1
|
Mansouri M, Berger P. Baculovirus for gene delivery to mammalian cells: Past, present and future. Plasmid 2018; 98:1-7. [PMID: 29842913 DOI: 10.1016/j.plasmid.2018.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022]
Abstract
Baculovirus is an insect virus which has been used for more than thirty years for production of recombinant proteins in insect cells. However, baculovirus can also be harnessed for efficient gene delivery to mammalian cells if it is equipped with mammalian promoters. This technology is known as BacMam and has been used for gene delivery to immortalized cell lines, stem cells, and primary cells, as well as for gene delivery in animals. Baculovirus has unique features when compared to mammalian viruses. Besides the fact that it is replication-incompetent and does not integrate into the host genome, it has large capacity for foreign DNA. This capacity can for example be used to deliver multiple genes for reprogramming of stem cells, or for delivery of large homology constructs for genome editing. In this review, we provide a brief overview of baculovirus-based gene delivery and its recent applications in therapy and basic research. We also describe how baculovirus is manipulated for efficient transduction in mammalian cells and we highlight possible future improvements.
Collapse
Affiliation(s)
- Maysam Mansouri
- Paul Scherrer Institute, Biomolecular Research, Applied Molecular Biology, CH-5232 Villigen, Switzerland; ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Philipp Berger
- Paul Scherrer Institute, Biomolecular Research, Applied Molecular Biology, CH-5232 Villigen, Switzerland.
| |
Collapse
|
2
|
Abstract
For the purpose of this work, insect biotechnology, which is also known as yellow biotechnology, is the use of insects as well as insect-derived cells or molecules in medical (red biotechnology), agricultural (green biotechnology), and industrial (white) biotechnology. It is based on the application of biotechnological techniques on insects or their cells to develop products or services for human use. Such products are then applied in agriculture, medicine, and industrial biotechnology. Insect biotechnology has proven to be a useful resource in diverse industries, especially for the production of industrial enzymes including chitinases and cellulases, pharmaceuticals, microbial insecticides, insect genes, and many other substances. Insect cells (ICs), and particularly lepidopteran cells, constitute a competitive strategy to mammalian cells for the manufacturing of biotechnology products. Among the wide range of methods and expression hosts available for the production of biotech products, ICs are ideal for the production of complex proteins requiring extensive posttranslational modification. The progress so far made in insect biotechnology essentially derives from scientific breakthroughs in molecular biology, especially with the advances in techniques that allow genetic manipulation of organisms and cells. Insect biotechnology has grown tremendously in the last 30 years.
Collapse
Affiliation(s)
- Chandrasekar Raman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas USA
| | - Marian R. Goldsmith
- Biological Sciences Department Center for Biotech. and Life Sciences, University of Rhode Island, Kingston, Rhode Island USA
| | - Tolulope A. Agunbiade
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut USA
| |
Collapse
|
3
|
Tonelli RR, Colli W, Alves MJM. Selection of binding targets in parasites using phage-display and aptamer libraries in vivo and in vitro. Front Immunol 2013; 3:419. [PMID: 23316203 PMCID: PMC3540409 DOI: 10.3389/fimmu.2012.00419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 12/20/2012] [Indexed: 11/13/2022] Open
Abstract
Parasite infections are largely dependent on interactions between pathogen and different host cell populations to guarantee a successful infectious process. This is particularly true for obligatory intracellular parasites as Plasmodium, Toxoplasma, and Leishmania, to name a few. Adhesion to and entry into the cell are essential steps requiring specific parasite and host cell molecules. The large amount of possible involved molecules poses additional difficulties for their identification by the classical biochemical approaches. In this respect, the search for alternative techniques should be pursued. Among them two powerful methodologies can be employed, both relying upon the construction of highly diverse combinatorial libraries of peptides or oligonucleotides that randomly bind with high affinity to targets on the cell surface and are selectively displaced by putative ligands. These are, respectively, the peptide-based phage display and the oligonucleotide-based aptamer techniques. The phage display technique has been extensively employed for the identification of novel ligands in vitro and in vivo in different areas such as cancer, vaccine development, and epitope mapping. Particularly, phage display has been employed in the investigation of pathogen–host interactions. Although this methodology has been used for some parasites with encouraging results, in trypanosomatids its use is, as yet, scanty. RNA and DNA aptamers, developed by the SELEX process (Systematic Evolution of Ligands by Exponential Enrichment), were described over two decades ago and since then contributed to a large number of structured nucleic acids for diagnostic or therapeutic purposes or for the understanding of the cell biology. Similarly to the phage display technique scarce use of the SELEX process has been used in the probing of parasite–host interaction. In this review, an overall survey on the use of both phage display and aptamer technologies in different pathogenic organisms will be discussed. Using these techniques, recent results on the interaction of Trypanosoma cruzi with the host will be highlighted focusing on members of the 85 kDa protein family, a subset of the gp85/TS superfamily.
Collapse
Affiliation(s)
- R R Tonelli
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo São Paulo, Brazil
| | | | | |
Collapse
|
4
|
Opportunities and challenges for the baculovirus expression system. J Invertebr Pathol 2011; 107 Suppl:S3-15. [PMID: 21784228 DOI: 10.1016/j.jip.2011.05.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 11/23/2022]
|
5
|
Immunofluorescence analysis of baculovirus-displayed viral proteins on infected insect cells. Cold Spring Harb Protoc 2010; 2010:pdb.prot5395. [PMID: 20194464 DOI: 10.1101/pdb.prot5395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The baculovirus expression vector system has been used extensively to produce numerous proteins originating from both prokaryotic and eukaryotic sources. In addition to easy cloning techniques and abundant viral propagation, the system's insect cell environment provides eukaryotic post-translational modification machinery. The baculovirus display vector system provides a number of advantages over prokaryotic systems, allowing the combination of genotype with phenotype, enabling presentation of foreign peptides or even complex proteins on the baculoviral envelope or capsid. Baculoviruses permit larger gene insertions, are easily propagated, and can be grown to high titers. Furthermore, the eukaryotic system allows for post-translational modifications, and surface modifications of the viral capsid enable specific targeting. This strategy can be used to enhance viral binding and entry to a wide variety of both dividing and nondividing mammalian cells, as well as to produce antibodies against the displayed antigen. In addition, the technology should enable modifications of intracellular behavior, i.e., trafficking of recombinant "nanoparticles," a highly relevant feature for studies of targeted gene or protein delivery. After generating the display viral stock, it is important to confirm the presence and functionality of the displayed peptides or proteins on the viral particles before proceeding to further experiments. Accordingly, infected insect cells and budded virions can be analyzed by a variety of methods using appropriate antibodies. This protocol describes a standard immunofluorescence technique in detail.
Collapse
|
6
|
Mäkelä AR, Ernst W, Grabherr R, Oker-Blom C. Immunoelectron microscopy analysis of recombinant baculovirus display viruses. Cold Spring Harb Protoc 2010; 2010:pdb.prot5396. [PMID: 20194465 DOI: 10.1101/pdb.prot5396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The baculovirus expression vector system has been used extensively to produce numerous proteins originating from both prokaryotic and eukaryotic sources. In addition to easy cloning techniques and abundant viral propagation, the system's insect cell environment provides eukaryotic post-translational modification machinery. The baculovirus display vector system provides a number of advantages over prokaryotic systems, allowing the combination of genotype with phenotype, enabling presentation of foreign peptides or even complex proteins on the baculoviral envelope or capsid. Baculoviruses permit larger gene insertions, are easily propagated, and can be grown to high titers. Furthermore, surface modifications of the viral capsid enable specific targeting. This strategy can be used to enhance viral binding and entry to a wide variety of both dividing and nondividing mammalian cells, as well as to produce antibodies against the displayed antigen. In addition, the technology should enable modifications of intracellular behavior, i.e., trafficking of recombinant "nanoparticles," a highly relevant feature for studies of targeted gene or protein delivery. After generating the display viral stock, it is important to confirm the presence and functionality of the displayed peptides or proteins on the viral particles before proceeding to further experiments. Accordingly, infected insect cells and budded virions can be analyzed by a variety of methods using appropriate antibodies. This protocol describes a standard immunoelectron microscopy technique in detail.
Collapse
|
7
|
Mäkelä AR, Ernst W, Grabherr R, Oker-Blom C. Creation of baculovirus display libraries. Cold Spring Harb Protoc 2010; 2010:pdb.prot5393. [PMID: 20194462 DOI: 10.1101/pdb.prot5393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The baculovirus expression vector system has been used extensively to produce numerous proteins originating from both prokaryotic and eukaryotic sources. In addition to easy cloning techniques and abundant viral propagation, the system's insect cell environment provides eukaryotic post-translational modification machinery. The baculovirus display vector system provides a number of advantages over prokaryotic systems, allowing the combination of genotype with phenotype, enabling presentation of foreign peptides or even complex proteins on the baculoviral envelope or capsid. Baculoviruses permit larger gene insertions, are easily propagated, and can be grown to high titers. Furthermore, surface modifications of the viral capsid enable specific targeting. This strategy can be used to enhance viral binding and entry to a wide variety of both dividing and nondividing mammalian cells as well as to produce antibodies against the displayed antigen. In addition, the technology should enable modifications of intracellular behavior, i.e., trafficking of recombinant "nanoparticles," a highly relevant feature for studies of targeted gene or protein delivery. It is important to note that, although the viruses do not replicate in mammalian cells, they are not entirely transcriptionally silent. They can also be highly antigenic when used in vivo, limiting their therapeutic use. This protocol describes methods for generating display libraries.
Collapse
|
8
|
Mäkelä AR, Ernst W, Grabherr R, Oker-Blom C. Monitoring baculovirus-mediated efficiency of gene delivery. Cold Spring Harb Protoc 2010; 2010:pdb.prot5397. [PMID: 20194466 DOI: 10.1101/pdb.prot5397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The baculovirus expression vector system has been used extensively to produce numerous proteins originating from both prokaryotic and eukaryotic sources. In addition to easy cloning techniques and abundant viral propagation, the system's insect cell environment provides eukaryotic post-translational modification machinery. The baculovirus display vector system provides a number of advantages over prokaryotic systems, allowing the combination of genotype with phenotype, enabling presentation of foreign peptides or even complex proteins on the baculoviral envelope or capsid. Baculoviruses permit larger gene insertions, are easily propagated, and can be grown to high titers. Furthermore, surface modifications of the viral capsid enable specific targeting. This strategy can be used to enhance viral binding and entry to a wide variety of both dividing and nondividing mammalian cells, as well as to produce antibodies against the displayed antigen. In addition, the technology should enable modifications of intracellular behavior, that is, trafficking of recombinant "nanoparticles," a highly relevant feature for studies of targeted gene or protein delivery. Also, the ability to incorporate reporter genes under transcriptional regulation of mammalian promoters enables transduction efficiency to be monitored in mammalian cells in vitro and in tissues in vivo. Luciferase molecules in particular are nontoxic and emit light in direct proportion to their number in mammalian cells. This provides a sensitive and rapid assay for quantification of transgene expression without the need for illumination with an external excitation source.
Collapse
|
9
|
Mäkelä AR, Ernst W, Grabherr R, Oker-Blom C. Determination of recombinant baculovirus display viral titer. Cold Spring Harb Protoc 2010; 2010:pdb.prot5394. [PMID: 20194463 DOI: 10.1101/pdb.prot5394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The baculovirus expression vector system has been used extensively to produce numerous proteins originating from both prokaryotic and eukaryotic sources. In addition to easy cloning techniques and abundant viral propagation, the system's insect cell environment provides eukaryotic post-translational modification machinery. The baculovirus display vector system provides a number of advantages over prokaryotic systems, allowing the combination of genotype with phenotype, enabling presentation of foreign peptides or even complex proteins on the baculoviral envelope or capsid. Baculoviruses permit larger gene insertions, are easily propagated, and can be grown to high titers. Furthermore, surface modifications of the viral capsid enable specific targeting. This strategy can be used to enhance viral binding and entry to a wide variety of both dividing and nondividing mammalian cells, as well as to produce antibodies against the displayed antigen. In addition, the technology should enable modifications of intracellular behavior, i.e., trafficking of recombinant "nanoparticles," a highly relevant feature for studies of targeted gene or protein delivery. Although baculovirus titer can be determined by standard methods such as classical plaque assays or end-point dilution assays, such methods often are tedious and time-consuming. The protocol described here is rapid and can be performed directly using marker genes such as green fluorescent protein or beta-galactosidase regulated by baculovirus-specific promoters, or indirectly as an immunoassay with baculovirus-specific antibodies (e.g., anti-gp64).
Collapse
|