1
|
Derbyshire MC, Newman TE, Khentry Y, Michael PJ, Bennett SJ, Rijal Lamichhane A, Graham-Taylor C, Chander S, Camplone C, Vicini S, Esquivel-Garcia L, Coutu C, Hegedus D, Clarkson J, Lindbeck K, Kamphuis LG. Recombination and transposition drive genomic structural variation potentially impacting life history traits in a host-generalist fungal plant pathogen. BMC Biol 2025; 23:110. [PMID: 40289080 PMCID: PMC12036203 DOI: 10.1186/s12915-025-02179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/28/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND An understanding of plant pathogen evolution is important for sustainable management of crop diseases. Plant pathogen populations must maintain adequate heritable phenotypic variability to survive. Polymorphisms ≥ 50 bp, known as structural variants (SVs), could contribute strongly to this variability by disrupting gene activities. SV acquisition is largely driven by mobile genetic elements called transposons, though a less appreciated source of SVs is erroneous meiotic double-strand break repair. The relative impacts of transposons and recombination on SV diversity and the overall contribution of SVs to phenotypic variability is elusive, especially in host generalists. RESULTS We use 25 high-quality genomes to create a graphical pan-genome of the globally distributed host-generalist crop pathogen Sclerotinia sclerotiorum. Outcrossing and recombination rates in this self-fertile species have been debated. Using bisulfite sequencing and short-read data from 190 strains, we show that S. sclerotiorum has many hallmarks of eukaryotic meiosis, including recombination hot and cold spots, centromeric and genic recombination suppression, and rapid linkage disequilibrium decay. Using a new statistic that captures average pairwise structural variation, we show that recombination and transposons make distinct contributions to SV diversity. Furthermore, despite only 5% of genes being dispensable, SVs often had a stronger impact than other variants across 14 life history traits measured in 103 distinct strains. CONCLUSIONS Transposons and recombination make distinct contributions to SV diversity in S. sclerotiorum. Despite limited gene content diversity, SVs may strongly impact phenotypic variability. This sheds light on the genomic forces shaping adaptive flexibility in host generalists.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia.
| | - Toby E Newman
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | - Yuphin Khentry
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | - Pippa J Michael
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | - Sarita Jane Bennett
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| | | | | | - Subhash Chander
- Department of Genetics and Plant Breeding, Oilseeds Section, CCS Haryana Agricultural University, Hisar-125004, India
| | - Claudia Camplone
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Simone Vicini
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | | | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | | | - John Clarkson
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Warwick, UK
| | - Kurt Lindbeck
- Department of Primary Industries, Wagga Wagga, New South Wales, Australia
| | - Lars G Kamphuis
- Centre for Crop and Disease Management, Curtin University, Perth, WA, Australia
| |
Collapse
|
2
|
Queffelec J, Postma A, Allison JD, Slippers B. Remnants of horizontal transfers of Wolbachia genes in a Wolbachia-free woodwasp. BMC Ecol Evol 2022; 22:36. [PMID: 35346038 PMCID: PMC8962096 DOI: 10.1186/s12862-022-01995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background Wolbachia is a bacterial endosymbiont of many arthropod and nematode species. Due to its capacity to alter host biology, Wolbachia plays an important role in arthropod and nematode ecology and evolution. Sirex noctilio is a woodwasp causing economic loss in pine plantations of the Southern Hemisphere. An investigation into the genome of this wasp revealed the presence of Wolbachia sequences. Due to the potential impact of Wolbachia on the populations of this wasp, as well as its potential use as a biological control agent against invasive insects, this discovery warranted investigation.
Results In this study we first investigated the presence of Wolbachia in S. noctilio and demonstrated that South African populations of the wasp are unlikely to be infected. We then screened the full genome of S. noctilio and found 12 Wolbachia pseudogenes. Most of these genes constitute building blocks of various transposable elements originating from the Wolbachia genome. Finally, we demonstrate that these genes are distributed in all South African populations of the wasp.
Conclusions Our results provide evidence that S. noctilio might be compatible with a Wolbachia infection and that the bacteria could potentially be used in the future to regulate invasive populations of the wasp. Understanding the mechanisms that led to a loss of Wolbachia infection in S. noctilio could indicate which host species or host population should be sampled to find a Wolbachia strain that could be used as a biological control against S. noctilio. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01995-x.
Collapse
Affiliation(s)
- Joséphine Queffelec
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lunnon Road, Pretoria, 0002, South Africa. .,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Alisa Postma
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lunnon Road, Pretoria, 0002, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Jeremy D Allison
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lunnon Road, Pretoria, 0002, South Africa.,Great Lakes Forestry Center, Natural Resources Canada, Canadian Forest Service, Sault St Marie, Canada.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Bernard Slippers
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lunnon Road, Pretoria, 0002, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Schrumpfová PP, Fajkus J. Composition and Function of Telomerase-A Polymerase Associated with the Origin of Eukaryotes. Biomolecules 2020; 10:biom10101425. [PMID: 33050064 PMCID: PMC7658794 DOI: 10.3390/biom10101425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
The canonical DNA polymerases involved in the replication of the genome are unable to fully replicate the physical ends of linear chromosomes, called telomeres. Chromosomal termini thus become shortened in each cell cycle. The maintenance of telomeres requires telomerase—a specific RNA-dependent DNA polymerase enzyme complex that carries its own RNA template and adds telomeric repeats to the ends of chromosomes using a reverse transcription mechanism. Both core subunits of telomerase—its catalytic telomerase reverse transcriptase (TERT) subunit and telomerase RNA (TR) component—were identified in quick succession in Tetrahymena more than 30 years ago. Since then, both telomerase subunits have been described in various organisms including yeasts, mammals, birds, reptiles and fish. Despite the fact that telomerase activity in plants was described 25 years ago and the TERT subunit four years later, a genuine plant TR has only recently been identified by our group. In this review, we focus on the structure, composition and function of telomerases. In addition, we discuss the origin and phylogenetic divergence of this unique RNA-dependent DNA polymerase as a witness of early eukaryotic evolution. Specifically, we discuss the latest information regarding the recently discovered TR component in plants, its conservation and its structural features.
Collapse
Affiliation(s)
- Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic;
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- Correspondence:
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic;
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
4
|
Cullen H, Schorn AJ. Endogenous Retroviruses Walk a Fine Line between Priming and Silencing. Viruses 2020; 12:v12080792. [PMID: 32718022 PMCID: PMC7472051 DOI: 10.3390/v12080792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022] Open
Abstract
Endogenous retroviruses (ERVs) in mammals are closely related to infectious retroviruses and utilize host tRNAs as a primer for reverse transcription and replication, a hallmark of long terminal repeat (LTR) retroelements. Their dependency on tRNA makes these elements vulnerable to targeting by small RNAs derived from the 3′-end of mature tRNAs (3′-tRFs), which are highly expressed during epigenetic reprogramming and potentially protect many tissues in eukaryotes. Here, we review some key functions of ERV reprogramming during mouse and human development and discuss how small RNA-mediated silencing maintains genome stability when ERVs are temporarily released from heterochromatin repression. In particular, we take a closer look at the tRNA primer binding sites (PBS) of two highly active ERV families in mice and their sequence variation that is shaped by the conflict of successful tRNA priming for replication versus evasion of silencing by 3′-tRFs.
Collapse
|
5
|
García-Rodríguez FM, Neira JL, Marcia M, Molina-Sánchez MD, Toro N. A group II intron-encoded protein interacts with the cellular replicative machinery through the β-sliding clamp. Nucleic Acids Res 2019; 47:7605-7617. [PMID: 31127285 PMCID: PMC6698660 DOI: 10.1093/nar/gkz468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Group II introns are self-splicing mobile genetic retroelements. The spliced intron RNA and the intron-encoded protein (IEP) form ribonucleoprotein particles (RNPs) that recognize and invade specific DNA target sites. The IEP is a reverse transcriptase/maturase that may bear a C-terminal endonuclease domain enabling the RNP to cleave the target DNA strand to prime reverse transcription. However, some mobile introns, such as RmInt1, lack the En domain but nevertheless retrohome efficiently to transient single-stranded DNA target sites at a DNA replication fork. Their mobility is associated with host DNA replication, and they use the nascent lagging strand as a primer for reverse transcription. We searched for proteins that interact with RmInt1 RNPs and direct these RNPs to the DNA replication fork. Co-immunoprecipitation assays suggested that DnaN (the β-sliding clamp), a component of DNA polymerase III, interacts with the protein component of the RmInt1 RNP. Pulldown assays, far-western blots and biolayer interferometry supported this interaction. Peptide binding assays also identified a putative DnaN-interacting motif in the RmInt1 IEP structurally conserved in group II intron IEPs. Our results suggest that intron RNP interacts with the β-sliding clamp of the DNA replication machinery, favouring reverse splicing into the transient ssDNA at DNA replication forks.
Collapse
Affiliation(s)
- Fernando M García-Rodríguez
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain
| | - José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain.,Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, Grenoble 38042, France
| | - María D Molina-Sánchez
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain
| | - Nicolás Toro
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
6
|
Testing the retroelement invasion hypothesis for the emergence of the ancestral eukaryotic cell. Proc Natl Acad Sci U S A 2018; 115:12465-12470. [PMID: 30455297 PMCID: PMC6298092 DOI: 10.1073/pnas.1807709115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phylogenetic evidence suggests that the invasion and proliferation of retroelements, selfish mobile genetic elements that copy and paste themselves within a host genome, was one of the early evolutionary events in the emergence of eukaryotes. Here we test the effects of this event by determining the pressures retroelements exert on simple genomes. We transferred two retroelements, human LINE-1 and the bacterial group II intron Ll.LtrB, into bacteria, and find that both are functional and detrimental to growth. We find, surprisingly, that retroelement lethality and proliferation are enhanced by the ability to perform eukaryotic-like nonhomologous end-joining (NHEJ) DNA repair. We show that the only stable evolutionary consequence in simple cells is maintenance of retroelements in low numbers, suggesting how retrotransposition rates and costs in early eukaryotes could have been constrained to allow proliferation. Our results suggest that the interplay between NHEJ and retroelements may have played a fundamental and previously unappreciated role in facilitating the proliferation of retroelements, elements of which became the ancestors of the spliceosome components in eukaryotes.
Collapse
|
7
|
Schorn AJ, Martienssen R. Tie-Break: Host and Retrotransposons Play tRNA. Trends Cell Biol 2018; 28:793-806. [PMID: 29934075 DOI: 10.1016/j.tcb.2018.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/08/2018] [Accepted: 05/23/2018] [Indexed: 11/28/2022]
Abstract
tRNA fragments (tRFs) are a class of small, regulatory RNAs with diverse functions. 3'-Derived tRFs perfectly match long terminal repeat (LTR)-retroelements which use the 3'-end of tRNAs to prime reverse transcription. Recent work has shown that tRFs target LTR-retroviruses and -transposons for the RNA interference (RNAi) pathway and also inhibit mobility by blocking reverse transcription. The highly conserved tRNA primer binding site (PBS) in LTR-retroelements is a unique target for 3'-tRFs to recognize and block abundant but diverse LTR-retrotransposons that become transcriptionally active during epigenetic reprogramming in development and disease. 3'-tRFs are processed from full-length tRNAs under so far unknown conditions and potentially protect many cell types. tRFs appear to be an ancient link between RNAi, transposons, and genome stability.
Collapse
Affiliation(s)
- Andrea J Schorn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Rob Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
8
|
Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites. Int J Mol Sci 2018; 19:ijms19020333. [PMID: 29364142 PMCID: PMC5855555 DOI: 10.3390/ijms19020333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Replicative capacity of a cell is strongly correlated with telomere length regulation. Aberrant lengthening or reduction in the length of telomeres can lead to health anomalies, such as cancer or premature aging. Telomerase is a master regulator for maintaining replicative potential in most eukaryotic cells. It does so by controlling telomere length at chromosome ends. Akin to cancer cells, most single-cell eukaryotic pathogens are highly proliferative and require persistent telomerase activity to maintain constant length of telomere and propagation within their host. Although telomerase is key to unlimited cellular proliferation in both cases, not much was known about the role of telomerase in human parasites (malaria, Trypanosoma, etc.) until recently. Since telomerase regulation is mediated via its own structural components, interactions with catalytic reverse transcriptase and several factors that can recruit and assemble telomerase to telomeres in a cell cycle-dependent manner, we compare and discuss here recent findings in telomerase biology in cancer, aging and parasitic diseases to give a broader perspective of telomerase function in human diseases.
Collapse
|
9
|
Mita P, Wudzinska A, Sun X, Andrade J, Nayak S, Kahler DJ, Badri S, LaCava J, Ueberheide B, Yun CY, Fenyö D, Boeke JD. LINE-1 protein localization and functional dynamics during the cell cycle. eLife 2018; 7:30058. [PMID: 29309036 PMCID: PMC5821460 DOI: 10.7554/elife.30058] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 01/04/2018] [Indexed: 01/12/2023] Open
Abstract
LINE-1/L1 retrotransposon sequences comprise 17% of the human genome. Among the many classes of mobile genetic elements, L1 is the only autonomous retrotransposon that still drives human genomic plasticity today. Through its co-evolution with the human genome, L1 has intertwined itself with host cell biology. However, a clear understanding of L1’s lifecycle and the processes involved in restricting its insertion and intragenomic spread remains elusive. Here we identify modes of L1 proteins’ entrance into the nucleus, a necessary step for L1 proliferation. Using functional, biochemical, and imaging approaches, we also show a clear cell cycle bias for L1 retrotransposition that peaks during the S phase. Our observations provide a basis for novel interpretations about the nature of nuclear and cytoplasmic L1 ribonucleoproteins (RNPs) and the potential role of DNA replication in L1 retrotransposition. Only two percent of our genetic material or genome are occupied by genes, while between 60-70 percent are made up of hundreds of thousands of copies of very similar DNA sequences. These repetitive sequences evolved from genetic elements called transposons. Transposons are often referred to as ‘jumping genes’, as they can randomly move within the genome and thereby create dangerous mutations that may lead to cancer or other genetic diseases. LINE-1 is the only remaining active transposon in humans, and it expands by copying and pasting itself to new locations via a process called 'retrotransposition'. To do so, it is first transcribed into RNA – the molecules that help to make proteins – and then converted back into identical DNA sequences. Previous research has shown that LINE-1 can form complexes with a series of proteins, including the two encoded by LINE-1 RNA itself: ORF1p and ORF2p. The LINE-1 complexes can enter the nucleus of the cell and insert a new copy of LINE-1 into the genome. However, until now it was not known how they do this. To investigate this further, Mita et al. used human cancer cells grown in the lab and tracked LINE-1 during the different stages of the cell cycle. The results showed that LINE-1 enters the nucleus as the cell starts to divide and the membrane of the nucleus breaks down. The LINE-1 complexes are then retained in the nucleus while the membrane of the nucleus reforms. Later, as the cell duplicates its genetic material, LINE-1 starts to copy and paste itself. Mita et al., together with another group of researchers, also found that during this process, only LINE-1 RNA and ORF2p were found in the nucleus. This shows that the cell cycle dictates both where the LINE-1 complexes gather and when LINE-1 is active. A next step will be to further investigate how the ‘copy and paste’ mechanisms of LINE-1 and the two LINE-1 proteins are regulated during the cell cycle. In future, this may help to identify LINE-1’s role in processes like aging or in diseases such as cancer.
Collapse
Affiliation(s)
- Paolo Mita
- Institute of Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, United States
| | - Aleksandra Wudzinska
- Institute of Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, United States
| | - Xiaoji Sun
- Institute of Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, United States
| | - Joshua Andrade
- Proteomics laboratory, NYU Langone Health, New York, United States
| | - Shruti Nayak
- Proteomics laboratory, NYU Langone Health, New York, United States
| | - David J Kahler
- High Throughput Biology (HTB) Laboratory, NYU Langone Health, New York, United States
| | - Sana Badri
- Department of Pathology, NYU Langone Health, New York, United States
| | - John LaCava
- Institute of Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, United States.,Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, United States
| | - Beatrix Ueberheide
- Institute of Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, United States.,Proteomics laboratory, NYU Langone Health, New York, United States
| | - Chi Y Yun
- High Throughput Biology (HTB) Laboratory, NYU Langone Health, New York, United States
| | - David Fenyö
- Institute of Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, United States
| | - Jef D Boeke
- Institute of Systems Genetics (ISG), Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, United States
| |
Collapse
|
10
|
Platt EJ, Smith L, Thayer MJ. L1 retrotransposon antisense RNA within ASAR lncRNAs controls chromosome-wide replication timing. J Cell Biol 2017; 217:541-553. [PMID: 29288153 PMCID: PMC5800813 DOI: 10.1083/jcb.201707082] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/19/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
Proper chromosome duplication is critical for genome integrity and normal cellular function. Platt et al. show that the lncRNA genes ASAR6 and ASAR15 control chromosome-wide replication timing via the antisense strand of L1 retrotransposons located within ASAR6 and ASAR15 RNAs. Mammalian cells replicate their chromosomes via a temporal replication program. The ASAR6 and ASAR15 genes were identified as loci that when disrupted result in delayed replication and condensation of entire human chromosomes. ASAR6 and ASAR15 are monoallelically expressed long noncoding RNAs that remain associated with the chromosome from which they are transcribed. The chromosome-wide effects of ASAR6 map to the antisense strand of an L1 retrotransposon within ASAR6 RNA, deletion or inversion of which delayed replication of human chromosome 6. Furthermore, ectopic integration of ASAR6 or ASAR15 transgenes into mouse chromosomes resulted in delayed replication and condensation, an increase in H3K27me3, coating of the mouse chromosome with ASAR RNA, and a loss of mouse Cot-1 RNA expression in cis. Targeting the antisense strand of the L1 within ectopically expressed ASAR6 RNA restored normal replication timing. Our results provide direct evidence that L1 antisense RNA plays a functional role in chromosome-wide replication timing of mammalian chromosomes.
Collapse
Affiliation(s)
- Emily J Platt
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR
| | - Leslie Smith
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR
| | - Mathew J Thayer
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
11
|
Döring J, Hurek T. Arm-specific cleavage and mutation during reverse transcription of 2΄,5΄-branched RNA by Moloney murine leukemia virus reverse transcriptase. Nucleic Acids Res 2017; 45:3967-3984. [PMID: 28160599 PMCID: PMC5399748 DOI: 10.1093/nar/gkx073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 01/30/2017] [Indexed: 11/14/2022] Open
Abstract
Branchpoint nucleotides of intron lariats induce pausing of DNA synthesis by reverse transcriptases (RTs), but it is not known yet how they direct RT RNase H activity on branched RNA (bRNA). Here, we report the effects of the two arms of bRNA on branchpoint-directed RNA cleavage and mutation produced by Moloney murine leukemia virus (M-MLV) RT during DNA polymerization. We constructed a long-chained bRNA template by splinted-ligation. The bRNA oligonucleotide is chimeric and contains DNA to identify RNA cleavage products by probe hybridization. Unique sequences surrounding the branchpoint facilitate monitoring of bRNA purification by terminal-restriction fragment length polymorphism analysis. We evaluate the M-MLV RT-generated cleavage and mutational patterns. We find that cleavage of bRNA and misprocessing of the branched nucleotide proceed arm-specifically. Bypass of the branchpoint from the 2΄-arm causes single-mismatch errors, whereas bypass from the 3΄-arm leads to deletion mutations. The non-template arm is cleaved when reverse transcription is primed from the 3΄-arm but not from the 2΄-arm. This suggests that RTs flip ∼180° at branchpoints and RNases H cleave the non-template arm depending on its accessibility. Our observed interplay between M-MLV RT and bRNA would be compatible with a bRNA-mediated control of retroviral and related retrotransposon replication.
Collapse
Affiliation(s)
- Jessica Döring
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| |
Collapse
|
12
|
L1 Mosaicism in Mammals: Extent, Effects, and Evolution. Trends Genet 2017; 33:802-816. [PMID: 28797643 DOI: 10.1016/j.tig.2017.07.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/30/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
Abstract
The retrotransposon LINE-1 (long interspersed element 1, L1) is a transposable element that has extensively colonized the mammalian germline. L1 retrotransposition can also occur in somatic cells, causing genomic mosaicism, as well as in cancer. However, the extent of L1-driven mosaicism arising during ontogenesis is unclear. We discuss here recent experimental data which, at a minimum, fully substantiate L1 mosaicism in early embryonic development and neural cells, including post-mitotic neurons. We also consider the possible biological impact of somatic L1 insertions in neurons, the existence of donor L1s that are highly active ('hot') in specific spatiotemporal niches, and the evolutionary selection of donor L1s driving neuronal mosaicism.
Collapse
|
13
|
Protein-Coding Genes' Retrocopies and Their Functions. Viruses 2017; 9:v9040080. [PMID: 28406439 PMCID: PMC5408686 DOI: 10.3390/v9040080] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Transposable elements, often considered to be not important for survival, significantly contribute to the evolution of transcriptomes, promoters, and proteomes. Reverse transcriptase, encoded by some transposable elements, can be used in trans to produce a DNA copy of any RNA molecule in the cell. The retrotransposition of protein-coding genes requires the presence of reverse transcriptase, which could be delivered by either non-long terminal repeat (non-LTR) or LTR transposons. The majority of these copies are in a state of “relaxed” selection and remain “dormant” because they are lacking regulatory regions; however, many become functional. In the course of evolution, they may undergo subfunctionalization, neofunctionalization, or replace their progenitors. Functional retrocopies (retrogenes) can encode proteins, novel or similar to those encoded by their progenitors, can be used as alternative exons or create chimeric transcripts, and can also be involved in transcriptional interference and participate in the epigenetic regulation of parental gene expression. They can also act in trans as natural antisense transcripts, microRNA (miRNA) sponges, or a source of various small RNAs. Moreover, many retrocopies of protein-coding genes are linked to human diseases, especially various types of cancer.
Collapse
|
14
|
Abstract
Telomerase is the eukaryotic solution to the ‘end-replication problem’ of linear chromosomes by synthesising the highly repetitive DNA constituent of telomeres, the nucleoprotein cap that protects chromosome termini. Functioning as a ribonucleoprotein (RNP) enzyme, telomerase is minimally composed of the highly conserved catalytic telomerase reverse transcriptase (TERT) and essential telomerase RNA (TR) component. Beyond merely providing the template for telomeric DNA synthesis, TR is an innate telomerase component and directly facilitates enzymatic function. TR accomplishes this by having evolved structural elements for stable assembly with the TERT protein and the regulation of the telomerase catalytic cycle. Despite its prominence and prevalence, TR has profoundly diverged in length, sequence, and biogenesis pathway among distinct evolutionary lineages. This diversity has generated numerous structural and mechanistic solutions for ensuring proper RNP formation and high fidelity telomeric DNA synthesis. Telomerase provides unique insights into RNA and protein coevolution within RNP enzymes.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- a School of Molecular Sciences, Arizona State University , Tempe , AZ , USA
| | - Julian J-L Chen
- a School of Molecular Sciences, Arizona State University , Tempe , AZ , USA
| |
Collapse
|
15
|
Localization of a bacterial group II intron-encoded protein in human cells. Sci Rep 2015; 5:12716. [PMID: 26244523 PMCID: PMC4525487 DOI: 10.1038/srep12716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/07/2015] [Indexed: 01/06/2023] Open
Abstract
Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells.
Collapse
|
16
|
Zhang W, Sakai M, Lin X, Takechi K, Takano H, Takio S. Reverse Transcriptase-Like Sequences Related to Retrotransposon in a Red Alga,Porphyra yezoensis. Biosci Biotechnol Biochem 2014; 70:1999-2003. [PMID: 16926517 DOI: 10.1271/bbb.60118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Four DNA fragments encoding a reverse transcriptase (RT)-like gene related to that of long terminal repeat (LTR) retrotransposons were isolated from the red alga Porphyra yezoensis by genomic PCR. Southern blot analysis suggested that one clone exists as a single copy per genome. Its full-length cDNA (PyRE2A) contained RT/RNase H-like sequences, which are most closely related to those of the Volvox LTR retrotransposon, although two stop codons were present within the RT region. We did not find any sequence related to LTR retrotransposons other than RT/RNase H in RyRE2A. These results indicate that PyRE2A is a single RT/RNase H-like gene and a defective progenitor of LTR retrotransposons.
Collapse
Affiliation(s)
- Wenbo Zhang
- Graduate School of Science and Technology, Kumamoto University, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Evolutionary selection for optimal genome preservation, replication, and expression should yield similar chromosome organizations in any type of cells. And yet, the chromosome organization is surprisingly different between eukaryotes and prokaryotes. The nuclear versus cytoplasmic accommodation of genetic material accounts for the distinct eukaryotic and prokaryotic modes of genome evolution, but it falls short of explaining the differences in the chromosome organization. I propose that the two distinct ways to organize chromosomes are driven by the differences between the global-consecutive chromosome cycle of eukaryotes and the local-concurrent chromosome cycle of prokaryotes. Specifically, progressive chromosome segregation in prokaryotes demands a single duplicon per chromosome, while other "precarious" features of the prokaryotic chromosomes can be viewed as compensations for this severe restriction.
Collapse
|
18
|
Nisa-Martínez R, Laporte P, Jiménez-Zurdo JI, Frugier F, Crespi M, Toro N. Localization of a bacterial group II intron-encoded protein in eukaryotic nuclear splicing-related cell compartments. PLoS One 2013; 8:e84056. [PMID: 24391881 PMCID: PMC3877140 DOI: 10.1371/journal.pone.0084056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/15/2013] [Indexed: 11/18/2022] Open
Abstract
Some bacterial group II introns are widely used for genetic engineering in bacteria, because they can be reprogrammed to insert into the desired DNA target sites. There is considerable interest in developing this group II intron gene targeting technology for use in eukaryotes, but nuclear genomes present several obstacles to the use of this approach. The nuclear genomes of eukaryotes do not contain group II introns, but these introns are thought to have been the progenitors of nuclear spliceosomal introns. We investigated the expression and subcellular localization of the bacterial RmInt1 group II intron-encoded protein (IEP) in Arabidopsis thaliana protoplasts. Following the expression of translational fusions of the wild-type protein and several mutant variants with EGFP, the full-length IEP was found exclusively in the nucleolus, whereas the maturase domain alone targeted EGFP to nuclear speckles. The distribution of the bacterial RmInt1 IEP in plant cell protoplasts suggests that the compartmentalization of eukaryotic cells into nucleus and cytoplasm does not prevent group II introns from invading the host genome. Furthermore, the trafficking of the IEP between the nucleolus and the speckles upon maturase inactivation is consistent with the hypothesis that the spliceosomal machinery evolved from group II introns.
Collapse
Affiliation(s)
- Rafael Nisa-Martínez
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín Grupo de Ecología Genética, Granada, Spain
| | - Philippe Laporte
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, Gif-sur-Yvette, France
| | - José Ignacio Jiménez-Zurdo
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín Grupo de Ecología Genética, Granada, Spain
| | - Florian Frugier
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, Gif-sur-Yvette, France
| | - Martin Crespi
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, Gif-sur-Yvette, France
| | - Nicolás Toro
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
19
|
Transposable elements domesticated and neofunctionalized by eukaryotic genomes. Plasmid 2013; 69:1-15. [DOI: 10.1016/j.plasmid.2012.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/30/2012] [Accepted: 08/08/2012] [Indexed: 12/21/2022]
|
20
|
Donghi D, Pechlaner M, Finazzo C, Knobloch B, Sigel RKO. The structural stabilization of the κ three-way junction by Mg(II) represents the first step in the folding of a group II intron. Nucleic Acids Res 2012; 41:2489-504. [PMID: 23275550 PMCID: PMC3575829 DOI: 10.1093/nar/gks1179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Folding of group II introns is characterized by a first slow compaction of domain 1 (D1) followed by the rapid docking of other domains to this scaffold. D1 compaction initiates in a small subregion encompassing the κ and ζ elements. These two tertiary elements are also the major interaction sites with domain 5 to form the catalytic core. Here, we provide the first characterization of the structure adopted at an early folding step and show that the folding control element can be narrowed down to the three-way junction with the κ motif. In our nuclear magnetic resonance studies of this substructure derived from the yeast mitochondrial group II intron Sc.ai5γ, we show that a high affinity Mg(II) ion stabilizes the κ element and enables coaxial stacking between helices d′ and d′′, favoring a rigid duplex across the three-way junction. The κ-element folds into a stable GAAA-tetraloop motif and engages in A-minor interactions with helix d′. The addition of cobalt(III)hexammine reveals three distinct binding sites. The Mg(II)-promoted structural rearrangement and rigidification of the D1 core can be identified as the first micro-step of D1 folding.
Collapse
Affiliation(s)
- Daniela Donghi
- Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Pyle AM. The tertiary structure of group II introns: implications for biological function and evolution. Crit Rev Biochem Mol Biol 2010; 45:215-32. [PMID: 20446804 DOI: 10.3109/10409231003796523] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Group II introns are some of the largest ribozymes in nature, and they are a major source of information about RNA assembly and tertiary structural organization. These introns are of biological significance because they are self-splicing mobile elements that have migrated into diverse genomes and played a major role in the genomic organization and metabolism of most life forms. The tertiary structure of group II introns has been the subject of many phylogenetic, genetic, biochemical and biophysical investigations, all of which are consistent with the recent crystal structure of an intact group IIC intron from the alkaliphilic eubacterium Oceanobacillus iheyensis. The crystal structure reveals that catalytic intron domain V is enfolded within the other intronic domains through an elaborate network of diverse tertiary interactions. Within the folded core, DV adopts an activated conformation that readily binds catalytic metal ions and positions them in a manner appropriate for reaction with nucleic acid targets. The tertiary structure of the group II intron reveals new information on motifs for RNA architectural organization, mechanisms of group II intron catalysis, and the evolutionary relationships among RNA processing systems. Guided by the structure and the wealth of previous genetic and biochemical work, it is now possible to deduce the probable location of DVI and the site of additional domains that contribute to the function of the highly derived group IIB and IIA introns.
Collapse
Affiliation(s)
- Anna Marie Pyle
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute and Yale University, New Haven, CT, USA.
| |
Collapse
|
22
|
Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, Badge RM, Moran JV. LINE-1 retrotransposition activity in human genomes. Cell 2010; 141:1159-70. [PMID: 20602998 PMCID: PMC3013285 DOI: 10.1016/j.cell.2010.05.021] [Citation(s) in RCA: 461] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/23/2010] [Accepted: 05/13/2010] [Indexed: 01/23/2023]
Abstract
Highly active (i.e., "hot") long interspersed element-1 (LINE-1 or L1) sequences comprise the bulk of retrotransposition activity in the human genome; however, the abundance of hot L1s in the human population remains largely unexplored. Here, we used a fosmid-based, paired-end DNA sequencing strategy to identify 68 full-length L1s that are differentially present among individuals but are absent from the human genome reference sequence. The majority of these L1s were highly active in a cultured cell retrotransposition assay. Genotyping 26 elements revealed that two L1s are only found in Africa and that two more are absent from the H952 subset of the Human Genome Diversity Panel. Therefore, these results suggest that hot L1s are more abundant in the human population than previously appreciated, and that ongoing L1 retrotransposition continues to be a major source of interindividual genetic variation.
Collapse
Affiliation(s)
- Christine R. Beck
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI
| | - Pamela Collier
- Department of Genetics, University of Leicester, Leicester, UK
| | | | - Maika Malig
- Department of Genome Sciences and Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | - Jeffrey M. Kidd
- Department of Genome Sciences and Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | - Evan E. Eichler
- Department of Genome Sciences and Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | | | - John V. Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
23
|
Tourasse NJ, Stabell FB, Kolstø AB. Structural and functional evolution of group II intron ribozymes: insights from unusual elements carrying a 3' extension. N Biotechnol 2010; 27:204-11. [PMID: 20219707 DOI: 10.1016/j.nbt.2010.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Group II introns are large RNA elements that interrupt genes. They are self-splicing ribozymes that catalyze their own excision and mobile retroelements that can invade new genomic DNA sites. While group II introns typically consist of six structural domains, a number of elements containing an unusual 3' extension of 53-56 nucleotides have recently been identified. Bioinformatic and functional analyses of these introns have revealed that they belong to two evolutionary subgroups and that the 3' extension has a differential effect on the splicing reactions for introns of the two subgroups, a functional difference that may be related to structural differences between the introns. In addition, there is phylogenetic evidence that some introns are mobile with their extension. The unusual introns have provided dramatic examples of the structural and functional evolution of group II ribozymes that have been able to accommodate an extra segment into their compact structure while maintaining functionality.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.
| | | | | |
Collapse
|
24
|
Flügel RM. The precellular scenario of genovirions. Virus Genes 2010; 40:151-4. [DOI: 10.1007/s11262-009-0445-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 12/30/2009] [Indexed: 11/30/2022]
|
25
|
Keating KS, Toor N, Perlman PS, Pyle AM. A structural analysis of the group II intron active site and implications for the spliceosome. RNA (NEW YORK, N.Y.) 2010; 16:1-9. [PMID: 19948765 PMCID: PMC2802019 DOI: 10.1261/rna.1791310] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 08/12/2009] [Indexed: 05/20/2023]
Abstract
Group II introns are self-splicing, mobile genetic elements that have fundamentally influenced the organization of terrestrial genomes. These large ribozymes remain important for gene expression in almost all forms of bacteria and eukaryotes and they are believed to share a common ancestry with the eukaryotic spliceosome that is required for processing all nuclear pre-mRNAs. The three-dimensional structure of a group IIC intron was recently determined by X-ray crystallography, making it possible to visualize the active site and the elaborate network of tertiary interactions that stabilize the molecule. Here we describe the molecular features of the active site in detail and evaluate their correspondence with prior biochemical, genetic, and phylogenetic analyses on group II introns. In addition, we evaluate the structural significance of RNA motifs within the intron core, such as the major-groove triple helix and the domain 5 bulge. Having combined what is known about the group II intron core, we then compare it with known structural features of U6 snRNA in the eukaryotic spliceosome. This analysis leads to a set of predictions for the molecular structure of the spliceosomal active site.
Collapse
Affiliation(s)
- Kevin S Keating
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
26
|
Simon DM, Zimmerly S. A diversity of uncharacterized reverse transcriptases in bacteria. Nucleic Acids Res 2008; 36:7219-29. [PMID: 19004871 PMCID: PMC2602772 DOI: 10.1093/nar/gkn867] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Retroelements are usually considered to be eukaryotic elements because of the large number and variety in eukaryotic genomes. By comparison, reverse transcriptases (RTs) are rare in bacteria, with only three characterized classes: retrons, group II introns and diversity-generating retroelements (DGRs). Here, we present the results of a bioinformatic survey that aims to define the landscape of RTs across eubacterial, archaeal and phage genomes. We identify and categorize 1021 RTs, of which the majority are group II introns (73%). Surprisingly, a plethora of novel RTs are found that do not belong to characterized classes. The RTs have 11 domain architectures and are classified into 20 groupings based on sequence similarity, phylogenetic analyses and open reading frame domain structures. Interestingly, group II introns are the only bacterial RTs to exhibit clear evidence for independent mobility, while five other groups have putative functions in defense against phage infection or promotion of phage infection. These examples suggest that additional beneficial functions will be discovered among uncharacterized RTs. The study lays the groundwork for experimental characterization of these highly diverse sequences and has implications for the evolution of retroelements.
Collapse
Affiliation(s)
- Dawn M Simon
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
27
|
Phylogenetic profiles reveal evolutionary relationships within the "twilight zone" of sequence similarity. Proc Natl Acad Sci U S A 2008; 105:13474-9. [PMID: 18765810 DOI: 10.1073/pnas.0803860105] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inferring evolutionary relationships among highly divergent protein sequences is a daunting task. In particular, when pairwise sequence alignments between protein sequences fall <25% identity, the phylogenetic relationships among sequences cannot be estimated with statistical certainty. Here, we show that phylogenetic profiles generated with the Gestalt Domain Detection Algorithm-Basic Local Alignment Tool (GDDA-BLAST) are capable of deriving, ab initio, phylogenetic relationships for highly divergent proteins in a quantifiable and robust manner. Notably, the results from our computational case study of the highly divergent family of retroelements accord with previous estimates of their evolutionary relationships. Taken together, these data demonstrate that GDDA-BLAST provides an independent and powerful measure of evolutionary relationships that does not rely on potentially subjective sequence alignment. We demonstrate that evolutionary relationships can be measured with phylogenetic profiles, and therefore propose that these measurements can provide key insights into relationships among distantly related and/or rapidly evolving proteins.
Collapse
|
28
|
Erat MC, Zerbe O, Fox T, Sigel RKO. Solution structure of domain 6 from a self-splicing group II intron ribozyme: a Mg(2+) binding site is located close to the stacked branch adenosine. Chembiochem 2008; 8:306-14. [PMID: 17200997 DOI: 10.1002/cbic.200600459] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Group II intron self-splicing is essential for the correct expression of organellar genes in plants, fungi, and yeast, as well as of bacterial genes. Self-excision of these autocatalytic introns from the primary RNA transcript is achieved in a two-step mechanism that is apparently analogous to that of the eukaryotic spliceosome. The 2'-OH of a conserved adenosine (the branch point) located within domain 6 (D6) acts as the nucleophile in the first step of splicing. Despite the biological importance of group II introns, little is known about their structural organization and usage of metal ions in catalysis. Here we report the first solution structure of a catalytically active D6 construct encompassing the branch point and the neighboring helical regions from the mitochondrial yeast intron ai5gamma. The branch adenosine is the single unpaired nucleotide, and, in contrast to the spliceosomal branch site, resides within the helix, being partially stacked between two flanking GU wobble pairs. We identified a novel prominent Mg(2+) binding site in the major groove of the branch site. Importantly, Mg(2+) addition does not impair the stacking of the branch adenosine, rather it strengthens the interaction with the flanking uridines, as shown by NMR and fluorescence studies. This means that domain 6 presents the branch adenosine in a stacked fashion to the core of group II introns upon folding to the active conformation.
Collapse
Affiliation(s)
- Michèle C Erat
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
29
|
Abstract
There has been a lively debate over the evolution of eukaryote introns: at what point in the tree of life did they appear and from where, and what has been their subsequent pattern of loss and gain? A diverse range of recent research papers is relevant to this debate, and it is timely to bring them together. The absence of introns that are not self-splicing in prokaryotes and several other lines of evidence suggest an ancient eukaryotic origin for these introns, and the subsequent gain and loss of introns appears to be an ongoing process in many organisms. Some introns are now functionally important and there have been suggestions that invoke natural selection for the ancient and recent gain of introns, but it is also possible that fixation and loss of introns can occur in the absence of positive selection.
Collapse
Affiliation(s)
- R Belshaw
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | |
Collapse
|
30
|
Brosius J. Echoes from the past--are we still in an RNP world? Cytogenet Genome Res 2005; 110:8-24. [PMID: 16093654 DOI: 10.1159/000084934] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 05/04/2004] [Indexed: 11/19/2022] Open
Abstract
Availability of the human genome sequence and those of other species is unmeasured in their value for a comprehensive understanding of the architecture, function and evolution of genomes and cells. Various mechanisms keep genomes in flux and generate intra- and interspecies variation. The conversion of RNA modules into DNA and their more or less random integration into chromosomes (retroposition) is in many lineages including our own the most pervasive and perhaps the most enigmatic. The proclivity of such events in extant multicellular eukaryotes, even in more recent evolutionary times, gives the impression that the transition period from the RNP (ribonucleoprotein) world to the emergence of modern cells, where DNA became the predominant carrier of genetic information, has lasted billions of years and is an endlessly drawn-out process rather than the punctuated event one might expect. Apart from the impact of such RNA-mediated processes as retroposition, the role of RNA in a wide variety of cellular functions has only recently become more widely appreciated.
Collapse
Affiliation(s)
- J Brosius
- Institute of Experimental Pathology, ZMBE, University of Munster, Munster, Germany.
| |
Collapse
|
31
|
Arkhipova IR. Mobile genetic elements and sexual reproduction. Cytogenet Genome Res 2005; 110:372-82. [PMID: 16093689 DOI: 10.1159/000084969] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Accepted: 01/02/2004] [Indexed: 12/27/2022] Open
Abstract
Transposable elements (TE) are prominent components of most eukaryotic genomes. In addition to their possible participation in the origin of sexual reproduction in eukaryotes, they may be also involved in its maintenance as important contributors to the deleterious mutation load. Comparative analyses of transposon content in the genomes of sexually reproducing and anciently asexual species may help to understand the contribution of different TE classes to the deleterious load. The apparent absence of deleterious retrotransposons from the genomes of ancient asexuals is in agreement with the hypothesis that they may play a special role in the maintenance of sexual reproduction and in early extinction for which most species are destined upon the abandonment of sex.
Collapse
Affiliation(s)
- I R Arkhipova
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
32
|
Lorenzi HA, Robledo G, Levin MJ. The VIPER elements of trypanosomes constitute a novel group of tyrosine recombinase-enconding retrotransposons. Mol Biochem Parasitol 2005; 145:184-94. [PMID: 16297462 DOI: 10.1016/j.molbiopara.2005.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 10/02/2005] [Accepted: 10/04/2005] [Indexed: 11/29/2022]
Abstract
VIPER was initially characterized as a 2326bp LTR-like retroelement associated to SIRE, a short interspersed repetitive element specific of Trypanosoma cruzi. It carried a single ORF that coded for a putative reverse transcriptase-RNAse H protein, suggesting that it could be a truncated copy of a longer retroelement. Herein we report the identification and characterization of a complete 4480bp long VIPER in the T. cruzi genome. The complete VIPER harbored three non-overlapped domains encoding for a GAG-like, a tyrosine recombinase and a reverse transcriptase-RNAse H proteins. VIPER elements were also found in the genomes of Trypanosoma brucei and Trypanosoma vivax, but not in Leishmania sp. On the basis of its reverse transcriptase phylogeny, VIPER was classified as an LTR retroelement. However, VIPER was structurally related to the tyrosine recombinase encoding retroelements, DIRS and Ngaro. Phylogenetic analysis showed that VIPER's tyrosine recombinase grouped with the transposases RCI1 of Escherichia coli and Ye24 and Ye72 of Haemophilus influenzae within a major branch of prokaryotic recombinases. Taken together, VIPER's structure, the nature of its tyrosine recombinase, the unique features of its reverse transcriptase catalytic consensus motif and the fact that it was found in Trypanosomes, an early branching eukaryote, suggest that VIPER may be the closest relative of the founder element of the tyrosine recombinase encoding retrotransposons known up to date. Our analysis revealed that tyrosine recombinase-encoding retroelements were originated as early in evolution as non-LTR retroelements and suggests that VIPER, Ngaro and DIRS elements may constitute a third group of retrotransposons, distinct from both LTR and non-LTR retroelements.
Collapse
Affiliation(s)
- Hernan A Lorenzi
- Laboratorio de Biologia Molecular de la Enfermedad de Chagas (LaBMECh) INGEBI, National Research Council (CONICET), Centro de Genomica Aplicada (CeGA), University of Buenos Aires, Vuelta de Obligado 2490 2P, 1428, Buenos Aires, Argentina
| | | | | |
Collapse
|
33
|
Bringaud F, Ghedin E, Blandin G, Bartholomeu DC, Caler E, Levin MJ, Baltz T, El-Sayed NM. Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the active elements. Mol Biochem Parasitol 2005; 145:158-70. [PMID: 16257065 DOI: 10.1016/j.molbiopara.2005.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 09/25/2005] [Accepted: 09/27/2005] [Indexed: 11/22/2022]
Abstract
The ingi and L1Tc non-LTR retrotransposons--which constitute the ingi clade--are abundant in the genome of the trypanosomatid species Trypanosoma brucei and Trypanosoma cruzi, respectively. The corresponding retroelements, however, are not present in the genome of a closely related trypanosomatid, Leishmania major. To study the evolution of non-LTR retrotransposons in trypanosomatids, we have analyzed all ingi/L1Tc elements and highly degenerate ingi/L1Tc-related sequences identified in the recently completed T. brucei, T. cruzi and L. major genomes. The coding sequences of 242 degenerate ingi/L1Tc-related elements (DIREs) in all three genomes were reconstituted by removing the numerous frame shifts. Three independent phylogenetic analyses conducted on the conserved domains encoded by these elements show that all DIREs, including the 52 L. major DIREs, form a monophyletic group belonging to the ingi clade. This indicates that the trypanosomatid ancestor contained active mobile elements that have been retained in the Trypanosoma species, but were lost from L. major genome, where only remnants (DIRE) are detectable. All 242 DIREs analyzed group together according to their species origin with the exception of 11 T. cruzi DIREs which are close to the T. brucei ingi/DIRE families. Considering the absence of known horizontal transfer between the African T. brucei and the South-American T. cruzi, this suggests that this group of elements evolved at a lower rate when compared to the other trypanosomatid elements. Interestingly, the only nucleotide sequence conserved between ingi and L1Tc (the first 79 residues) is also present at the 5'-extremity of all the full length DIREs and suggests a possible role for this conserved motif, as well as for DIREs.
Collapse
Affiliation(s)
- Frédéric Bringaud
- Laboratoire de Génomique Fonctionnelle Des Trypanosomatides, Université Victor Segalen Bordeaux 2, UMR-5162 CNRS, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gilbert N, Lutz S, Morrish TA, Moran JV. Multiple fates of L1 retrotransposition intermediates in cultured human cells. Mol Cell Biol 2005; 25:7780-95. [PMID: 16107723 PMCID: PMC1190285 DOI: 10.1128/mcb.25.17.7780-7795.2005] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
LINE-1 (L1) retrotransposons comprise approximately 17% of human DNA, yet little is known about L1 integration. Here, we characterized 100 retrotransposition events in HeLa cells and show that distinct DNA repair pathways can resolve L1 cDNA retrotransposition intermediates. L1 cDNA resolution can lead to various forms of genetic instability including the generation of chimeric L1s, intrachromosomal deletions, intrachromosomal duplications, and intra-L1 rearrangements as well as a possible interchromosomal translocation. The L1 retrotransposition machinery also can mobilize U6 snRNA to new genomic locations, increasing the repertoire of noncoding RNAs that are mobilized by L1s. Finally, we have determined that the L1 reverse transcriptase can faithfully replicate its own transcript and has a base misincorporation error rate of approximately 1/7,000 bases. These data indicate that L1 retrotransposition in transformed human cells can lead to a variety of genomic rearrangements and suggest that host processes act to restrict L1 integration in cultured human cells. Indeed, the initial steps in L1 retrotransposition may define a host/parasite battleground that serves to limit the number of active L1s in the genome.
Collapse
Affiliation(s)
- Nicolas Gilbert
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, 48109-0618, USA
| | | | | | | |
Collapse
|
35
|
de Lencastre A, Hamill S, Pyle AM. A single active-site region for a group II intron. Nat Struct Mol Biol 2005; 12:626-7. [PMID: 15980867 DOI: 10.1038/nsmb957] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 05/31/2005] [Indexed: 11/09/2022]
Abstract
Despite the biological importance of self-splicing group II introns, little is known about their structural organization. Synthetic incorporation of site-specific photo-cross-linkers within catalytic domains resulted in functional distance constraints that, when combined with known tertiary interactions, provide a three-dimensional view of the active intron architecture. All functionalities important for both steps of splicing are proximal before the first step, suggestive of a single active-site region for group II intron catalysis.
Collapse
Affiliation(s)
- Alexandre de Lencastre
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th St., New York, New York 10032, USA
| | | | | |
Collapse
|
36
|
The changing tails of a novel short interspersed element in Aedes aegypti: genomic evidence for slippage retrotransposition and the relationship between 3' tandem repeats and the poly(dA) tail. Genetics 2005; 168:2037-47. [PMID: 15611173 DOI: 10.1534/genetics.104.032045] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel family of tRNA-related SINEs named gecko was discovered in the yellow fever mosquito, Aedes aegypti. Approximately 7200 copies of gecko were distributed in the A. aegypti genome with a significant bias toward A + T-rich regions. The 3' end of gecko is similar in sequence and identical in secondary structure to the 3' end of MosquI, a non-LTR retrotransposon in A. aegypti. Nine conserved substitutions and a deletion separate gecko into two groups. Group I includes all gecko that end with poly(dA) and a copy that ends with AGAT repeats. Group II comprises gecko elements that end with CCAA or CAAT repeats. Members within each group cannot be differentiated when the 3' repeats are excluded in phylogenetic and sequence analyses, suggesting that the alterations of 3' tails are recent. Imperfect poly(dA) tail was recorded in group I and partial replication of the 3' tandem repeats was frequently observed in group II. Genomic evidence underscores the importance of slippage retrotransposition in the alteration and expansion of the tandem repeat during the evolution of gecko sequences, although we do not rule out postinsertion mechanisms that were previously invoked to explain the evolution of Alu-associated microsatellites. We propose that the 3' tandem repeats and the poly(dA) tail may be generated by similar mechanisms during retrotransposition of both SINEs and non-LTR retrotransposons and thus the distinction between poly(dA) retrotransposons such as L1 and non-poly(dA) retrotransposons such as I factor may not be informative.
Collapse
|
37
|
Lavie L, Maldener E, Brouha B, Meese EU, Mayer J. The human L1 promoter: variable transcription initiation sites and a major impact of upstream flanking sequence on promoter activity. Genome Res 2005; 14:2253-60. [PMID: 15520289 PMCID: PMC525683 DOI: 10.1101/gr.2745804] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human L1 elements are non-LTR retrotransposons that comprise approximately 17% of the human genome. Their 5'-untranslated region (5'-UTR) serves as a promoter for L1 transcription. Now we find that transcription initiation sites are not restricted to nucleotide +1 but vary considerably in both downstream and upstream directions. Transcription initiating upstream explains additional nucleotides often seen between the 5'-target site duplication and the L1 start site. A higher frequency of G nucleotides observed upstream from the L1 can be explained by reverse transcription of the L1 RNA 5'-CAP, which is further supported by extra Gs seen for full-length HERV-W pseudogenes. We assayed 5'-UTR promoter activities for several full-length human L1 elements, and found that upstream flanking cellular sequences strongly influence the L1 5'-UTR promoter. These sequences either repress or enhance the L1 promoter activity. Therefore, the evolutionary success of a human L1 in producing progeny depends not only on the L1 itself, but also on its genomic integration site. The promoter mechanism of L1 is reminiscent of initiator (Inr) elements that are TATA-less promoters expressing several cellular genes. We suggest that the L1 5'-UTR is able to form an Inr element that reaches into upstream flanking sequence.
Collapse
Affiliation(s)
- Laurence Lavie
- Department of Human Genetics, University of Saarland, 66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
38
|
Bibillo A, Eickbush TH. End-to-end template jumping by the reverse transcriptase encoded by the R2 retrotransposon. J Biol Chem 2004; 279:14945-53. [PMID: 14752111 DOI: 10.1074/jbc.m310450200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reverse transcriptase encoded by the non-long terminal repeat retrotransposon R2 has been shown to be able to jump from the 5'-end of one RNA template (the donor) to the 3'-end of a second RNA template (the acceptor) in the absence of preexisting sequence identity between the two templates. These jumps between RNA templates have similarity to the end-to-end template jumps described for the RNA-directed RNA polymerases encoded by certain RNA viruses. Here we describe for the first time the mechanism by which such end-to-end template jumps can occur. Most template jumps by the R2 reverse transcriptase are brought about by the enzyme's ability to add nontemplated (overhanging) nucleotides to the cDNA when it reaches the end of the donor RNA. The enzyme then anneals these overhanging nucleotides to sequences at the 3'-end of the acceptor RNA. The annealing is most efficient if it involves the terminal nucleotide(s) of the acceptor RNA but can occur to sites at least 5 nucleotides from the 3'-end. These end-to-end jumps are similar to steps proposed to be part of the integration reaction of non-long terminal repeat retrotransposons and can explain chimeric integration products derived from multiple RNA templates.
Collapse
Affiliation(s)
- Arkadiusz Bibillo
- Department of Biology, University of Rochester, Rochester, New York 14627, USA.
| | | |
Collapse
|