1
|
Mallamace F, Mensitieri G, Salzano de Luna M, Lanzafame P, Papanikolaou G, Mallamace D. The Interplay between the Theories of Mode Coupling and of Percolation Transition in Attractive Colloidal Systems. Int J Mol Sci 2022; 23:5316. [PMID: 35628124 PMCID: PMC9141735 DOI: 10.3390/ijms23105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
In the recent years a considerable effort has been devoted to foster the understanding of the basic mechanisms underlying the dynamical arrest that is involved in glass forming in supercooled liquids and in the sol-gel transition. The elucidation of the nature of such processes represents one of the most challenging unsolved problems in the field of material science. In this context, two important theories have contributed significantly to the interpretation of these phenomena: the Mode-Coupling theory (MCT) and the Percolation theory (PT). These theories are rooted on the two pillars of statistical physics, universality and scale laws, and their original formulations have been subsequently modified to account for the fundamental concepts of Energy Landscape (EL) and of the universality of the fragile to strong dynamical crossover (FSC). In this review, we discuss experimental and theoretical results, including Molecular Dynamics (MD) simulations, reported in the literature for colloidal and polymer systems displaying both glass and sol-gel transitions. Special focus is dedicated to the analysis of the interferences between these transitions and on the possible interplay between MCT and PT. By reviewing recent theoretical developments, we show that such interplay between sol-gel and glass transitions may be interpreted in terms of the extended F13 MCT model that describes these processes based on the presence of a glass-glass transition line terminating in an A3 cusp-like singularity (near which the logarithmic decay of the density correlator is observed). This transition line originates from the presence of two different amorphous structures, one generated by the inter-particle attraction and the other by the pure repulsion characteristic of hard spheres. We show here, combining literature results with some new results, that such a situation can be generated, and therefore experimentally studied, by considering colloidal-like particles interacting via a hard core plus an attractive square well potential. In the final part of this review, scaling laws associated both to MCT and PT are applied to describe, by means of these two theories, the specific viscoelastic properties of some systems.
Collapse
Affiliation(s)
- Francesco Mallamace
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Giuseppe Mensitieri
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (G.M.); (M.S.d.L.)
| | - Martina Salzano de Luna
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (G.M.); (M.S.d.L.)
| | - Paola Lanzafame
- Departments of ChiBioFarAm and MIFT—Section of Industrial Chemistry, University of Messina, CASPE-INSTM, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (P.L.); (G.P.)
| | - Georgia Papanikolaou
- Departments of ChiBioFarAm and MIFT—Section of Industrial Chemistry, University of Messina, CASPE-INSTM, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (P.L.); (G.P.)
| | - Domenico Mallamace
- Departments of ChiBioFarAm—Section of Industrial Chemistry, University of Messina, CASPE-INSTM, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy;
| |
Collapse
|
2
|
Asheichyk K, Fuchs M, Krüger M. Brownian systems perturbed by mild shear: comparing response relations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:405101. [PMID: 34139676 DOI: 10.1088/1361-648x/ac0c3c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/17/2021] [Indexed: 06/12/2023]
Abstract
We present a comprehensive study of the linear response of interacting underdamped Brownian particles to simple shear flow. We collect six different routes for computing the response, two of which are based on the symmetry of the considered system and observable with respect to the shear axes. We include the extension of the Green-Kubo relation to underdamped cases, which shows two unexpected additional terms. These six computational methods are applied to investigate the relaxation of the response towards the steady state for different observables, where interesting effects due to interactions and a finite particle mass are observed. Moreover, we compare the different response relations in terms of their statistical efficiency, identifying their relative demand on experimental measurement time or computational resources in computer simulations. Finally, several measures of breakdown of linear response theory for larger shear rates are discussed.
Collapse
Affiliation(s)
- Kiryl Asheichyk
- 4th Institute for Theoretical Physics, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Department of Theoretical Physics and Astrophysics, Belarusian State University, 5 Babruiskaya St., 220006 Minsk, Belarus
| | - Matthias Fuchs
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Matthias Krüger
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
3
|
Kranz WT, Frahsa F, Zippelius A, Fuchs M, Sperl M. Rheology of Inelastic Hard Spheres at Finite Density and Shear Rate. PHYSICAL REVIEW LETTERS 2018; 121:148002. [PMID: 30339456 DOI: 10.1103/physrevlett.121.148002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 07/11/2018] [Indexed: 06/08/2023]
Abstract
Considering a granular fluid of inelastic smooth hard spheres, we discuss the conditions delineating the rheological regimes comprising Newtonian, Bagnoldian, shear thinning, and shear thickening behavior. Developing a kinetic theory, valid at finite shear rates and densities around the glass transition density, we predict the viscosity and Bagnold coefficient at practically relevant values of the control parameters. The determination of full flow curves relating the shear stress σ to the shear rate γ[over ˙] and predictions of the yield stress complete our discussion of granular rheology derived from first principles.
Collapse
Affiliation(s)
- W Till Kranz
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt, 51170 Köln, Germany
- Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany
| | - Fabian Frahsa
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Annette Zippelius
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Matthias Fuchs
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Matthias Sperl
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt, 51170 Köln, Germany
- Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany
| |
Collapse
|
4
|
Yamaguchi T. Stress-structure coupling and nonlinear rheology of Lennard-Jones liquid. J Chem Phys 2018; 148:234507. [DOI: 10.1063/1.5026536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Tsuyoshi Yamaguchi
- Graduate School of Engineering, Nagoya University, Furo-cho B2-3 (611), Chikusa, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
5
|
Papenkort S, Voigtmann T. Multi-scale lattice Boltzmann and mode-coupling theory calculations of the flow of a glass-forming liquid. J Chem Phys 2015; 143:204502. [PMID: 26627963 DOI: 10.1063/1.4936358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present a hybrid-lattice Boltzmann (LB) algorithm for calculating the flow of glass-forming fluids that are governed by integral constitutive equations with pronounced nonlinear, non-Markovian dependence of the stresses on the flow history. The LB simulation for the macroscopic flow fields is combined with the mode-coupling theory (MCT) of the glass transition as a microscopic theory, in the framework of the integration-through transients formalism. Using the combined LB-MCT algorithm, pressure-driven planar channel flow is studied for a schematic MCT model neglecting spatial correlations in the microscopic dynamics. The cessation dynamics after removal of the driving pressure gradient shows strong signatures of oscillatory flow both in the macroscopic fields and the microscopic correlation functions.
Collapse
Affiliation(s)
- S Papenkort
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - Th Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| |
Collapse
|
6
|
Nandi SK. Understanding the approximations of mode-coupling theory for sheared steady states of colloids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042306. [PMID: 26565239 DOI: 10.1103/physreve.92.042306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 06/05/2023]
Abstract
The lack of clarity of various mode-coupling theory (MCT) approximations, even in equilibrium, makes it hard to understand the relation between various MCT approaches for sheared steady states as well as their regime of validity. Here we try to understand these approximations indirectly by deriving the MCT equations through two different approaches for a colloidal system under shear, first through a microscopic approach, as suggested by Zaccarelli et al., and second through fluctuating hydrodynamics, where the approximations used in the derivation are quite clear. The qualitative similarity of our theory with a number of existing theories show that linear response theory might play a role in various approximations employed in deriving those theories and one needs to be careful while applying them for systems arbitrarily far away from equilibrium, such as a granular system or when shear is very strong. As a by-product of our calculation, we obtain the extension of the Yvon-Born-Green (YBG) equation for a sheared system and under the assumption of random-phase approximation, the YBG equation yields the distorted structure factor that was earlier obtained through different approaches.
Collapse
Affiliation(s)
- Saroj Kumar Nandi
- Max-Planck-Institute für Physik Komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany
| |
Collapse
|
7
|
Amann CM, Siebenbürger M, Ballauff M, Fuchs M. Nonlinear rheology of glass-forming colloidal dispersions: transient stress-strain relations from anisotropic mode coupling theory and thermosensitive microgels. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:194121. [PMID: 25922898 DOI: 10.1088/0953-8984/27/19/194121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Transient stress-strain relations close to the colloidal glass transition are obtained within the integration through transients framework generalizing mode coupling theory to flow driven systems. Results from large-scale numerical calculations are quantitatively compared to experiments on thermosensitive microgels, which reveals that theory captures the magnitudes of stresses semi-quantitatively even in the nonlinear regime, but overestimates the characteristic strain where plastic events set in. The former conclusion can also be drawn from flow curves, while the latter conclusion is supported by a comparison to single particle motion measured by confocal microscopy. The qualitative picture, as previously obtained from simplifications of the theory in schematic models, is recovered by the quantitative solutions of the theory for Brownian hard spheres.
Collapse
Affiliation(s)
- C M Amann
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
8
|
|
9
|
Papenkort S, Voigtmann T. Channel flow of a tensorial shear-thinning Maxwell model: Lattice Boltzmann simulations. J Chem Phys 2014; 140:164507. [DOI: 10.1063/1.4872219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Ikeda A, Berthier L. Yield stress in amorphous solids: a mode-coupling-theory analysis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:052305. [PMID: 24329262 DOI: 10.1103/physreve.88.052305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/02/2013] [Indexed: 06/03/2023]
Abstract
The yield stress is a defining feature of amorphous materials which is difficult to analyze theoretically, because it stems from the strongly nonlinear response of an arrested solid to an applied deformation. Mode-coupling theory predicts the flow curves of materials undergoing a glass transition and thus offers predictions for the yield stress of amorphous solids. We use this approach to analyze several classes of disordered solids, using simple models of hard-sphere glasses, soft glasses, and metallic glasses for which the mode-coupling predictions can be directly compared to the outcome of numerical measurements. The theory correctly describes the emergence of a yield stress of entropic nature in hard-sphere glasses, and its rapid growth as density approaches random close packing at qualitative level. By contrast, the emergence of solid behavior in soft and metallic glasses, which originates from direct particle interactions is not well described by the theory. We show that similar shortcomings arise in the description of the caging dynamics of the glass phase at rest. We discuss the range of applicability of mode-coupling theory to understand the yield stress and nonlinear rheology of amorphous materials.
Collapse
Affiliation(s)
- Atsushi Ikeda
- Laboratoire Charles Coulomb, UMR 5221, CNRS and Université Montpellier 2, Montpellier, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221, CNRS and Université Montpellier 2, Montpellier, France
| |
Collapse
|
11
|
Hayakawa H, Otsuki M. Nonequilibrium identities and response theory for dissipative particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:032117. [PMID: 24125223 DOI: 10.1103/physreve.88.032117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Indexed: 06/02/2023]
Abstract
We derive some nonequilibrium identities such as the integral fluctuation theorem and the Jarzynski equality starting from a nonequilibrium state for dissipative classical systems. Thanks to the existence of the integral fluctuation theorem we can naturally introduce an entropy-like quantity for dissipative classical systems in far from equilibrium states. We also derive the generalized Green-Kubo formula as a nonlinear response theory for a steady dynamics around a nonequilibrium state. We numerically verify the validity of the derived formulas for sheared frictionless granular particles.
Collapse
Affiliation(s)
- Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|