1
|
Ngassam VN, Su WC, Gettel DL, Deng Y, Yang Z, Wang-Tomic N, Sharma VP, Purushothaman S, Parikh AN. Recurrent dynamics of rupture transitions of giant lipid vesicles at solid surfaces. Biophys J 2021; 120:586-597. [PMID: 33460597 DOI: 10.1016/j.bpj.2021.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/20/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022] Open
Abstract
Single giant unilamellar vesicles (GUVs) rupture spontaneously from their salt-laden suspension onto solid surfaces. At hydrophobic surfaces, the GUVs rupture via a recurrent, bouncing ball rhythm. During each contact, the GUVs, rendered tense by the substrate interactions, porate, and spread a molecularly transformed motif of a monomolecular layer on the hydrophobic surface from the point of contact in a symmetric manner. The competition from pore closure, however, limits the spreading and produces a daughter vesicle, which re-engages with the substrate. At solid hydrophilic surfaces, by contrast, GUVs rupture via a distinctly different recurrent burst-heal dynamics; during burst, single pores nucleate at the contact boundary of the adhering vesicles, facilitating asymmetric spreading and producing a "heart"-shaped membrane patch. During the healing phase, the competing pore closure produces a daughter vesicle. In both cases, the pattern of burst-reseal events repeats multiple times, splashing and spreading the vesicular fragments as bilayer patches at the solid surface in a pulsatory manner. These remarkable recurrent dynamics arise, not because of the elastic properties of the solid surface, but because the competition between membrane spreading and pore healing, prompted by the surface-energy-dependent adhesion, determine the course of the topological transition.
Collapse
Affiliation(s)
- Viviane N Ngassam
- Department of Biomedical Engineering, University of California, Davis, California
| | - Wan-Chih Su
- Department of Chemistry, University of California, Davis, California
| | - Douglas L Gettel
- Department of Chemical Engineering, University of California, Davis, California
| | - Yawen Deng
- Department of Biomedical Engineering, University of California, Davis, California
| | - Zexu Yang
- Department of Biomedical Engineering, University of California, Davis, California
| | - Neven Wang-Tomic
- Department of Biomedical Engineering, University of California, Davis, California
| | - Varun P Sharma
- Department of Biomedical Engineering, University of California, Davis, California
| | - Sowmya Purushothaman
- Department of Biomedical Engineering, University of California, Davis, California
| | - Atul N Parikh
- Department of Biomedical Engineering, University of California, Davis, California; Department of Chemistry, University of California, Davis, California; Department of Chemical Engineering, University of California, Davis, California; Department of Materials Science and Engineering, University of California, Davis, California.
| |
Collapse
|
2
|
Abstract
In synthetic chemistry and biological or biomimetic systems, polymers are often grown in cavities. Polymerizations in microemulsions, biopolymers grown in cells, or in vesicles containing artificial organelles have an influence on the shape of liquid boundaries. We consider confined grand-canonical polymers to address equilibrium properties of annealed polymers. We calculate the concentration profiles established by annealed (star-) polymers inside a confining cavity. Our emphasis is on the description of pressure fields derived from the contact theorem. We further show how the pressure field exerted by a localized annealed polymer (or pair of polymers) deforms the confining vesicle/ microemulsions droplet.
Collapse
Affiliation(s)
- Nam-Kyung Lee
- Department of Physics and Astronomy, Sejong University, Seoul 05006, South Korea
| | - Albert Johner
- Institute Charles Sadron, CNRS, 23 Rue du Loess, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
3
|
Su YC, Chen JZY. A model of vesicle tubulation and pearling induced by adsorbing particles. SOFT MATTER 2015; 11:4054-4060. [PMID: 25907594 DOI: 10.1039/c5sm00565e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We study the basic theoretical model of a deformable vesicle immersed in a solution of particles that can adsorb onto one of the two surfaces of a membrane. The model consists of an adsorption energy gain for the adsorbing particles and the Canham-Helfrich membrane bending energy, in which the spontaneous curvature is coupled with the adsorption area. We demonstrate that bud, pearling, and tube conformations can be stabilized after minimizing the free energy and that the pearling-tubulation transition has the characteristics of an abrupt structural transition.
Collapse
Affiliation(s)
- Yu-Cheng Su
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, CanadaN2L 3G1.
| | | |
Collapse
|
4
|
Su YC, Chen JZY. Pressing soft membrane on a self-avoiding polymer against a flat wall. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:052706. [PMID: 23767565 DOI: 10.1103/physreve.87.052706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Indexed: 06/02/2023]
Abstract
A polymer-membrane interacting system can produce a variety of structures. Here, we theoretically study a model system in which a membrane pushes a polymer against a hard surface; we show that a first-order structural phase transition can occur. Using a Monte Carlo simulation, we reveal that the system undergoes a transition from a confined (bump) state to a strongly confined (flattened-out) state as the pressure increases. A scaling argument is also made to understand the physical mechanism behind the phase transition and the properties of each state.
Collapse
Affiliation(s)
- Yu-Cheng Su
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | | |
Collapse
|