1
|
Rodríguez-Beltrán É, López GD, Anzola JM, Rodríguez-Castillo JG, Carazzone C, Murcia MI. Heterogeneous fitness landscape cues, pknG low expression, and phthiocerol dimycocerosate low production of Mycobacterium tuberculosis ATCC25618 rpoB S450L in enriched broth. Tuberculosis (Edinb) 2021; 132:102156. [PMID: 34891037 DOI: 10.1016/j.tube.2021.102156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
Multidrug-resistant tuberculosis (isoniazid/rifampin[RIF]-resistant TB) ravages developing countries. Fitness is critical in clinical outcomes. Previous studies on RIF-resistant TB (RR-TB) showed competitive fitness gains and losses, with rpoB-S450L as the most isolated/fit mutation. This study measured virulence/resistance genes, phthiocerol dimycocerosate (PDIM) levels and their relationship with rpoB S450L ATCC25618 RR-TB strain fitness. After obtaining 10 different RR-TB GenoType MTBDRplus 2.0-genotyped isolates (with nontyped, S441, H445 and S450 positions), only one S450L isolate (R9, rpoB-S450L ATCC 25618, RR 1 μg/mL) was observed, with H445Y being the most common. A competitive fitness in vitro assay with wild-type (wt) ATCC 25618: R9 1:1 in 50 mL Middlebrook 7H9/OADC was performed, and generation time (G) in vitro and relative fitness were obtained. mRNA and PDIM were extracted on log and stationary phases. Fitness decreased in rpoB S450L and H445Y strains, with heterogeneous fitness cues in three biological replicas of rpoB-S450L: one high and two low fitness replicas. S450L strain had significant pknG increase. Compared with S450L, wt-rpoB showed increased polyketide synthase ppsA expression and high PDIM peak measured by HPLC-MS in log phase compared to S450L. This contrasts with previously increased PDIM in other RR-TB isolates.
Collapse
Affiliation(s)
- Édgar Rodríguez-Beltrán
- MicobacUN Group, Microbiology Department, The National University of Colombia (NUC) School of Medicine, AV CR 30 45-03, Bogotá, D.C, 111321, Colombia
| | - Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, CR 1 18A-12, Bogotá, D.C, 111711, Colombia
| | - Juan Manuel Anzola
- Corpogen, CR 4 20-41, Bogotá, D.C, 110311, Colombia; Universidad Central, CR 5 21-38, Bogotá, D.C, 110311, Colombia
| | - Juan Germán Rodríguez-Castillo
- MicobacUN Group, Microbiology Department, The National University of Colombia (NUC) School of Medicine, AV CR 30 45-03, Bogotá, D.C, 111321, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, CR 1 18A-12, Bogotá, D.C, 111711, Colombia
| | - Martha I Murcia
- MicobacUN Group, Microbiology Department, The National University of Colombia (NUC) School of Medicine, AV CR 30 45-03, Bogotá, D.C, 111321, Colombia.
| |
Collapse
|
2
|
Molecular characterisation of multidrug-resistant Mycobacterium tuberculosis isolates from a high-burden tuberculosis state in Brazil. Epidemiol Infect 2020; 147:e216. [PMID: 31364547 PMCID: PMC6624858 DOI: 10.1017/s0950268819001006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of death among infectious diseases worldwide. Among the estimated cases of drug-resistant TB, approximately 60% occur in the BRICS countries (Brazil, Russia, India, China and South Africa). Among Brazilian states, primary and acquired multidrug-resistant TB (MDR-TB) rates were the highest in Rio Grande do Sul (RS). This study aimed to perform molecular characterisation of MDR-TB in the State of RS, a high-burden Brazilian state. We performed molecular characterisation of MDR-TB cases in RS, defined by drug susceptibility testing, using 131 Mycobacterium tuberculosis (M.tb) DNA samples from the Central Laboratory. We carried out MIRU-VNTR 24loci, spoligotyping, sequencing of the katG, inhA and rpoB genes and RDRio sublineage identification. The most frequent families found were LAM (65.6%) and Haarlem (22.1%). RDRio deletion was observed in 42 (32%) of the M.tb isolates. Among MDR-TB cases, eight (6.1%) did not present mutations in the studied genes. In 116 (88.5%) M.tb isolates, we found mutations associated with rifampicin (RIF) resistance in rpoB gene, and in 112 isolates (85.5%), we observed mutations related to isoniazid resistance in katG and inhA genes. An insertion of 12 nucleotides (CCAGAACAACCC) at the 516 codon in the rpoB gene, possibly responsible for a decreased interaction of RIF and RNA polymerase, was found in 19/131 of the isolates, belonging mostly to LAM and Haarlem families. These results enable a better understanding of the dynamics of transmission and evolution of MDR-TB in the region.
Collapse
|
3
|
Tung QN, Busche T, Van Loi V, Kalinowski J, Antelmann H. The redox-sensing MarR-type repressor HypS controls hypochlorite and antimicrobial resistance in Mycobacterium smegmatis. Free Radic Biol Med 2020; 147:252-261. [PMID: 31887453 DOI: 10.1016/j.freeradbiomed.2019.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022]
Abstract
MarR-family transcription factors often control antioxidant enzymes, multidrug efflux pumps or virulence factors in bacterial pathogens and confer resistance towards oxidative stress and antibiotics. In this study, we have characterized the function and redox-regulatory mechanism of the MarR-type regulator HypS in Mycobacterium smegmatis. RNA-seq transcriptomics and qRT-PCR analyses of the hypS mutant revealed that hypS is autoregulated and represses transcription of the co-transcribed hypO gene which encodes a multidrug efflux pump. DNA binding activity of HypS to the 8-5-8 bp inverted repeat sequence upstream of the hypSO operon was inhibited under NaOCl stress. However, the HypSC58S mutant protein was not impaired in DNA-binding under NaOCl stress in vitro, indicating an important role of Cys58 in redox sensing of NaOCl stress. HypS was shown to be inactivated by Cys58-Cys58' intersubunit disulfide formation under HOCl stress, resulting in derepression of hypO transcription. Phenotype results revealed that the HypS regulon confers resistance towards HOCl, rifampicin and erythromycin stress. In conclusion, HypS was identified as a novel redox-sensitive repressor that contributes to mycobacterial resistance towards HOCl stress and antibiotics.
Collapse
Affiliation(s)
- Quach Ngoc Tung
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Tobias Busche
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany; Center for Biotechnology (CeBiTec), Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Vu Van Loi
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany.
| |
Collapse
|
4
|
Mori G, Orena BS, Franch C, Mitchenall LA, Godbole AA, Rodrigues L, Aguilar-Pérez C, Zemanová J, Huszár S, Forbak M, Lane TR, Sabbah M, Deboosere N, Frita R, Vandeputte A, Hoffmann E, Russo R, Connell N, Veilleux C, Jha RK, Kumar P, Freundlich JS, Brodin P, Aínsa JA, Nagaraja V, Maxwell A, Mikušová K, Pasca MR, Ekins S. The EU approved antimalarial pyronaridine shows antitubercular activity and synergy with rifampicin, targeting RNA polymerase. Tuberculosis (Edinb) 2018; 112:98-109. [PMID: 30205975 DOI: 10.1016/j.tube.2018.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/19/2022]
Abstract
The search for compounds with biological activity for many diseases is turning increasingly to drug repurposing. In this study, we have focused on the European Union-approved antimalarial pyronaridine which was found to have in vitro activity against Mycobacterium tuberculosis (MIC 5 μg/mL). In macromolecular synthesis assays, pyronaridine resulted in a severe decrease in incorporation of 14C-uracil and 14C-leucine similar to the effect of rifampicin, a known inhibitor of M. tuberculosis RNA polymerase. Surprisingly, the co-administration of pyronaridine (2.5 μg/ml) and rifampicin resulted in in vitro synergy with an MIC 0.0019-0.0009 μg/mL. This was mirrored in a THP-1 macrophage infection model, with a 16-fold MIC reduction for rifampicin when the two compounds were co-administered versus rifampicin alone. Docking pyronaridine in M. tuberculosis RNA polymerase suggested the potential for it to bind outside of the RNA polymerase rifampicin binding pocket. Pyronaridine was also found to have activity against a M. tuberculosis clinical isolate resistant to rifampicin, and when combined with rifampicin (10% MIC) was able to inhibit M. tuberculosis RNA polymerase in vitro. All these findings, and in particular the synergistic behavior with the antitubercular rifampicin, inhibition of RNA polymerase in combination in vitro and its current use as a treatment for malaria, may suggest that pyronaridine could also be used as an adjunct for treatment against M. tuberculosis infection. Future studies will test potential for in vivo synergy, clinical utility and attempt to develop pyronaridine analogs with improved potency against M. tuberculosis RNA polymerase when combined with rifampicin.
Collapse
Affiliation(s)
- Giorgia Mori
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Beatrice Silvia Orena
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Clara Franch
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lesley A Mitchenall
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Adwait Anand Godbole
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Liliana Rodrigues
- Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, and IIS-Aragón, 50009 Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain; Fundación ARAID, Zaragoza, Spain
| | - Clara Aguilar-Pérez
- Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, and IIS-Aragón, 50009 Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Júlia Zemanová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Stanislav Huszár
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Martin Forbak
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Mohamad Sabbah
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK
| | - Nathalie Deboosere
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 1 rue du Professeur Calmette, 59000 Lille, France
| | - Rosangela Frita
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 1 rue du Professeur Calmette, 59000 Lille, France
| | - Alexandre Vandeputte
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 1 rue du Professeur Calmette, 59000 Lille, France
| | - Eik Hoffmann
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 1 rue du Professeur Calmette, 59000 Lille, France
| | - Riccardo Russo
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Nancy Connell
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Courtney Veilleux
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Rajiv K Jha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Pradeep Kumar
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Joel S Freundlich
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA; Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ, 07103, USA
| | - Priscille Brodin
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 1 rue du Professeur Calmette, 59000 Lille, France
| | - Jose Antonio Aínsa
- Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, and IIS-Aragón, 50009 Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Katarína Mikušová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA; Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94403, USA.
| |
Collapse
|
5
|
Glaus F, Dedić D, Tare P, Nagaraja V, Rodrigues L, Aínsa JA, Kunze J, Schneider G, Hartkoorn RC, Cole ST, Altmann KH. Total Synthesis of Ripostatin B and Structure–Activity Relationship Studies on Ripostatin Analogs. J Org Chem 2018. [DOI: 10.1021/acs.joc.8b00193] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Florian Glaus
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Darija Dedić
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Priyanka Tare
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - Liliana Rodrigues
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública, Facultad de Medicina and BIFI, Universidad de Zaragoza and CIBER Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| | - José Antonio Aínsa
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública, Facultad de Medicina and BIFI, Universidad de Zaragoza and CIBER Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jens Kunze
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Ruben C. Hartkoorn
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Stewart T. Cole
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
6
|
Patel YS, Mehra S. Synergistic Response of Rifampicin with Hydroperoxides on Mycobacterium: A Mechanistic Study. Front Microbiol 2017; 8:2075. [PMID: 29163385 PMCID: PMC5671503 DOI: 10.3389/fmicb.2017.02075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/10/2017] [Indexed: 12/14/2022] Open
Abstract
Prolonged chemotherapy as well as rapid development of antimicrobial resistance are two of the major concerns for treatment of mycobacterial infections. To enhance the effectiveness of current drug regimens, search for compounds having synergistic interaction with anti-mycobacterial drugs has become indispensable. Here, we have investigated the intervention by oxidative stress, a major factor in mycobacterial pathogenesis, in combination with rifampicin (RIF), a first-line drug used against Mycobacterium tuberculosis. We have observed that a sub-inhibitory concentration of cumene hydroperoxide (CHP), a hydrophobic oxidant, synergistically reduced the minimum inhibitory concentration of RIF by fourfold, with a Fractional Inhibitory Concentration Index (FICI) of 0.45. Also, this interaction was found to be robust and synergistic against different strains of M. smegmatis as well as on M. bovis BCG, with FICI ranging from 0.3 to 0.6. Various physiological, biochemical and molecular parameters were explored to understand the mechanism of synergy. It was observed that increased membrane permeability owing to the presence of the oxidant, led to higher uptake of the drug. Moreover, downregulation of the hydroperoxide reductases by RIF, a transcriptional inhibitor, prevented quenching of the reactive oxygen species produced in the presence of CHP. The lipid soluble reactive species triggered autocatalytic lipid peroxidation (LPO), observed here as extensive membrane damage eventually leading to growth inhibition. Furthermore, it was seen that in combination with hydrogen peroxide (H2O2), the effect was only additive, establishing LPO as a key aspect leading toward synergism. To conclude, this work suggests that targeting the bacterial membrane by a radical species can have a significant impact on the treatment of tuberculosis.
Collapse
Affiliation(s)
| | - Sarika Mehra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
7
|
Multidrug-Resistant Mycobacterium tuberculosis of the Latin American Mediterranean Lineage, Wrongly Identified as Mycobacterium pinnipedii (Spoligotype International Type 863 [SIT863]), Causing Active Tuberculosis in South Brazil. J Clin Microbiol 2016; 53:3805-11. [PMID: 26400784 DOI: 10.1128/jcm.02012-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We recently detected the spoligotype patterns of strains of Mycobacterium pinnipedii, a species of the Mycobacterium tuberculosis complex, in sputum samples from nine cases with pulmonary tuberculosis residing in Porto Alegre, South Brazil. Because this species is rarely encountered in humans, we further characterized these nine isolates by additional genotyping techniques, including 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing, verification of the loci TbD1, RD9, pks15/1, RD(Rio), and fbpC, the insertion of IS6110 at a site specific to the M. tuberculosis Latin American Mediterranean (LAM) lineage, and whole-genome sequencing. The combined analysis of these markers revealed that the isolates are in fact M. tuberculosis and more specifically belong to the LAM genotype. Most of these isolates (n8) were shown to be multidrug resistant (MDR), which prompted us to perform partial sequencing of the rpoA, rpoB, rpoC, katG, and inhA genes. Seven isolates (77.8%) carried the S315T mutation in katG, and one of these (11%) also presented the C((-17)T single-nucleotide polymorphism (SNP) in inhA. Interestingly, six of the MDR isolates also presented an undescribed insertion of 12 nucleotides (CCA GAA CAA CCC) in codon 516 of rpoB. No putative compensatory mutation was found in either rpoA or rpoC. This is the first report of an M. tuberculosis LAM family strain with a convergent M. pinnipedii spoligotype. These spoligotypes are observed in genotype databases at a modest frequency, highlighting that care must be taken when identifying isolates in the M. tuberculosis complex on the basis of single genetic markers.
Collapse
|
8
|
Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TEA, Crook DW, Iqbal Z. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 2015; 6:10063. [PMID: 26686880 PMCID: PMC4703848 DOI: 10.1038/ncomms10063] [Citation(s) in RCA: 377] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/28/2015] [Indexed: 01/14/2023] Open
Abstract
The rise of antibiotic-resistant bacteria has led to an urgent need for rapid detection of drug resistance in clinical samples, and improvements in global surveillance. Here we show how de Bruijn graph representation of bacterial diversity can be used to identify species and resistance profiles of clinical isolates. We implement this method for Staphylococcus aureus and Mycobacterium tuberculosis in a software package ('Mykrobe predictor') that takes raw sequence data as input, and generates a clinician-friendly report within 3 minutes on a laptop. For S. aureus, the error rates of our method are comparable to gold-standard phenotypic methods, with sensitivity/specificity of 99.1%/99.6% across 12 antibiotics (using an independent validation set, n=470). For M. tuberculosis, our method predicts resistance with sensitivity/specificity of 82.6%/98.5% (independent validation set, n=1,609); sensitivity is lower here, probably because of limited understanding of the underlying genetic mechanisms. We give evidence that minor alleles improve detection of extremely drug-resistant strains, and demonstrate feasibility of the use of emerging single-molecule nanopore sequencing techniques for these purposes.
Collapse
Affiliation(s)
- Phelim Bradley
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - N Claire Gordon
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 1NF, UK
| | - Timothy M Walker
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 1NF, UK
| | - Laura Dunn
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 1NF, UK
| | - Simon Heys
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Bill Huang
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Sarah Earle
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 1NF, UK
| | - Louise J Pankhurst
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 1NF, UK
| | - Luke Anson
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 1NF, UK
| | | | - Paolo Piazza
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | - Tanya Golubchik
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 1NF, UK
| | - Daniel J Wilson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.,Nuffield Department of Medicine, University of Oxford, Oxford OX1 1NF, UK
| | - David H Wyllie
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 1NF, UK
| | - Roland Diel
- Institute for Epidemiology, University Medical Hospital Schleswig-Holstein, Niemannsweg 11, 24105 Kiel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Centre Borstel, Parkallee 1, 23845 Borstel, Germany.,German Centre for Infection Research, Partner Site Borstel, Parkallee 1, 23845 Borstel, Germany
| | - Silke Feuerriegel
- Molecular and Experimental Mycobacteriology, Research Centre Borstel, Parkallee 1, 23845 Borstel, Germany.,German Centre for Infection Research, Partner Site Borstel, Parkallee 1, 23845 Borstel, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Centre Borstel, Parkallee 1, 23845 Borstel, Germany
| | - Nazir Ismail
- Centre for Tuberculosis, National Institute for Communicable Diseases, Private Bag X4 Sandringham, Johannesburg 2131, South Africa.,Department of Medical Microbiology, University of Pretoria, PO Box 667, Pretoria 0001, South Africa
| | - Shaheed V Omar
- Centre for Tuberculosis, National Institute for Communicable Diseases, Private Bag X4 Sandringham, Johannesburg 2131, South Africa
| | - E Grace Smith
- Regional Centre for Mycobacteriology, PHE Public Health Laboratory Birmingham. Heartlands Hospital, Bordesley Green East, Birmingham B9 5SS, UK
| | - David Buck
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Gil McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 1NF, UK.,Biomedical Research Centre, NIHR (National Institutes of Health Research) Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Tim E A Peto
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 1NF, UK.,Biomedical Research Centre, NIHR (National Institutes of Health Research) Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 1NF, UK.,Biomedical Research Centre, NIHR (National Institutes of Health Research) Oxford Biomedical Research Centre, Oxford OX3 7LE, UK.,National Infection Service, Public Health England, Wellington House, 133-155 Waterloo Road, London SE1 8UG, UK
| | - Zamin Iqbal
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
9
|
Agrawal P, Miryala S, Varshney U. Use of Mycobacterium smegmatis deficient in ADP-ribosyltransferase as surrogate for Mycobacterium tuberculosis in drug testing and mutation analysis. PLoS One 2015; 10:e0122076. [PMID: 25874691 PMCID: PMC4395326 DOI: 10.1371/journal.pone.0122076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/10/2015] [Indexed: 11/18/2022] Open
Abstract
Rifampicin (Rif) is a first line drug used for tuberculosis treatment. However, the emergence of drug resistant strains has necessitated synthesis and testing of newer analogs of Rif. Mycobacterium smegmatis is often used as a surrogate for M. tuberculosis. However, the presence of an ADP ribosyltransferase (Arr) in M. smegmatis inactivates Rif, rendering it impractical for screening of Rif analogs or other compounds when used in conjunction with them (Rif/Rif analogs). Rifampicin is also used in studying the role of various DNA repair enzymes by analyzing mutations in RpoB (a subunit of RNA polymerase) causing Rif resistance. These analyses use high concentrations of Rif when M. smegmatis is used as model. Here, we have generated M. smegmatis strains by deleting arr (Δarr). The M. smegmatis Δarr strains show minimum inhibitory concentration (MIC) for Rif which is similar to that for M. tuberculosis. The MICs for isoniazid, pyrazinamide, ethambutol, ciprofloxacin and streptomycin were essentially unaltered for M. smegmatis Δarr. The growth profiles and mutation spectrum of Δarr and, Δarr combined with ΔudgB (udgB encodes a DNA repair enzyme that excises uracil) strains were similar to their counterparts wild-type for arr. However, the mutation spectrum of ΔfpgΔarr strain differed somewhat from that of the Δfpg strain (fpg encodes a DNA repair enzyme that excises 8-oxo-G). Our studies suggest M. smegmatis Δarr strain as an ideal model system in drug testing and mutation spectrum determination in DNA repair studies.
Collapse
Affiliation(s)
- Priyanka Agrawal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Sandeep Miryala
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
- * E-mail:
| |
Collapse
|
10
|
Qazi O, Rahman H, Tahir Z, Qasim M, Khan S, Ahmad Anjum A, Yaqub T, Tayyab M, Ali N, Firyal S. Mutation pattern in rifampicin resistance determining region of rpoB gene in multidrug-resistant Mycobacterium tuberculosis isolates from Pakistan. Int J Mycobacteriol 2014; 3:173-7. [DOI: 10.1016/j.ijmyco.2014.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/16/2022] Open
|
11
|
Gao W, Cameron DR, Davies JK, Kostoulias X, Stepnell J, Tuck KL, Yeaman MR, Peleg AY, Stinear TP, Howden BP. The RpoB H₄₈₁Y rifampicin resistance mutation and an active stringent response reduce virulence and increase resistance to innate immune responses in Staphylococcus aureus. J Infect Dis 2012; 207:929-39. [PMID: 23255563 DOI: 10.1093/infdis/jis772] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The occurrence of mutations in methicillin-resistant Staphylococcus aureus (MRSA) during persistent infection leads to antimicrobial resistance but may also impact host-pathogen interactions. Here, we investigate the host-pathogen consequences of 2 mutations arising in clinical MRSA during persistent infection: RpoB H₄₈₁Y, which is linked to rifampicin resistance, and RelA F₁₂₈Y, which is associated with an active stringent response. Allelic exchange experiments showed that both mutations cause global transcriptional changes, leading to upregulation of capsule production, with attenuated virulence in a murine bacteremia model and reduced susceptibility to both antimicrobial peptides and whole-blood killing. Disruption of capsule biosynthesis reversed these impacts on innate immune function. These data clearly link MRSA persistence and reduced virulence to the same mechanisms that alter antimicrobial susceptibility. Our study highlights the wider consequences of suboptimal antimicrobial use, where drug resistance and immune escape mechanisms coevolve, thus increasing the likelihood of treatment failure.
Collapse
Affiliation(s)
- Wei Gao
- Infectious Diseases Department, Austin Centre for Infection Research, University of Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|