1
|
Chauveau B, Couzi L, Merville P. The Microscope and Beyond: Current Trends in the Characterization of Kidney Allograft Rejection From Tissue Samples. Transplantation 2025; 109:440-453. [PMID: 39436268 DOI: 10.1097/tp.0000000000005153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The Banff classification is regularly updated to integrate recent advances in the characterization of kidney allograft rejection, gathering novel diagnostic, prognostic, and theragnostic data into a diagnostic and pathogenesis-based framework. Despite ongoing research on noninvasive biomarkers of kidney rejection, the Banff classification remains, to date, biopsy-centered, primarily relying on a semiquantitative histological scoring system that overall lacks reproducibility and granularity. Besides, the ability of histopathological injuries and transcriptomics analyses from bulk tissue to accurately infer the pathogenesis of rejection is questioned. This review discusses findings from past, current, and emerging innovative tools that have the potential to enhance the characterization of allograft rejection from tissue samples. First, the digitalization of pathological workflows and the rise of deep learning should yield more reproducible and quantitative results from routine slides. Additionally, novel histomorphometric features of kidney rejection could be discovered with an overall genuine clinical implementation perspective. Second, multiplex immunohistochemistry enables in-depth in situ phenotyping of cells from formalin-fixed samples, which can decipher the heterogeneity of the immune infiltrate during kidney allograft rejection. Third, transcriptomics from bulk tissue is gradually integrated into the Banff classification, and its specific context of use is currently under extensive consideration. Finally, single-cell transcriptomics and spatial transcriptomics from formalin-fixed and paraffin-embedded samples are emerging techniques capable of producing up to genome-wide data with unprecedented precision levels. Combining all these approaches gives us hope for novel advances that will address the current blind spots of the Banff system.
Collapse
Affiliation(s)
- Bertrand Chauveau
- Department of Pathology, Bordeaux University Hospital, Pellegrin Hospital, Place Amélie Raba Léon, Bordeaux, France
- CNRS UMR 5164 ImmunoConcEpT, University of Bordeaux, Bordeaux, France
| | - Lionel Couzi
- CNRS UMR 5164 ImmunoConcEpT, University of Bordeaux, Bordeaux, France
- Department of Nephrology, Transplantation Dialysis, Apheresis, Bordeaux University Hospital, Pellegrin Hospital, Bordeaux, France
| | - Pierre Merville
- CNRS UMR 5164 ImmunoConcEpT, University of Bordeaux, Bordeaux, France
- Department of Nephrology, Transplantation Dialysis, Apheresis, Bordeaux University Hospital, Pellegrin Hospital, Bordeaux, France
| |
Collapse
|
2
|
Zhang H, Haun RS, Collin F, Cassol C, Napier JOH, Wilson J, Hassen S, Ararat K, Boils C, Messias N, Caza TN, Cossey LN, Sharma S, Ambruzs JM, Agrawal N, Shekhtman G, Tian W, Srinivas T, Qu K, Woodward RN, Larsen CP, Stone S, Coley SM. Development and Validation of a Multiclass Model Defining Molecular Archetypes of Kidney Transplant Rejection: A Large Cohort Study of the Banff Human Organ Transplant Gene Expression Panel. J Transl Med 2024; 104:100304. [PMID: 38092179 DOI: 10.1016/j.labinv.2023.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/19/2023] [Accepted: 12/06/2023] [Indexed: 01/15/2024] Open
Abstract
Gene expression profiling from formalin-fixed paraffin-embedded (FFPE) renal allograft biopsies is a promising approach for feasibly providing a molecular diagnosis of rejection. However, large-scale studies evaluating the performance of models using NanoString platform data to define molecular archetypes of rejection are lacking. We tested a diverse retrospective cohort of over 1400 FFPE biopsy specimens, rescored according to Banff 2019 criteria and representing 10 of 11 United Network of Organ Sharing regions, using the Banff Human Organ Transplant panel from NanoString and developed a multiclass model from the gene expression data to assign relative probabilities of 4 molecular archetypes: No Rejection, Antibody-Mediated Rejection, T Cell-Mediated Rejection, and Mixed Rejection. Using Least Absolute Shrinkage and Selection Operator regularized regression with 10-fold cross-validation fitted to 1050 biopsies in the discovery cohort and technically validated on an additional 345 biopsies, our model achieved overall accuracy of 85% in the discovery cohort and 80% in the validation cohort, with ≥75% positive predictive value for each class, except for the Mixed Rejection class in the validation cohort (positive predictive value, 53%). This study represents the technical validation of the first model built from a large and diverse sample of diagnostic FFPE biopsy specimens to define and classify molecular archetypes of histologically defined diagnoses as derived from Banff Human Organ Transplant panel gene expression profiling data.
Collapse
Affiliation(s)
| | | | | | | | | | - Jon Wilson
- Arkana Laboratories, Little Rock, Arkansas
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Beadle J, Papadaki A, Toulza F, Santos E, Willicombe M, McLean A, Peters J, Roufosse C. Application of the Banff Human Organ Transplant Panel to kidney transplant biopsies with features suspicious for antibody-mediated rejection. Kidney Int 2023; 104:526-541. [PMID: 37172690 DOI: 10.1016/j.kint.2023.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/07/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023]
Abstract
The Banff Classification for Allograft Pathology includes the use of gene expression in the diagnosis of antibody-mediated rejection (AMR) of kidney transplants, but a predictive set of genes for classifying biopsies with 'incomplete' phenotypes has not yet been studied. Here, we developed and assessed a gene score that, when applied to biopsies with features of AMR, would identify cases with a higher risk of allograft loss. To do this, RNA was extracted from a continuous retrospective cohort of 349 biopsies randomized 2:1 to include 220 biopsies in a discovery cohort and 129 biopsies in a validation cohort. The biopsies were divided into three groups: 31 that fulfilled the 2019 Banff Criteria for active AMR, 50 with histological features of AMR but not meeting the full criteria (Suspicious-AMR), and 269 with no features of active AMR (No-AMR). Gene expression analysis using the 770 gene Banff Human Organ Transplant NanoString panel was carried out with LASSO Regression performed to identify a parsimonious set of genes predictive of AMR. We identified a nine gene score that was highly predictive of active AMR (accuracy 0.92 in the validation cohort) and was strongly correlated with histological features of AMR. In biopsies suspicious for AMR, our gene score was strongly associated with risk of allograft loss and independently associated with allograft loss in multivariable analysis. Thus, we show that a gene expression signature in kidney allograft biopsy samples can help classify biopsies with incomplete AMR phenotypes into groups that correlate strongly with histological features and outcomes.
Collapse
Affiliation(s)
- Jack Beadle
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK; Imperial College Renal and Transplant Centre, Imperial College NHS Trust, London, UK.
| | - Artemis Papadaki
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Frederic Toulza
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Eva Santos
- H&I Laboratory, North West London Pathology, London, UK
| | - Michelle Willicombe
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK; Imperial College Renal and Transplant Centre, Imperial College NHS Trust, London, UK
| | - Adam McLean
- Imperial College Renal and Transplant Centre, Imperial College NHS Trust, London, UK
| | - James Peters
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Candice Roufosse
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK; Department of Cellular Pathology, North West London Pathology, London, UK
| |
Collapse
|
4
|
de Nattes T, Beadle J, Toulza F, Candon E, Ruminy P, François A, Bertrand D, Guerrot D, Drieux F, Roufosse C, Candon S. A Simple Molecular Tool for the Assessment of Kidney Transplant Biopsies. Clin J Am Soc Nephrol 2023; 18:499-509. [PMID: 36723289 PMCID: PMC10103338 DOI: 10.2215/cjn.0000000000000100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/17/2023] [Indexed: 02/02/2023]
Abstract
BACKGROUND The Banff Classification for Allograft Pathology recommendations for the diagnosis of kidney transplant rejection includes molecular assessment of the transplant biopsy. However, implementation of molecular tools in clinical practice is still limited, partly due to the required expertise and financial investment. The reverse transcriptase multiplex ligation-dependent probe amplification (RT-MLPA) assay is a simple, rapid, and inexpensive assay that permits simultaneous evaluation of a restricted gene panel using paraffin-embedded tissue blocks. The aim of this study was to develop and validate a RT-MLPA assay for diagnosis and classification of rejection. METHODS A retrospective cohort of 220 kidney transplant biopsies from two centers, which included 52 antibody-mediated rejection, 51 T-cell-mediated rejection, and 117 no-rejection controls, was assessed. A 17-gene panel was identified on the basis of relevant pathophysiological pathways. A support vector machine classifier was developed. A subset of 109 biopsies was also assessed using the Nanostring Banff Human Organ Transplant panel to compare the two assays. RESULTS The support vector machine classifier train and test accuracy scores were 0.84 and 0.83, respectively. In the test cohort, the F1 score for antibody-mediated rejection, T-cell-mediated rejection, and control were 0.88, 0.86, and 0.69, respectively. Using receiver-operating characteristic curves, the area under the curve for class predictions was 0.96, 0.89, and 0.91, respectively, with a weighted average at 0.94. Classifiers' performances were highest for antibody-mediated rejection diagnosis with 94% correct predictions, compared with 88% correct predictions for control biopsies and 60% for T-cell-mediated rejection biopsies. Gene expression levels assessed by RT-MLPA and Nanostring were correlated: r = 0.68, P < 0.001. Equivalent gene expression profiles were obtained with both assays in 81% of the samples. CONCLUSIONS The 17-gene panel RT-MLPA assay, developed here for formalin-fixed paraffin-embedded kidney transplant biopsies, classified kidney transplant rejection with an overall accurate prediction ratio of 0.83. PODCAST This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/CJASN/2023_04_10_CJN10100822.mp3.
Collapse
Affiliation(s)
- Tristan de Nattes
- Nephrology – Kidney Transplant Unit, Rouen University Hospital, Rouen, France
- Univ Rouen Normandie, INSERM U1234, Rouen, France
- Department of Immunology and Inflammation, Centre for Inflammatory Diseases, Imperial College, London, United Kingdom
| | - Jack Beadle
- Department of Immunology and Inflammation, Centre for Inflammatory Diseases, Imperial College, London, United Kingdom
| | - Frederic Toulza
- Department of Immunology and Inflammation, Centre for Inflammatory Diseases, Imperial College, London, United Kingdom
| | - Edvin Candon
- Nephrology – Kidney Transplant Unit, Rouen University Hospital, Rouen, France
| | - Philippe Ruminy
- Univ Rouen Normandie, INSERM U1245, Centre Henri Becquerel, Rouen, France
| | - Arnaud François
- Pathology Department, Rouen University Hospital, Rouen, France
| | - Dominique Bertrand
- Nephrology – Kidney Transplant Unit, Rouen University Hospital, Rouen, France
| | - Dominique Guerrot
- Nephrology – Kidney Transplant Unit, Rouen University Hospital, Rouen, France
| | - Fanny Drieux
- Univ Rouen Normandie, INSERM U1245, Centre Henri Becquerel, Rouen, France
- Pathology Department, Rouen University Hospital, Rouen, France
| | - Candice Roufosse
- Department of Immunology and Inflammation, Centre for Inflammatory Diseases, Imperial College, London, United Kingdom
| | | |
Collapse
|
5
|
Varol H, Ernst A, Cristoferi I, Arns W, Baan CC, van Baardwijk M, van den Bosch T, Eckhoff J, Harth A, Hesselink DA, van Kemenade FJ, de Koning W, Kurschat C, Minnee RC, Mustafa DAM, Reinders MEJ, Shahzad-Arshad SP, Snijders MLH, Stippel D, Stubbs AP, von der Thüsen J, Wirths K, Becker JU, Clahsen-van Groningen MC. Feasibility and Potential of Transcriptomic Analysis Using the NanoString nCounter Technology to Aid the Classification of Rejection in Kidney Transplant Biopsies. Transplantation 2022; 107:903-912. [PMID: 36413151 PMCID: PMC10065817 DOI: 10.1097/tp.0000000000004372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Transcriptome analysis could be an additional diagnostic parameter in diagnosing kidney transplant (KTx) rejection. Here, we assessed feasibility and potential of NanoString nCounter analysis of KTx biopsies to aid the classification of rejection in clinical practice using both the Banff-Human Organ Transplant (B-HOT) panel and a customized antibody-mediated rejection (AMR)-specific NanoString nCounter Elements (Elements) panel. Additionally, we explored the potential for the classification of KTx rejection building and testing a classifier within our dataset. METHODS Ninety-six formalin-fixed paraffin-embedded KTx biopsies were retrieved from the archives of the ErasmusMC Rotterdam and the University Hospital Cologne. Biopsies with AMR, borderline or T cell-mediated rejections (BLorTCMR), and no rejection were compared using the B-HOT and Elements panels. RESULTS High correlation between gene expression levels was found when comparing the 2 chemistries pairwise (r = 0.76-0.88). Differential gene expression (false discovery rate; P < 0.05) was identified in biopsies diagnosed with AMR (B-HOT: 294; Elements: 76) and BLorTCMR (B-HOT: 353; Elements: 57) compared with no rejection. Using the most predictive genes from the B-HOT analysis and the Element analysis, 2 least absolute shrinkage and selection operators-based regression models to classify biopsies as AMR versus no AMR (BLorTCMR or no rejection) were developed achieving an receiver-operating-characteristic curve of 0.994 and 0.894, sensitivity of 0.821 and 0.480, and specificity of 1.00 and 0.979, respectively, during cross-validation. CONCLUSIONS Transcriptomic analysis is feasible on KTx biopsies previously used for diagnostic purposes. The B-HOT panel has the potential to differentiate AMR from BLorTCMR or no rejection and could prove valuable in aiding kidney transplant rejection classification.
Collapse
Affiliation(s)
- Hilal Varol
- Department of Pathology, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Angela Ernst
- Institute of Medical Statistics and Computational Biology, University Hospital of Cologne, Cologne, Germany
| | - Iacopo Cristoferi
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pathology, Clinical Bioinformatics Unit, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Surgery, Division of HPB & Transplant Surgery, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wolfgang Arns
- Cologne Merheim Medical Center, Cologne General Hospital, Cologne, Germany
| | - Carla C Baan
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Myrthe van Baardwijk
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pathology, Clinical Bioinformatics Unit, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Surgery, Division of HPB & Transplant Surgery, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thierry van den Bosch
- Department of Pathology, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jennifer Eckhoff
- Department of General Visceral Cancer and Transplant Surgery Transplant Center Cologne, University of Cologne Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Ana Harth
- Cologne Merheim Medical Center, Cologne General Hospital, Cologne, Germany
| | - Dennis A Hesselink
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Folkert J van Kemenade
- Department of Pathology, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem de Koning
- Department of Pathology, Clinical Bioinformatics Unit, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pathology, Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Christine Kurschat
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Robert C Minnee
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Surgery, Division of HPB & Transplant Surgery, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dana A M Mustafa
- Department of Pathology, Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marlies E J Reinders
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Malou L H Snijders
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Dirk Stippel
- Department of General Visceral Cancer and Transplant Surgery Transplant Center Cologne, University of Cologne Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Andrew P Stubbs
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pathology, Clinical Bioinformatics Unit, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan von der Thüsen
- Department of Pathology, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Katharina Wirths
- Department of Internal Medicine, Faculty of Medicine, University Bonn, Bonn, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Marian C Clahsen-van Groningen
- Department of Pathology, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Maehana T, Tanaka T, Hashimoto K, Kobayashi K, Kitamura H, Masumori N. Heat shock protein 90 is a new potential target of anti-rejection therapy in allotransplantation. Cell Stress Chaperones 2022; 27:337-351. [PMID: 35397061 PMCID: PMC9346020 DOI: 10.1007/s12192-022-01272-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 01/03/2023] Open
Abstract
The critical roles of heat shock protein 90 (HSP90) in immune reactions associated with viral infection and autoimmune disease are well known. To date, however, its roles in the alloimmune response and the immunosuppressive effect of HSP90 inhibitors in allotransplantation have remained unknown. The purpose of this study was to examine the therapeutic efficacy of the HSP90 inhibitor 17-DMAG in allotransplantation models. C57BL/6 (H-2b) and BALB/c (H-2d) mice were used as donors for and recipients of skin and heart transplantation, respectively. Treatment with 17-DMAG (daily i.p.) or a vehicle was initiated 3 days before transplantation. Immunological outcomes were assessed by histopathological examinations, flow cytometric analysis, quantitative RT-PCR, ELISA, ELISPOT assay, and MLR. 17-DMAG treatment significantly prolonged the survival of both skin and heart allografts. In 17-DMAG-treated mice, donor-reactive splenocytes producing IFN-γ were significantly reduced along with the intragraft mRNA expression level and serum concentration of IFN-γ. Intragraft mRNA expression of cytokines and chemokines associated with both innate and adaptive immunity was suppressed in 17-DMAG-treated group. MLR showed suppression of the donor-specific proliferation of CD4 + T and CD19 + B cells in the spleens of 17-DMAG-treated mice. 17-DMAG treatment also reduced the number of activated NK cells. Furthermore, the treatment lowered the titers of donor-specific antibodies in the serum and prolonged a second skin allograft in mice sensitized by previous skin transplantation. HSP90 inhibition by 17-DMAG can affect various immune responses, including innate immunity, adaptive immunity, and humoral immunity, suggesting its therapeutic potential against acute rejection in allotransplantation.
Collapse
Affiliation(s)
- Takeshi Maehana
- Department of Urology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Toshiaki Tanaka
- Department of Urology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan.
| | - Kohei Hashimoto
- Department of Urology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Ko Kobayashi
- Department of Urology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Hiroshi Kitamura
- Department of Urology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama, 930-1094, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| |
Collapse
|
7
|
Roufosse C, Becker JU, Rabant M, Seron D, Bellini MI, Böhmig GA, Budde K, Diekmann F, Glotz D, Hilbrands L, Loupy A, Oberbauer R, Pengel L, Schneeberger S, Naesens M. Proposed Definitions of Antibody-Mediated Rejection for Use as a Clinical Trial Endpoint in Kidney Transplantation. Transpl Int 2022; 35:10140. [PMID: 35669973 PMCID: PMC9163810 DOI: 10.3389/ti.2022.10140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
Antibody-mediated rejection (AMR) is caused by antibodies that recognize donor human leukocyte antigen (HLA) or other targets. As knowledge of AMR pathophysiology has increased, a combination of factors is necessary to confirm the diagnosis and phenotype. However, frequent modifications to the AMR definition have made it difficult to compare data and evaluate associations between AMR and graft outcome. The present paper was developed following a Broad Scientific Advice request from the European Society for Organ Transplantation (ESOT) to the European Medicines Agency (EMA), which explored whether updating guidelines on clinical trial endpoints would encourage innovations in kidney transplantation research. ESOT considers that an AMR diagnosis must be based on a combination of histopathological factors and presence of donor-specific HLA antibodies in the recipient. Evidence for associations between individual features of AMR and impaired graft outcome is noted for microvascular inflammation scores ≥2 and glomerular basement membrane splitting of >10% of the entire tuft in the most severely affected glomerulus. Together, these should form the basis for AMR-related endpoints in clinical trials of kidney transplantation, although modifications and restrictions to the Banff diagnostic definition of AMR are proposed for this purpose. The EMA provided recommendations based on this Broad Scientific Advice request in December 2020; further discussion, and consensus on the restricted definition of the AMR endpoint, is required.
Collapse
Affiliation(s)
- Candice Roufosse
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Jan Ulrich Becker
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Marion Rabant
- Department of Pathology, Hôpital Necker-Enfants Malades, Paris, France
| | - Daniel Seron
- Department of Nephrology and Kidney Transplantation, Vall d'Hebrón University Hospital, Barcelona, Spain
| | | | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Internal Medicine, Medical University of Vienna, Vienna, Austria
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Fritz Diekmann
- Department of Nephrology and Kidney Transplantation, Hospital Clinic Barcelona, Barcelona, Spain
| | - Denis Glotz
- Paris Translational Research Center for Organ Transplantation, Hôpital Saint Louis, Paris, France
| | - Luuk Hilbrands
- Department of Nephrology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alexandre Loupy
- Paris Translational Research Center for Organ Transplantation, Hôpital Necker, Paris, France
| | - Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Internal Medicine, Medical University of Vienna, Vienna, Austria
| | - Liset Pengel
- Centre for Evidence in Transplantation, University of Oxford, Oxford, United Kingdom
| | - Stefan Schneeberger
- Department of General, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Wang LJ, Ma XB, Xia HY, Sun X, Yu L, Yang Q, Hu ZQ, Zhao YH, Hu W, Ran JH. Identification of Biomarkers for Predicting Allograft Rejection following Kidney Transplantation Based on the Weighted Gene Coexpression Network Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9933136. [PMID: 34368360 PMCID: PMC8342162 DOI: 10.1155/2021/9933136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/03/2021] [Indexed: 12/02/2022]
Abstract
Kidney transplantation is the promising treatment of choice for chronic kidney disease and end-stage kidney disease and can effectively improve the quality of life and survival rates of patients. However, the allograft rejection following kidney transplantation has a negative impact on transplant success. Therefore, the present study is aimed at screening novel biomarkers for the diagnosis and treatment of allograft rejection following kidney transplantation for improving long-term transplant outcome. In the study, a total of 8 modules and 3065 genes were identified by WGCNA based on the GSE46474 and GSE15296 dataset from the Gene Expression Omnibus (GEO) database. Moreover, the results of Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that these genes were mainly involved in the immune-related biological processes and pathways. Thus, 317 immune-related genes were selected for further analysis. Finally, 5 genes (including CD200R1, VAV2, FASLG, SH2D1B, and RAP2B) were identified as the candidate biomarkers based on the ROC and difference analysis. Furthermore, we also found that in the 5 biomarkers an interaction might exist among each other in the protein and transcription level. Taken together, our study identified CD200R1, VAV2, FASLG, SH2D1B, and RAP2B as the candidate diagnostic biomarkers, which might contribute to the prevention and treatment of allograft rejection following kidney transplantation.
Collapse
Affiliation(s)
- Li-Jun Wang
- Department of Urinary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People's Hospital of Kunming, Calmette Hospital, Kunming, Yunnan Province, China
| | - Xiao-Bo Ma
- Department of Clinical Laboratory, Yunnan Institute of Experimental Diagnosis, The First Affiliated Hospital of Kunming Medical University, Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan Province, China
| | - Hong-Ying Xia
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Xun Sun
- Department of Urinary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People's Hospital of Kunming, Calmette Hospital, Kunming, Yunnan Province, China
| | - Lu Yu
- Department of Pathology, The Affiliated Calmette Hospital of Kunming Medical University, The First People's Hospital of Kunming, Calmette Hospital, Kunming, Yunnan Province, China
| | - Qian Yang
- Department of Pathology, The Affiliated Calmette Hospital of Kunming Medical University, The First People's Hospital of Kunming, Calmette Hospital, Kunming, Yunnan Province, China
| | - Zong-Qiang Hu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People's Hospital of Kunming, Calmette Hospital, Kunming, Yunnan Province, China
| | - Yong-Heng Zhao
- Department of Urinary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People's Hospital of Kunming, Calmette Hospital, Kunming, Yunnan Province, China
| | - Wei Hu
- Department of Urinary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People's Hospital of Kunming, Calmette Hospital, Kunming, Yunnan Province, China
| | - Jiang-Hua Ran
- Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People's Hospital of Kunming, Calmette Hospital, Kunming, Yunnan Province, China
| |
Collapse
|
9
|
Toulza F, Dominy K, Willicombe M, Beadle J, Santos E, Cook HT, Szydlo RM, McLean A, Roufosse C. Diagnostic application of transcripts associated with antibody-mediated rejection in kidney transplant biopsies. Nephrol Dial Transplant 2021; 37:1576-1584. [PMID: 34320215 PMCID: PMC9317169 DOI: 10.1093/ndt/gfab231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 11/22/2022] Open
Abstract
Background The diagnosis of antibody-mediated rejection (AMR) is reached using the Banff Classification for Allograft Pathology, which now includes gene expression analysis. In this study, we investigate the application of ‘increased expression of thoroughly validated gene transcripts/classifiers strongly associated with AMR’ as diagnostic criteria. Method We used quantitative real-time polymerase chain reaction for 10 genes associated with AMR in a retrospective cohort of 297 transplant biopsies, including biopsies that met the full diagnostic criteria for AMR, even without molecular data (AMR, n = 27), biopsies that showed features of AMR, but that would only meet criteria for AMR with increased transcripts [suspicious for AMR (AMRsusp), n = 49] and biopsies that would never meet criteria for AMR (No-AMR, n = 221). Results A 10-gene AMR score trained by a receiver-operating characteristic to identify AMR found 16 cases with a high score among the AMRsusp cases (AMRsusp-high) that had significantly worse graft survival than those with a low score (AMRsusp-low; n = 33). In both univariate and multivariate Cox regression analysis, the AMR 10-gene score was significantly associated with an increased hazard ratio (HR) for graft loss (GL) in the AMRsusp group (HR = 1.109, P = 0.004 and HR = 1.138, P = 0.012, respectively), but not in the whole cohort. Net reclassification index and integrated discrimination improvement analyses demonstrated improved risk classification and superior discrimination, respectively, for GL when considering the gene score in addition to histological and serological data, but only in the AMRsusp group, not the whole cohort. Conclusions This study provides evidence that a gene score strongly associated with AMR helps identify cases at higher risk of GL in biopsies that are suspicious for AMR but do not meet full criteria.
Collapse
Affiliation(s)
- Frederic Toulza
- Imperial College, Centre for Inflammatory Disease, Dept Immunology and Inflammation, London, United Kingdom
| | - Kathy Dominy
- Molecular Pathology Laboratory, North West London Pathology, London, United Kingdom
| | - Michelle Willicombe
- Imperial College, Centre for Inflammatory Disease, Dept Immunology and Inflammation, London, United Kingdom.,Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Jack Beadle
- Imperial College, Centre for Inflammatory Disease, Dept Immunology and Inflammation, London, United Kingdom
| | - Eva Santos
- Histocompatibility and Immunogenetics, North West London Pathology, London, United Kingdom
| | - H Terence Cook
- Imperial College, Centre for Inflammatory Disease, Dept Immunology and Inflammation, London, United Kingdom
| | - Richard M Szydlo
- Imperial College, Medical Statistician, Dept Immunology and Inflammation, London, United Kingdom
| | - Adam McLean
- Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Candice Roufosse
- Imperial College, Centre for Inflammatory Disease, Dept Immunology and Inflammation, London, United Kingdom
| |
Collapse
|
10
|
Molecular Analysis of Renal Allograft Biopsies: Where Do We Stand and Where Are We Going? Transplantation 2021; 104:2478-2486. [PMID: 32150035 DOI: 10.1097/tp.0000000000003220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A renal core biopsy for histological evaluation is the gold standard for diagnosing renal transplant pathology. However, renal biopsy interpretation is subjective and can render insufficient precision, making it difficult to apply a targeted therapeutic regimen for the individual patient. This warrants a need for additional methods assessing disease state in the renal transplant. Significant research activity has been focused on the role of molecular analysis in the diagnosis of renal allograft rejection. The identification of specific molecular expression patterns in allograft biopsies related to different types of allograft injury could provide valuable information about the processes underlying renal transplant dysfunction and can be used for the development of molecular classifier scores, which could improve our diagnostic and prognostic ability and could guide treatment. Molecular profiling has the potential to be more precise and objective than histological evaluation and may identify injury even before it becomes visible on histology, making it possible to start treatment at the earliest time possible. Combining conventional diagnostics (histology, serology, and clinical data) and molecular evaluation will most likely offer the best diagnostic approach. We believe that the use of state-of-the-art molecular analysis will have a significant impact in diagnostics after renal transplantation. In this review, we elaborate on the molecular phenotype of both acute and chronic T cell-mediated rejection and antibody-mediated rejection and discuss the additive value of molecular profiling in the setting of diagnosing renal allograft rejection and how this will improve transplant patient care.
Collapse
|
11
|
Toulza F, Dominy K, Cook T, Galliford J, Beadle J, McLean A, Roufosse C. Technical considerations when designing a gene expression panel for renal transplant diagnosis. Sci Rep 2020; 10:17909. [PMID: 33087822 PMCID: PMC7578804 DOI: 10.1038/s41598-020-74794-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Gene expression analysis is emerging as a new diagnostic tool in transplant pathology, in particular for the diagnosis of antibody-mediated rejection. Diagnostic gene expression panels are defined on the basis of their pathophysiological relevance, but also need to be tested for their robustness across different preservatives and analysis platforms. The aim of this study is the investigate the effect of tissue sampling and preservation on candidate genes included in a renal transplant diagnostic panel. Using the NanoString platform, we compared the expression of 219 genes in 51 samples, split for formalin-fixation and paraffin-embedding (FFPE) and RNAlater preservation (RNAlater). We found that overall, gene expression significantly correlated between FFPE and RNAlater samples. However, at the individual gene level, 46 of the 219 genes did not correlate across the 51 matched FFPE and RNAlater samples. Comparing gene expression results using NanoString and qRT-PCR for 18 genes in the same pool of RNA (RNAlater), we found a significant correlation in 17/18 genes. Our study indicates that, in samples from the same routine diagnostic renal transplant biopsy procedure split for FFPE and RNAlater, 21% of 219 genes of potential biological significance do not correlate in expression. Whether this is due to fixatives or tissue sampling, selection of gene panels for routine diagnosis should take this information into consideration.
Collapse
Affiliation(s)
- F Toulza
- Department of Immunology and Inflammation, Centre for Inflammatory Diseases, Faculty of Medicine, Imperial College, London, UK
| | - K Dominy
- Molecular Pathology Laboratory, North West London Pathology, London, UK
| | - T Cook
- Department of Immunology and Inflammation, Centre for Inflammatory Diseases, Faculty of Medicine, Imperial College, London, UK
| | - J Galliford
- Imperial Kidney and Transplant Centre, London, UK
| | - J Beadle
- Department of Immunology and Inflammation, Centre for Inflammatory Diseases, Faculty of Medicine, Imperial College, London, UK
| | - A McLean
- Imperial Kidney and Transplant Centre, London, UK
| | - C Roufosse
- Department of Immunology and Inflammation, Centre for Inflammatory Diseases, Faculty of Medicine, Imperial College, London, UK.
| |
Collapse
|
12
|
Molecular Assessment of C4d-Positive Renal Transplant Biopsies Without Evidence of Rejection. Kidney Int Rep 2018; 4:148-158. [PMID: 30596178 PMCID: PMC6308373 DOI: 10.1016/j.ekir.2018.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/17/2018] [Accepted: 09/10/2018] [Indexed: 12/28/2022] Open
Abstract
Introduction Immunohistochemical staining for C4d in peritubular capillaries has been part of antibody-mediated rejection (AbMR) definition in the Banff Classification for Allograft Pathology since 2003. However, it has limited sensitivity and specificity, therefore the clinical significance of C4d-positive biopsies without evidence of rejection (C4d+ WER) is unknown. We investigated the transcript levels of genes associated with AbMR in C4d+ WER biopsies from both ABO-compatible and incompatible renal transplant patients. Methods RNA was extracted from formalin-fixed paraffin-embedded renal transplant biopsies (n = 125) and gene expression analysis of 35 AbMR-associated transcripts carried out using the NanoString nCounter system. Results AbMR-associated transcripts were significantly increased in samples with AbMR or suspicious AbMR. A subgroup of 17 of 35 transcripts that best distinguished AbMR from C4d-negative biopsies without evidence of rejection was used to study C4d+ WER samples. There was no differential expression between C4d-negative and C4d+ WER from both ABO-incompatible and -compatible transplants. The geometric mean of 17 differentially expressed genes was used to assign the C4d+ WER biopsies a high- or low-AbMR transcript score. Follow-up biopsies showed AbMR within 1 year of initial biopsy in 5 of 7 high-AbMR transcript patients but only 2 of 46 low-AbMR transcript patients. In multivariate logistic regression analysis, elevated transcript levels in a C4d+ WER biopsy were associated with increased odds for biopsy-proven AbMR on follow-up (P = 0.032, odds ratio 16.318), whereas factors including donor-specific antibody (DSA) status and time since transplantation were not. Conclusion Gene expression analysis in C4d+ WER samples has the potential to identify patients at higher risk of developing AbMR.
Collapse
|
13
|
Plasma Exosomes From HLA-Sensitized Kidney Transplant Recipients Contain mRNA Transcripts Which Predict Development of Antibody-Mediated Rejection. Transplantation 2017; 101:2419-2428. [PMID: 28557957 DOI: 10.1097/tp.0000000000001834] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Sensitization to HLA remains a significant immunologic barrier to successful transplantation. Identifying immune mechanisms responsible for antibody-mediated rejection (AMR) is an important goal. Here, we explored the possibility of predicting the risk for AMR by measuring mRNA transcripts of AMR-associated genes in plasma exosomes from kidney transplant patients. METHODS Total RNA was extracted from exosomes purified from 152 ethylenediaminetetraacetic acid-plasma samples of 64 patients (18 AMR, 8 cell-mediated rejection [CMR], 38 no rejection in desensitized [DES] and non-DES control groups) for reverse transcription into cDNA, preamplification and then real time quantitative polymerase chain reaction (qPCR) for 21 candidate genes. The mRNA transcript levels of each gene were calculated. Comparisons were made among 4 patient groups for each gene and also for a gene combination score based on selected genes. RESULTS Among 21 candidate genes, we identified multiple genes (gp130, CCL4, TNFα, SH2D1B, CAV1, atypical chemokine receptor 1 [duffy blood group]) whose mRNA transcript levels in plasma exosomes significantly increased among AMR compared with CMR and/or control patients. A gene combination score calculated from 4 genes of gp130, SH2D1B, TNFα, and CCL4 was significantly higher in the AMR than the CMR (P < 0.0001) and no rejection control groups (P < 0.01 vs DES control, P < 0.05 vs non-DES control). CONCLUSIONS Our results suggest that plasma exosomes may contain information indicating clinical conditions of kidney transplant patients. mRNA transcript profiles based on gp130, SH2D1B, TNFα, and CCL4 in plasma exosomes may be used to predict on-going and/or imminent AMR.
Collapse
|
14
|
Evidence for CD16a-Mediated NK Cell Stimulation in Antibody-Mediated Kidney Transplant Rejection. Transplantation 2017; 101:e102-e111. [PMID: 27906829 DOI: 10.1097/tp.0000000000001586] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Natural killer (NK) cells localize in the microcirculation in antibody-mediated rejection (AMR) and have been postulated to be activated by donor-specific anti-HLA antibodies triggering their CD16a Fc receptors. However, direct evidence for NK cell CD16a triggering in AMR is lacking. We hypothesized that CD16a-inducible NK cell-selective transcripts would be expressed in human AMR biopsies and would offer evidence for CD16a triggering. METHODS We stimulated human NK cells through CD16a in vitro, characterized CD16a-inducible transcripts, and studied their expression in human kidney transplant biopsies with AMR and in an extended human cell panel to determine their selectivity. RESULTS In NK cells, CD16a stimulation induced increased expression of 276 transcripts (FC > 2x, false discovery rate < 0.05), including IFNG, TNF, CSF2, chemokines, such as CCL3, CCL4, and XCL1, and modulators of NK cell effector functions (TNFRSF9, CRTAM, CD160). Examination in an extended human cell panel revealed that CD160 and XCL1 were likely to be selective for NK cells in AMR. In biopsies, 8 of the top 30 CD16a-inducible transcripts were highly associated with AMR (P < 5 × 10): CCL4, CD160, CCL3, XCL1, CRTAM, FCRL3, STARD4, TNFRSF9. Other NK cell transcripts (eg, GNLY) were increased in AMR but not CD16a-inducible, their presence in AMR probably reflecting NK cell localization. CONCLUSIONS The association of CD16a-inducible NK cell-selective transcripts CD160 and XCL1 with biopsies with AMR provides evidence for NK cell CD16a activation in AMR. This raises the possibility of other CD16a-triggered effects that are not necessarily transcriptional, including NK localization and cytotoxicity.
Collapse
|
15
|
Hruba P, Tycova I, Krepsova E, Girmanova E, Sekerkova A, Slatinska J, Striz I, Honsova E, Viklicky O. Steroid free immunosuppression is associated with enhanced Th1 transcripts in kidney transplantation. Transpl Immunol 2017; 42:18-23. [PMID: 28366698 DOI: 10.1016/j.trim.2017.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/26/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Steroid avoidance in immunosuppression in kidney transplantation offers several metabolic advantages, however it is associated with higher early acute rejection rate. Cellular and molecular mechanisms of this phenomenon remain poorly understood. METHODS In this single center observational study, low-risk kidney transplant recipients randomized into large multicenter prospective ADVANCE trial with steroid avoidance/early withdrawal and center standard of care treated patients were monitored for 12months. The expressions of 28 transcripts, associated with alloimmune response and operational tolerance, were evaluated in the peripheral blood using RT-qPCR at 0, 7, 14, 90 and 365 postoperative days (POD) and in the protocol graft biopsy at 3months while lymphocyte subpopulations were analyzed by flow-cytometry within the follow-up. RESULTS Both steroid avoidance and withdrawal regimens were associated with significantly higher granzyme B (GZMB) transcript at POD 14 and perforin 1 (PRF1) transcript at POD 7. The higher interleukin 2 (IL-2) expression at POD 7 was detected only in the steroid avoidance group. Initial steroids decreased the expression SH2D1B transcript at POD14 and there were no further differences in other operational tolerance transcripts among groups. The statistically significant decrease in absolute numbers of peripheral NK cells in the first 14days was observed in the standard of care group only. There were no differences in analyzed intrarenal transcripts in 3-month biopsies among groups. CONCLUSIONS The enhanced expression of some of Th1 associated transcripts and limited effects on NK cells of steroid avoidance immunosuppression suggest higher susceptibility for early acute rejection.
Collapse
Affiliation(s)
- Petra Hruba
- Transplant Laboratory, Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Tycova
- Transplant Laboratory, Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Eva Krepsova
- Transplant Laboratory, Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Eva Girmanova
- Transplant Laboratory, Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alena Sekerkova
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Janka Slatinska
- Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Eva Honsova
- Department of Clinical and Transplant Pathology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ondrej Viklicky
- Transplant Laboratory, Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| |
Collapse
|
16
|
Adam B, Afzali B, Dominy KM, Chapman E, Gill R, Hidalgo LG, Roufosse C, Sis B, Mengel M. Multiplexed color-coded probe-based gene expression assessment for clinical molecular diagnostics in formalin-fixed paraffin-embedded human renal allograft tissue. Clin Transplant 2016; 30:295-305. [DOI: 10.1111/ctr.12689] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin Adam
- Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton AB Canada
| | - Bahman Afzali
- Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton AB Canada
- Institute of Pathology; University of Duisburg−Essen; Essen Germany
| | - Katherine M. Dominy
- Division of Immunology and Inflammation; Department of Medicine; Centre for Complement and Inflammation Research; Imperial College; London UK
| | - Erin Chapman
- Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton AB Canada
| | - Reeda Gill
- Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton AB Canada
| | - Luis G. Hidalgo
- Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton AB Canada
| | - Candice Roufosse
- Division of Immunology and Inflammation; Department of Medicine; Centre for Complement and Inflammation Research; Imperial College; London UK
- Department of Cellular Pathology; Hammersmith Hospital; London UK
| | - Banu Sis
- Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton AB Canada
| | - Michael Mengel
- Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton AB Canada
| |
Collapse
|