1
|
Zahn LE, Gannon PM, Rajakovich LJ. Iron-sulfur cluster-dependent enzymes and molybdenum-dependent reductases in the anaerobic metabolism of human gut microbes. Metallomics 2024; 16:mfae049. [PMID: 39504489 PMCID: PMC11574389 DOI: 10.1093/mtomcs/mfae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Metalloenzymes play central roles in the anaerobic metabolism of human gut microbes. They facilitate redox and radical-based chemistry that enables microbial degradation and modification of various endogenous, dietary, and xenobiotic nutrients in the anoxic gut environment. In this review, we highlight major families of iron-sulfur (Fe-S) cluster-dependent enzymes and molybdenum cofactor-containing enzymes used by human gut microbes. We describe the metabolic functions of 2-hydroxyacyl-CoA dehydratases, glycyl radical enzyme activating enzymes, Fe-S cluster-dependent flavoenzymes, U32 oxidases, and molybdenum-dependent reductases and catechol dehydroxylases in the human gut microbiota. We demonstrate the widespread distribution and prevalence of these metalloenzyme families across 5000 human gut microbial genomes. Lastly, we discuss opportunities for metalloenzyme discovery in the human gut microbiota to reveal new chemistry and biology in this important community.
Collapse
Affiliation(s)
- Leah E Zahn
- Department of Chemistry, University of Washington, Seattle, United States
| | - Paige M Gannon
- Department of Chemistry, University of Washington, Seattle, United States
| | | |
Collapse
|
2
|
Abstract
Microbial phosphonate biosynthetic machinery has been identified in ~5 % of bacterial genomes and encodes natural products like fosfomycin as well as cell surface decorations. Almost all biological phosphonates originate from the rearrangement of phosphoenolpyruvate (PEP) to phosphonopyruvate (PnPy) catalysed by PEP mutase (Ppm), and PnPy is often converted to phosphonoacetaldehyde (PnAA) by PnPy decarboxylase (Ppd). Seven enzymes are known or likely to act on either PnPy or PnAA as early branch points en route to diverse biosynthetic outcomes, and these enzymes may be broadly classified into three reaction types: hydride transfer, aminotransfer, and carbon-carbon bond formation. However, the relative abundance of these branch points in microbial phosphonate biosynthesis is unknown. Also unknown is the proportion of ppm-containing gene neighbourhoods encoding new branch point enzymes and potentially novel phosphonates. In this study we computationally sorted 434 ppm-containing gene neighbourhoods based on these seven branch point enzymes. Unsurprisingly, the majority (56 %) of these pathways encode for production of the common naturally occurring compound 2-aminoethylphosphonate (AEP) or a hydroxylated derivative. The next most abundant genetically encoded intermediates were phosphonoalanine (PnAla, 9.2 %), 2-hydroxyethylphosphonate (HEP, 8.5 %), and phosphonoacetate (PnAc, 6 %). Significantly, about 13 % of the gene neighbourhoods could not be assigned to any of the seven branch points and may encode novel phosphonates. Sequence similarity network analysis revealed families of unusual gene neighbourhoods including possible production of phosphonoacrylate and phosphonofructose, the apparent biosynthetic use of the C-P lyase operon, and a virus-encoded phosphonate. Overall, these results highlight the utility of branch point inventories to identify novel gene neighbourhoods and guide future phosphonate discovery efforts.
Collapse
Affiliation(s)
- Siwei Li
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Geoff P. Horsman
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
3
|
Pascal Andreu V, Roel-Touris J, Dodd D, Fischbach M, Medema M. The gutSMASH web server: automated identification of primary metabolic gene clusters from the gut microbiota. Nucleic Acids Res 2021; 49:W263-W270. [PMID: 34019648 PMCID: PMC8262752 DOI: 10.1093/nar/gkab353] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 01/01/2023] Open
Abstract
Anaerobic bacteria from the human microbiome produce a wide array of molecules at high concentrations that can directly or indirectly affect the host. The production of these molecules, mostly derived from their primary metabolism, is frequently encoded in metabolic gene clusters (MGCs). However, despite the importance of microbiome-derived primary metabolites, no tool existed to predict the gene clusters responsible for their production. For this reason, we recently introduced gutSMASH. gutSMASH can predict 41 different known pathways, including MGCs involved in bioenergetics, but also putative ones that are candidates for novel pathway discovery. To make the tool more user-friendly and accessible, we here present the gutSMASH web server, hosted at https://gutsmash.bioinformatics.nl/. The user can either input the GenBank assembly accession or upload a genome file in FASTA or GenBank format. Optionally, the user can enable additional analyses to obtain further insights into the predicted MGCs. An interactive HTML output (viewable online or downloadable for offline use) provides a user-friendly way to browse functional gene annotations and sequence comparisons with reference gene clusters as well as gene clusters predicted in other genomes. Thus, this web server provides the community with a streamlined and user-friendly interface to analyze the metabolic potential of gut microbiomes.
Collapse
Affiliation(s)
| | - Jorge Roel-Touris
- Bijvoet Centre for Biomolecular Research, Faculty of Science – Chemistry, Utrecht University, 3584CH, Utrecht, The Netherlands
| | - Dylan Dodd
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Michael A Fischbach
- Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, 6708PB, Wageningen, The Netherlands
| |
Collapse
|
4
|
Engevik MA, Danhof HA, Shrestha R, Chang-Graham AL, Hyser JM, Haag AM, Mohammad MA, Britton RA, Versalovic J, Sorg JA, Spinler JK. Reuterin disrupts Clostridioides difficile metabolism and pathogenicity through reactive oxygen species generation. Gut Microbes 2020; 12:1788898. [PMID: 32804011 PMCID: PMC7524292 DOI: 10.1080/19490976.2020.1795388] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 02/03/2023] Open
Abstract
Antibiotic resistance is one of the world's greatest public health challenges and adjunct probiotic therapies are strategies that could lessen this burden. Clostridioides difficile infection (CDI) is a prime example where adjunct probiotic therapies could decrease disease incidence through prevention. Human-derived Lactobacillus reuteri is a probiotic that produces the antimicrobial compound reuterin known to prevent C. difficile colonization of antibiotic-treated fecal microbial communities. However, the mechanism of inhibition is unclear. We show that reuterin inhibits C. difficile outgrowth from spores and vegetative cell growth, however, no effect on C. difficile germination or sporulation was observed. Consistent with published studies, we found that exposure to reuterin stimulated reactive oxygen species (ROS) in C. difficile, resulting in a concentration-dependent reduction in cell viability that was rescued by the antioxidant glutathione. Sublethal concentrations of reuterin enhanced the susceptibility of vegetative C. difficile to vancomycin and metronidazole treatment and reduced toxin synthesis by C. difficile. We also demonstrate that reuterin is protective against C. difficile toxin-mediated cellular damage in the human intestinal enteroid model. Overall, our results indicate that ROS are essential mediators of reuterin activity and show that reuterin production by L. reuteri is compatible as a therapeutic in a clinically relevant model.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ritu Shrestha
- Department of Biology, Texas A&M University, College Station, TX, USA
| | | | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony M. Haag
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Mahmoud A. Mohammad
- Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Jennifer K. Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|