1
|
Ong J, Heller HC, Pittaras E. Selectively Blocking Small Conductance Ca 2+-Activated K + Channels Improves Cognition in Aged Mice. BIOLOGY 2025; 14:149. [PMID: 40001917 PMCID: PMC11851921 DOI: 10.3390/biology14020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Aging is associated with decreased neuronal sensitivity and activity that creates deficits in cognitive processes, including learning, memory, motivation, general activity, and other behaviors. These effects are due in part to decreased intracellular Ca2+ homeostasis, increasing hyperpolarization of the resting potential in aged neurons and therefore decreasing their excitability. To reduce hyperpolarization in aged mice, we used apamin, a selective small conductance Ca2+-activated K+ (sKCa) channel blocker. By blocking the sKCa channels, apamin decreases the egress of the K+ out of the cell, reducing its hyperpolarization and causing it to be closer to threshold potential. As a result, neurons should be more sensitive to excitatory stimuli and more active. We evaluated the performance of aged mice in a selection of cognitive and behavioral tests prior to and after systemic applications of apamin or the vehicle saline. Apamin improved performance in short-term memory, increased attention to tasks, and decreased anhedonia. Apamin had no significant effect on long-term spatial and recognition memory, risk-taking behavior, sociability, and anxiety. Our results are compatible with the known effects of sKCa channel blockade on neuronal sensitivity and activity; however, these short-term effects were not reflected in longer-term alterations of neural plasticity responsible for long-term spatial and recognition memory or other more complex cognitive processes we evaluated.
Collapse
Affiliation(s)
| | | | - Elsa Pittaras
- Department of Biology, Stanford University, Stanford, CA 94305, USA; (J.O.); (H.C.H.)
| |
Collapse
|
2
|
Castillo-Mendieta T, Bautista-Poblet G, Coyoy-Salgado A, Castillo-García EL, Pinto-Almazán R, Fuentes-Venado CE, Neri-Gómez T, Guerra-Araiza C. Effect of Chronic Tibolone Administration on Memory and Choline Acetyltransferase and Tryptophan Hydroxylase Content in Aging Mice. Brain Sci 2024; 14:903. [PMID: 39335399 PMCID: PMC11430777 DOI: 10.3390/brainsci14090903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Gonadal steroids exert different effects on the central nervous system (CNS), such as preserving neuronal function and promoting neuronal survival. Estradiol, progesterone, and testosterone reduce neuronal loss in the CNS in animal models of neurodegeneration. However, hormone replacement therapy has been associated with higher rates of endometrial, prostate, and breast cancer. Tibolone (TIB), the metabolites of which show estrogenic and progestogenic effects, is an alternative to reduce this risk. However, the impact of TIB on memory and learning, as well as on choline acetyltransferase (ChAT) and tryptophan hydroxylase (TPH) levels in the hippocampus of aging males, is unknown. We administered TIB to aged C57BL/6J male mice at different doses (0.01 or 1.0 mg/kg per day for 12 weeks) and evaluated its effects on memory and learning and the content of ChAT and TPH. We assessed memory and learning with object recognition and elevated T-maze tasks. Additionally, we determined ChAT and TPH protein levels in the hippocampus by Western blotting. TIB administration increased the percentage of time spent on the novel object in the object recognition task. In addition, the latency of leaving the enclosed arm increased in both TIB groups, suggesting an improvement in fear-based learning. We also observed decreased ChAT content in the group treated with the 0.01 mg/kg TIB dose. In the case of TPH, no changes were observed with either TIB dose. These results show that long-term TIB administration improves memory without affecting locomotor activity and modulates cholinergic but not serotonergic systems in the hippocampus of aged male mice.
Collapse
Affiliation(s)
- Tzayaka Castillo-Mendieta
- CONAHCyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 03940, Mexico
| | - Guadalupe Bautista-Poblet
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 06720, Mexico (A.C.-S.)
- Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City C.P. 09340, Mexico
| | - Angélica Coyoy-Salgado
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 06720, Mexico (A.C.-S.)
| | - Emily L. Castillo-García
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 06720, Mexico (A.C.-S.)
- Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City C.P. 09340, Mexico
| | - Rodolfo Pinto-Almazán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City C.P. 11340, Mexico; (R.P.-A.)
| | - Claudia Erika Fuentes-Venado
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City C.P. 11340, Mexico; (R.P.-A.)
- Servicio de Medicina Física y Rehabilitación, Hospital General de Zona No 197 IMSS, Texcoco C.P. 56108, Mexico
| | - Teresa Neri-Gómez
- Laboratorio de Patología Molecular, Unidad de Investigación Biomolecular en Cardiología, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 03940, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 06720, Mexico (A.C.-S.)
| |
Collapse
|
3
|
Frame AK, Sinka JL, Courchesne M, Muhammad RA, Grahovac-Nemeth S, Bernards MA, Bartha R, Cumming RC. Altered neuronal lactate dehydrogenase A expression affects cognition in a sex- and age-dependent manner. iScience 2024; 27:110342. [PMID: 39055955 PMCID: PMC11269950 DOI: 10.1016/j.isci.2024.110342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The astrocyte-neuron lactate shuttle (ANLS) model posits that astrocyte-generated lactate is transported to neurons to fuel memory processes. However, neurons express high levels of lactate dehydrogenase A (LDHA), the rate-limiting enzyme of lactate production, suggesting a cognitive role for neuronally generated lactate. It was hypothesized that lactate metabolism in neurons is critical for learning and memory. Here transgenic mice were generated to conditionally induce or knockout (KO) the Ldha gene in CNS neurons of adult mice. High pattern separation memory was enhanced by neuronal Ldha induction in young females, and by neuronal Ldha KO in aged females. In older mice, Ldha induction caused cognitive deficits whereas Ldha KO caused cognitive improvements. Genotype-associated cognitive changes were often only observed in one sex or oppositely in males and females. Thus, neuronal-generated lactate has sex-specific cognitive effects, is largely indispensable at young age, and may be detrimental to learning and memory with aging.
Collapse
Affiliation(s)
- Ariel K. Frame
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Jessica L. Sinka
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Marc Courchesne
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | | | | | - Mark A. Bernards
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Robert C. Cumming
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
4
|
Hayes AMR, Lauer LT, Kao AE, Sun S, Klug ME, Tsan L, Rea JJ, Subramanian KS, Gu C, Tanios N, Ahuja A, Donohue KN, Décarie-Spain L, Fodor AA, Kanoski SE. Western diet consumption impairs memory function via dysregulated hippocampus acetylcholine signaling. Brain Behav Immun 2024; 118:408-422. [PMID: 38461956 PMCID: PMC11033683 DOI: 10.1016/j.bbi.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Western diet (WD) consumption during early life developmental periods is associated with impaired memory function, particularly for hippocampus (HPC)-dependent processes. We developed an early life WD rodent model associated with long-lasting HPC dysfunction to investigate the neurobiological mechanisms mediating these effects. Rats received either a cafeteria-style WD (ad libitum access to various high-fat/high-sugar foods; CAF) or standard healthy chow (CTL) during the juvenile and adolescent stages (postnatal days 26-56). Behavioral and metabolic assessments were performed both before and after a healthy diet intervention period beginning at early adulthood. Results revealed HPC-dependent contextual episodic memory impairments in CAF rats that persisted despite the healthy diet intervention. Given that dysregulated HPC acetylcholine (ACh) signaling is associated with memory impairments in humans and animal models, we examined protein markers of ACh tone in the dorsal HPC (HPCd) in CAF and CTL rats. Results revealed significantly lower protein levels of vesicular ACh transporter in the HPCd of CAF vs. CTL rats, indicating chronically reduced ACh tone. Using intensity-based ACh sensing fluorescent reporter (iAChSnFr) in vivo fiber photometry targeting the HPCd, we next revealed that ACh release during object-contextual novelty recognition was highly predictive of memory performance and was disrupted in CAF vs. CTL rats. Neuropharmacological results showed that alpha 7 nicotinic ACh receptor agonist infusion in the HPCd during training rescued memory deficits in CAF rats. Overall, these findings reveal a functional connection linking early life WD intake with long-lasting dysregulation of HPC ACh signaling, thereby identifying an underlying mechanism for WD-associated memory impairments.
Collapse
Affiliation(s)
- Anna M R Hayes
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Logan Tierno Lauer
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Alicia E Kao
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Molly E Klug
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Linda Tsan
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Jessica J Rea
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Keshav S Subramanian
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Cindy Gu
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Natalie Tanios
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Arun Ahuja
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kristen N Donohue
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Léa Décarie-Spain
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Hayes AMR, Kao AE, Ahuja A, Subramanian KS, Klug ME, Rea JJ, Nourbash AC, Tsan L, Kanoski SE. Early- but not late-adolescent Western diet consumption programs for long-lasting memory impairments in male but not female rats. Appetite 2024; 194:107150. [PMID: 38049033 PMCID: PMC11033621 DOI: 10.1016/j.appet.2023.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Early life Western diet (WD) consumption leads to impaired memory function, particularly for processes mediated by the hippocampus. However, the precise critical developmental window(s) during which WD exposure negatively impacts hippocampal function are unknown. Here, we exposed male and female rats to a WD model involving free access to a variety of high-fat and/or high-sugar food and drink items during either the early-adolescent period (postnatal days [PN] 26-41; WD-EA) or late-adolescent period (PN 41-56; WD-LA). Control (CTL) rats were given healthy standard chow throughout both periods. To evaluate long-lasting memory capacity well beyond the early life WD exposure periods, we performed behavioral assessments after both a short (4 weeks for WD-EA, 2 weeks for WD-LA) and long (12 weeks for WD-EA, 10 weeks for WD-LA) period of healthy diet intervention. Results revealed no differences in body weight or body composition between diet groups, regardless of sex. Following the shorter period of healthy diet intervention, both male and female WD-EA and WD-LA rats showed deficits in hippocampal-dependent memory compared to CTL rats. Following the longer healthy diet intervention period, memory impairments persisted in male WD-EA but not WD-LA rats. In contrast, in female rats the longer healthy diet intervention reversed the initial memory impairments in both WD-EA and WD-LA rats. Collectively, these findings reveal that early-adolescence is a critical period of long-lasting hippocampal vulnerability to dietary insults in male but not female rats, thus highlighting developmental- and sex-specific effects mediating the relationship between the early life nutritional environment and long-term cognitive health.
Collapse
Affiliation(s)
- Anna M R Hayes
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Alicia E Kao
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Arun Ahuja
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Keshav S Subramanian
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Molly E Klug
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jessica J Rea
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Anna C Nourbash
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Linda Tsan
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Chanana V, Hackett M, Deveci N, Aycan N, Ozaydin B, Cagatay NS, Hanalioglu D, Kintner DB, Corcoran K, Yapici S, Camci F, Eickhoff J, Frick KM, Ferrazzano P, Levine JE, Cengiz P. TrkB-mediated sustained neuroprotection is sex-specific and Erα-dependent in adult mice following neonatal hypoxia ischemia. Biol Sex Differ 2024; 15:1. [PMID: 38178264 PMCID: PMC10765746 DOI: 10.1186/s13293-023-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Neonatal hypoxia ischemia (HI) related brain injury is one of the major causes of life-long neurological morbidities that result in learning and memory impairments. Evidence suggests that male neonates are more susceptible to the detrimental effects of HI, yet the mechanisms mediating these sex-specific responses to neural injury in neonates remain poorly understood. We previously tested the effects of treatment with a small molecule agonist of the tyrosine kinase B receptor (TrkB), 7,8-dihydroxyflavone (DHF) following neonatal HI and determined that females, but not males exhibit increased phosphorylation of TrkB and reduced apoptosis in their hippocampi. Moreover, these female-specific effects of the TrkB agonist were found to be dependent upon the expression of Erα. These findings demonstrated that TrkB activation in the presence of Erα comprises one pathway by which neuroprotection may be conferred in a female-specific manner. The goal of this study was to determine the role of Erα-dependent TrkB-mediated neuroprotection in memory and anxiety in young adult mice exposed to HI during the neonatal period. METHODS In this study, we used a unilateral hypoxic ischemic (HI) mouse model. Erα+/+ or Erα-/- mice were subjected to HI on postnatal day (P) 9 and mice were treated with either vehicle control or the TrkB agonist, DHF, for 7 days following HI. When mice reached young adulthood, we used the novel object recognition, novel object location and open field tests to assess long-term memory and anxiety-like behavior. The brains were then assessed for tissue damage using immunohistochemistry. RESULTS Neonatal DHF treatment prevented HI-induced decrements in recognition and location memory in adulthood in females, but not in males. This protective effect was absent in female mice lacking Erα. The female-specific improved recognition and location memory outcomes in adulthood conferred by DHF therapy after neonatal HI tended to be or were Erα-dependent, respectively. Interestingly, DHF triggered anxiety-like behavior in both sexes only in the mice that lacked Erα. When we assessed the severity of injury, we found that DHF therapy did not decrease the percent tissue loss in proportion to functional recovery. We additionally observed that the presence of Erα significantly reduced overall HI-associated mortality in both sexes. CONCLUSIONS These observations provide evidence for a therapeutic role for DHF in which TrkB-mediated sustained recovery of recognition and location memories in females are Erα-associated and dependent, respectively. However, the beneficial effects of DHF therapy did not include reduction of gross tissue loss but may be derived from the enhanced functioning of residual tissues in a cell-specific manner.
Collapse
Affiliation(s)
- Vishal Chanana
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Margaret Hackett
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Nazli Deveci
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Nur Aycan
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
| | - Burak Ozaydin
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Nur Sena Cagatay
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Damla Hanalioglu
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
| | - Douglas B Kintner
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Karson Corcoran
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Sefer Yapici
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Furkan Camci
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
| | - Jens Eickhoff
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Peter Ferrazzano
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jon E Levine
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Pelin Cengiz
- Department of Pediatrics, University of Wisconsin-Madison, 1500 Highland Ave-T503, Madison, WI, 53705-9345, USA.
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Hayes AMR, Kao AE, Ahuja A, Subramanian KS, Klug ME, Rea JJ, Nourbash AC, Tsan L, Kanoski SE. Early- but not late-adolescent Western diet consumption programs for long-lasting memory impairments in male but not female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563808. [PMID: 37961703 PMCID: PMC10634796 DOI: 10.1101/2023.10.24.563808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Early life Western diet (WD) consumption leads to impaired memory function, particularly for processes mediated by the hippocampus. However, the precise critical developmental window(s) during which WD exposure negatively impacts hippocampal function are unknown. Here, we exposed male and female rats to a WD model involving free access to a variety of high-fat and/or high-sugar food and drink items during either the early-adolescent period (postnatal days [PN] 26-41; WD-EA) or late-adolescent period (PN 41-56; WD-LA). Control (CTL) rats were given healthy standard chow throughout both periods. To evaluate long-lasting memory capacity well beyond the early life WD exposure periods, we performed behavioral assessments after both a short (4 weeks for WD-EA, 2 weeks for WD-LA) and long (12 weeks for WD-EA, 10 weeks for WD-LA) period of healthy diet intervention. Results revealed no differences in body weight or body composition between diet groups, regardless of sex. Following the shorter period of healthy diet intervention, both male and female WD-EA and WD-LA rats showed deficits in hippocampal-dependent memory compared to CTL rats. Following the longer healthy diet intervention period, memory impairments persisted in male WD-EA but not WD-LA rats. In contrast, in female rats the longer healthy diet intervention reversed the initial memory impairments in both WD-EA and WD-LA rats. Collectively, these findings reveal that early-adolescence is a critical period of long-lasting hippocampal vulnerability to dietary insults in male but not female rats, thus highlighting developmental- and sex-specific effects mediating the relationship between the early life nutritional environment and long-term cognitive health.
Collapse
Affiliation(s)
- Anna M. R. Hayes
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Alicia E. Kao
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Arun Ahuja
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Keshav S. Subramanian
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Molly E. Klug
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jessica J. Rea
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Anna C. Nourbash
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Linda Tsan
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Scott E. Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
González LM, Bourissai A, Lessard-Beaudoin M, Lebel R, Tremblay L, Lepage M, Graham RK. Amelioration of Cognitive and Olfactory System Deficits in APOE4 Transgenic Mice with DHA Treatment. Mol Neurobiol 2023; 60:5624-5641. [PMID: 37329383 DOI: 10.1007/s12035-023-03401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Olfactory dysfunction and atrophy of olfactory brain regions are observed early in mild cognitive impairment and Alzheimer disease. Despite substantial evidence showing neuroprotective effects in MCI/AD with treatment of docosahexaenoic acid (DHA), an omega-3 fatty acid, few studies have assessed DHA and its effects on the olfactory system deficits. We therefore performed structural (MRI), functional (olfactory behavior, novel object recognition), and molecular (markers of apoptosis and inflammation) assessments of APOE4 and wild-type mice ± DHA treatment at 3, 6, and 12 months of age. Our results demonstrate that APOE4 mice treated with the control diet show recognition memory deficits, abnormal olfactory habituation, and discrimination abilities and an increase in IBA-1 immunoreactivity in the olfactory bulb. These phenotypes were not present in APOE4 mice treated with a DHA diet. Alterations in some brain regions' weights and/or volumes were observed in the APOPE4 mice and may be due to caspase activation and/or neuroinflammatory events. These results suggest that the consumption of a diet rich in DHA may provide some benefit to E4 carriers but may not alleviate all symptoms.
Collapse
Affiliation(s)
- Laura Martínez González
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada
| | - Adam Bourissai
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Mélissa Lessard-Beaudoin
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada
| | - Réjean Lebel
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Luc Tremblay
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Martin Lepage
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Rona K Graham
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada.
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada.
| |
Collapse
|
9
|
Chanana V, Hackett M, Deveci N, Aycan N, Ozaydin B, Cagatay NS, Hanalioglu D, Kintner DB, Corcoran K, Yapici S, Camci F, Eickhoff J, Frick KM, Ferrazano P, Levine JE, Cengiz P. TrkB-mediated sustained neuroprotection is sex-specific and ERα dependent in adult mice following neonatal hypoxia ischemia. RESEARCH SQUARE 2023:rs.3.rs-3325405. [PMID: 37720039 PMCID: PMC10503864 DOI: 10.21203/rs.3.rs-3325405/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Background Neonatal hypoxia ischemia (HI) related brain injury is one of the major causes of life-long neurological morbidities that result in learning and memory impairments. Evidence suggests that male neonates are more susceptible to the detrimental effects of HI, yet the mechanisms mediating these sex-specific responses to neural injury in neonates remain poorly understood. We previously tested the effects of treatment with a small molecule agonist of the tyrosine kinase B receptor (TrkB), 7,8-dihydroxyflavone (DHF) following neonatal HI and determined that females, but not males exhibit increased phosphorylation of TrkB and reduced apoptosis in their hippocampi. Moreover, these female-specific effects of the TrkB agonist were found to be dependent upon the expression of ERα. These findings demonstrated that TrkB activation in the presence of ERα comprises one pathway by which neuroprotection may be conferred in a female-specific manner. The goal of this study was to determine the role of ERα-dependent TrkB-mediated neuroprotection in memory and anxiety in young adult mice exposed to HI during the neonatal period. Methods In this study we used a unilateral hypoxic ischemic (HI) mouse model. ERα+/+ or ERα-/- mice were subjected to HI on postnatal day (P) 9 and mice were treated with either vehicle control or the TrkB agonist, DHF, for seven days following HI. When mice reached young adulthood, we used the novel object recognition, novel object location and open field tests to assess long-term memory and anxiety like behavior. The brains were then assessed for tissue damage using immunohistochemistry. Results Neonatal DHF treatment prevented HI-induced decrements in recognition and location memory in adulthood in females, but not in males. This protective effect was absent in female mice lacking ERα. Thus, the female-specific and ERα-dependent neuroprotection conferred by DHF therapy after neonatal HI was associated with improved learning and memory outcomes in adulthood. Interestingly, DHF triggered anxiety like behavior in both sexes only in the mice that lacked ERα. When we assessed the severity of injury, we found that DHF therapy did not decrease the percent tissue loss in proportion to functional recovery. We additionally observed that the presence of ERα significantly reduced overall HI-associated mortality in both sexes. Conclusions These observations provide evidence for a therapeutic role for DHF in which sustained recovery of memory in females is TrkB-mediated and ERα-dependent. However, the beneficial effects of DHF therapy did not include reduction of gross tissue loss but may be derived from the enhanced functioning of residual tissues in a cell-specific manner.
Collapse
Affiliation(s)
- Vishal Chanana
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Margaret Hackett
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Nazli Deveci
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Nur Aycan
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Burak Ozaydin
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Nur Sena Cagatay
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Damla Hanalioglu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Douglas B. Kintner
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Karson Corcoran
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Sefer Yapici
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Furkan Camci
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jens Eickhoff
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, US
| | - Karyn M. Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Peter Ferrazano
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jon E. Levine
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Pelin Cengiz
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
10
|
Autore L, O'Leary JD, Ortega-de San Luis C, Ryan TJ. Adaptive expression of engrams by retroactive interference. Cell Rep 2023; 42:112999. [PMID: 37590145 DOI: 10.1016/j.celrep.2023.112999] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/17/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Long-term memories are stored as configurations of neuronal ensembles, termed engrams. Although investigation of engram cell properties and functionality in memory recall has been extensive, less is known about how engram cells are affected by forgetting. We describe a form of interference-based forgetting using an object memory behavioral paradigm. By using activity-dependent cell labeling, we show that although retroactive interference results in decreased engram cell reactivation during recall trials, optogenetic stimulation of the labeled engram cells is sufficient to induce memory retrieval. Forgotten engrams may be reinstated via the presentation of similar or related environmental information. Furthermore, we demonstrate that engram activity is necessary for interference to occur. Taken together, these findings indicate that retroactive interference modules engram expression in a manner that is both reversible and updatable. Inference may constitute a form of adaptive forgetting where, in everyday life, new perceptual and environmental inputs modulate the natural forgetting process.
Collapse
Affiliation(s)
- Livia Autore
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - James D O'Leary
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Clara Ortega-de San Luis
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada.
| |
Collapse
|
11
|
Hayes AMR, Lauer LT, Kao AE, Sun S, Klug ME, Tsan L, Rea JJ, Subramanian KS, Gu C, Tanios N, Ahuja A, Donohue KN, Décarie-Spain L, Fodor AA, Kanoski SE. Western diet consumption impairs memory function via dysregulated hippocampus acetylcholine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550120. [PMID: 37546790 PMCID: PMC10401939 DOI: 10.1101/2023.07.21.550120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Western diet (WD) consumption during development yields long-lasting memory impairments, yet the underlying neurobiological mechanisms remain elusive. Here we developed an early life WD rodent model to evaluate whether dysregulated hippocampus (HPC) acetylcholine (ACh) signaling, a pathology associated with memory impairment in human dementia, is causally-related to WD-induced cognitive impairment. Rats received a cafeteria-style WD (access to various high-fat/high-sugar foods; CAF) or healthy chow (CTL) during the juvenile and adolescent periods (postnatal days 26-56). Behavioral, metabolic, and microbiome assessments were performed both before and after a 30-day healthy diet intervention beginning at early adulthood. Results revealed CAF-induced HPC-dependent contextual episodic memory impairments that persisted despite healthy diet intervention, whereas CAF was not associated with long-term changes in body weight, body composition, glucose tolerance, anxiety-like behavior, or gut microbiome. HPC immunoblot analyses after the healthy diet intervention identified reduced levels of vesicular ACh transporter in CAF vs. CTL rats, indicative of chronically reduced HPC ACh tone. To determine whether these changes were functionally related to memory impairments, we evaluated temporal HPC ACh binding via ACh-sensing fluorescent reporter in vivo fiber photometry during memory testing, as well as whether the memory impairments could be rescued pharmacologically. Results revealed dynamic HPC ACh binding during object-contextual novelty recognition was highly predictive of memory performance and was disrupted in CAF vs. CTL rats. Further, HPC alpha-7 nicotinic receptor agonist infusion during consolidation rescued memory deficits in CAF rats. Overall, these findings identify dysregulated HPC ACh signaling as a mechanism underlying early life WD-associated memory impairments.
Collapse
Affiliation(s)
- Anna M. R. Hayes
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Logan Tierno Lauer
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Alicia E. Kao
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Molly E. Klug
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Linda Tsan
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Jessica J. Rea
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Keshav S. Subramanian
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Cindy Gu
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Natalie Tanios
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Arun Ahuja
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kristen N. Donohue
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Léa Décarie-Spain
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Scott E. Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Acun AD, Kantar D, Er H, Erkan O, Derin N, Yargıcoglu P. Investigation of Cyclo-Z Therapeutic Effect on Insulin Pathway in Alzheimer's Rat Model: Biochemical and Electrophysiological Parameters. Mol Neurobiol 2023; 60:4030-4048. [PMID: 37020122 DOI: 10.1007/s12035-023-03334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Cyclo (his-pro-CHP) plus zinc (Zn+2) (Cyclo-Z) is the only known chemical that increases the production of insulin-degrading enzyme (IDE) and decreases the number of inactive insulin fragments in cells. The aim of the present study was to systematically characterize the effects of Cyclo-Z on the insulin pathway, memory functions, and brain oscillations in the Alzheimer's disease (AD) rat model. The rat model of AD was established by bilateral injection of Aβ42 oligomer (2,5nmol/10μl) into the lateral ventricles. Cyclo-Z (10mg Zn+2/kg and 0.2mg CHP/kg) gavage treatment started seven days after Aβ injection and lasted for 21 days. At the end of the experimental period, memory tests and electrophysiological recordings were performed, which were followed by the biochemical analysis. Aβ42 oligomers led to a significant increase in fasting blood glucose, serum insulin, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) and phospho-tau-Ser356 levels. Moreover, Aβ42 oligomers caused a significant decrement in body weight, hippocampal insulin, brain insulin receptor substrate (IRS-Ser612), and glycogen synthase kinase-3 beta (GSK-3β) levels. Also, Aβ42 oligomers resulted in a significant reduction in memory. The Cyclo-Z treatment prevented the observed alterations in the ADZ group except for phospho-tau levels and attenuated the increased Aβ42 oligomer levels in the ADZ group. We also found that the Aβ42 oligomer decreased the left temporal spindle and delta power during ketamine anesthesia. Cyclo-Z treatment reversed the Aβ42 oligomer-related alterations in the left temporal spindle power. Cyclo-Z prevents Aβ oligomer-induced changes in the insulin pathway and amyloid toxicity, and may contribute to the improvement of memory deficits and neural network dynamics in this rat model.
Collapse
Affiliation(s)
- Alev Duygu Acun
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey.
| | - Deniz Kantar
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Hakan Er
- Department of Medical Imaging Techniques, Vocational School of Health Services, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Orhan Erkan
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Narin Derin
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| | - Piraye Yargıcoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, 07070, Antalya, Turkey
| |
Collapse
|
13
|
Landry O, François A, Oye Mintsa Mi-Mba MF, Traversy MT, Tremblay C, Emond V, Bennett DA, Gylys KH, Buxbaum JD, Calon F. Postsynaptic Protein Shank3a Deficiency Synergizes with Alzheimer's Disease Neuropathology to Impair Cognitive Performance in the 3xTg-AD Murine Model. J Neurosci 2023; 43:4941-4954. [PMID: 37253603 PMCID: PMC10312061 DOI: 10.1523/jneurosci.1945-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Synaptic loss is intrinsically linked to Alzheimer's disease (AD) neuropathology and symptoms, but its direct impact on clinical symptoms remains elusive. The postsynaptic protein Shank3 (SH3 and multiple ankyrin repeat domains) is of particular interest, as the loss of a single allele of the SHANK3 gene is sufficient to cause profound cognitive symptoms in children. We thus sought to determine whether a SHANK3 deficiency could contribute to the emergence or worsening of AD symptoms and neuropathology. We first found a 30%-50% postmortem loss of SHANK3a associated with cognitive decline in the parietal cortex of individuals with AD. To further probe the role of SHANK3 in AD, we crossed male and female 3xTg-AD mice modelling Aβ and tau pathologies with Shank3a-deficient mice (Shank3Δex4-9). We observed synergistic deleterious effects of Shank3a deficiency and AD neuropathology on object recognition memory at 9, 12, and 18 months of age and on anxious behavior at 9 and 12 months of age in hemizygous Shank3Δex4-9-3xTg-AD mice. In addition to the expected 50% loss of Shank3a, levels of other synaptic proteins, such as PSD-95, drebrin, and homer1, remained unchanged in the parietotemporal cortex of hemizygous Shank3Δex4-9 animals. However, Shank3a deficiency increased the levels of soluble Aβ42 and human tau at 18 months of age compared with 3xTg-AD mice with normal Shank3 expression. The results of this study in human brain samples and in transgenic mice are consistent with the hypothesis that Shank3 deficiency makes a key contribution to cognitive impairment in AD.SIGNIFICANCE STATEMENT Although the loss of several synaptic proteins has been described in Alzheimer's disease (AD), it remains unclear whether their reduction contributes to clinical symptoms. The results of this study in human samples show lower levels of SHANK3a in AD brain, correlating with cognitive decline. Data gathered in a novel transgenic mouse suggest that Shank3a deficiency synergizes with AD neuropathology to induce cognitive impairment, consistent with a causal role in AD. Therefore, treatment aiming at preserving Shank3 in the aging brain may be beneficial to prevent AD.
Collapse
Affiliation(s)
- Olivier Landry
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Arnaud François
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Méryl-Farelle Oye Mintsa Mi-Mba
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Marie-Therese Traversy
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Vincent Emond
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612
| | - Karen H Gylys
- School of Nursing, University of California, Los Angeles, California 90095
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York 10029, New York
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| |
Collapse
|
14
|
León R, Gutiérrez DA, Pinto C, Morales C, de la Fuente C, Riquelme C, Cortés BI, González-Martin A, Chamorro D, Espinosa N, Fuentealba P, Cancino GI, Zanlungo S, Dulcey AE, Marugan JJ, Álvarez Rojas A. c-Abl tyrosine kinase down-regulation as target for memory improvement in Alzheimer's disease. Front Aging Neurosci 2023; 15:1180987. [PMID: 37358955 PMCID: PMC10289333 DOI: 10.3389/fnagi.2023.1180987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Background Growing evidence suggests that the non-receptor tyrosine kinase, c-Abl, plays a significant role in the pathogenesis of Alzheimer's disease (AD). Here, we analyzed the effect of c-Abl on the cognitive performance decline of APPSwe/PSEN1ΔE9 (APP/PS1) mouse model for AD. Methods We used the conditional genetic ablation of c-Abl in the brain (c-Abl-KO) and pharmacological treatment with neurotinib, a novel allosteric c-Abl inhibitor with high brain penetrance, imbued in rodent's chow. Results We found that APP/PS1/c-Abl-KO mice and APP/PS1 neurotinib-fed mice had improved performance in hippocampus-dependent tasks. In the object location and Barnes-maze tests, they recognized the displaced object and learned the location of the escape hole faster than APP/PS1 mice. Also, APP/PS1 neurotinib-fed mice required fewer trials to reach the learning criterion in the memory flexibility test. Accordingly, c-Abl absence and inhibition caused fewer amyloid plaques, reduced astrogliosis, and preserved neurons in the hippocampus. Discussion Our results further validate c-Abl as a target for AD, and the neurotinib, a novel c-Abl inhibitor, as a suitable preclinical candidate for AD therapies.
Collapse
Affiliation(s)
- Rilda León
- Cell Signaling Laboratory, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela A. Gutiérrez
- Cell Signaling Laboratory, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Pinto
- Cell Signaling Laboratory, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian Morales
- Laboratory for Brain-Machine Interfaces and Neuromodulation, Facultad de Ingeniería, Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory of Neural Circuits, Department of Psychiatry, Neuroscience Interdisciplinary Centre, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina de la Fuente
- Cell Signaling Laboratory, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristóbal Riquelme
- Cell Signaling Laboratory, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bastián I. Cortés
- Department of Cellular and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Adrián González-Martin
- Cell Signaling Laboratory, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Chamorro
- Cell Signaling Laboratory, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nelson Espinosa
- Laboratory of Neural Circuits, Department of Psychiatry, Neuroscience Interdisciplinary Centre, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Fuentealba
- Laboratory of Neural Circuits, Department of Psychiatry, Neuroscience Interdisciplinary Centre, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo I. Cancino
- Department of Cellular and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Andrés E. Dulcey
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, United States
| | - Juan J. Marugan
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD, United States
| | - Alejandra Álvarez Rojas
- Cell Signaling Laboratory, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Ramirez-Mejia G, Gil-Lievana E, Urrego-Morales O, Galvez-Marquez D, Hernández-Ortiz E, Carrillo-Lorenzo JA, Bermúdez-Rattoni F. Salience to remember: VTA-IC dopaminergic pathway activity is necessary for object recognition memory formation. Neuropharmacology 2023; 228:109464. [PMID: 36804534 DOI: 10.1016/j.neuropharm.2023.109464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Previous studies have shown that dopaminergic activity modulates the salience of novel stimuli enabling the formation of recognition memories. In this work, we hypothesize that dopamine released into the insular cortex (IC) from the ventral tegmental area (VTA) inputs enables the acquisition to consolidate object recognition memory. It has been reported that short training produces weak recognition memories; on the contrary, longer training produces lasting and robust recognition memories. Using a Cre-recombinase under the tyrosine hydroxylase (TH+) promoter mouse model, we photostimulated the VTA-IC dopaminergic pathway during short training or photoinhibited the same pathway during long training while mice explored objects. Our results showed that the photostimulation of the VTA-IC pathway during a short training enables the acquisition of recognition memory. Conversely, photoinhibition of the same pathway during a long training prevents the acquisition of recognition memory. Interestingly, the exploration time of the objects under photoinhibition or photostimulation of the dopaminergic VTA-IC pathway was not altered. Significantly, this enhancement of acquisition of the object recognition memory through the photostimulation of the VTA dopaminergic neurons could be impaired by the blockage of the D1-like receptors into the IC, either before or after the photostimulation. Altogether, our results suggest that dopamine released by the VTA is required during the acquisition to consolidate the object recognition memory through D1-like receptors into the IC without affecting the activity or the motivation to explore objects.
Collapse
Affiliation(s)
- Gerardo Ramirez-Mejia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Elvi Gil-Lievana
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Oscar Urrego-Morales
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Donovan Galvez-Marquez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Eduardo Hernández-Ortiz
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - José Alberto Carrillo-Lorenzo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
16
|
Dos Santos MB, de Oliveira Guarnieri L, Lunardi P, Schenatto Pereira G. On the effect of social cue valence in contextual memory persistence. Behav Brain Res 2023; 447:114398. [PMID: 36966939 DOI: 10.1016/j.bbr.2023.114398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
Social cues are valuable sensorial stimuli to the acquisition and retrieval of contextual memories. Here, we asked whether the valence of social cues would impact the formation of contextual memories. Adult male C57/BL6 mice were exposed to either conditioned place preference (CPP) or avoidance (CPA). As positive stimuli we used social interaction with a female (IF), while interaction with a male CD1 mice (IM) was used as negative stimulus. Contextual memory was tested 24 h and 7 days after conditioning. Aggressive behavior of CD1, as well as interaction with the female were quantified along the conditioning sessions. IM, but not IF, was salient enough to induce contextual memory estimated by the difference between the time in the conditioned context during test and habituation. Next, we chose two odors with innate behavioral responses and opposite valence to narrow down the sociability to one of its sensorial sources of information - the olfaction. We used urine from females in proestrus (U) and 2,4,5-trimethyl thiazoline (TMT), a predator odor. TMT decreased and U increased the time in the conditioned context during the test performed 24 h and 7 days after conditioning. Taken together, our results suggest that contextual memories conditioned to social encounters are difficult to stablish in mice, specially the one with positive valence. On the other hand, using odors with ecological relevance is a promising strategy to study long-term contextual memories with opposite valences. Ultimately, the behavioral protocol proposed here offers the advantage of studying contextual memories with opposite valences using unconditioned stimulus from the same sensorial category such as olfaction.
Collapse
Affiliation(s)
- Matheus Barbosa Dos Santos
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo de Oliveira Guarnieri
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paula Lunardi
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Grace Schenatto Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
17
|
Froula JM, Hastings SD, Krook-Magnuson E. The little brain and the seahorse: Cerebellar-hippocampal interactions. Front Syst Neurosci 2023; 17:1158492. [PMID: 37034014 PMCID: PMC10076554 DOI: 10.3389/fnsys.2023.1158492] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
There is a growing appreciation for the cerebellum beyond its role in motor function and accumulating evidence that the cerebellum and hippocampus interact across a range of brain states and behaviors. Acute and chronic manipulations, simultaneous recordings, and imaging studies together indicate coordinated coactivation and a bidirectional functional connectivity relevant for various physiological functions, including spatiotemporal processing. This bidirectional functional connectivity is likely supported by multiple circuit paths. It is also important in temporal lobe epilepsy: the cerebellum is impacted by seizures and epilepsy, and modulation of cerebellar circuitry can be an effective strategy to inhibit hippocampal seizures. This review highlights some of the recent key hippobellum literature.
Collapse
Affiliation(s)
- Jessica M. Froula
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | | |
Collapse
|
18
|
Inhibition of hippocampal palmitoyl acyltransferase activity impairs spatial learning and memory consolidation. Neurobiol Learn Mem 2023; 200:107733. [PMID: 36804592 DOI: 10.1016/j.nlm.2023.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/12/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Protein palmitoylation regulates trafficking, mobilization, localization, interaction, and distribution of proteins through the palmitoyl acyltransferases (PATs) enzymes. Protein palmitoylation controls rapid and dynamic changes of the synaptic architecture that modifies the efficiency and strength of synaptic connections, a fundamental mechanism to generate stable and long-lasting memory traces. Although protein palmitoylation in functional synaptic plasticity has been widely described, its role in learning and memory processes is poorly understood. In this work, we found that PATs inhibition into the hippocampus before and after the training of Morris water maze (MWM) and object location memory (OLM) impaired spatial learning. However, we demonstrated that PATs inhibition during the retrieval does not affect the expression of spatial memory in both MWM and OLM. Accordingly, long-term potentiation induction is impaired by inhibiting PATs into the hippocampus before high-frequency electrical stimulation but not after. These findings suggest that PATs activity is necessary to modify neural plasticity, a mechanism required for memory acquisition and consolidation. Like phosphorylation, active palmitoylation is required to regulate the function of already existing proteins that change synaptic strength in the hippocampus to acquire and later consolidate spatial memories.
Collapse
|
19
|
Vogler EC, Mahavongtrakul M, Sarkan K, Bohannan RC, Catuara-Solarz S, Busciglio J. Genetic removal of synaptic Zn 2+ impairs cognition, alters neurotrophic signaling and induces neuronal hyperactivity. Front Neurol 2023; 13:882635. [PMID: 36742045 PMCID: PMC9895830 DOI: 10.3389/fneur.2022.882635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023] Open
Abstract
Vesicular Zn2+ (zinc) is released at synapses and has been demonstrated to modulate neuronal responses. However, mechanisms through which dysregulation of zinc homeostasis may potentiate neuronal dysfunction and neurodegeneration are not well-understood. We previously reported that accumulation of soluble amyloid beta oligomers (AβO) at synapses correlates with synaptic loss and that AβO localization at synapses is regulated by synaptic activity and enhanced by the release of vesicular Zn2+ in the hippocampus, a brain region that deteriorates early in Alzheimer's disease (AD). Significantly, drugs regulating zinc homeostasis inhibit AβO accumulation and improve cognition in mouse models of AD. We used both sexes of a transgenic mouse model lacking synaptic Zn2+ (ZnT3KO) that develops AD-like cognitive impairment and neurodegeneration to study the effects of disruption of Zn2+ modulation of neurotransmission in cognition, protein expression and activation, and neuronal excitability. Here we report that the genetic removal of synaptic Zn2+ results in progressive impairment of hippocampal-dependent memory, reduces activity-dependent increase in Erk phosphorylation and BDNF mRNA, alters regulation of Erk activation by NMDAR subunits, increases neuronal spiking, and induces biochemical and morphological alterations consistent with increasing epileptiform activity and neurodegeneration as ZnT3KO mice age. Our study shows that disruption of synaptic Zn2+ triggers neurodegenerative processes and is a potential pathway through which AβO trigger altered expression of neurotrophic proteins, along with reduced hippocampal synaptic density and degenerating neurons, neuronal spiking activity, and cognitive impairment and supports efforts to develop therapeutics to preserve synaptic zinc homeostasis in the brain as potential treatments for AD.
Collapse
Affiliation(s)
- Emily C. Vogler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Matthew Mahavongtrakul
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Kristianna Sarkan
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Ryan C. Bohannan
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Silvina Catuara-Solarz
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Jorge Busciglio
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
20
|
Osorio-Gómez D, Miranda MI, Guzmán-Ramos K, Bermúdez-Rattoni F. Transforming experiences: Neurobiology of memory updating/editing. Front Syst Neurosci 2023; 17:1103770. [PMID: 36896148 PMCID: PMC9989287 DOI: 10.3389/fnsys.2023.1103770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Long-term memory is achieved through a consolidation process where structural and molecular changes integrate information into a stable memory. However, environmental conditions constantly change, and organisms must adapt their behavior by updating their memories, providing dynamic flexibility for adaptive responses. Consequently, novel stimulation/experiences can be integrated during memory retrieval; where consolidated memories are updated by a dynamic process after the appearance of a prediction error or by the exposure to new information, generating edited memories. This review will discuss the neurobiological systems involved in memory updating including recognition memory and emotional memories. In this regard, we will review the salient and emotional experiences that promote the gradual shifting from displeasure to pleasure (or vice versa), leading to hedonic or aversive responses, throughout memory updating. Finally, we will discuss evidence regarding memory updating and its potential clinical implication in drug addiction, phobias, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Isabel Miranda
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Kioko Guzmán-Ramos
- División de Ciencias Biológicas y de la Salud, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Lerma de Villada, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
21
|
Tsan L, Sun S, Hayes AMR, Bridi L, Chirala LS, Noble EE, Fodor AA, Kanoski SE. Early life Western diet-induced memory impairments and gut microbiome changes in female rats are long-lasting despite healthy dietary intervention. Nutr Neurosci 2022; 25:2490-2506. [PMID: 34565305 PMCID: PMC8957635 DOI: 10.1080/1028415x.2021.1980697] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Western diet consumption during adolescence results in hippocampus (HPC)-dependent memory impairments and gut microbiome dysbiosis. Whether these adverse outcomes persist in adulthood following healthy dietary intervention is unknown. Here we assessed the short- and long-term effects of adolescent consumption of a Western diet enriched with either sugar or both sugar and fat on metabolic outcomes, HPC function, and gut microbiota. METHODS Adolescent female rats (PN 26) were fed a standard chow diet (CHOW), chow with access to 11% sugar solution (SUG), or a junk food cafeteria-style diet (CAF) containing various foods high in fat and/or sugar. During adulthood (PN 65+), metabolic outcomes, HPC-dependent memory, and gut microbial populations were evaluated. In a subsequent experiment, these outcomes were evaluated following a 5-week dietary intervention where CAF and SUG groups were maintained on standard chow alone. RESULTS Both CAF and SUG groups demonstrated impaired HPC-dependent memory, increased adiposity, and altered gut microbial populations relative to the CHOW group. However, impaired peripheral glucose regulation was only observed in the SUG group. When examined following a healthy dietary intervention in a separate experiment, metabolic dysfunction was not observed in either the CAF or SUG group, whereas HPC-dependent memory impairments were observed in the CAF but not the SUG group. In both groups the composition of the gut microbiota remained distinct from CHOW rats after the dietary intervention. CONCLUSIONS While the metabolic impairments associated with adolescent junk food diet consumption are not present in adulthood following dietary intervention, the HPC-dependent memory impairments and the gut microbiome dysbiosis persist.
Collapse
Affiliation(s)
- Linda Tsan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics at the University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Anna M. R. Hayes
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Lana Bridi
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Lekha S. Chirala
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Emily E. Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics at the University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Scott E. Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Asiminas A, Lyon SA, Langston RF, Wood ER. Developmental trajectory of episodic-like memory in rats. Front Behav Neurosci 2022; 16:969871. [PMID: 36523755 PMCID: PMC9745197 DOI: 10.3389/fnbeh.2022.969871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/08/2022] [Indexed: 08/17/2023] Open
Abstract
Introduction Episodic memory formation requires the binding of multiple associations to a coherent episodic representation, with rich detail of times, places, and contextual information. During postnatal development, the ability to recall episodic memories emerges later than other types of memory such as object recognition. However, the precise developmental trajectory of episodic memory, from weaning to adulthood has not yet been established in rats. Spontaneous object exploration tasks do not require training, and allow repeated testing of subjects, provided novel objects are used on each trial. Therefore, these tasks are ideally suited for the study of the ontogeny of episodic memory and its constituents (e.g., object, spatial, and contextual memory). Methods In the present study, we used four spontaneous short-term object exploration tasks over two days: object (OR), object-context (OCR), object-place (OPR), and object-place-context (OPCR) recognition to characterise the ontogeny of episodic-like memory and its components in three commonly used outbred rat strains (Lister Hooded, Long Evans Hooded, and Sprague Dawley). Results In longitudinal studies starting at 3-4 weeks of age, we observed that short term memory for objects was already present at the earliest time point we tested, indicating that it is established before the end of the third week of life (consistent with several other reports). Object-context memory developed during the fifth week of life, while both object-in-place and the episodic-like object-place-context memory developed around the seventh postnatal week. To control for the effects of previous experience in the development of associative memory, we confirmed these developmental trajectories using a cross-sectional protocol. Discussion Our work provides robust evidence for different developmental trajectories of recognition memory in rats depending on the content and/or complexity of the associations and emphasises the utility of spontaneous object exploration tasks to assess the ontogeny of memory systems with high temporal resolution.
Collapse
Affiliation(s)
- Antonis Asiminas
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie A. Lyon
- Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Rosamund F. Langston
- Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Emma R. Wood
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Development and Repair, Bengaluru, India
| |
Collapse
|
23
|
Chao OY, Nikolaus S, Yang YM, Huston JP. Neuronal circuitry for recognition memory of object and place in rodent models. Neurosci Biobehav Rev 2022; 141:104855. [PMID: 36089106 PMCID: PMC10542956 DOI: 10.1016/j.neubiorev.2022.104855] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Rats and mice are used for studying neuronal circuits underlying recognition memory due to their ability to spontaneously remember the occurrence of an object, its place and an association of the object and place in a particular environment. A joint employment of lesions, pharmacological interventions, optogenetics and chemogenetics is constantly expanding our knowledge of the neural basis for recognition memory of object, place, and their association. In this review, we summarize current studies on recognition memory in rodents with a focus on the novel object preference, novel location preference and object-in-place paradigms. The evidence suggests that the medial prefrontal cortex- and hippocampus-connected circuits contribute to recognition memory for object and place. Under certain conditions, the striatum, medial septum, amygdala, locus coeruleus and cerebellum are also involved. We propose that the neuronal circuitry for recognition memory of object and place is hierarchically connected and constructed by different cortical (perirhinal, entorhinal and retrosplenial cortices), thalamic (nucleus reuniens, mediodorsal and anterior thalamic nuclei) and primeval (hypothalamus and interpeduncular nucleus) modules interacting with the medial prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Susanne Nikolaus
- Department of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
24
|
Osorio-Gómez D, Guzmán-Ramos K, Bermúdez-Rattoni F. Dopamine activity on the perceptual salience for recognition memory. Front Behav Neurosci 2022; 16:963739. [PMID: 36275849 PMCID: PMC9583835 DOI: 10.3389/fnbeh.2022.963739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
To survive, animals must recognize relevant stimuli and distinguish them from inconspicuous information. Usually, the properties of the stimuli, such as intensity, duration, frequency, and novelty, among others, determine the salience of the stimulus. However, previously learned experiences also facilitate the perception and processing of information to establish their salience. Here, we propose “perceptual salience” to define how memory mediates the integration of inconspicuous stimuli into a relevant memory trace without apparently altering the recognition of the physical attributes or valence, enabling the detection of stimuli changes in future encounters. The sense of familiarity is essential for successful recognition memory; in general, familiarization allows the transition of labeling a stimulus from the novel (salient) to the familiar (non-salient). The novel object recognition (NOR) and object location recognition (OLRM) memory paradigms represent experimental models of recognition memory that allow us to study the neurobiological mechanisms involved in episodic memory. The catecholaminergic system has been of vital interest due to its role in several aspects of recognition memory. This review will discuss the evidence that indicates changes in dopaminergic activity during exposure to novel objects or places, promoting the consolidation and persistence of memory. We will discuss the relationship between dopaminergic activity and perceptual salience of stimuli enabling learning and consolidation processes necessary for the novel-familiar transition. Finally, we will describe the effect of dopaminergic deregulation observed in some pathologies and its impact on recognition memory.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico, Mexico
| | - Kioko Guzmán-Ramos
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico, Mexico
- *Correspondence: Federico Bermúdez-Rattoni
| |
Collapse
|
25
|
Rei D, Saha S, Haddad M, Haider Rubio A, Perlaza BL, Berard M, Ungeheuer MN, Sokol H, Lledo PM. Age-associated gut microbiota impairs hippocampus-dependent memory in a vagus-dependent manner. JCI Insight 2022; 7:147700. [PMID: 35737457 PMCID: PMC9462480 DOI: 10.1172/jci.insight.147700] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Aging is known to be associated with hippocampus-dependent memory decline, but the underlying causes of this age-related memory impairment remain highly debated. Here, we show that fecal microbiota transplantation (FMT) from aged, but not young, animal donors into young mice is sufficient to trigger profound hippocampal alterations, including astrogliosis, decreased adult neurogenesis, decreased novelty-induced neuronal activation, and impairment in hippocampus-dependent memory. Furthermore, similar alterations were reported when mice were subjected to an FMT from aged human donors. To decipher the mechanisms involved in mediating these microbiota-induced effects on brain function, we mapped the vagus nerve–related (VN-related) neuronal activity patterns and report that aged FMT animals showed a reduction in neuronal activity in the ascending-VN output brain structure, whether under basal condition or after VN stimulation. Targeted pharmacogenetic manipulation of VN-ascending neurons demonstrated that the decrease in vagal activity is detrimental to hippocampal functions. In contrast, increasing vagal ascending activity alleviated the adverse effects of aged mouse FMT on hippocampal functions and had a promnesic effect in aged mice. Thus, pharmacogenetic VN stimulation is a potential therapeutic strategy to lessen microbiota-dependent age-associated impairments in hippocampal functions.
Collapse
Affiliation(s)
- Damien Rei
- Neurosciences, Institut Pasteur de Paris, Paris, France
| | - Soham Saha
- Neurosciences, Institut Pasteur de Paris, Paris, France
| | | | | | | | - Marion Berard
- Animalerie Centrale, Institut Pasteur de Paris, Paris, France
| | | | - Harry Sokol
- Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | | |
Collapse
|
26
|
Liu H, Wolters A, Temel Y, Alosaimi F, Jahanshahi A, Hescham S. Deep brain stimulation of the nucleus basalis of Meynert in an experimental rat model of dementia: Stimulation parameters and mechanisms. Neurobiol Dis 2022; 171:105797. [PMID: 35738477 DOI: 10.1016/j.nbd.2022.105797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND/OBJECTIVE Deep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM) has gained interest as a potential therapy for treatment-resistant dementia. However, optimal stimulation parameters and mechanisms of action are yet to be elucidated. METHODS First, we assessed NBM DBS at different stimulation parameters in a scopolamine-induced rat model of dementia. Rats were tested in the object location task with the following conditions: (i) low and high frequency (20 Hz or 120 Hz), (ii) monophasic or biphasic pulse shape (iii) continuous or intermittent DBS (20s on, 40s off) and 100 μA amplitude. Thereafter, rats were stimulated with the most effective parameter followed by 5-bromo-2'-deoxyuridine (BrdU) administration and perfused 4 weeks later. We then evaluated the effects of NBM DBS on hippocampal neurogenesis, synaptic plasticity, and on cholinergic fibres in the perirhinal and cingulate cortex using immunohistochemistry. We also performed in-vivo microdialysis to assess circuit-wide effects of NBM DBS on hippocampal acetylcholine levels during on and off stimulation. RESULTS Biphasic, low frequency and intermittent NBM DBS reversed the memory impairing effects of scopolamine when compared to sham rats. We found that acute stimulation promoted proliferation in the dentate gyrus, increased synaptic plasticity in the CA1 and CA3 subregion of the hippocampus, and increased length of cholinergic fibres in the cingulate gyrus. There was no difference regarding hippocampal acetylcholine levels between the groups. CONCLUSION These findings suggest that the potential mechanism of action of the induced memory enhancement through NBM DBS might be due to selective neuroplastic and neurochemical changes.
Collapse
Affiliation(s)
- Huajie Liu
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, the Netherlands
| | - Anouk Wolters
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, the Netherlands
| | - Faisal Alosaimi
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, the Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, the Netherlands
| | - Sarah Hescham
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
27
|
Coray R, Quednow BB. The role of serotonin in declarative memory: A systematic review of animal and human research. Neurosci Biobehav Rev 2022; 139:104729. [PMID: 35691469 DOI: 10.1016/j.neubiorev.2022.104729] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
The serotonergic system is involved in diverse cognitive functions including memory. Of particular importance to daily life are declarative memories that contain information about personal experiences, general facts, and events. Several psychiatric or neurological diseases, such as depression, attention-deficit-hyperactivity disorder (ADHD), and dementia, show alterations in serotonergic signalling and attendant memory disorders. Nevertheless, understanding serotonergic neurotransmission and its influence on memory remained a challenge until today. In this systematic review, we summarize recent psychopharmacological studies in animals and humans from a psychological memory perspective, in consideration of task-specific requirements. This approach has the advantage that comparisons between serotonin (5-HT)-related neurochemical mechanisms and manipulations are each addressing specific mnemonic circuits. We conclude that applications of the same 5-HT-related treatments can differentially affect unrelated tasks of declarative memories. Moreover, the analysis of specific mnemonic phases (e.g., encoding vs. consolidation) reveals opposing impacts of increased or decreased 5-HT tones, with low 5-HT supporting spatial encoding but impairing the consolidation of objects and verbal memories. Promising targets for protein synthesis-dependent consolidation enhancements include 5-HT4 receptor agonists and 5-HT6 receptor antagonists, with the latter being of special interest for the treatment of age-related decline. Further implications are pointed out as base for the development of novel therapeutic targets for memory impairment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca Coray
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland.
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
| |
Collapse
|
28
|
Chen YF, Song Q, Colucci P, Maltese F, Siller-Pérez C, Prins K, McGaugh JL, Hermans EJ, Campolongo P, Kasri NN, Roozendaal B. Basolateral amygdala activation enhances object recognition memory by inhibiting anterior insular cortex activity. Proc Natl Acad Sci U S A 2022; 119:e2203680119. [PMID: 35622887 PMCID: PMC9295787 DOI: 10.1073/pnas.2203680119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Noradrenergic activation of the basolateral amygdala (BLA) by emotional arousal enhances different forms of recognition memory via functional interactions with the insular cortex (IC). Human neuroimaging studies have revealed that the anterior IC (aIC), as part of the salience network, is dynamically regulated during arousing situations. Emotional stimulation first rapidly increases aIC activity but suppresses it in a delayed fashion. Here, we investigated in male Sprague-Dawley rats whether the BLA influence on recognition memory is associated with an increase or suppression of aIC activity during the postlearning consolidation period. We first employed anterograde and retrograde viral tracing and found that the BLA sends dense monosynaptic projections to the aIC. Memory-enhancing norepinephrine administration into the BLA following an object training experience suppressed aIC activity 1 h later, as determined by a reduced expression of the phosphorylated form of the transcription factor cAMP response element-binding (pCREB) protein and neuronal activity marker c-Fos. In contrast, the number of perisomatic γ-aminobutyric acid (GABA)ergic inhibitory synapses per pCREB-positive neuron was significantly increased, suggesting a dynamic up-regulation of GABAergic tone. In support of this possibility, pharmacological inhibition of aIC activity with a GABAergic agonist during consolidation enhanced object recognition memory. Norepinephrine administration into the BLA did not affect neuronal activity within the posterior IC, which receives sparse innervation from the BLA. The evidence that noradrenergic activation of the BLA enhances the consolidation of object recognition memory via a mechanism involving a suppression of aIC activity provides insight into the broader brain network dynamics underlying emotional regulation of memory.
Collapse
Affiliation(s)
- Yan-Fen Chen
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, the Netherlands
| | - Qi Song
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, the Netherlands
| | - Paola Colucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico, Santa Lucia Foundation, 00179 Rome, Italy
| | - Federica Maltese
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, the Netherlands
| | | | - Karina Prins
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, the Netherlands
| | - James L. McGaugh
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800
| | - Erno J. Hermans
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, the Netherlands
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico, Santa Lucia Foundation, 00179 Rome, Italy
| | - Nael Nadif Kasri
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, the Netherlands
| |
Collapse
|
29
|
Watanabe S, Omran AA, Shao AS, Xue C, Zhang Z, Zhang J, Davies DL, Shao XM, Watanabe J, Liang J. Dihydromyricetin improves social isolation-induced cognitive impairments and astrocytic changes in mice. Sci Rep 2022; 12:5899. [PMID: 35393483 PMCID: PMC8989100 DOI: 10.1038/s41598-022-09814-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/22/2022] [Indexed: 12/27/2022] Open
Abstract
Social isolation induces stress, anxiety, and mild cognitive impairment that could progress towards irreversible brain damage. A probable player in the mechanism of social isolation-induced anxiety is astrocytes, specialized glial cells that support proper brain function. Using a social isolation mouse model, we observed worsened cognitive and memory abilities with reductions of Object Recognition Index (ORI) in novel object recognition test and Recognition Index (RI) in novel context recognition test. Social isolation also increased astrocyte density, reduced astrocyte size with shorter branches, and reduced morphological complexity in the hippocampus. Dihydromyricetin, a flavonoid that we previously demonstrated to have anxiolytic properties, improved memory/cognition and restored astrocyte plasticity in these mice. Our study indicates astrocytic involvement in social isolation-induced cognitive impairment as well as anxiety and suggest dihydromyricetin as an early-stage intervention against anxiety, cognitive impairment, and potential permanent brain damage.
Collapse
Affiliation(s)
- Saki Watanabe
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Ave, PSC 504, Los Angeles, CA, 90033, USA
| | - Alzahra Al Omran
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Ave, PSC 504, Los Angeles, CA, 90033, USA
| | - Amy S Shao
- Homer Stryker M.D. School of Medicine, Western Michigan University, Kalamazoo, MI, 49007, USA
| | - Chen Xue
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Ave, PSC 504, Los Angeles, CA, 90033, USA
| | - Zeyu Zhang
- Translational Research Laboratory, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jifeng Zhang
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Ave, PSC 504, Los Angeles, CA, 90033, USA
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Ave, PSC 504, Los Angeles, CA, 90033, USA
| | - Xuesi M Shao
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Junji Watanabe
- Translational Research Laboratory, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jing Liang
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Ave, PSC 504, Los Angeles, CA, 90033, USA.
| |
Collapse
|
30
|
José Olvera M, Miranda MI. Differential effects of NMDA receptors activation in the insular cortex during memory formation and updating of a motivational conflict task. Neuroscience 2022; 497:39-52. [PMID: 35276308 DOI: 10.1016/j.neuroscience.2022.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
Recognizing and weighing the value of stimuli is necessary for survival, as it allows living things to respond quickly and adequately to new experiences by comparing them with previous ones. Recent evidence shows that context change could affect flavor learning, suggesting a more intricate scenario during complex associations of stimuli with opposite or different valence in a motivational conflict task. Furthermore, linked to the ability to weigh the value of stimuli is the ability to predict the consequences associated with them from previous experiences. The insular cortex (IC) is a brain hub connecting and integrating different sensory, emotional, motivational, and cognitive processing systems. In this regard, previous evidence indicates that glutamatergic activity in this area, mediated by N-methyl-D-aspartate receptors (NMDARs), could be important during positive or negative valence encoding. Hence, the present study examines the involvement of NMDARs in the IC during a complex association of stimuli with opposite valence through the modified inhibitory avoidance (MIA) task and memory updating of a previously learned appetitive context during latent inhibition of the MIA process. This study demonstrates that during a motivational conflict-learning task with stimuli of opposite valences, avoidance memory formation will prevail. NMDARs activation in the IC decreases avoidance memory formation during a complex task (MIA) but not memory formation for an appetitive context. Furthermore, NMDARs activation does not affect the transition from appetitive to aversive learning. Overall, our results propose a different IC-NMDARs function during novel learning and memory updating.
Collapse
Affiliation(s)
- María José Olvera
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla No. 3001, Juriquilla, Querétaro, Querétaro 76230, México
| | - María-Isabel Miranda
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla No. 3001, Juriquilla, Querétaro, Querétaro 76230, México.
| |
Collapse
|
31
|
Kay Y, Tsan L, Davis EA, Tian C, Décarie-Spain L, Sadybekov A, Pushkin AN, Katritch V, Kanoski SE, Herring BE. Schizophrenia-associated SAP97 mutations increase glutamatergic synapse strength in the dentate gyrus and impair contextual episodic memory in rats. Nat Commun 2022; 13:798. [PMID: 35145085 PMCID: PMC8831576 DOI: 10.1038/s41467-022-28430-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in the putative glutamatergic synapse scaffolding protein SAP97 are associated with the development of schizophrenia in humans. However, the role of SAP97 in synaptic regulation is unclear. Here we show that SAP97 is expressed in the dendrites of granule neurons in the dentate gyrus but not in the dendrites of other hippocampal neurons. Schizophrenia-related perturbations of SAP97 did not affect CA1 pyramidal neuron synapse function. Conversely, these perturbations produce dramatic augmentation of glutamatergic neurotransmission in granule neurons that can be attributed to a release of perisynaptic GluA1-containing AMPA receptors into the postsynaptic densities of perforant pathway synapses. Furthermore, inhibiting SAP97 function in the dentate gyrus was sufficient to impair contextual episodic memory. Together, our results identify a cell-type-specific synaptic regulatory mechanism in the dentate gyrus that, when disrupted, impairs contextual information processing in rats. The effects of SAP97 mutations associated with schizophrenia on synaptic function are unclear. Here, the authors show that schizophrenia-related SAP97 mutations enhance glutamatergic synapse strength in the dentate gyrus, impairing contextual episodic memory in rats.
Collapse
Affiliation(s)
- Yuni Kay
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Linda Tsan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Elizabeth A Davis
- Department of Biological Sciences, Human and Evolutionary Biology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Chen Tian
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Léa Décarie-Spain
- Department of Biological Sciences, Human and Evolutionary Biology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Anastasiia Sadybekov
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Anna N Pushkin
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Vsevolod Katritch
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Scott E Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Biological Sciences, Human and Evolutionary Biology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Bruce E Herring
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA. .,Department of Biological Sciences, Neurobiology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
32
|
Bi N, Gu X, Fan A, Li D, Wang M, Zhou R, Sun QC, Wang HL. Bisphenol-A exposure leads to neurotoxicity through upregulating the expression of histone deacetylase 2 in vivo and in vitro. Toxicology 2022; 465:153052. [PMID: 34838597 DOI: 10.1016/j.tox.2021.153052] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Bisphenol-A (BPA), an environmental endocrine disruptor, is toxic to the central nervous system. Although recent studies have shown BPA-induced neurotoxicity, it is far from clear what precisely epigenetic mechanisms are involved in BPA-induced cognitive deficits. In this study, pheochromocytoma (PC12) cells were treated with BPA at 1 μM for 36 h in vitro. In vivo, C57BL/6 mice were administered to BPA at a dose of 1 mg/kg/day for 10 weeks. The results showed that 1 μM BPA exposure for 36 h impaired neurite outgrowth of PC12 cells through decreasing the primary and secondary branches. Besides, BPA exposure decreased the level of Ac-H3K9 (histone H3 Lys9 acetylation) by upregulating the expression of HDAC2 (histone deacetylases 2) in PC12 cells. Furthermore, treatment of both TSA (Trichostatin A, inhibitor of the histone deacetylase) and shHDAC2 plasmid (HDAC2 knockdown construct) resulted in amelioration neurite outgrowth deficits induced by BPA. In addition, it was shown that repression of HDAC2 could markedly rescue the spine density impairment in the hippocampus and prevent the cognitive impairment caused by BPA exposure in mice. Collectively, HDAC2 plays an essential role in BPA-induced neurotoxicity, which provides a potential molecular target for medical intervention.
Collapse
Affiliation(s)
- Nanxi Bi
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Xiaozhen Gu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Anni Fan
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Danyang Li
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Mengmeng Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Ruiqing Zhou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Quan-Cai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| |
Collapse
|
33
|
Sethumadhavan N, Strauch C, Hoang TH, Manahan-Vaughan D. The Perirhinal Cortex Engages in Area and Layer-Specific Encoding of Item Dimensions. Front Behav Neurosci 2022; 15:744669. [PMID: 35058755 PMCID: PMC8763964 DOI: 10.3389/fnbeh.2021.744669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The perirhinal cortex (PRC), subdivided into areas 35 and 36, belongs to the parahippocampal regions that provide polysensory input to the hippocampus. Efferent and afferent connections along its rostro-caudal axis, and of areas 35 and 36, are extremely diverse. Correspondingly functional tasks in which the PRC participates are manifold. The PRC engages, for example, in sensory information processing, object recognition, and attentional processes. It was previously reported that layer II of the caudal area 35 may be critically involved in the encoding of large-scale objects. In the present study we aimed to disambiguate the roles of the different PRC layers, along with areas 35 and 36, and the rostro-caudal compartments of the PRC, in processing information about objects of different dimensions. Here, we compared effects on information encoding triggered by learning about subtle and discretely visible (microscale) object information and overt, highly visible landmark (macroscale) information. To this end, nuclear expression of the immediate early gene Arc was evaluated using fluorescence in situ hybridization. Increased nuclear Arc expression occurred in layers III and V-VI of the middle and caudal parts of area 35 in response to both novel microscale and macroscale object exposure. By contrast, a significant increase in Arc expression occurred in area 36 only in response to microscale objects. These results indicate that area 36 is specifically involved in the encoding of small and less prominently visible items. In contrast, area 35 engages globally (layer III to VI) in the encoding of object information independent of item dimensions.
Collapse
Affiliation(s)
- Nithya Sethumadhavan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Christina Strauch
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
| | - Thu-Huong Hoang
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Denise Manahan-Vaughan
| |
Collapse
|
34
|
Segura-Uribe JJ, García-de la Torre P, Castillo-Mendieta T, Bribiesca-Cruz I, Orozco-Suárez S, Soriano-Ursúa MA, Pinto-Almazán R, Fuentes-Venado CE, Guerra-Araiza C. Tibolone Improves Memory and Decreases the Content of Amyloid-β Peptides and Tau Protein in the Hippocampus of a Murine Model of Alzheimer's Disease. J Alzheimers Dis 2022; 90:1437-1447. [PMID: 36278346 DOI: 10.3233/jad-220434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) affects women more than men and consequently has been associated with menopause. Tibolone (TIB) has been used as a hormone replacement therapy to alleviate climacteric symptoms. Neuroprotective effects of TIB have also been reported in some animal models. OBJECTIVE This study aimed to assess the effect of TIB on memory and Aβ peptides and tau protein content in the hippocampus and cerebellum of transgenic 3xTgAD ovariectomized mice. METHODS Three-month-old female mice were ovariectomized. Ten days after surgery, animals were divided into four groups: wild-type (WT)+vehicle; WT+TIB (1 mg/kg); 3xTgAD+vehicle; and 3xTgAD+TIB (1 mg/kg). TIB was administered for three months, and memory was evaluated using the object-in-context recognition task. Subsequently, animals were decapitated, and the hippocampus and cerebellum were dissected. Using commercial ELISA kits, these brain structures were homogenized in a PBS buffer for quantifying Aβ40 and Aβ42 and phosphorylated and total tau.ResultsA long-term memory deficit was observed in the 3xTgAD+vehicle group. In contrast, TIB treatment improved long-term memory in the 3xTgAD+TIB group than those treated with vehicle (p < 0.05). Furthermore, TIB treatment decreased Aβ and tau content in the hippocampus of 3xTgAD mice compared to vehicle-treated groups (p < 0.05). No significant changes were observed in the cerebellum. CONCLUSION Chronic treatment with TIB showed neuroprotective effects and delayed AD neuropathology in the 3xTgAD mice. Our results support hormone replacement therapy with TIB in menopausal women for neuroprotection.
Collapse
Affiliation(s)
- Julia J Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de Mexico Federico Gómez, Secretarya de Salud, Mexico City, Mexico
| | - Paola García-de la Torre
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Tzayaka Castillo-Mendieta
- Unidad de Investigación Médica en Farmacologya, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Iván Bribiesca-Cruz
- Unidad de Investigación Médica en Farmacologya, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Marvin A Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Claudia E Fuentes-Venado
- Servicio de Medicina Física y Rehabilitación, Hospital General de Zona No 197, Texcoco, State of Mexico, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacologya, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
35
|
Pittaras E, Colas D, Chuluun B, Allocca G, Heller C. Enhancing sleep after training improves memory in Down syndrome model mice. Sleep 2021; 45:6383427. [PMID: 34618890 DOI: 10.1093/sleep/zsab247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by the presence of all or part of a third copy of chromosome 21. DS is associated with cognitive disabilities, for which there are no drug therapies. In spite of significant behavioral and pharmacological efforts to treat cognitive disabilities, new and continued efforts are still necessary. Over sixty percent of children with DS are reported to have sleep apnea that disrupt normal sleep. Normal and adequate sleep is necessary to maintain optimal cognitive functions. Therefore, we asked whether improved quality and/or quantity of sleep could improve cognitive capacities of people with DS. To investigate this possibility, we used the Ts65Dn mouse model of DS and applied two methods for enhancing their sleep following training on mouse memory tasks. A behavioral method was to impose sleep deprivation prior to training resulting in sleep rebound following the training. A pharmacologic method, hypocretin receptor 2 antagonist, was used immediately after the training to enhance subsequent sleep knowing that hypocretin is involved in the maintenance of wake. Our behavioral method resulted in a sleep reorganization that decreased wake and increased REM sleep following the training associated with an improvement of recognition memory and spatial memory in the DS model mice. Our pharmacologic approach decreased wake and increased NREM sleep and was associated with improvement only in the spatial memory task. These results show that enhancing sleep after the training in a memory task improves memory consolidation in a mouse model of DS.
Collapse
Affiliation(s)
- E Pittaras
- Stanford University, Department: Biology, Stanford, CA, USA
| | | | - B Chuluun
- Stanford University, Department: Biology, Stanford, CA, USA
| | - G Allocca
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia and School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia and Somnivore Pty. Ltd., Bacchus Marsh, VIC, Australia
| | - C Heller
- Stanford University, Department: Biology, Stanford, CA, USA
| |
Collapse
|
36
|
Shimoda S, Ozawa T, Ichitani Y, Yamada K. Long-term associative memory in rats: Effects of familiarization period in object-place-context recognition test. PLoS One 2021; 16:e0254570. [PMID: 34329332 PMCID: PMC8323955 DOI: 10.1371/journal.pone.0254570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
Spontaneous recognition tests, which utilize rodents’ innate tendency to explore novelty, can evaluate not only simple non-associative recognition memory but also more complex associative memory in animals. In the present study, we investigated whether the length of the object familiarization period (sample phase) improved subsequent novelty discrimination in the spontaneous object, place, and object-place-context (OPC) recognition tests in rats. In the OPC recognition test, rats showed a significant novelty preference only when the familiarization period was 30 min but not when it was 5 min or 15 min. In addition, repeated 30-min familiarization periods extended the significant novelty preference to 72 hours. However, the rats exhibited a successful discrimination between the stayed and replaced objects under 15 min and 30 min familiarization period conditions in the place recognition test and between the novel and familiar objects under all conditions of 5, 15 and 30 min in the object recognition test. Our results suggest that the extension of the familiarization period improves performance in the spontaneous recognition paradigms, and a longer familiarization period is necessary for long-term associative recognition memory than for non-associative memory.
Collapse
Affiliation(s)
- Shota Shimoda
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takaaki Ozawa
- Institute of Protein Research, Osaka University, Suita, Osaka, Japan
| | - Yukio Ichitani
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuo Yamada
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
37
|
Pereira MF, Amaral IM, Lopes C, Leitão C, Madeira D, Lopes JP, Gonçalves FQ, Canas PM, Cunha RA, Agostinho P. l-α-aminoadipate causes astrocyte pathology with negative impact on mouse hippocampal synaptic plasticity and memory. FASEB J 2021; 35:e21726. [PMID: 34196433 DOI: 10.1096/fj.202100336r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/26/2022]
Abstract
Increasing evidence shows that astrocytes, by releasing and uptaking neuroactive molecules, regulate synaptic plasticity, considered the neurophysiological basis of memory. This study investigated the impact of l-α-aminoadipate (l-AA) on astrocytes which sense and respond to stimuli at the synaptic level and modulate hippocampal long-term potentiation (LTP) and memory. l-AA selectivity toward astrocytes was proposed in the early 70's and further tested in different systems. Although it has been used for impairing the astrocytic function, its effects appear to be variable in different brain regions. To test the effects of l-AA in the hippocampus of male C57Bl/6 mice we performed two different treatments (ex vivo and in vivo) and took advantage of other compounds that were reported to affect astrocytes. l-AA superfusion did not affect the basal synaptic transmission but decreased LTP magnitude. Likewise, trifluoroacetate and dihydrokainate decreased LTP magnitude and occluded the effect of l-AA on synaptic plasticity, confirming l-AA selectivity. l-AA superfusion altered astrocyte morphology, increasing the length and complexity of their processes. In vivo, l-AA intracerebroventricular injection not only reduced the astrocytic markers but also LTP magnitude and impaired hippocampal-dependent memory in mice. Interestingly, d-serine administration recovered hippocampal LTP reduction triggered by l-AA (2 h exposure in hippocampal slices), whereas in mice injected with l-AA, the superfusion of d-serine did not fully rescue LTP magnitude. Overall, these data show that both l-AA treatments affect astrocytes differently, astrocytic activation or loss, with similar negative outcomes on hippocampal LTP, implying that opposite astrocytic adaptive alterations are equally detrimental for synaptic plasticity.
Collapse
Affiliation(s)
| | - Inês M Amaral
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Cátia Lopes
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Catarina Leitão
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Daniela Madeira
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Coimbra, Portugal
| | - João P Lopes
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | | | - Paula M Canas
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Coimbra, Portugal
| | - Paula Agostinho
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Coimbra, Portugal
| |
Collapse
|
38
|
Navarro-Lobato I, Masmudi-Martín M, Quiros-Ortega ME, Gaona-Romero C, Carretero-Rey M, Rey Blanes C, Khan ZU. 14-3-3ζ is crucial for the conversion of labile short-term object recognition memory into stable long-term memory. J Neurosci Res 2021; 99:2305-2317. [PMID: 34115908 DOI: 10.1002/jnr.24894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 11/07/2022]
Abstract
The consolidation of new memories into long-lasting memories is multistage process characterized by distinct temporal dynamics. However, our understanding on the initial stage of transformation of labile memory of recent experience into stable memory remains elusive. Here, with the use of rats and mice overexpressing a memory enhancer called regulator of G protein signaling 14 of 414 amino acids (RGS14414 ) as a tool, we show that the expression of RGS14414 in male rats' perirhinal cortex (PRh), which is a brain area crucial for object recognition memory (ORM), enhanced the ORM to the extent that it caused the conversion of labile short-term ORM (ST-ORM) expected to last for 40 min into stable long-term ORM (LT-ORM) traceable after a delay of 24 hr, and that the temporal window of 40 to 60 min after object exposure not only was key for this conversion but also was the time frame when a surge in 14-3-3ζ protein was observed. A knockdown of 14-3-3ζ gene abrogated both the increase in 14-3-3ζ protein and the formation of LT-ORM. Furthermore, this 14-3-3ζ upregulation increased brain-derived growth factor (BDNF) levels in the time frame of 60 min and 24 hr and 14-3-3ζ knockdown decreased the BDNF levels, and a deletion of BDNF gene produced loss in mice ability to form LT-ORM. Thus, within 60 min of object exposure, 14-3-3ζ facilitated the conversion of labile ORM into stable ORM, whereas beyond the 60 min, it mediated the consolidation of the stable memory into long-lasting ORM by regulating BDNF signaling.
Collapse
Affiliation(s)
- Irene Navarro-Lobato
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Heyendaalseweg 135, Nijmegen, 6525AJ, The Netherlands
| | - Mariam Masmudi-Martín
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
- Brain Metastasis Group, National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Maria E Quiros-Ortega
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Celia Gaona-Romero
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Marta Carretero-Rey
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Cristina Rey Blanes
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Zafar U Khan
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
- CIBERNED, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
39
|
Muratori BG, Zamberlam CR, Mendes TB, Nozima BHN, Cerutti JM, Cerutti SM. BDNF as a Putative Target for Standardized Extract of Ginkgo biloba-Induced Persistence of Object Recognition Memory. Molecules 2021; 26:3326. [PMID: 34206011 PMCID: PMC8198829 DOI: 10.3390/molecules26113326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Despite considerable progress on the study of the effect of standardized extract of Gingko biloba (EGb) on memory processes, our understanding of its role in the persistence of long-term memory (LTM) and the molecular mechanism underlying its effect, particularly episodic-like memory, is limited. We here investigated the effects of EGb on the long-term retention of recognition memory and its persistence and BDNF expression levels in the dorsal hippocampal formation (DHF). Adult male Wistar rats (n = 10/group) were handled for 10 min/5 day. On day 6, the animals were treated with vehicle or 0.4 mg/kg diazepam (control groups) or with EGb (250, 500 or 100 mg/kg) 30 min before the training session (TR1), in which the animals were exposed to two sample objects. On day 7, all rats underwent a second training session (TR2) as described in the TR1 but without drug treatment. Object recognition memory (ORM) was evaluated on day 8 (retention test, T1) and day 9 (persistence test, T2). At the end of T1or T2, animals were decapitated, and DHF samples were frozen at -80 °C for analyses of the differential expression of BDNF by Western blotting. EGb-treated groups spent more time exploring the novel object in T2 and showed the highest recognition index (RI) values during the T1 and T2, which was associated with upregulation of BDNF expression in the DHF in a dose-and session-dependent manner. Our data reveal, for the first time, that EGb treatment before acquisition of ORM promotes persistence of LTM by BDNF differential expression.
Collapse
Affiliation(s)
- Beatriz G. Muratori
- Cellular and Behavioral Pharmacology Laboratory, The Graduate Program in Biological Chemistry, Universidade Federal de São Paulo, São Paulo 09972-270, Brazil; (B.G.M.); (C.R.Z.)
| | - Cláudia R. Zamberlam
- Cellular and Behavioral Pharmacology Laboratory, The Graduate Program in Biological Chemistry, Universidade Federal de São Paulo, São Paulo 09972-270, Brazil; (B.G.M.); (C.R.Z.)
| | - Thaís B. Mendes
- Genetic Bases of Thyroid Tumor Laboratory, Division of Genetics, Department of Morphology and Genetics, Federal University of Sao Paulo, São Paulo 04039-032, Brazil; (T.B.M.); (B.H.N.N.); (J.M.C.)
| | - Bruno H. N. Nozima
- Genetic Bases of Thyroid Tumor Laboratory, Division of Genetics, Department of Morphology and Genetics, Federal University of Sao Paulo, São Paulo 04039-032, Brazil; (T.B.M.); (B.H.N.N.); (J.M.C.)
| | - Janete M. Cerutti
- Genetic Bases of Thyroid Tumor Laboratory, Division of Genetics, Department of Morphology and Genetics, Federal University of Sao Paulo, São Paulo 04039-032, Brazil; (T.B.M.); (B.H.N.N.); (J.M.C.)
| | - Suzete M. Cerutti
- Cellular and Behavioral Pharmacology Laboratory, The Graduate Program in Biological Chemistry, Universidade Federal de São Paulo, São Paulo 09972-270, Brazil; (B.G.M.); (C.R.Z.)
- Department of Biological Science, Universidade Federal de São Paulo, São Paulo 09972-270, Brazil
| |
Collapse
|
40
|
Braschi C, Capsoni S, Narducci R, Poli A, Sansevero G, Brandi R, Maffei L, Cattaneo A, Berardi N. Intranasal delivery of BDNF rescues memory deficits in AD11 mice and reduces brain microgliosis. Aging Clin Exp Res 2021; 33:1223-1238. [PMID: 32676979 PMCID: PMC8081712 DOI: 10.1007/s40520-020-01646-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/29/2020] [Indexed: 01/22/2023]
Abstract
A decrease in brain-derived neurotrophic factor (BDNF), a neurotrophin essential for synaptic function, plasticity and neuronal survival, is evident early in the progression of Alzheimer's disease (AD), being apparent in subjects with mild cognitive impairment or mild AD, and both proBDNF and mature BDNF levels are positively correlated with cognitive measures. BDNF delivery is, therefore, considered of great interest as a potentially useful therapeutic strategy to contrast AD. Invasive BDNF administration has indeed been recently used in animal models of AD with promising results in rescuing memory deficits, synaptic density and cell loss. Here, we tested whether non-invasive intranasal administration of different BDNF concentrations after the onset of cognitive and anatomical deficits (6 months of age) could rescue neuropathological and memory deficits in AD11 mice, a model of NGF deprivation-induced neurodegeneration. In addition to AD hallmarks, we investigated BDNF effects on microglia presence in the brain of AD11 mice, since alterations in microglia activation have been associated with ageing-related cognitive decline and with the progression of neurodegenerative diseases, including AD. We found that intranasal delivery of 42 pmol BDNF (1 μM), but not PBS, was sufficient to completely rescue performance of AD11 mice both in the object recognition test and in the object context test. No further improvement was obtained with 420 pmol (10 μM) BDNF dose. The strong improvement in memory performance in BDNF-treated mice was not accompanied by an amelioration of AD-like pathology, Aβ burden, tau hyperphosphorylation and cholinergic deficit, but there was a dramatic decrease of CD11b immunoreactive brain microglia. These results reinforce the potential therapeutic uses of BDNF in AD and the non-invasive intranasal route as an effective delivery strategy of BDNF to the brain. They also strengthen the connection between neuroinflammation and neurodegenerative dementia and suggest microglia as a possible mediator of BDNF therapeutic actions in the brain.
Collapse
Affiliation(s)
- Chiara Braschi
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), Florence University, Florence, Italy
| | - Simona Capsoni
- Scuola Normale Superiore, Pisa, Italy
- Human Physiology Section, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Narducci
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), Florence University, Florence, Italy
| | | | - Gabriele Sansevero
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- IRCCS Stella Maris, Calambrone, Pisa, Italy
| | | | - Lamberto Maffei
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- Scuola Normale Superiore, Pisa, Italy
| | - Antonino Cattaneo
- Scuola Normale Superiore, Pisa, Italy
- European Brain Research Institute, Rome, Italy
| | - Nicoletta Berardi
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy.
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), Florence University, Florence, Italy.
| |
Collapse
|
41
|
Noble EE, Olson CA, Davis E, Tsan L, Chen YW, Schade R, Liu C, Suarez A, Jones RB, de La Serre C, Yang X, Hsiao EY, Kanoski SE. Gut microbial taxa elevated by dietary sugar disrupt memory function. Transl Psychiatry 2021; 11:194. [PMID: 33790226 PMCID: PMC8012713 DOI: 10.1038/s41398-021-01309-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 01/16/2023] Open
Abstract
Emerging evidence highlights a critical relationship between gut microbiota and neurocognitive development. Excessive consumption of sugar and other unhealthy dietary factors during early life developmental periods yields changes in the gut microbiome as well as neurocognitive impairments. However, it is unclear whether these two outcomes are functionally connected. Here we explore whether excessive early life consumption of added sugars negatively impacts memory function via the gut microbiome. Rats were given free access to a sugar-sweetened beverage (SSB) during the adolescent stage of development. Memory function and anxiety-like behavior were assessed during adulthood and gut bacterial and brain transcriptome analyses were conducted. Taxa-specific microbial enrichment experiments examined the functional relationship between sugar-induced microbiome changes and neurocognitive and brain transcriptome outcomes. Chronic early life sugar consumption impaired adult hippocampal-dependent memory function without affecting body weight or anxiety-like behavior. Adolescent SSB consumption during adolescence also altered the gut microbiome, including elevated abundance of two species in the genus Parabacteroides (P. distasonis and P. johnsonii) that were negatively correlated with hippocampal function. Transferred enrichment of these specific bacterial taxa in adolescent rats impaired hippocampal-dependent memory during adulthood. Hippocampus transcriptome analyses revealed that early life sugar consumption altered gene expression in intracellular kinase and synaptic neurotransmitter signaling pathways, whereas Parabacteroides microbial enrichment altered gene expression in pathways associated with metabolic function, neurodegenerative disease, and dopaminergic signaling. Collectively these results identify a role for microbiota "dysbiosis" in mediating the detrimental effects of early life unhealthy dietary factors on hippocampal-dependent memory function.
Collapse
Affiliation(s)
- Emily E. Noble
- grid.213876.90000 0004 1936 738XUniversity of Georgia, Athens, GA USA
| | - Christine A. Olson
- grid.19006.3e0000 0000 9632 6718University of California, Los Angeles, CA USA
| | - Elizabeth Davis
- grid.42505.360000 0001 2156 6853University of Southern California, Los Angeles, CA USA
| | - Linda Tsan
- grid.42505.360000 0001 2156 6853University of Southern California, Los Angeles, CA USA
| | - Yen-Wei Chen
- grid.19006.3e0000 0000 9632 6718University of California, Los Angeles, CA USA
| | - Ruth Schade
- grid.213876.90000 0004 1936 738XUniversity of Georgia, Athens, GA USA
| | - Clarissa Liu
- grid.42505.360000 0001 2156 6853University of Southern California, Los Angeles, CA USA
| | - Andrea Suarez
- grid.42505.360000 0001 2156 6853University of Southern California, Los Angeles, CA USA
| | - Roshonda B. Jones
- grid.42505.360000 0001 2156 6853University of Southern California, Los Angeles, CA USA
| | | | - Xia Yang
- grid.19006.3e0000 0000 9632 6718University of California, Los Angeles, CA USA
| | - Elaine Y. Hsiao
- grid.19006.3e0000 0000 9632 6718University of California, Los Angeles, CA USA
| | - Scott E. Kanoski
- grid.42505.360000 0001 2156 6853University of Southern California, Los Angeles, CA USA
| |
Collapse
|
42
|
Song Q, Bolsius YG, Ronzoni G, Henckens MJAG, Roozendaal B. Noradrenergic enhancement of object recognition and object location memory in mice. Stress 2021; 24:181-188. [PMID: 32233890 DOI: 10.1080/10253890.2020.1747427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Extensive evidence indicates that noradrenergic activation is essentially involved in mediating the enhancing effects of emotional arousal on memory consolidation. Our current understanding of the neurobiological mechanisms underlying the memory-modulatory effects of the noradrenergic system is primarily based on pharmacological studies in rats, employing targeted administration of noradrenergic drugs into specific brain regions. However, the further delineation of the specific neural circuitry involved would benefit from experimental tools that are currently more readily available in mice. Previous studies have not, as yet, investigated the effect of noradrenergic enhancement of memory in mice, which show different cognitive abilities and higher endogenous arousal levels induced by a training experience compared to rats. In the present study, we investigated the effect of posttraining noradrenergic activation in male C57BL/6J mice on the consolidation of object recognition and object location memory. We found that the noradrenergic stimulant yohimbine (0.3 or 1.0 mg/kg) administered systemically immediately after an object training experience dose-dependently enhanced 24-h memory of both the identity and location of the object. Thus, these findings indicate that noradrenergic activation also enhances memory consolidation processes in mice, paving the way for a systematic investigation of the neural circuitry underlying these emotional arousal effects on memory.LAY SUMMARY: The current study successfully validated the effect of noradrenergic activation on both object recognition and object location memory in mice. This study thereby provides a fundamental proof-of-principle for the investigation of the neural circuitry underlying noradrenergic and arousal effects on long-term memory in mice.
Collapse
Affiliation(s)
- Qi Song
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| | - Youri G Bolsius
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Giacomo Ronzoni
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| | - Marloes J A G Henckens
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
43
|
Ramirez-Mejia G, Gil-Lievana E, Urrego-Morales O, Soto-Reyes E, Bermúdez-Rattoni F. Class I HDAC inhibition improves object recognition memory consolidation through BDNF/TrkB pathway in a time-dependent manner. Neuropharmacology 2021; 187:108493. [PMID: 33581144 DOI: 10.1016/j.neuropharm.2021.108493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 11/25/2022]
Abstract
There is increasing evidence showing that HDACs regulates BDNF (brain-derived neurotrophic factor) expression through its interaction with the Bdnf gene promoter, a key regulator to consolidate memory. Although the nuclear mechanisms regulated by HDACs that control BDNF expression have been partially described recently, the temporal events for memory consolidation remain unknown. Hence, in this work, we studied the temporal pattern for the activation of the BDNF/TrkB pathway through class I HDAC inhibition to enhance object recognition memory (ORM) consolidation. To this end, we inhibited class I HDAC into the insular cortex (IC) and a weak ORM protocol was used to assess temporal expression and function of the BDNF/TrkB pathway in the IC. We found that cortical class I HDAC inhibition enhanced long-term ORM, coincident with a clear peak of BDNF expression at 4 h after acquisition. Furthermore, the tyrosine kinase B (TrkB) receptor blockade at 4 h, but not at 8 h, impaired the consolidation of ORM. These results suggest that histone acetylation regulates the temporal expression of BDNF in cortical circuits potentiating the long-term recognition memory.
Collapse
Affiliation(s)
- Gerardo Ramirez-Mejia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico
| | - Elvi Gil-Lievana
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico
| | - Oscar Urrego-Morales
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, 05348, Ciudad de Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico.
| |
Collapse
|
44
|
Daily oscillation of cognitive factors is modified in the temporal cortex of an amyloid β(1-42)-induced rat model of Alzheimer's disease. Brain Res Bull 2021; 170:106-114. [PMID: 33508401 DOI: 10.1016/j.brainresbull.2021.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/28/2020] [Accepted: 01/20/2021] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a devastating disease characterized by loss of synapses and neurons in the elderly. Accumulation of the β-amyloid peptide (Aβ) in the brain is thought to be central to the pathogenesis of AD. ApoE plays a key role in normal and physiological clearance of Aß, since it facilitates the peptide intra- and extracellular proteolytic degradation. Besides the cognitive deficit, AD patients also show alterations in their circadian rhythms. The objective of this study was to investigate the effects of an i.c.v. injection of Aβ (1-42) peptide on the 24 h rhythms of Apo E, BMAL1, RORα, Bdnf and trkB mRNA and Aβ levels in the rat temporal cortex. We found that an i.c.v. injection of Aβ aggregates phase shifts daily Bdnf expression as well as Apo E, BMAL1, RORα, Aβ and decreased the mesor of TrkB rhythms. Thus, elevated Aβ peptide levels might modify the temporal patterns of cognition-related factors, probably; by affecting the clock factors rhythms as well as in the 24 h rhythms of Apo E.
Collapse
|
45
|
Esaki H, Izumi S, Fukao A, Ito S, Nishitani N, Deyama S, Kaneda K. Nicotine Enhances Object Recognition Memory via Stimulating α4β2 and α7 Nicotinic Acetylcholine Receptors in the Medial Prefrontal Cortex of Mice. Biol Pharm Bull 2021; 44:1007-1013. [PMID: 34193682 DOI: 10.1248/bpb.b21-00314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nicotine has been known to enhance recognition memory in various species. However, the brain region where nicotine acts and exerts its effect remains unclear. Since the medial prefrontal cortex (mPFC) is associated with memory, we examined the role of the mPFC in nicotine-induced enhancement of recognition memory using the novel object recognition test in male C57BL/6J mice. Systemic nicotine administration 10 min before training session significantly enhanced object recognition memory in test session that was performed 24 h after the training. Intra-mPFC infusion of mecamylamine, a non-selective nicotinic acetylcholine receptor (nAChR) antagonist, 5 min before nicotine administration blocked the effect of nicotine. Additionally, intra-mPFC infusion of dihydro-β-erythroidine, a selective α4β2 nAChR antagonist, or methyllycaconitine, a selective α7 nAChR antagonist, significantly suppressed the nicotine-induced object recognition memory enhancement. Finally, intra-mPFC infusion of nicotine 1 min before the training session augmented object recognition memory in a dose-dependent manner. These findings suggest that mPFC α4β2 and α7 nAChRs mediate the nicotine-induced object recognition memory enhancement.
Collapse
Affiliation(s)
- Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Akari Fukao
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Shiho Ito
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
46
|
Navarrete-Yañez V, Garate-Carrillo A, Rodriguez A, Mendoza-Lorenzo P, Ceballos G, Calzada-Mendoza C, Hogan MC, Villarreal F, Ramirez-Sanchez I. Effects of (-)-epicatechin on neuroinflammation and hyperphosphorylation of tau in the hippocampus of aged mice. Food Funct 2020; 11:10351-10361. [PMID: 33201160 DOI: 10.1039/d0fo02438d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Evidence has implicated oxidative stress (OS) and inflammation as drivers of neurodegenerative pathologies. We previously reported on the beneficial effects of (-)-epicatechin (Epi) treatment on aging-induced OS and its capacity to restore modulators of mitochondrial biogenesis in the prefrontal cortex of 26-month-old male mice. In the present study using the same mouse model of aging, we examined the capacity of Epi to mitigate hippocampus OS, inflammation, hyperphosphorylation of tau protein, soluble β-amyloid protein levels, cell survival, memory, anxiety-like behavior levels and systemic inflammation. Mice were subjected to 4 weeks of Epi treatment (1 mg kg-1 day-1) and samples of the hippocampus were obtained. Assessments of the OS markers, protein carbonyls, and malondialdehyde levels demonstrated their significant increase (∼3 fold) with aging that were partially suppressed by Epi. The protein levels of the glial fibrillary acidic protein, inflammatory factor 1 (Iba1), pro-inflammatory cytokines, interleukins (IL-1β, IL-3, 5, 6 and 15), cyclooxygenase 2, tumor necrosis factor α, nuclear factor-activated B cells and interferon γ increase with aging and were also significantly decreased with Epi treatment. However, anti-inflammatory cytokines, IL-1ra, IL-10 and 11 decrease with aging and were restored with Epi. Epi also reversed the aging effects on the hyperphosphorylation of tau, increased soluble β-amyloid levels (∼2 fold), cellular death (as per caspase 3 and 9 activity), and reduced nerve growth factor and triggering receptor expressed on myeloid cells 2 levels. Measures of anxiety like-behavior and memory demonstrated improvements with Epi treatment. Indicators of systemic inflammation increase with aging and Epi was capable of decreasing blood inflammatory markers. Altogether, the results show a significant capacity of Epi to mitigate hippocampus OS and inflammation leading to improved brain function.
Collapse
Affiliation(s)
- Viridiana Navarrete-Yañez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, D.F., Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
HippoBellum: Acute Cerebellar Modulation Alters Hippocampal Dynamics and Function. J Neurosci 2020; 40:6910-6926. [PMID: 32769107 DOI: 10.1523/jneurosci.0763-20.2020] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/14/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022] Open
Abstract
Here we examine what effects acute manipulation of the cerebellum, a canonically motor structure, can have on the hippocampus, a canonically cognitive structure. In male and female mice, acute perturbation of the cerebellar vermis (lobule 4/5) or simplex produced reliable and specific effects in hippocampal function at cellular, population, and behavioral levels, including evoked local field potentials, increased hippocampal cFos expression, and altered CA1 calcium event rate, amplitudes, and correlated activity. We additionally noted a selective deficit on an object location memory task, which requires objection-location pairing. We therefore combined cerebellar optogenetic stimulation and CA1 calcium imaging with an object-exploration task, and found that cerebellar stimulation reduced the representation of place fields near objects, and prevented a shift in representation to the novel location when an object was moved. Together, these results clearly demonstrate that acute modulation of the cerebellum alters hippocampal function, and further illustrates that the cerebellum can influence cognitive domains.SIGNIFICANCE STATEMENT The cerebellum, a canonically motor-related structure, is being increasingly recognized for its influence on nonmotor functions and structures. The hippocampus is a brain region critical for cognitive functions, such as episodic memory and spatial navigation. To investigate how modulation of the cerebellum may impact the hippocampus, we stimulated two sites of the cerebellar cortex and examined hippocampal function at multiple levels. We found that cerebellar stimulation strongly modulates hippocampal activity, disrupts spatial memory, and alters object-location processing. Therefore, a canonically cognitive brain area, the hippocampus, is sensitive to cerebellar modulation.
Collapse
|
48
|
Luna-Munguia H, Gasca-Martinez D, Marquez-Bravo L, Concha L. Memory deficits in Sprague Dawley rats with spontaneous ventriculomegaly. Brain Behav 2020; 10:e01711. [PMID: 32583983 PMCID: PMC7428488 DOI: 10.1002/brb3.1711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Spontaneous ventriculomegaly has been observed in rats that were presumed normal. Because the external phenotype of these animals is unremarkable, they can be inadvertently included in behavioral experiments, despite the considerable enlargement of the ventricular system, reduced cortical thickness, and hippocampal atrophy upon imaging. Given the role of such structures in memory consolidation, we evaluated long-term memory retention while decision making in rats with spontaneous ventriculomegaly. METHODS We studied adult male Sprague Dawley rats, identified as having spontaneous ventriculomegaly, while performing baseline magnetic resonance imaging scanning intended for a different research protocol. Control (n = 7) and experimental (n = 6) animals were submitted to a delayed-alternation task (no delay, 30, 60, and 180 s) and an object-in-context recognition task. During the first task, we evaluated the number of correct choices as well as the latency to reach any of the cavities located at the end of each branch arm during each trial. The second task assessed the rodents' ability to remember where they had previously encountered a specific object, calculating the context recognition index. RESULTS When compared to control animals, rats with spontaneous ventriculomegaly required significantly more training sessions to reach the 80% criterion during the training phase. Moreover, they showed reduced delayed-alternation performance in the evaluated times, reaching significance only at 180 s. Increased latencies while trying to reach the cavity were also observed. Evaluation of the long-term memory formation during the object-in-context recognition task showed that subjects with ventriculomegaly spent less time investigating the familiar object, resulting in a significantly decreased recognition index value. CONCLUSION Our results are the first to show how spontaneous ventriculomegaly-induced cerebral structural damage affects decision-making behaviors, particularly when comparing between immediate and delayed trials. Moreover, this lesion disrupts the animals' ability to recall or express contextual information.
Collapse
Affiliation(s)
- Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, Queretaro, Mexico
| | - Deisy Gasca-Martinez
- Unidad de Analisis Conductual, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, Queretaro, Mexico
| | - Luis Marquez-Bravo
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, Queretaro, Mexico
| | - Luis Concha
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, Queretaro, Mexico
| |
Collapse
|
49
|
Neuroprotection of Radiosensitive Juvenile Mice by Ultra-High Dose Rate FLASH Irradiation. Cancers (Basel) 2020; 12:cancers12061671. [PMID: 32599789 PMCID: PMC7352849 DOI: 10.3390/cancers12061671] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Major advances in high precision treatment delivery and imaging have greatly improved the tolerance of radiotherapy (RT); however, the selective sparing of normal tissue and the reduction of neurocognitive side effects from radiation-induced toxicities remain significant problems for pediatric patients with brain tumors. While the overall survival of pediatric patients afflicted with medulloblastoma (MB), the most common type primary brain cancer in children, remains high (≥80%), lifelong neurotoxic side-effects are commonplace and adversely impact patients’ quality of life. To circumvent these clinical complications, we have investigated the capability of ultra-high dose rate FLASH-radiotherapy (FLASH-RT) to protect the radiosensitive juvenile mouse brain from normal tissue toxicities. Compared to conventional dose rate (CONV) irradiation, FLASH-RT was found to ameliorate radiation-induced cognitive dysfunction in multiple independent behavioral paradigms, preserve developing and mature neurons, minimize microgliosis and limit the reduction of the plasmatic level of growth hormone. The protective “FLASH effect” was pronounced, especially since a similar whole brain dose of 8 Gy delivered with CONV-RT caused marked reductions in multiple indices of behavioral performance (objects in updated location, novel object recognition, fear extinction, light-dark box, social interaction), reductions in the number of immature (doublecortin+) and mature (NeuN+) neurons and increased neuroinflammation, adverse effects that were not found with FLASH-RT. Our data point to a potentially innovative treatment modality that is able to spare, if not prevent, many of the side effects associated with long-term treatment that disrupt the long-term cognitive and emotional well-being of medulloblastoma survivors.
Collapse
|
50
|
In Vivo Attenuation of M-Current Suppression Impairs Consolidation of Object Recognition Memory. J Neurosci 2020; 40:5847-5856. [PMID: 32554550 DOI: 10.1523/jneurosci.0348-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/08/2020] [Accepted: 06/06/2020] [Indexed: 11/21/2022] Open
Abstract
The M-current is a low voltage-activated potassium current generated by neuronal Kv7 channels. A prominent role of the M-current is to a create transient increase of neuronal excitability in response to neurotransmitters through the suppression of this current. Accordingly, M-current suppression is assumed to be involved in higher brain functions including learning and memory. However, there is little evidence supporting such a role to date. To address this gap, we examined behavioral tasks to assess learning and memory in homozygous Kv7.2 knock-in mice, Kv7.2(S559A), which show reduced M-current suppression while maintaining a normal basal M-current activity in neurons. We found that Kv7.2(S559A) mice had normal object location memory and contextual fear memory, but impaired long-term object recognition memory. Furthermore, short-term memory for object recognition was intact in Kv7.2(S559A) mice. The deficit in long-term object recognition memory was restored by the administration of a selective Kv7 channel inhibitor, XE991, when delivered during the memory consolidation phase. Lastly, c-Fos induction 2 h after training in Kv7.2(S559A) mice was normal in the hippocampus, which corresponds to intact object location memory, but was reduced in the perirhinal cortex, which corresponds to impaired long-term object recognition memory. Together, these results support the overall conclusion that M-current suppression is important for memory consolidation of specific types of memories.SIGNIFICANCE STATEMENT Dynamic regulation of neuronal excitation is a fundamental mechanism for information processing in the brain, which is mediated by changes in synaptic transmissions or by changes in ion channel activity. Some neurotransmitters can facilitate action potential firing by suppression of a low voltage-activated potassium current, M-current. We demonstrate that M-current suppression is critical for establishment of long-term object recognition memory, but is not required for establishment of hippocampus-dependent location memory or contextual memory. This study suggests that M-current suppression is important for stable encoding of specific types of memories.
Collapse
|