDA to discover hidden associations effectively. The complete code and datasets of our experiments are available at https://github.com/ZhaohanM/FusionGDA.
Collapse
Affiliation(s)
- Zhaohan Meng
- School of Computing Science, University of Glasgow, 18 Lilybank Gardens, Glasgow G12 8RZ, UK
| | - Siwei Liu
- School of Natural and Computing Science, University of Aberdeen King’s College, Aberdeen, AB24 3FX, UK
| | - Shangsong Liang
- Machine Learning Department, Mohamed bin Zayed University of Artificial Intelligence, Building 1B, Masdar City, Abu Dhabi 000000, UAE
| | - Bhautesh Jani
- School of Computing Science, University of Glasgow, 18 Lilybank Gardens, Glasgow G12 8RZ, UK
| | - Zaiqiao Meng
- School of Computing Science, University of Glasgow, 18 Lilybank Gardens, Glasgow G12 8RZ, UK
| |
Collapse
|
8
|
Syed AH, Abujabal HAS, Ahmad S, Malebary SJ, Alromema N. Advances in Inflammatory Bowel Disease Diagnostics: Machine Learning and Genomic Profiling Reveal Key Biomarkers for Early Detection. Diagnostics (Basel) 2024; 14:1182. [PMID: 38893707 PMCID: PMC11172026 DOI: 10.3390/diagnostics14111182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/25/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
This study, utilizing high-throughput technologies and Machine Learning (ML), has identified gene biomarkers and molecular signatures in Inflammatory Bowel Disease (IBD). We could identify significant upregulated or downregulated genes in IBD patients by comparing gene expression levels in colonic specimens from 172 IBD patients and 22 healthy individuals using the GSE75214 microarray dataset. Our ML techniques and feature selection methods revealed six Differentially Expressed Gene (DEG) biomarkers (VWF, IL1RL1, DENND2B, MMP14, NAAA, and PANK1) with strong diagnostic potential for IBD. The Random Forest (RF) model demonstrated exceptional performance, with accuracy, F1-score, and AUC values exceeding 0.98. Our findings were rigorously validated with independent datasets (GSE36807 and GSE10616), further bolstering their credibility and showing favorable performance metrics (accuracy: 0.841, F1-score: 0.734, AUC: 0.887). Our functional annotation and pathway enrichment analysis provided insights into crucial pathways associated with these dysregulated genes. DENND2B and PANK1 were identified as novel IBD biomarkers, advancing our understanding of the disease. The validation in independent cohorts enhances the reliability of these findings and underscores their potential for early detection and personalized treatment of IBD. Further exploration of these genes is necessary to fully comprehend their roles in IBD pathogenesis and develop improved diagnostic tools and therapies. This study significantly contributes to IBD research with valuable insights, potentially greatly enhancing patient care.
Collapse
Affiliation(s)
- Asif Hassan Syed
- Department of Computer Science, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University, Jeddah 22254, Saudi Arabia;
| | - Hamza Ali S. Abujabal
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Shakeel Ahmad
- Department of Computer Science, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University, Jeddah 22254, Saudi Arabia;
| | - Sharaf J. Malebary
- Department of Information Technology, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University, P.O. Box 344, Rabigh 21911, Saudi Arabia;
| | - Nashwan Alromema
- Department of Computer Science, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University, P.O. Box 344, Rabigh 21911, Saudi Arabia;
| |
Collapse
|
9
|
Gomes LEM, Genaro LM, de Castro MM, Ricci RL, Pascoal LB, Silva FBC, Bonfitto PHL, Camargo MG, Corona LP, Ayrizono MDLS, de Azevedo AT, Leal RF. Infliximab monitoring in Crohn's disease: a neural network approach for evaluating disease activity and immunogenicity. Therap Adv Gastroenterol 2024; 17:17562848241251949. [PMID: 39664232 PMCID: PMC11632880 DOI: 10.1177/17562848241251949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/15/2024] [Indexed: 12/13/2024] Open
Abstract
Background The treatment for Crohn's disease (CD) has increasingly required the use of biological agents. Safe and affordable tests have led to the active implementation of therapeutic drug monitoring (TDM) in clinical practice, which, although not yet widely available across all health services, has been proven effective. Objective To analyze serum infliximab (IFX) and antidrug antibody (ADA) levels in CD patients, compare two tests, as well as construct a prediction of neural network using a combination of clinical, epidemiological, and laboratory variables. Design Cross-sectional observational study. Method A cross-sectional observational study was conducted on 75 CD patients in the maintenance phase of IFX treatment. The participants were allocated into two groups: CD in activity (CDA) and in remission (CDR). Disease activity was defined by endoscopic or radiological criteria. Serum IFX levels were measured by enzyme-linked immunosorbent assay (ELISA) and rapid lateral flow assay; ADA levels were measured by ELISA. A nonparametric test was used for statistical analysis; p value of ⩽0.05 was considered significant. Differences between ELISA and rapid lateral flow results within the measurement range were assessed by the Wilcoxon test, Passing-Bablok regression, and Bland-Altman method. Prediction models were created using four neural network sets. Neural networks and performance receiver operating characteristic curves were created using the Keras package in Python software. Results Most participants exhibited supratherapeutic IFX levels (>7 mg/mL). Both tests showed no difference in IFX levels between the CDA and CDR groups (p > 0.05). The use of immunosuppressive therapy did not affect IFX levels (p > 0.05). Only 14.66% of patients had ADA levels >5 AU/mL, and all ADA-positive participants exhibited subtherapeutic IFX levels in both tests. The median results of both tests showed significant differences and moderate agreement (r = -0.6758, p < 0.001). Of the four neural networks developed, two showed excellent performance, with area under the curve (AUCs) of 82-92% and 100%. Conclusion Most participants exhibited supratherapeutic IFX levels, with no significant serum level difference between the groups. There was moderate agreement between tests. Two neural network sets showed disease activity and the presence of ADA, noninvasively determined in patients using IFX by presenting an AUC of >80%.
Collapse
Affiliation(s)
- Luis Eduardo Miani Gomes
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Livia Moreira Genaro
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Marina Moreira de Castro
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Renato Lazarin Ricci
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Livia Bitencourt Pascoal
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Filipe Botto Crispim Silva
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Pedro Henrique Leite Bonfitto
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Michel Gardere Camargo
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Ligiana Pires Corona
- Nutritional Epidemiology Laboratory, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Maria de Lourdes Setsuko Ayrizono
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Anibal Tavares de Azevedo
- Simulation Laboratory, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Raquel Franco Leal
- Inflammatory Bowel Disease Research Laboratory (LabDII), Gastrocenter, Colorectal Surgery Unit, Surgery Department, School of Medical Sciences, University of Campinas, Carlos Chagas Street, 420, Cidade Universitária Zeferino Vaz, Campinas 13083-878, São Paulo, Brazil
| |
Collapse
|
10
|
Chen KA, Nishiyama NC, Kennedy Ng MM, Shumway A, Joisa CU, Schaner MR, Lian G, Beasley C, Zhu LC, Bantumilli S, Kapadia MR, Gomez SM, Furey TS, Sheikh SZ. Linking gene expression to clinical outcomes in pediatric Crohn's disease using machine learning. Sci Rep 2024; 14:2667. [PMID: 38302662 PMCID: PMC10834600 DOI: 10.1038/s41598-024-52678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Abstract
Pediatric Crohn's disease (CD) is characterized by a severe disease course with frequent complications. We sought to apply machine learning-based models to predict risk of developing future complications in pediatric CD using ileal and colonic gene expression. Gene expression data was generated from 101 formalin-fixed, paraffin-embedded (FFPE) ileal and colonic biopsies obtained from treatment-naïve CD patients and controls. Clinical outcomes including development of strictures or fistulas and progression to surgery were analyzed using differential expression and modeled using machine learning. Differential expression analysis revealed downregulation of pathways related to inflammation and extra-cellular matrix production in patients with strictures. Machine learning-based models were able to incorporate colonic gene expression and clinical characteristics to predict outcomes with high accuracy. Models showed an area under the receiver operating characteristic curve (AUROC) of 0.84 for strictures, 0.83 for remission, and 0.75 for surgery. Genes with potential prognostic importance for strictures (REG1A, MMP3, and DUOX2) were not identified in single gene differential analysis but were found to have strong contributions to predictive models. Our findings in FFPE tissue support the importance of colonic gene expression and the potential for machine learning-based models in predicting outcomes for pediatric CD.
Collapse
Affiliation(s)
- Kevin A Chen
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 7314 Medical Biomolecular Research Building, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Nina C Nishiyama
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 7314 Medical Biomolecular Research Building, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Departments of Genetics and Biology, Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, 5022 Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Meaghan M Kennedy Ng
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 7314 Medical Biomolecular Research Building, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Departments of Genetics and Biology, Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, 5022 Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Alexandria Shumway
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Chinmaya U Joisa
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | - Matthew R Schaner
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 7314 Medical Biomolecular Research Building, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Grace Lian
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 7314 Medical Biomolecular Research Building, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Caroline Beasley
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 7314 Medical Biomolecular Research Building, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Lee-Ching Zhu
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Surekha Bantumilli
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Muneera R Kapadia
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Shawn M Gomez
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | - Terrence S Furey
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 7314 Medical Biomolecular Research Building, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA.
- Departments of Genetics and Biology, Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, 5022 Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| | - Shehzad Z Sheikh
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 7314 Medical Biomolecular Research Building, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
11
|
Danieli MG, Brunetto S, Gammeri L, Palmeri D, Claudi I, Shoenfeld Y, Gangemi S. Machine learning application in autoimmune diseases: State of art and future prospectives. Autoimmun Rev 2024; 23:103496. [PMID: 38081493 DOI: 10.1016/j.autrev.2023.103496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/29/2023] [Indexed: 04/30/2024]
Abstract
Autoimmune diseases are a group of disorders resulting from an alteration of immune tolerance, characterized by the formation of autoantibodies and the consequent development of heterogeneous clinical manifestations. Diagnosing autoimmune diseases is often complicated, and the available prognostic tools are limited. Machine learning allows us to analyze large amounts of data and carry out complex calculations quickly and with minimal effort. In this work, we examine the literature focusing on the use of machine learning in the field of the main systemic (systemic lupus erythematosus and rheumatoid arthritis) and organ-specific autoimmune diseases (type 1 diabetes mellitus, autoimmune thyroid, gastrointestinal, and skin diseases). From our analysis, interesting applications of machine learning emerged for developing algorithms useful in the early diagnosis of disease or prognostic models (risk of complications, therapeutic response). Subsequent studies and the creation of increasingly rich databases to be supplied to the algorithms will eventually guide the clinician in the diagnosis, allowing intervention when the pathology is still in an early stage and immediately directing towards a correct therapeutic approach.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- SOS Immunologia delle Malattie Rare e dei Trapianti. AOU delle Marche & Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60126 Torrette di Ancona, Italy; Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Silvia Brunetto
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Luca Gammeri
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Davide Palmeri
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy
| | - Ilaria Claudi
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, and Reichman University Herzliya, Israel.
| | - Sebastiano Gangemi
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| |
Collapse
|
12
|
DeGroat W, Abdelhalim H, Patel K, Mendhe D, Zeeshan S, Ahmed Z. Discovering biomarkers associated and predicting cardiovascular disease with high accuracy using a novel nexus of machine learning techniques for precision medicine. Sci Rep 2024; 14:1. [PMID: 38167627 PMCID: PMC10762256 DOI: 10.1038/s41598-023-50600-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Personalized interventions are deemed vital given the intricate characteristics, advancement, inherent genetic composition, and diversity of cardiovascular diseases (CVDs). The appropriate utilization of artificial intelligence (AI) and machine learning (ML) methodologies can yield novel understandings of CVDs, enabling improved personalized treatments through predictive analysis and deep phenotyping. In this study, we proposed and employed a novel approach combining traditional statistics and a nexus of cutting-edge AI/ML techniques to identify significant biomarkers for our predictive engine by analyzing the complete transcriptome of CVD patients. After robust gene expression data pre-processing, we utilized three statistical tests (Pearson correlation, Chi-square test, and ANOVA) to assess the differences in transcriptomic expression and clinical characteristics between healthy individuals and CVD patients. Next, the recursive feature elimination classifier assigned rankings to transcriptomic features based on their relation to the case-control variable. The top ten percent of commonly observed significant biomarkers were evaluated using four unique ML classifiers (Random Forest, Support Vector Machine, Xtreme Gradient Boosting Decision Trees, and k-Nearest Neighbors). After optimizing hyperparameters, the ensembled models, which were implemented using a soft voting classifier, accurately differentiated between patients and healthy individuals. We have uncovered 18 transcriptomic biomarkers that are highly significant in the CVD population that were used to predict disease with up to 96% accuracy. Additionally, we cross-validated our results with clinical records collected from patients in our cohort. The identified biomarkers served as potential indicators for early detection of CVDs. With its successful implementation, our newly developed predictive engine provides a valuable framework for identifying patients with CVDs based on their biomarker profiles.
Collapse
Affiliation(s)
- William DeGroat
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Habiba Abdelhalim
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Kush Patel
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Dinesh Mendhe
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ, USA
| | - Zeeshan Ahmed
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA.
- Department of Medicine/Cardiovascular Disease and Hypertension, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA.
| |
Collapse
|
13
|
DeGroat W, Mendhe D, Bhusari A, Abdelhalim H, Zeeshan S, Ahmed Z. IntelliGenes: a novel machine learning pipeline for biomarker discovery and predictive analysis using multi-genomic profiles. Bioinformatics 2023; 39:btad755. [PMID: 38096588 PMCID: PMC10739559 DOI: 10.1093/bioinformatics/btad755] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
SUMMARY In this article, we present IntelliGenes, a novel machine learning (ML) pipeline for the multi-genomics exploration to discover biomarkers significant in disease prediction with high accuracy. IntelliGenes is based on a novel approach, which consists of nexus of conventional statistical techniques and cutting-edge ML algorithms using multi-genomic, clinical, and demographic data. IntelliGenes introduces a new metric, i.e. Intelligent Gene (I-Gene) score to measure the importance of individual biomarkers for prediction of complex traits. I-Gene scores can be utilized to generate I-Gene profiles of individuals to comprehend the intricacies of ML used in disease prediction. IntelliGenes is user-friendly, portable, and a cross-platform application, compatible with Microsoft Windows, macOS, and UNIX operating systems. IntelliGenes not only holds the potential for personalized early detection of common and rare diseases in individuals, but also opens avenues for broader research using novel ML methodologies, ultimately leading to personalized interventions and novel treatment targets. AVAILABILITY AND IMPLEMENTATION The source code of IntelliGenes is available on GitHub (https://github.com/drzeeshanahmed/intelligenes) and Code Ocean (https://codeocean.com/capsule/8638596/tree/v1).
Collapse
Affiliation(s)
- William DeGroat
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States
| | - Dinesh Mendhe
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States
| | - Atharva Bhusari
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States
| | - Habiba Abdelhalim
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, United States
| | - Zeeshan Ahmed
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers Health, New Brunswick, NJ 08901, United States
| |
Collapse
|
14
|
Rimmer P, Iqbal T. Prognostic modelling in IBD. Best Pract Res Clin Gastroenterol 2023; 67:101877. [PMID: 38103929 DOI: 10.1016/j.bpg.2023.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
In the ideal world prognostication or predicting disease course in any chronic condition would allow the clinician to anticipate disease behaviour, providing crucial information for the patient and data regarding best use of resources. Prognostication also allows an understanding of likely response to treatment and the risk of adverse effects of a treatment leading to withdrawal in any individual patient. Therefore, the ability to predict outcomes from the onset of disease is the key step to developing precision personalised medicine, which is the design of medical care to optimise efficiency or therapeutic benefit based on careful profiling of patients. An important corollary is to prevent unnecessary healthcare costs. This paper outlines currently available predictors of disease outcome in IBD and looks to the future which will involve the use of artificial intelligence to interrogate big data derived from various important 'omes' to tease out a more holistic approach to IBD.
Collapse
Affiliation(s)
- Peter Rimmer
- Queen Elizabeth Hospital Birmingham, B15 2TH, UK; University of Birmingham, College of Medical and Dental Science, UK.
| | - Tariq Iqbal
- Queen Elizabeth Hospital Birmingham, B15 2TH, UK; University of Birmingham, College of Medical and Dental Science, UK.
| |
Collapse
|
15
|
Sung JJY, Savulescu J, Ngiam KY, An B, Ang TL, Yeoh KG, Cham TJ, Tsao S, Chua TS. Artificial intelligence for gastroenterology: Singapore artificial intelligence for Gastroenterology Working Group Position Statement. J Gastroenterol Hepatol 2023; 38:1669-1676. [PMID: 37277693 DOI: 10.1111/jgh.16241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Successful implementation of artificial intelligence in gastroenterology and hepatology practice requires more than technology. There are ethical, legal, and social issues that need to be settled. AIM A group consisting of AI developers (engineer), AI users (gastroenterologist, hepatologist, and surgeon) and AI regulators (ethicist and administrator) formed a Working Group to draft these Positions Statements with the objective of arousing public and professional interest and dialogue, to promote ethical considerations when implementing AI technology, to suggest to policy makers and health authorities relevant factors to take into account when approving and regulating the use of AI tools, and to engage the profession in preparing for change in clinical practice. STATEMENTS These series of Position Statements point out the salient issues to maintain the trust between care provider and care receivers, and to legitimize the use of a non-human tool in healthcare delivery. It is based on fundamental principles such as respect, autonomy, privacy, responsibility, and justice. Enforcing the use of AI without considering these factor risk damaging the doctor-patient relationship.
Collapse
Affiliation(s)
- Joseph J Y Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Julian Savulescu
- Centre for Biomedical Ethics, National University of Singapore, Singapore
| | - K Y Ngiam
- Department of Surgery, National University Hospital, Singapore
| | - Bo An
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| | - Tiing Leong Ang
- Singapore Health Service, Changi General Hospital, Singapore
| | - K G Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore
| | - Tat-Jen Cham
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| | - Stephen Tsao
- National Healthcare Group, Tan Tock Seng Hospital Singapore, Singapore
- Gastroenterological Society of Singapore, Singapore
| | - T S Chua
- Gastroenterology Chapter, Academy of Medicine, Singapore
| |
Collapse
|
16
|
Molotkov I, Artomov M. Detecting biased validation of predictive models in the positive-unlabeled setting: disease gene prioritization case study. BIOINFORMATICS ADVANCES 2023; 3:vbad128. [PMID: 37745001 PMCID: PMC10517638 DOI: 10.1093/bioadv/vbad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/13/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Motivation Positive-unlabeled data consists of points with either positive or unknown labels. It is widespread in medical, genetic, and biological settings, creating a high demand for predictive positive-unlabeled models. The performance of such models is usually estimated using validation sets, assumed to be selected completely at random (SCAR) from known positive examples. For certain metrics, this assumption enables unbiased performance estimation when treating positive-unlabeled data as positive/negative. However, the SCAR assumption is often adopted without proper justifications, simply for the sake of convenience. Results We provide an algorithm that under the weak assumptions of a lower bound on the number of positive examples can test for the violation of the SCAR assumption. Applying it to the problem of gene prioritization for complex genetic traits, we illustrate that the SCAR assumption is often violated there, causing the inflation of performance estimates, which we refer to as validation bias. We estimate the potential impact of validation bias on performance estimation. Our analysis reveals that validation bias is widespread in gene prioritization data and can significantly overestimate the performance of models. This finding elucidates the discrepancy between the reported good performance of models and their limited practical applications. Availability and implementation Python code with examples of application of the validation bias detection algorithm is available at github.com/ArtomovLab/ValidationBias.
Collapse
Affiliation(s)
- Ivan Molotkov
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- ITMO University, Saint Petersburg, Russia
| | - Mykyta Artomov
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
17
|
Pinakhina D, Loboda A, Sergushichev A, Artomov M. Gene, cell type, and drug prioritization analysis suggest genetic basis for the utility of diuretics in treating Alzheimer disease. HGG ADVANCES 2023; 4:100203. [PMID: 37250495 PMCID: PMC10209737 DOI: 10.1016/j.xhgg.2023.100203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
We introduce a user-friendly tool for risk gene, cell type, and drug prioritization for complex traits: GCDPipe. It uses gene-level GWAS-derived data and gene expression data to train a model for the identification of disease risk genes and relevant cell types. Gene prioritization information is then coupled with known drug target data to search for applicable drug agents based on their estimated functional effects on the identified risk genes. We illustrate the utility of our approach in different settings: identification of the cell types, implicated in disease pathogenesis, was tested in inflammatory bowel disease (IBD) and Alzheimer disease (AD); gene target and drug prioritization was tested in IBD and schizophrenia. The analysis of phenotypes with known disease-affected cell types and/or existing drug candidates shows that GCDPipe is an effective tool to unify genetic risk factors with cellular context and known drug targets. Next, analysis of the AD data with GCDPipe suggested that gene targets of diuretics, as an Anatomical Therapeutic Chemical drug subgroup, are significantly enriched among the genes prioritized by GCDPipe, indicating their possible effect on the course of the disease.
Collapse
Affiliation(s)
- Daria Pinakhina
- ITMO University, 197101 Saint Petersburg, Russia
- Bekhterev National Medical Research Center, 192019 Saint Petersburg, Russia
| | - Alexander Loboda
- ITMO University, 197101 Saint Petersburg, Russia
- Almazov National Medical Research Center, 191014 Saint Petersburg, Russia
| | | | - Mykyta Artomov
- ITMO University, 197101 Saint Petersburg, Russia
- Broad Institute, Cambridge, MA 02142, USA
- Massachusetts General Hospital, Boston, MA 02114, USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Alfonso Perez G, Castillo R. Gene Identification in Inflammatory Bowel Disease via a Machine Learning Approach. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1218. [PMID: 37512030 PMCID: PMC10383667 DOI: 10.3390/medicina59071218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Inflammatory bowel disease (IBD) is an illness with increasing prevalence, particularly in emerging countries, which can have a substantial impact on the quality of life of the patient. The illness is rather heterogeneous with different evolution among patients. A machine learning approach is followed in this paper to identify potential genes that are related to IBD. This is done by following a Monte Carlo simulation approach. In total, 23 different machine learning techniques were tested (in addition to a base level obtained using artificial neural networks). The best model identified 74 genes selected by the algorithm as being potentially involved in IBD. IBD seems to be a polygenic illness, in which environmental factors might play an important role. Following a machine learning approach, it was possible to obtain a classification accuracy of 84.2% differentiating between patients with IBD and control cases in a large cohort of 2490 total cases. The sensitivity and specificity of the model were 82.6% and 84.4%, respectively. It was also possible to distinguish between the two main types of IBD: (1) Crohn's disease and (2) ulcerative colitis.
Collapse
Affiliation(s)
- Gerardo Alfonso Perez
- Biocomp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castello, Spain
| | - Raquel Castillo
- Biocomp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castello, Spain
| |
Collapse
|
19
|
Augustin J, McLellan PT, Calderaro J. Mise au point de l’utilisation de l’intelligence artificielle dans la prise en charge des maladies inflammatoires chroniques de l’intestin. Ann Pathol 2023:S0242-6498(23)00075-5. [PMID: 36997441 DOI: 10.1016/j.annpat.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023]
Abstract
Complexity of inflammatory bowel diseases (IBD) lies on their management and their biology. Clinics, blood and fecal samples tests, endoscopy and histology are the main tools guiding IBD treatment, but they generate a large amount of data, difficult to analyze by clinicians. Because of its capacity to analyze large number of data, artificial intelligence is currently generating enthusiasm in medicine, and this technology could be used to improve IBD management. In this review, after a short summary on IBD management and artificial intelligence, we will report pragmatic examples of artificial intelligence utilisation in IBD. Lastly, we will discuss the limitations of this technology.
Collapse
Affiliation(s)
- Jérémy Augustin
- Département de pathologie, hôpital universitaire Henri-Mondor, assistance publique-hôpitaux de Paris, Créteil, France; Inserm U955 Team 18, université Paris-Est-Créteil, faculté de Médecine, Créteil, France.
| | - Paul Thomas McLellan
- Département de gastroentérologie, hôpital Saint-Antoine, assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France
| | - Julien Calderaro
- Département de pathologie, hôpital universitaire Henri-Mondor, assistance publique-hôpitaux de Paris, Créteil, France; Inserm U955 Team 18, université Paris-Est-Créteil, faculté de Médecine, Créteil, France
| |
Collapse
|
20
|
Diaconu C, State M, Birligea M, Ifrim M, Bajdechi G, Georgescu T, Mateescu B, Voiosu T. The Role of Artificial Intelligence in Monitoring Inflammatory Bowel Disease-The Future Is Now. Diagnostics (Basel) 2023; 13:735. [PMID: 36832222 PMCID: PMC9954871 DOI: 10.3390/diagnostics13040735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Crohn's disease and ulcerative colitis remain debilitating disorders, characterized by progressive bowel damage and possible lethal complications. The growing number of applications for artificial intelligence in gastrointestinal endoscopy has already shown great potential, especially in the field of neoplastic and pre-neoplastic lesion detection and characterization, and is currently under evaluation in the field of inflammatory bowel disease management. The application of artificial intelligence in inflammatory bowel diseases can range from genomic dataset analysis and risk prediction model construction to the disease grading severity and assessment of the response to treatment using machine learning. We aimed to assess the current and future role of artificial intelligence in assessing the key outcomes in inflammatory bowel disease patients: endoscopic activity, mucosal healing, response to treatment, and neoplasia surveillance.
Collapse
Affiliation(s)
- Claudia Diaconu
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Monica State
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Internal Medicine Department, Carol Davila University of Medicine and Pharmacy, 50474 Bucharest, Romania
| | - Mihaela Birligea
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Madalina Ifrim
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Georgiana Bajdechi
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Teodora Georgescu
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Bogdan Mateescu
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Internal Medicine Department, Carol Davila University of Medicine and Pharmacy, 50474 Bucharest, Romania
| | - Theodor Voiosu
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Internal Medicine Department, Carol Davila University of Medicine and Pharmacy, 50474 Bucharest, Romania
| |
Collapse
|
21
|
Da Rio L, Spadaccini M, Parigi TL, Gabbiadini R, Dal Buono A, Busacca A, Maselli R, Fugazza A, Colombo M, Carrara S, Franchellucci G, Alfarone L, Facciorusso A, Hassan C, Repici A, Armuzzi A. Artificial intelligence and inflammatory bowel disease: Where are we going? World J Gastroenterol 2023; 29:508-520. [PMID: 36688019 PMCID: PMC9850939 DOI: 10.3748/wjg.v29.i3.508] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/05/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
Inflammatory bowel diseases, namely ulcerative colitis and Crohn's disease, are chronic and relapsing conditions that pose a growing burden on healthcare systems worldwide. Because of their complex and partly unknown etiology and pathogenesis, the management of ulcerative colitis and Crohn's disease can prove challenging not only from a clinical point of view but also for resource optimization. Artificial intelligence, an umbrella term that encompasses any cognitive function developed by machines for learning or problem solving, and its subsets machine learning and deep learning are becoming ever more essential tools with a plethora of applications in most medical specialties. In this regard gastroenterology is no exception, and due to the importance of endoscopy and imaging numerous clinical studies have been gradually highlighting the relevant role that artificial intelligence has in inflammatory bowel diseases as well. The aim of this review was to summarize the most recent evidence on the use of artificial intelligence in inflammatory bowel diseases in various contexts such as diagnosis, follow-up, treatment, prognosis, cancer surveillance, data collection, and analysis. Moreover, insights into the potential further developments in this field and their effects on future clinical practice were discussed.
Collapse
Affiliation(s)
- Leonardo Da Rio
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Milano, Italy
| | - Marco Spadaccini
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Milano, Italy
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Milano, Italy
| | - Tommaso Lorenzo Parigi
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Milano, Italy
- IBD Center, Humanitas Research Hospital, IRCCS, Rozzano 20089, Milano, Italy
| | - Roberto Gabbiadini
- IBD Center, Humanitas Research Hospital, IRCCS, Rozzano 20089, Milano, Italy
| | - Arianna Dal Buono
- IBD Center, Humanitas Research Hospital, IRCCS, Rozzano 20089, Milano, Italy
| | - Anita Busacca
- IBD Center, Humanitas Research Hospital, IRCCS, Rozzano 20089, Milano, Italy
| | - Roberta Maselli
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Milano, Italy
| | - Alessandro Fugazza
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Milano, Italy
| | - Matteo Colombo
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Milano, Italy
| | - Silvia Carrara
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Milano, Italy
| | - Gianluca Franchellucci
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Milano, Italy
| | - Ludovico Alfarone
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Milano, Italy
| | - Antonio Facciorusso
- Gastroenterology Unit, Department of Medical Sciences, University of Foggia, Foggia 71122, Foggia, Italy
| | - Cesare Hassan
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Milano, Italy
| | - Alessandro Repici
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Milano, Italy
| | - Alessandro Armuzzi
- IBD Center, Humanitas Research Hospital, IRCCS, Rozzano 20089, Milano, Italy
| |
Collapse
|
22
|
Yu S, Zhang M, Ye Z, Wang Y, Wang X, Chen YG. Development of a 32-gene signature using machine learning for accurate prediction of inflammatory bowel disease. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:8. [PMID: 36600111 PMCID: PMC9813306 DOI: 10.1186/s13619-022-00143-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/09/2022] [Indexed: 01/06/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition caused by multiple genetic and environmental factors. Numerous genes are implicated in the etiology of IBD, but the diagnosis of IBD is challenging. Here, XGBoost, a machine learning prediction model, has been used to distinguish IBD from healthy cases following elaborative feature selection. Using combined unsupervised clustering analysis and the XGBoost feature selection method, we successfully identified a 32-gene signature that can predict IBD occurrence in new cohorts with 0.8651 accuracy. The signature shows enrichment in neutrophil extracellular trap formation and cytokine signaling in the immune system. The probability threshold of the XGBoost-based classification model can be adjusted to fit personalized lifestyle and health status. Therefore, this study reveals potential IBD-related biomarkers that facilitate an effective personalized diagnosis of IBD.
Collapse
Affiliation(s)
- Shicheng Yu
- grid.9227.e0000000119573309Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Luogang District, Guangzhou, 510530 China ,Guangzhou Laboratory, Guangzhou, 510700 China
| | - Mengxian Zhang
- grid.12527.330000 0001 0662 3178The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Zhaofeng Ye
- grid.12527.330000 0001 0662 3178School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Yalong Wang
- grid.9227.e0000000119573309Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Luogang District, Guangzhou, 510530 China ,Guangzhou Laboratory, Guangzhou, 510700 China
| | - Xu Wang
- Guangzhou Laboratory, Guangzhou, 510700 China
| | - Ye-Guang Chen
- Guangzhou Laboratory, Guangzhou, 510700 China ,grid.12527.330000 0001 0662 3178The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China ,grid.260463.50000 0001 2182 8825School of Basic Medicine, Nanchang University, Nanchang, 330031 China
| |
Collapse
|
23
|
Grassi G, Laino ME, Fantini MC, Argiolas GM, Cherchi MV, Nicola R, Gerosa C, Cerrone G, Mannelli L, Balestrieri A, Suri JS, Carriero A, Saba L. Advanced imaging and Crohn's disease: An overview of clinical application and the added value of artificial intelligence. Eur J Radiol 2022; 157:110551. [PMID: 36279627 DOI: 10.1016/j.ejrad.2022.110551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE The purpose of this narrative review is to describe the clinical applications of advanced computed tomography (CT) and magnetic resonance (MRI) techniques in patients affected by Crohn's disease (CD), giving insights about the added value of artificial intelligence (AI) in this field. METHODS We performed a literature search comparing standardized and advanced imaging techniques for CD diagnosis. Cross-sectional imaging is essential for the identification of lesions, the assessment of active or relapsing disease and the evaluation of complications. RESULTS The studies reviewed show that new advanced imaging techniques and new MRI sequences could be integrated into standard protocols, to achieve a reliable quantification of CD activity, improve the lesions' characterization and the evaluation of therapy response. These promising tools are: dual-energy CT (DECT) post-processing techniques, diffusion-weighted MRI (DWI-MRI), dynamic contrast-enhanced MRI (DCE-MRI), Magnetization Transfer MRI (MT-MRI) and CINE-MRI. Furthermore, AI solutions show a potential when applied to radiological techniques in these patients. Machine learning (ML) algorithms and radiomic features prove to be useful in improving the diagnostic accuracy of clinicians and in attempting a personalized medicine approach, stratifying patients by predicting their prognosis. CONCLUSIONS Advanced imaging is crucial in the diagnosis, lesions' characterisation and in the estimation of the abdominal involvement in CD. New AI developments are promising tools that could support doctors in the management of CD affected patients.
Collapse
Affiliation(s)
- Giovanni Grassi
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato (Cagliari) 09045, Italy
| | - Maria Elena Laino
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato (Cagliari) 09045, Italy; Artificial Intelligence Center, IRCSS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milano, Italy.
| | - Massimo Claudio Fantini
- Department of Gastroenterology Surgery, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato s.s. 554 Monserrato (Cagliari) 09045, Italy
| | | | - Maria Valeria Cherchi
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato (Cagliari) 09045, Italy
| | - Refky Nicola
- Roswell Park Cancer Institute, Jacobs School of Medicine and Biomedical Science, Buffalo, NY, USA
| | - Clara Gerosa
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - University Hospital San Giovanni di Dio, (Cagliari) 09045, Italy
| | - Giulia Cerrone
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - University Hospital San Giovanni di Dio, (Cagliari) 09045, Italy
| | | | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato (Cagliari) 09045, Italy
| | - Jasjit S Suri
- Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA; Knowledge Engineering Center, Global Biomedical Technologies, Inc., Roseville, CA, USA; Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, USA
| | - Alessandro Carriero
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato (Cagliari) 09045, Italy
| |
Collapse
|
24
|
Stafford IS, Gosink MM, Mossotto E, Ennis S, Hauben M. A Systematic Review of Artificial Intelligence and Machine Learning Applications to Inflammatory Bowel Disease, with Practical Guidelines for Interpretation. Inflamm Bowel Dis 2022; 28:1573-1583. [PMID: 35699597 PMCID: PMC9527612 DOI: 10.1093/ibd/izac115] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a gastrointestinal chronic disease with an unpredictable disease course. Computational methods such as machine learning (ML) have the potential to stratify IBD patients for the provision of individualized care. The use of ML methods for IBD was surveyed, with an additional focus on how the field has changed over time. METHODS On May 6, 2021, a systematic review was conducted through a search of MEDLINE and Embase databases, with the search structure ("machine learning" OR "artificial intelligence") AND ("Crohn* Disease" OR "Ulcerative Colitis" OR "Inflammatory Bowel Disease"). Exclusion criteria included studies not written in English, no human patient data, publication before 2001, studies that were not peer reviewed, nonautoimmune disease comorbidity research, and record types that were not primary research. RESULTS Seventy-eight (of 409) records met the inclusion criteria. Random forest methods were most prevalent, and there was an increase in neural networks, mainly applied to imaging data sets. The main applications of ML to clinical tasks were diagnosis (18 of 78), disease course (22 of 78), and disease severity (16 of 78). The median sample size was 263. Clinical and microbiome-related data sets were most popular. Five percent of studies used an external data set after training and testing for additional model validation. DISCUSSION Availability of longitudinal and deep phenotyping data could lead to better modeling. Machine learning pipelines that consider imbalanced data and that feature selection only on training data will generate more generalizable models. Machine learning models are increasingly being applied to more complex clinical tasks for specific phenotypes, indicating progress towards personalized medicine for IBD.
Collapse
Affiliation(s)
- Imogen S Stafford
- Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University Of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research, University HospitalSouthampton, Southampton, UK
| | | | - Enrico Mossotto
- Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - Sarah Ennis
- Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - Manfred Hauben
- Pfizer Inc, New York, NY, USA
- NYU Langone Health, Department of Medicine, New York, NY, USA
| |
Collapse
|
25
|
Pernencar C, Saboia I, Dias JC. How Far Can Conversational Agents Contribute to IBD Patient Health Care—A Review of the Literature. Front Public Health 2022; 10:862432. [PMID: 35844879 PMCID: PMC9282671 DOI: 10.3389/fpubh.2022.862432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Modern societies are facing health and healthcare challenges as never seen before. The digital world in which we are living today considers digital health interventions such as “internet-delivered” therapy (e-Therapy) or mobile apps as an integrated part of healthcare systems. Digital transformation in health care requires the active involvement of patients as the central part of healthcare interventions. In the case of chronic health conditions, such as inflammatory bowel disease (IBD), it is believed that the adoption of new digital tools helps to maintain and extend the health and care of patients, optimizing the course of the treatment of the disease. The study goal was to undertake a literature review associating the use of chatbot technology with IBD patients' health care. This study intends to support digital product developments, mainly chatbot for IBD or other chronic diseases. The work was carried out through two literature review phases. The first one was based on a systematic approach and the second was a scoping review focused only on Frontiers Journals. This review followed a planned protocol for search and selection strategy that was created by a research team discussion. Chatbot technology for chronic disease self-management can have high acceptance and usability levels. The more interaction with a chatbot, the more patients are able to increase their self-care practice, but there is a challenge. The chatbot ontology to personalize the communication still needed to have strong guidelines helping other researchers to define which Electronic Medical Records (EMRs) should be used in the chatbots to improve the user satisfaction, engagement, and dialog quality. The literature review showed us both evidence and success of these tools in other health disorders. Some of them revealed a huge potential for conversational agents as a part of digital health interventions.
Collapse
Affiliation(s)
- Cláudia Pernencar
- ICNOVA—NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, Lisbon, Portugal
- LIDA—Arts and Design Research Lab, Polytechnic Institute of Leiria, Leiria, Portugal
- *Correspondence: Cláudia Pernencar
| | - Inga Saboia
- UFC Virtual, Federal University of Ceará, Fortaleza, Brazil
- DigiMedia—Department of Communication and Art, University of Aveiro, Aveiro, Portugal
| | - Joana Carmo Dias
- COMEGI—Research Center on Organizations, Markets and Industrial Management, Lisbon, Portugal
- UNIDCOM/IADE—Design and Communication Research Centre, Lisbon, Portugal
| |
Collapse
|
26
|
Vadapalli S, Abdelhalim H, Zeeshan S, Ahmed Z. Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine. Brief Bioinform 2022; 23:6590150. [PMID: 35595537 DOI: 10.1093/bib/bbac191] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/02/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022] Open
Abstract
Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is considered one of the most promising medical efforts of our time. The use of genetics is arguably the most data-rich and complex components of precision medicine. The grand challenge today is the successful assimilation of genetics into precision medicine that translates across different ancestries, diverse diseases and other distinct populations, which will require clever use of artificial intelligence (AI) and machine learning (ML) methods. Our goal here was to review and compare scientific objectives, methodologies, datasets, data sources, ethics and gaps of AI/ML approaches used in genomics and precision medicine. We selected high-quality literature published within the last 5 years that were indexed and available through PubMed Central. Our scope was narrowed to articles that reported application of AI/ML algorithms for statistical and predictive analyses using whole genome and/or whole exome sequencing for gene variants, and RNA-seq and microarrays for gene expression. We did not limit our search to specific diseases or data sources. Based on the scope of our review and comparative analysis criteria, we identified 32 different AI/ML approaches applied in variable genomics studies and report widely adapted AI/ML algorithms for predictive diagnostics across several diseases.
Collapse
Affiliation(s)
- Sreya Vadapalli
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Habiba Abdelhalim
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ, USA
| | - Zeeshan Ahmed
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA
| |
Collapse
|
27
|
Stidham RW, Takenaka K. Artificial Intelligence for Disease Assessment in Inflammatory Bowel Disease: How Will it Change Our Practice? Gastroenterology 2022; 162:1493-1506. [PMID: 34995537 PMCID: PMC8997186 DOI: 10.1053/j.gastro.2021.12.238] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
Artificial intelligence (AI) has arrived and it will directly impact how we assess, monitor, and manage inflammatory bowel disease (IBD). Advances in the machine learning methodologies that power AI have produced astounding results for replicating expert judgment and predicting clinical outcomes, particularly in the analysis of imaging. This review will cover general concepts for AI in IBD, with descriptions of common machine learning methods, including decision trees and neural networks. Applications of AI in IBD will cover recent achievements in endoscopic image interpretation and scoring, new capabilities for cross-sectional image analysis, natural language processing for automated understanding of clinical text, and progress in AI-powered clinical decision support tools. In addition to detailing current evidence supporting the capabilities of AI for replicating expert clinical judgment, speculative commentary on how AI may advance concepts of disease activity assessment, care pathways, and pathophysiologic mechanisms of IBD will be addressed.
Collapse
Affiliation(s)
- Ryan W. Stidham
- Division of Gastroenterology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kento Takenaka
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
28
|
A New Algorithm for Multivariate Genome Wide Association Studies Based on Differential Evolution and Extreme Learning Machines. MATHEMATICS 2022. [DOI: 10.3390/math10071024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies (GWAS) are observational studies of a large set of genetic variants, whose aim is to find those that are linked to a certain trait or illness. Due to the multivariate nature of these kinds of studies, machine learning methodologies have been already applied in them, showing good performance. This work presents a new methodology for GWAS that makes use of extreme learning machines and differential evolution. The proposed methodology was tested with the help of the genetic information (370,750 single-nucleotide polymorphisms) of 2049 individuals, 1076 of whom suffer from colorectal cancer. The possible relationship of 10 different pathways with this illness was tested. The results achieved showed that the proposed methodology is suitable for detecting relevant pathways for the trait under analysis with a lower computational cost than other machine learning methodologies previously proposed.
Collapse
|
29
|
Pandya S, Thakur A, Saxena S, Jassal N, Patel C, Modi K, Shah P, Joshi R, Gonge S, Kadam K, Kadam P. A Study of the Recent Trends of Immunology: Key Challenges, Domains, Applications, Datasets, and Future Directions. SENSORS (BASEL, SWITZERLAND) 2021; 21:7786. [PMID: 34883787 PMCID: PMC8659723 DOI: 10.3390/s21237786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022]
Abstract
The human immune system is very complex. Understanding it traditionally required specialized knowledge and expertise along with years of study. However, in recent times, the introduction of technologies such as AIoMT (Artificial Intelligence of Medical Things), genetic intelligence algorithms, smart immunological methodologies, etc., has made this process easier. These technologies can observe relations and patterns that humans do and recognize patterns that are unobservable by humans. Furthermore, these technologies have also enabled us to understand better the different types of cells in the immune system, their structures, their importance, and their impact on our immunity, particularly in the case of debilitating diseases such as cancer. The undertaken study explores the AI methodologies currently in the field of immunology. The initial part of this study explains the integration of AI in healthcare and how it has changed the face of the medical industry. It also details the current applications of AI in the different healthcare domains and the key challenges faced when trying to integrate AI with healthcare, along with the recent developments and contributions in this field by other researchers. The core part of this study is focused on exploring the most common classifications of health diseases, immunology, and its key subdomains. The later part of the study presents a statistical analysis of the contributions in AI in the different domains of immunology and an in-depth review of the machine learning and deep learning methodologies and algorithms that can and have been applied in the field of immunology. We have also analyzed a list of machine learning and deep learning datasets about the different subdomains of immunology. Finally, in the end, the presented study discusses the future research directions in the field of AI in immunology and provides some possible solutions for the same.
Collapse
Affiliation(s)
- Sharnil Pandya
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Aanchal Thakur
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Santosh Saxena
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Nandita Jassal
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Chirag Patel
- Computer Science & Engineering, Devang Patel Institute of Advance Technology and Research, Changa 388421, India;
| | - Kirit Modi
- Sankalchand Patel College of Engineering, Sankalchand Patel University, Visnagar 384315, India;
| | - Pooja Shah
- Information Technology Department, Gandhinagar Institute of Technology, Ahmedabad 382010, India;
| | - Rahul Joshi
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Sudhanshu Gonge
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Kalyani Kadam
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| | - Prachi Kadam
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India; (A.T.); (S.S.); (N.J.); (R.J.); (S.G.); (K.K.); (P.K.)
| |
Collapse
|
30
|
Kröner PT, Engels MML, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, Wallace MB, El-Serag HB, Krittanawong C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J Gastroenterol 2021; 27:6794-6824. [PMID: 34790008 PMCID: PMC8567482 DOI: 10.3748/wjg.v27.i40.6794] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
The development of artificial intelligence (AI) has increased dramatically in the last 20 years, with clinical applications progressively being explored for most of the medical specialties. The field of gastroenterology and hepatology, substantially reliant on vast amounts of imaging studies, is not an exception. The clinical applications of AI systems in this field include the identification of premalignant or malignant lesions (e.g., identification of dysplasia or esophageal adenocarcinoma in Barrett’s esophagus, pancreatic malignancies), detection of lesions (e.g., polyp identification and classification, small-bowel bleeding lesion on capsule endoscopy, pancreatic cystic lesions), development of objective scoring systems for risk stratification, predicting disease prognosis or treatment response [e.g., determining survival in patients post-resection of hepatocellular carcinoma), determining which patients with inflammatory bowel disease (IBD) will benefit from biologic therapy], or evaluation of metrics such as bowel preparation score or quality of endoscopic examination. The objective of this comprehensive review is to analyze the available AI-related studies pertaining to the entirety of the gastrointestinal tract, including the upper, middle and lower tracts; IBD; the hepatobiliary system; and the pancreas, discussing the findings and clinical applications, as well as outlining the current limitations and future directions in this field.
Collapse
Affiliation(s)
- Paul T Kröner
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Megan ML Engels
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Cancer Center Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam 1105, The Netherlands
| | - Benjamin S Glicksberg
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kipp W Johnson
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Obaie Mzaik
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Amsterdam 2300, The Netherlands
| | - Michael B Wallace
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi 11001, United Arab Emirates
| | - Hashem B El-Serag
- Section of Gastroenterology and Hepatology, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
| | - Chayakrit Krittanawong
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Cardiology, Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States
| |
Collapse
|
31
|
Kolosov N, Daly MJ, Artomov M. Prioritization of disease genes from GWAS using ensemble-based positive-unlabeled learning. Eur J Hum Genet 2021; 29:1527-1535. [PMID: 34276057 PMCID: PMC8484264 DOI: 10.1038/s41431-021-00930-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 05/23/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
A primary challenge in understanding disease biology from genome-wide association studies (GWAS) arises from the inability to directly implicate causal genes from association data. Integration of multiple-omics data sources potentially provides important functional links between associated variants and candidate genes. Machine-learning is well-positioned to take advantage of a variety of such data and provide a solution for the prioritization of disease genes. Yet, classical positive-negative classifiers impose strong limitations on the gene prioritization procedure, such as a lack of reliable non-causal genes for training. Here, we developed a novel gene prioritization tool-Gene Prioritizer (GPrior). It is an ensemble of five positive-unlabeled bagging classifiers (Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, Adaptive Boosting), that treats all genes of unknown relevance as an unlabeled set. GPrior selects an optimal composition of algorithms to tune the model for each specific phenotype. Altogether, GPrior fills an important niche of methods for GWAS data post-processing, significantly improving the ability to pinpoint disease genes compared to existing solutions.
Collapse
Affiliation(s)
- Nikita Kolosov
- ITMO University, St. Petersburg, Russia
- Almazov National Medical Research Center, St. Petersburg, Russia
- Broad Institute, Cambridge, MA, USA
| | - Mark J Daly
- Broad Institute, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland.
| | - Mykyta Artomov
- ITMO University, St. Petersburg, Russia.
- Almazov National Medical Research Center, St. Petersburg, Russia.
- Broad Institute, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland.
| |
Collapse
|
32
|
Majidova K, Handfield J, Kafi K, Martin RD, Kubinski R. Role of Digital Health and Artificial Intelligence in Inflammatory Bowel Disease: A Scoping Review. Genes (Basel) 2021; 12:1465. [PMID: 34680860 PMCID: PMC8535572 DOI: 10.3390/genes12101465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD), subdivided into Crohn's disease (CD) and ulcerative colitis (UC), are chronic diseases that are characterized by relapsing and remitting periods of inflammation in the gastrointestinal tract. In recent years, the amount of research surrounding digital health (DH) and artificial intelligence (AI) has increased. The purpose of this scoping review is to explore this growing field of research to summarize the role of DH and AI in the diagnosis, treatment, monitoring and prognosis of IBD. A review of 21 articles revealed the impact of both AI algorithms and DH technologies; AI algorithms can improve diagnostic accuracy, assess disease activity, and predict treatment response based on data modalities such as endoscopic imaging and genetic data. In terms of DH, patients utilizing DH platforms experienced improvements in quality of life, disease literacy, treatment adherence, and medication management. In addition, DH methods can reduce the need for in-person appointments, decreasing the use of healthcare resources without compromising the standard of care. These articles demonstrate preliminary evidence of the potential of DH and AI for improving the management of IBD. However, the majority of these studies were performed in a regulated clinical environment. Therefore, further validation of these results in a real-world environment is required to assess the efficacy of these methods in the general IBD population.
Collapse
Affiliation(s)
| | | | | | | | - Ryszard Kubinski
- Phyla Technologies Inc., Montréal, QC H3C 4J9, Canada; (K.M.); (J.H.); (K.K.); (R.D.M.)
| |
Collapse
|
33
|
Machine Learning Modeling from Omics Data as Prospective Tool for Improvement of Inflammatory Bowel Disease Diagnosis and Clinical Classifications. Genes (Basel) 2021; 12:genes12091438. [PMID: 34573420 PMCID: PMC8466305 DOI: 10.3390/genes12091438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/21/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Research of inflammatory bowel disease (IBD) has identified numerous molecular players involved in the disease development. Even so, the understanding of IBD is incomplete, while disease treatment is still far from the precision medicine. Reliable diagnostic and prognostic biomarkers in IBD are limited which may reduce efficient therapeutic outcomes. High-throughput technologies and artificial intelligence emerged as powerful tools in search of unrevealed molecular patterns that could give important insights into IBD pathogenesis and help to address unmet clinical needs. Machine learning, a subtype of artificial intelligence, uses complex mathematical algorithms to learn from existing data in order to predict future outcomes. The scientific community has been increasingly employing machine learning for the prediction of IBD outcomes from comprehensive patient data-clinical records, genomic, transcriptomic, proteomic, metagenomic, and other IBD relevant omics data. This review aims to present fundamental principles behind machine learning modeling and its current application in IBD research with the focus on studies that explored genomic and transcriptomic data. We described different strategies used for dealing with omics data and outlined the best-performing methods. Before being translated into clinical settings, the developed machine learning models should be tested in independent prospective studies as well as randomized controlled trials.
Collapse
|
34
|
Chen L, Li DC. Artificial intelligence and inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2021; 29:684-689. [DOI: 10.11569/wcjd.v29.i13.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With the development of artificial intelligence (AI) and its gradual application in the medical field, AI has brought new ideas to the medical development. The research and application of AI in inflammatory l bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), are increasing. Selecting appropriate models and methods through machine learning can help diagnose, treat, and predict the prognosis of IBD. In recent years, AI combined with endoscopy has made an appearance in the diagnosis of IBD and achieved satisfactory results. At the same time, AI plays an important role in the process of disease prediction and treatment evaluation for patients with IBD. However, we should also be aware that there are still some problems with AI. This paper gives a brief review of the practical application value of AI in IBD.
Collapse
Affiliation(s)
- Lei Chen
- Graduate School of Bengbu Medical College, Bengbu 233030, Anhui Province, China
| | - De-Chun Li
- Department of Radiology, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, Xuzhou 221009, Jiangsu Province, China
| |
Collapse
|
35
|
Chen G, Shen J. Artificial Intelligence Enhances Studies on Inflammatory Bowel Disease. Front Bioeng Biotechnol 2021; 9:635764. [PMID: 34307315 PMCID: PMC8297505 DOI: 10.3389/fbioe.2021.635764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn’s disease (CD), is an idiopathic condition related to a dysregulated immune response to commensal intestinal microflora in a genetically susceptible host. As a global disease, the morbidity of IBD reached a rate of 84.3 per 100,000 persons and reflected a continued gradual upward trajectory. The medical cost of IBD is also notably extremely high. For example, in Europe, it has €3,500 in CD and €2,000 in UC per patient per year, respectively. In addition, taking into account the work productivity loss and the reduced quality of life, the indirect costs are incalculable. In modern times, the diagnosis of IBD is still a subjective judgment based on laboratory tests and medical images. Its early diagnosis and intervention is therefore a challenging goal and also the key to control its progression. Artificial intelligence (AI)-assisted diagnosis and prognosis prediction has proven effective in many fields including gastroenterology. In this study, support vector machines were utilized to distinguish the significant features in IBD. As a result, the reliability of IBD diagnosis due to its impressive performance in classifying and addressing region problems was improved. Convolutional neural networks are advanced image processing algorithms that are currently in existence. Digestive endoscopic images can therefore be better understood by automatically detecting and classifying lesions. This study aims to summarize AI application in the area of IBD, objectively evaluate the performance of these methods, and ultimately understand the algorithm–dataset combination in the studies.
Collapse
Affiliation(s)
- Guihua Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Gubatan J, Levitte S, Patel A, Balabanis T, Wei MT, Sinha SR. Artificial intelligence applications in inflammatory bowel disease: Emerging technologies and future directions. World J Gastroenterol 2021; 27:1920-1935. [PMID: 34007130 PMCID: PMC8108036 DOI: 10.3748/wjg.v27.i17.1920] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex and multifaceted disorder of the gastrointestinal tract that is increasing in incidence worldwide and associated with significant morbidity. The rapid accumulation of large datasets from electronic health records, high-definition multi-omics (including genomics, proteomics, transcriptomics, and metagenomics), and imaging modalities (endoscopy and endomicroscopy) have provided powerful tools to unravel novel mechanistic insights and help address unmet clinical needs in IBD. Although the application of artificial intelligence (AI) methods has facilitated the analysis, integration, and interpretation of large datasets in IBD, significant heterogeneity in AI methods, datasets, and clinical outcomes and the need for unbiased prospective validations studies are current barriers to incorporation of AI into clinical practice. The purpose of this review is to summarize the most recent advances in the application of AI and machine learning technologies in the diagnosis and risk prediction, assessment of disease severity, and prediction of clinical outcomes in patients with IBD.
Collapse
Affiliation(s)
- John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Steven Levitte
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Akshar Patel
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Tatiana Balabanis
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Mike T Wei
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Sidhartha R Sinha
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| |
Collapse
|
37
|
Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res 2021; 9:23. [PMID: 33927194 PMCID: PMC8085014 DOI: 10.1038/s41413-021-00143-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/21/2020] [Indexed: 02/03/2023] Open
Abstract
Osteoporosis is a common skeletal disease, affecting ~200 million people around the world. As a complex disease, osteoporosis is influenced by many factors, including diet (e.g. calcium and protein intake), physical activity, endocrine status, coexisting diseases and genetic factors. In this review, we first summarize the discovery from genome-wide association studies (GWASs) in the bone field in the last 12 years. To date, GWASs and meta-analyses have discovered hundreds of loci that are associated with bone mineral density (BMD), osteoporosis, and osteoporotic fractures. However, the GWAS approach has sometimes been criticized because of the small effect size of the discovered variants and the mystery of missing heritability, these two questions could be partially explained by the newly raised conceptual models, such as omnigenic model and natural selection. Finally, we introduce the clinical use of GWAS findings in the bone field, such as the identification of causal clinical risk factors, the development of drug targets and disease prediction. Despite the fruitful GWAS discoveries in the bone field, most of these GWAS participants were of European descent, and more genetic studies should be carried out in other ethnic populations to benefit disease prediction in the corresponding population.
Collapse
|
38
|
Cohen-Mekelburg S, Berry S, Stidham RW, Zhu J, Waljee AK. Clinical applications of artificial intelligence and machine learning-based methods in inflammatory bowel disease. J Gastroenterol Hepatol 2021; 36:279-285. [PMID: 33624888 PMCID: PMC8917815 DOI: 10.1111/jgh.15405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Our objective was to review and exemplify how selected applications of artificial intelligence (AI) might facilitate and improve inflammatory bowel disease (IBD) care and to identify gaps for future work in this field. IBD is highly complex and associated with significant variation in care and outcomes. The application of AI to IBD has the potential to reduce variation in healthcare delivery and improve quality of care. AI refers to the ability of machines to mimic human intelligence. The range of AI's ability to perform tasks that would normally require human intelligence varies from prediction to complex decision-making that more closely resembles human thought. Clinical applications of AI have been applied to study pathogenesis, diagnosis, and patient prognosis in IBD. Despite these advancements, AI in IBD is in its early development and has tremendous potential to transform future care.
Collapse
Affiliation(s)
- Shirley Cohen-Mekelburg
- Health Services Research and Development Center of Clinical Management Research and Gastroenterology Service, VA Ann Arbor
- Michigan Medicine, Department of Internal Medicine, Division of Gastroenterology and Hepatology
| | - Sameer Berry
- Michigan Medicine, Department of Internal Medicine, Division of Gastroenterology and Hepatology
| | - Ryan W Stidham
- Michigan Medicine, Department of Internal Medicine, Division of Gastroenterology and Hepatology
- Department of Computational Medicine and Bioinformatics
- Michigan Integrated Center for Health Analytics and Medical Prediction (MiCHAMP), Ann Arbor, Michigan, USA
| | - Ji Zhu
- Department of Statistics, University of Michigan
- Michigan Integrated Center for Health Analytics and Medical Prediction (MiCHAMP), Ann Arbor, Michigan, USA
| | - Akbar K Waljee
- Health Services Research and Development Center of Clinical Management Research and Gastroenterology Service, VA Ann Arbor
- Michigan Medicine, Department of Internal Medicine, Division of Gastroenterology and Hepatology
- Michigan Integrated Center for Health Analytics and Medical Prediction (MiCHAMP), Ann Arbor, Michigan, USA
| |
Collapse
|
39
|
Artificial intelligence in inflammatory bowel disease: current status and opportunities. Chin Med J (Engl) 2021; 133:757-759. [PMID: 32132365 PMCID: PMC7147662 DOI: 10.1097/cm9.0000000000000714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
40
|
Elgart M, Redline S, Sofer T. Machine and Deep Learning in Molecular and Genetic Aspects of Sleep Research. Neurotherapeutics 2021; 18:228-243. [PMID: 33829409 PMCID: PMC8116376 DOI: 10.1007/s13311-021-01014-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Epidemiological sleep research strives to identify the interactions and causal mechanisms by which sleep affects human health, and to design intervention strategies for improving sleep throughout the lifespan. These goals can be advanced by further focusing on the environmental and genetic etiology of sleep disorders, and by development of risk stratification algorithms, to identify people who are at risk or are affected by, sleep disorders. These studies rely on comprehensive sleep-related data which often contains complex multi-dimensional physiological and molecular measurements across multiple timepoints. Thus, sleep research is well-suited for the application of computational approaches that can handle high-dimensional data. Here, we survey recent advances in machine and deep learning together with the availability of large human cohort studies with sleep data that can jointly drive the next breakthroughs in the sleep-research field. We describe sleep-related data types and datasets, and present some of the tasks in the field that can be targets for algorithmic approaches, as well as the challenges and opportunities in pursuing them.
Collapse
Affiliation(s)
- Michael Elgart
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA USA
- Department of Medicine, Harvard Medical School, Boston, MA USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA USA
- Department of Medicine, Harvard Medical School, Boston, MA USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA USA
- Department of Medicine, Harvard Medical School, Boston, MA USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| |
Collapse
|
41
|
Mucosal microbiota and gene expression are associated with long-term remission after discontinuation of adalimumab in ulcerative colitis. Sci Rep 2020; 10:19186. [PMID: 33154436 PMCID: PMC7644643 DOI: 10.1038/s41598-020-76175-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Given that sustained remission is the ultimate treatment goal in the management of patients with ulcerative colitis (UC), the decision to stop anti-tumor necrosis factor (anti-TNF) treatment in UC patients is difficult. The aim of this study was to evaluate mucosal microbiota and gene expression profiles associated with long-term remission after discontinuation of anti-TNF therapy. In nine UC patients who received anti-TNF therapy for 6 months, microbiota isolated from uninflamed mucosae and gene expression in inflamed and uninflamed mucosae were investigated at week 0 and at week 24. At treatment initiation, Fusobacterium sp. and Veillonella dispar were over-represented in the relapse group compared with the non-relapse group. After treatment, Dorea sp. and Lachnospira sp. were over-represented in the non-relapse group. In the relapse group only, a significant shift in gut bacterial community composition was found between week 0 and week 24. Gene expression of ALIX (PDCD6IP) and SLC9A3 was significantly higher in the non-relapse group than in the relapse group. Lastly, we used machine learning methods to identify relevant gene signatures associated with sustained remission. Statistical analyses of microbiota and expression profiles revealed differences between UC patients who did or did not keep remission after the discontinuation of TNF inhibitors. Trial registration: UMIN000020785: Evaluation of adalimumab therapy in mesalazine-resistant or -intolerant ulcerative colitis; an observational study (EARLY study).
Collapse
|
42
|
Seyed Tabib NS, Madgwick M, Sudhakar P, Verstockt B, Korcsmaros T, Vermeire S. Big data in IBD: big progress for clinical practice. Gut 2020; 69:1520-1532. [PMID: 32111636 PMCID: PMC7398484 DOI: 10.1136/gutjnl-2019-320065] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
IBD is a complex multifactorial inflammatory disease of the gut driven by extrinsic and intrinsic factors, including host genetics, the immune system, environmental factors and the gut microbiome. Technological advancements such as next-generation sequencing, high-throughput omics data generation and molecular networks have catalysed IBD research. The advent of artificial intelligence, in particular, machine learning, and systems biology has opened the avenue for the efficient integration and interpretation of big datasets for discovering clinically translatable knowledge. In this narrative review, we discuss how big data integration and machine learning have been applied to translational IBD research. Approaches such as machine learning may enable patient stratification, prediction of disease progression and therapy responses for fine-tuning treatment options with positive impacts on cost, health and safety. We also outline the challenges and opportunities presented by machine learning and big data in clinical IBD research.
Collapse
Affiliation(s)
| | - Matthew Madgwick
- Organisms and Ecosystems, Earlham Institute, Norwich, UK
- Gut microbes in health and disease, Quadram Institute Bioscience, Norwich, UK
| | - Padhmanand Sudhakar
- Department of Chronic Diseases, Metabolism and Ageing, TARGID, KU Leuven, Leuven, Belgium
- Organisms and Ecosystems, Earlham Institute, Norwich, UK
- Gut microbes in health and disease, Quadram Institute Bioscience, Norwich, UK
| | - Bram Verstockt
- Translational Research in GastroIntestinal Disorders, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, KU Leuven University Hospitals Leuven, Leuven, Belgium
| | - Tamas Korcsmaros
- Organisms and Ecosystems, Earlham Institute, Norwich, UK
- Gut microbes in health and disease, Quadram Institute Bioscience, Norwich, UK
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing, TARGID, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, KU Leuven University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
43
|
Nicholls HL, John CR, Watson DS, Munroe PB, Barnes MR, Cabrera CP. Reaching the End-Game for GWAS: Machine Learning Approaches for the Prioritization of Complex Disease Loci. Front Genet 2020; 11:350. [PMID: 32351543 PMCID: PMC7174742 DOI: 10.3389/fgene.2020.00350] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
Genome-wide association studies (GWAS) have revealed thousands of genetic loci that underpin the complex biology of many human traits. However, the strength of GWAS - the ability to detect genetic association by linkage disequilibrium (LD) - is also its limitation. Whilst the ever-increasing study size and improved design have augmented the power of GWAS to detect effects, differentiation of causal variants or genes from other highly correlated genes associated by LD remains the real challenge. This has severely hindered the biological insights and clinical translation of GWAS findings. Although thousands of disease susceptibility loci have been reported, causal genes at these loci remain elusive. Machine learning (ML) techniques offer an opportunity to dissect the heterogeneity of variant and gene signals in the post-GWAS analysis phase. ML models for GWAS prioritization vary greatly in their complexity, ranging from relatively simple logistic regression approaches to more complex ensemble models such as random forests and gradient boosting, as well as deep learning models, i.e., neural networks. Paired with functional validation, these methods show important promise for clinical translation, providing a strong evidence-based approach to direct post-GWAS research. However, as ML approaches continue to evolve to meet the challenge of causal gene identification, a critical assessment of the underlying methodologies and their applicability to the GWAS prioritization problem is needed. This review investigates the landscape of ML applications in three parts: selected models, input features, and output model performance, with a focus on prioritizations of complex disease associated loci. Overall, we explore the contributions ML has made towards reaching the GWAS end-game with consequent wide-ranging translational impact.
Collapse
Affiliation(s)
- Hannah L. Nicholls
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Christopher R. John
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - David S. Watson
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Oxford Internet Institute, University of Oxford, Oxford, United Kingdom
| | - Patricia B. Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Michael R. Barnes
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- The Alan Turing Institute, British Library, London, United Kingdom
| | - Claudia P. Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
44
|
High circulating elafin levels are associated with Crohn's disease-associated intestinal strictures. PLoS One 2020; 15:e0231796. [PMID: 32287314 PMCID: PMC7156098 DOI: 10.1371/journal.pone.0231796] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022] Open
Abstract
Background Antimicrobial peptide expression is associated with disease activity in inflammatory bowel disease (IBD) patients. IBD patients have abnormal expression of elafin, a human elastase-specific protease inhibitor and antimicrobial peptide. We determined elafin expression in blood, intestine, and mesenteric fat of IBD and non-IBD patients. Methods Serum samples from normal and IBD patients were collected from two UCLA cohorts. Surgical resection samples of human colonic and mesenteric fat tissues from IBD and non-IBD (colon cancer) patients were collected from Cedars-Sinai Medical Center. Results High serum elafin levels were associated with a significantly elevated risk of intestinal stricture in Crohn’s disease (CD) patients. Microsoft Azure Machine learning algorithm using serum elafin levels and clinical data identified stricturing CD patients with high accuracy. Serum elafin levels had weak positive correlations with clinical disease activity (Partial Mayo Score and Harvey Bradshaw Index), but not endoscopic disease activity (Mayo Endoscopic Subscore and Simple Endoscopic Index for CD) in IBD patients. Ulcerative colitis (UC) patients had high serum elafin levels. Colonic elafin mRNA and protein expression were not associated with clinical disease activity and histological injury in IBD patients, but stricturing CD patients had lower colonic elafin expression than non-stricturing CD patients. Mesenteric fat in stricturing CD patients had significantly increased elafin mRNA and protein expression, which may contribute to high circulating elafin levels. Human mesenteric fat adipocytes secrete elafin protein. Conclusions High circulating elafin levels are associated with the presence of stricture in CD patients. Serum elafin levels may help identify intestinal strictures in CD patients.
Collapse
|
45
|
Stafford IS, Kellermann M, Mossotto E, Beattie RM, MacArthur BD, Ennis S. A systematic review of the applications of artificial intelligence and machine learning in autoimmune diseases. NPJ Digit Med 2020; 3:30. [PMID: 32195365 PMCID: PMC7062883 DOI: 10.1038/s41746-020-0229-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases are chronic, multifactorial conditions. Through machine learning (ML), a branch of the wider field of artificial intelligence, it is possible to extract patterns within patient data, and exploit these patterns to predict patient outcomes for improved clinical management. Here, we surveyed the use of ML methods to address clinical problems in autoimmune disease. A systematic review was conducted using MEDLINE, embase and computers and applied sciences complete databases. Relevant papers included "machine learning" or "artificial intelligence" and the autoimmune diseases search term(s) in their title, abstract or key words. Exclusion criteria: studies not written in English, no real human patient data included, publication prior to 2001, studies that were not peer reviewed, non-autoimmune disease comorbidity research and review papers. 169 (of 702) studies met the criteria for inclusion. Support vector machines and random forests were the most popular ML methods used. ML models using data on multiple sclerosis, rheumatoid arthritis and inflammatory bowel disease were most common. A small proportion of studies (7.7% or 13/169) combined different data types in the modelling process. Cross-validation, combined with a separate testing set for more robust model evaluation occurred in 8.3% of papers (14/169). The field may benefit from adopting a best practice of validation, cross-validation and independent testing of ML models. Many models achieved good predictive results in simple scenarios (e.g. classification of cases and controls). Progression to more complex predictive models may be achievable in future through integration of multiple data types.
Collapse
Affiliation(s)
- I. S. Stafford
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - M. Kellermann
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - E. Mossotto
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - R. M. Beattie
- Department of Paediatric Gastroenterology, Southampton Children’s Hospital, Southampton, UK
| | - B. D. MacArthur
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - S. Ennis
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
46
|
Zolotareva O, Kleine M. A Survey of Gene Prioritization Tools for Mendelian and Complex Human Diseases. J Integr Bioinform 2019; 16:/j/jib.ahead-of-print/jib-2018-0069/jib-2018-0069.xml. [PMID: 31494632 PMCID: PMC7074139 DOI: 10.1515/jib-2018-0069] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 07/12/2019] [Indexed: 12/16/2022] Open
Abstract
Modern high-throughput experiments provide us with numerous potential associations between genes and diseases. Experimental validation of all the discovered associations, let alone all the possible interactions between them, is time-consuming and expensive. To facilitate the discovery of causative genes, various approaches for prioritization of genes according to their relevance for a given disease have been developed. In this article, we explain the gene prioritization problem and provide an overview of computational tools for gene prioritization. Among about a hundred of published gene prioritization tools, we select and briefly describe 14 most up-to-date and user-friendly. Also, we discuss the advantages and disadvantages of existing tools, challenges of their validation, and the directions for future research.
Collapse
Affiliation(s)
- Olga Zolotareva
- Bielefeld University, Faculty of Technology and Center for Biotechnology, International Research Training Group "Computational Methods for the Analysis of the Diversity and Dynamics of Genomes" and Genome Informatics, Universitätsstraße 25, Bielefeld, Germany
| | - Maren Kleine
- Bielefeld University, Faculty of Technology, Bioinformatics/Medical Informatics Department, Universitätsstraße 25, Bielefeld, Germany
| |
Collapse
|
47
|
Luo P, Tian LP, Chen B, Xiao Q, Wu FX. Predicting Gene-Disease Associations with Manifold Learning. BIOINFORMATICS RESEARCH AND APPLICATIONS 2018. [DOI: 10.1007/978-3-319-94968-0_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|