1
|
Sandin SA, Edwards CB, Zgliczynski BJ, Pedersen NE, Smith JE, McNamara DE. Evidence of biological self-organization in spatial patterns of a common tropical alga. Am Nat 2022; 200:722-729. [DOI: 10.1086/721323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Sandin SA, Edwards CB, Pedersen NE, Petrovic V, Pavoni G, Alcantar E, Chancellor KS, Fox MD, Stallings B, Sullivan CJ, Rotjan RD, Ponchio F, Zgliczynski BJ. Considering the rates of growth in two taxa of coral across Pacific islands. ADVANCES IN MARINE BIOLOGY 2020; 87:167-191. [PMID: 33293010 DOI: 10.1016/bs.amb.2020.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reef-building coral taxa demonstrate considerable flexibility and diversity in reproduction and growth mechanisms. Corals take advantage of this flexibility to increase or decrease size through clonal expansion and loss of live tissue area (i.e. via reproduction and mortality of constituent polyps). The biological lability of reef-building corals may be expected to map onto varying patterns of demography across environmental contexts which can contribute to geographic variation in population dynamics. Here we explore the patterns of growth of two common coral taxa, corymbose Pocillopora and massive Porites, across seven islands in the central and south Pacific. The islands span a natural gradient of environmental conditions, including a range of pelagic primary production, a metric linked to the relative availability of inorganic nutrients and heterotrophic resources for mixotrophic corals, and sea surface temperature and thermal histories. Over a multi-year sampling interval, most coral colonies experienced positive growth (greater planar area of live tissue in second relative to first time point), though the distributions of growth varied across islands. Island-level median growth did not relate simply to estimated pelagic primary productivity or temperature. However, at locations that experienced an extreme warm-water event during the sampling interval, most Porites colonies experienced net losses of live tissue and nearly all Pocillopora colonies experienced complete mortality. While descriptive statistics of demographics offer valuable insights into trends and variability in colony change through time, simplified models predicting growth patterns based on summarized oceanographic metrics appear inadequate for robust demographic prediction. We propose that the complexity of life history strategies among colonial reef-building corals introduces unique demographic flexibility for colonies to respond to a wide breadth of environmental conditions.
Collapse
Affiliation(s)
- Stuart A Sandin
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, United States.
| | - Clinton B Edwards
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, United States
| | - Nicole E Pedersen
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, United States
| | - Vid Petrovic
- Department of Computer Science and Engineering, UC San Diego, La Jolla, CA, United States
| | - Gaia Pavoni
- Visual Computing Lab, Istituto di Scienza e Tecnologie dell'Informazione "A. Faedo", Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Esmeralda Alcantar
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, United States
| | | | - Michael D Fox
- Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Brenna Stallings
- Department of Biology, Boston University, Boston, MA, United States
| | | | - Randi D Rotjan
- Department of Biology, Boston University, Boston, MA, United States
| | - Federico Ponchio
- Visual Computing Lab, Istituto di Scienza e Tecnologie dell'Informazione "A. Faedo", Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Brian J Zgliczynski
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, United States
| |
Collapse
|